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Introduction



What is geometry?

γεωμετρία (geōmetría) = land measurement

Branch of mathematics that studies properties of space such as

distance, angle, shape, size, relative position, …

Figure 1: Euclid (300 BC), Gauss (1777–1855), Riemann (1826–1866) from left to right

2



Euclidean geometry

Figure 2: The angle sum is 180◦ .
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Non-Euclidean geometry

Figure 3: 1The angle sum is > 180◦ .

Figure 4: 2The angle sum is < 180◦ .

1Source: https://www.mezzacotta.net/100proofs/archives/450
2Source: Wikipedia
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Surfaces and geometry

Figure 5: 3 Different geometries of the surface of a body.

3Source: http://www.drmarkliu.com/noneuclidean
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Surfaces

Figure 6: 4Surfaces of genus 0, 1, 2 and 3.

4Source: https://dmargalit7.math.gatech.edu/about.shtml
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Teichmüller space

Figure 7: 5 Teichmüller space of a donut.

5Source: Secrets of the Surface: The Mathematical Vision of Maryam Mirzakhani
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Going to infinity in Teichmüller space

As Bers put it:
There are two ways to send a Riemann surface to infinity in Teich-
müller space: by pinching it, or by wringing its neck.

Figure 8: Pinching and twisting

Question: What should “points at infinity” (of Teichmüller space) be?
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Compactification

Definition (intuitively)
A compactification of a space is obtained by adding points at infinity.

Examples:

0 1 2 3−1−2−3

0 1 2 3 +∞−1−2−3−∞

Figure 9: R and its two-point and one-point6 compactifications

6Source: Wikipedia 9



Summary

Goal 1: Compactify Teichmüller space & its generalizations

Tool: Representation theory and real algebraic geometry

Goal 2: Interpret points at infinity geometrically

Tool: Spaces of flags and positivity
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Main objects



The character variety

Figure 10: 7Surfaces of genus ≥ 2

S − closed, connected, orientable surface of genus g ≥ 2
π1(S) − fundamental group of S
PSL(n,R) − projective special linear group

⇝ χ(S,n) := Hom(π1(S), PSL(n,R))/PSL(n,R), the character variety.
7Source: Wikipedia
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Teichmüller space

Definition

T(S) = {hyperbolic structures on S}

Remark: T(S) ↪→ χ(S, 2)

Theorem (Goldman [Gol88])
χ(S, 2) has 4g− 3 connected components, two of which are ∼= R6g−6 and
are a copy of the Teichmüller space T(S) of S.

Figure 11: χ(S, 2) and its 4g-3 connected components

Goal: Compactify the character variety
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The Hitchin component

Theorem ([Hit92]) For n ≥ 3, χ(S,n) has3 connected components, one of which is ∼= R(n2−1)(2g−2), if n is odd,
6 connected components, two of which are ∼= R(n2−1)(2g−2), if n is even.

Figure 12: χ(S, 3) and its 3 connected components

Definition
The Hitchin component Hit(S,n) is the connected component(s) of χ(S,n)
homeomorphic to R(n2−1)(2g−2).

Theorem (Fock–Goncharov [FG06], Labourie [Lab06])
The Hitchin component consists only of injective representations with
discrete image. 13



n = 3

Definition
Ω ⊂ RP2 = {lines in R3 through 0} is strictly convex if it is bounded and
strictly convex in an affine chart.

Figure 13: 8A convex set and a non-convex set.

Theorem (Choi–Goldman [CG93])

Hit(S, 3) = {strictly convex real projective structures on S}

8Source: Wikipedia
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Compactifications of character varieties

n = 2⇝ Thurston’s compactification T(S) of Teichmüller space

Properties:

• T(S) is open and dense in T(S)
• MCG(S) ↷ T(S) ∼= B6g−6

• points in ∂T(S) ↔ (small) actions on real trees

Question: Compactification for Hit(S,n) with “good” geometric properties?

Answer: Yes! The real spectrum compactification.

(Brumfiel [Bru88] for Teichmüller space,
Burger–Iozzi–Parreau–Pozzetti [BIPP21] for higher rank Lie groups)
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Real spectrum compactification

Definition
An ordered field is real closed if every positive element is a square and
every odd degree polynomial has a root.

Examples: R,Q ∩ R,

real Puiseux series =


k0∑

k=−∞

ckX
k
m

∣∣∣∣∣ k0,m ∈ Z, m > 0, ck ∈ R, ck0 6= 0


with the order X > λ for all λ ∈ R

Non-examples: C, finite fields, Q, R(X)

Definition/Theorem ([BIPP21])
The real spectrum compactification RSp(χ(S,n)) is

RSp(χ(S,n)) = {(ρ,F) | ρ : π1(S) → PSL(n,F), R ⊆ F real closed field}
/
∼.

Idea
Replace coefficients tending to +∞ by variables X with X > λ for all λ ∈ R
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Example

π1(S) <
f. i.

∆ := (3, 3, 4)-triangle group 〈a, b | a3 = b3 = (ab)4 = 1〉

ρt : ∆ → PSL(3,R),

a 7→

0 0 1
1 0 0
0 1 0

 , b 7→

1 2− t+ t2 3+ t2

0 −2+ 2t− t2 −1+ t− t2

0 3− 3t+ t2 (t− 1)2


ρ : ∆ → PSL(3,R(X)r),

a 7→

0 0 1
1 0 0
0 1 0

 , b 7→

1 2− X+ X2 3+ X2

0 −2+ 2X− X2 −1+ X− X2

0 3− 3X+ X2 (X− 1)2


Theorem (Long-Reid-Thistlethwaite [LRT11])
For all t ∈ R, the representations ρt are Hitchin.

⇝ ρ := limt→∞ ρt ∈ Hit(S, 3) ⊂ RSp(χ(S, 3)).

R(X)r = the real closure of R(X) together with the order X > λ for all λ ∈ R.
17



Characterisation of Hitchin boundary points & main result

Question: Let (ρ,F) ∈ RSp(χ(S,n)). When is (ρ,F) ∈ Hit(S,n)?

Figure 14: RSp(χ(S, 3))

Theorem (Fock–Goncharov [FG06])
Let ρ : π1(S) → PSL(n,R). Then ρ is Hitchin ⇐⇒ ρ is positive.

Theorem (F. [Fla22])
(ρ,F) ∈ Hit(S,n) ⇐⇒ ρ is F-positive and weakly dynamics preserving.
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Flags, positivity and limit maps

Definition
A flag is a nested sequence of n+ 1 subspaces of Fn of strictly increasing
dimension, i.e.

F = (V0 ⊂ V1 ⊂ . . . ⊂ Vn−1 ⊂ Vn).

V

V

V

0

1

2

P(V1)

P(V2)

Figure 15: 9 A flag in F3 and its projectivization in FP2

9Source: Wikipedia
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Flags, positivity and limit maps

Let Fix(S) ⊂ ∂H2 ∼= S1.

Remark: π1(S) ↷ Fix(S) and PSL(n,F) ↷ Flag(Fn)

Definition
A representation ρ : π1(S) → PSL(n,F) is F-positive if there exists a map
ξρ : Fix(S) → Flag(Fn) (called the limit map), that is

• ρ-equivariant, i.e. ξρ(γx) = ρ(γ)ξρ(x) for all x ∈ Fix(S) and γ ∈ π1(S)
• tuples of cyclically ordered points 7→ positive tuples of flags.

Figure 16: A positive and a negative triple.
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Tools and techniques



Recall that we would like to prove

Theorem (F. [Fla22])
(ρ,F) ∈ Hit(S,n) ⇐⇒ ρ is F-positive and weakly dynamics preserving.
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(“⇒”): Tarski–Seidenberg transfer principle

Idea: Transferring properties from the Hitchin component to the boundary.

Definition
A semi-algebraic set is a finite union of subsets of Rm defined by finitely
many polynomial equalities and inequalities.

Example
The circle x2 + y2 − 1 = 0 is semi-algebraic, as well as its inside and
outside.

≤ 0

≥ 0

Figure 17: Semi-algebraic sets defined by the polynomial x2 + y2 − 1.

Figure 18: More fun semi-algebraic sets.
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(“⇒”): Tarski–Seidenberg transfer principle

Let X ⊆ Rm+1 be semi-algebraic and p : Rm+1 → Rm the projection onto the
first m coordinates.

Figure 19: Projection onto a coordinate.

Theorem (Tarski–Seidenberg)

• p(X) ⊆ Rm is semi-algebraic.
• If R ⊆ F real closed, its F-extension XF—the subset of Fm satisfying the
polynomial equalities and inequalities defining X—is well-defined.

•
X XF

p(X) p(X)F = pF(XF)

F-extension

p pF

F-extension
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(“⇒”): Tarski–Seidenberg transfer principle

Fact: (ρ,F) ∈ Hit(S,n) ⇐⇒ ρ ∈ Hit(S,n)F

Proposition (F. [Fla22])
Let (ρ,F) ∈ Hit(S,n). Then ρ is injective.

Proof: For Id 6= γ ∈ π1(S) consider Xγ = {ρ ∈ Hit(S,n) | ρ(γ) 6= Id} ⊂ RM.
Then Xγ is semi-algebraic and Xγ = Hit(S,n).
Tarski–Seidenberg =⇒ (Xγ)F = Hit(S,n)F, so ρ is injective. □

Proposition (F. [Fla22])
Let (ρ,F) ∈ Hit(S,n). Then ρ(γ) has distinct, positive eigenvalues for all
Id 6= γ ∈ π1(S).
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Proof of (“⇒”)

Definition
Let M ∈ GL(n,F) with distinct, positive eigenvalues λ1 > . . . > λn > 0 and
corresponding eigenspaces `1, . . . , `n. Its stable flag F+M is

F+M =
(
{0} ⊂ `1 ⊂ `1 ⊕ `2 ⊂ . . . ⊂ `1 ⊕ . . .⊕ `n−1 ⊂ Fn

)
.

Recall that we would like to prove

Theorem (F. [Fla22])
(ρ,F) ∈ Hit(S,n) ⇐⇒ ρ is F-positive and weakly dynamics preserving.

Proof of (“⇒”).

• Define an equivariant limit map for ρ ∈ Hit(S,n)F by

ξρ : Fix(S) → Flag(Fn), γ+ 7→ F+ρ(γ)

• Use Tarski–Seidenberg =⇒ ξρ is positive.
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(“⇐”): Bonahon–Dreyer coordinates

Fix a maximal geodesic lamination L on S.

⇝ ideal triangulation of S̃

Figure 20: The lift L̃ of L to S̃. 26



(“⇐”): Bonahon–Dreyer coordinates

Figure 21: The lift L̃ of L to S̃.

Theorem (Bonahon–Dreyer [BD14])
The map Hit(S,n) → RN that assigns to a Hitchin representation ρ with
limit map ξρ : Fix(S) → Flag(Rn)

• the triangle invariants of (ξρ(x), ξρ(y), ξρ(z)) for every ideal triangle with
vertices x, y, z, and

• the shear invariants of (ξρ(x), ξρ(y), ξρ(z), ξρ(w)) for every geodesic with
adjacent ideal triangles with vertices x, y, z,w

is a homeomorphism onto an explicit semi-algebraic subset X ⊂ RN.
27



(“⇐”): Gantmacher–Krein

Definition
A matrix in GL(n,F) is totally positive, if all its minors are positive.

Example

M1 =

(
1 2
1 3

)
, M2 =

1 2 3
1 3 5
1 4 8

 are totally positive.
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(“⇐”): Gantmacher–Krein

Figure 22: 10PageRank algorithm.

Theorem (Perron–Frobenius)
A positive matrix has a largest positive eigenvalue.

Theorem (Gantmacher–Krein [GK02])
A totally positive matrix has distinct, positive eigenvalues.

10Source: Wikipedia
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(“⇐”): Fock–Goncharov and positivity

Theorem (Fock–Goncharov [FG06])
Let (F1, . . . , Fk) be a positive k-tuple of flags, (F′1, F′2, F′3) a positive subtriple
(distinct from (F1, F2, F3)), and assume g(F1, F2, F3) = (F′1, F′2, F′3) for some
g ∈ PGL(n,F). Then g is conjugate to a totally positive matrix.

Figure 23: Six points cyclically ordered in Fix(S).

Proposition (F. [Fla22])
Let ρ be F-positive. Then ρ(γ) has distinct, positive eigenvalues for all
non-trivial γ ∈ π1(S).
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Thank you

Thank you for your attention!
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