

On the real spectrum compactification of Hitchin components

Doctoral defense

Xenia Flamm October 10, 2023

ETH Zürich

1. Introduction

2. Main objects

3. Tools and techniques

Introduction

γεωμετρία (geōmetría) = land measurement Branch of mathematics that studies properties of space such as distance, angle, shape, size, relative position, ...

Figure 1: Euclid (300 BC), Gauss (1777–1855), Riemann (1826–1866) from left to right

Figure 2: The angle sum is 180°.

Non-Euclidean geometry

Figure 3: ¹The angle sum is $> 180^{\circ}$.

Figure 4: ²The angle sum is $< 180^{\circ}$.

¹Source: https://www.mezzacotta.net/100proofs/archives/450 ²Source: Wikipedia

Surfaces and geometry

Figure 5: ³ Different geometries of the surface of a body.

³Source: http://www.drmarkliu.com/noneuclidean

Figure 6: ⁴Surfaces of genus 0, 1, 2 and 3.

⁴Source: https://dmargalit7.math.gatech.edu/about.shtml

Figure 7: ⁵ Teichmüller space of a donut.

⁵Source: Secrets of the Surface: The Mathematical Vision of Maryam Mirzakhani

As Bers put it:

There are two ways to send a Riemann surface to infinity in Teichmüller space: by pinching it, or by wringing its neck.

Figure 8: Pinching and twisting

Question: What should "points at infinity" (of Teichmüller space) be?

Compactification

Definition (intuitively)

A compactification of a space is obtained by adding points at infinity.

Examples:

Figure 9: $\mathbb R$ and its two-point and one-point 6 compactifications

⁶Source: Wikipedia

Goal 1: Compactify Teichmüller space & its generalizations **Tool:** Representation theory and real algebraic geometry

Goal 2: Interpret points at infinity geometrically **Tool:** Spaces of flags and positivity Main objects

Figure 10: ⁷Surfaces of genus \geq 2

S — closed, connected, orientable surface of genus $g \ge 2$

- $\pi_1(S)$ fundamental group of S
- $PSL(n, \mathbb{R})$ projective special linear group

 $\rightsquigarrow \chi(S, n) := \text{Hom}(\pi_1(S), \text{PSL}(n, \mathbb{R}))/\text{PSL}(n, \mathbb{R})$, the character variety.

⁷Source: Wikipedia

Teichmüller space

Definition

 $T(S) = \{ \text{hyperbolic structures on } S \}$

Remark: $T(S) \hookrightarrow \chi(S,2)$

Theorem (Goldman [Gol88])

 $\chi(S, 2)$ has 4g - 3 connected components, two of which are $\cong \mathbb{R}^{6g-6}$ and are a copy of the Teichmüller space T(S) of S.

Figure 11: $\chi(S, 2)$ and its 4g-3 connected components

Goal: Compactify the character variety

The Hitchin component

Theorem ([Hit92]) For $n \ge 3$, $\chi(S, n)$ has

3 connected components, one of which is $\cong \mathbb{R}^{(n^2-1)(2g-2)}$, if *n* is odd, 6 connected components, two of which are $\cong \mathbb{R}^{(n^2-1)(2g-2)}$, if *n* is even.

Figure 12: $\chi(S,3)$ and its 3 connected components

Definition

The Hitchin component Hit(S, n) is the connected component(s) of χ (S, n) homeomorphic to $\mathbb{R}^{(n^2-1)(2g-2)}$.

Theorem (Fock–Goncharov [FG06], Labourie [Lab06])

The Hitchin component consists only of injective representations with discrete image.

Definition

 $\Omega \subset \mathbb{RP}^2 = \{ \text{lines in } \mathbb{R}^3 \text{ through } 0 \} \text{ is strictly convex if it is bounded and strictly convex in an affine chart.}$

Figure 13: ⁸A convex set and a non-convex set.

Theorem (Choi-Goldman [CG93])

 $Hit(S, 3) = \{ strictly convex real projective structures on S \}$

⁸Source: Wikipedia

 $n = 2 \rightsquigarrow$ Thurston's compactification $\overline{T(S)}$ of Teichmüller space

Properties:

- T(S) is open and dense in $\overline{T(S)}$
- $MCG(S) \curvearrowright \overline{T(S)} \cong \mathbb{B}^{6g-6}$
- points in $\partial \overline{T(S)} \leftrightarrow (\text{small})$ actions on real trees

Question: Compactification for Hit(S, n) with "good" geometric properties?

Answer: Yes! The real spectrum compactification.

(Brumfiel [Bru88] for Teichmüller space, Burger–Iozzi–Parreau–Pozzetti [BIPP21] for higher rank Lie groups)

Real spectrum compactification

Definition

An ordered field is **real closed** if every positive element is a square and every odd degree polynomial has a root.

Examples: $\mathbb{R}, \overline{\mathbb{Q}} \cap \mathbb{R}$,

real Puiseux series =
$$\left\{\sum_{k=-\infty}^{k_0} c_k X^{\frac{k}{m}} \middle| k_0, m \in \mathbb{Z}, m > 0, c_k \in \mathbb{R}, c_{k_0} \neq 0\right\}$$

with the order $X > \lambda$ for all $\lambda \in \mathbb{R}$

Non-examples: \mathbb{C} , finite fields, \mathbb{Q} , $\mathbb{R}(X)$

Definition/Theorem ([BIPP21])

The real spectrum compactification $RSp(\chi(S, n))$ is

 $\mathsf{RSp}(\chi(S,n)) = \{(\rho, \mathbb{F}) \mid \rho \colon \pi_1(S) \to \mathsf{PSL}(n, \mathbb{F}), \mathbb{R} \subseteq \mathbb{F} \text{ real closed field}\}/_{\sim}.$

Idea

Replace coefficients tending to $+\infty$ by variables X with $X > \lambda$ for all $\lambda \in \mathbb{R}$

Example

$$\pi_1(S) \underset{\text{f. i.}}{<} \Delta := (3, 3, 4) \text{-triangle group } \langle a, b \mid a^3 = b^3 = (ab)^4 = 1 \rangle$$

$$\begin{split} \rho_t \colon \Delta &\to \mathsf{PSL}(3,\mathbb{R}), \\ a \mapsto \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}, \quad b \mapsto \begin{pmatrix} 1 & 2-t+t^2 & 3+t^2 \\ 0 & -2+2t-t^2 & -1+t-t^2 \\ 0 & 3-3t+t^2 & (t-1)^2 \end{pmatrix} \\ \rho \colon \Delta &\to \mathsf{PSL}(3,\overline{\mathbb{R}(X)}^r), \\ a \mapsto \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}, \quad b \mapsto \begin{pmatrix} 1 & 2-X+X^2 & 3+X^2 \\ 0 & -2+2X-X^2 & -1+X-X^2 \\ 0 & 3-3X+X^2 & (X-1)^2 \end{pmatrix} \end{split}$$

Theorem (Long-Reid-Thistlethwaite [LRT11]) For all $t \in \mathbb{R}$, the representations ρ_t are Hitchin.

Characterisation of Hitchin boundary points & main result

Question: Let $(\rho, \mathbb{F}) \in \mathsf{RSp}(\chi(S, n))$. When is $(\rho, \mathbb{F}) \in \overline{\mathsf{Hit}(S, n)}$?

Figure 14: $RSp(\chi(S, 3))$

Theorem (Fock–Goncharov [FG06]) Let $\rho: \pi_1(S) \to PSL(n, \mathbb{R})$. Then ρ is Hitchin $\iff \rho$ is positive.

Theorem (F. [Fla22]) $(\rho, \mathbb{F}) \in \overline{\text{Hit}(S, n)} \iff \rho \text{ is } \mathbb{F}\text{-positive and weakly dynamics preserving.}$

Flags, positivity and limit maps

Definition

A **flag** is a nested sequence of n + 1 subspaces of \mathbb{F}^n of strictly increasing dimension, i.e.

 $F = (V_0 \subset V_1 \subset \ldots \subset V_{n-1} \subset V_n).$

Figure 15: 9 A flag in \mathbb{F}^3 and its projectivization in \mathbb{FP}^2

⁹Source: Wikipedia

Flags, positivity and limit maps

Let Fix(S) $\subset \partial \mathbb{H}^2 \cong S^1$.

Remark: $\pi_1(S) \curvearrowright Fix(S)$ and $PSL(n, \mathbb{F}) \curvearrowright Flag(\mathbb{F}^n)$

Definition

A representation $\rho: \pi_1(S) \to \mathsf{PSL}(n, \mathbb{F})$ is \mathbb{F} -positive if there exists a map $\xi_{\rho}: \mathsf{Fix}(S) \to \mathsf{Flag}(\mathbb{F}^n)$ (called the **limit map**), that is

- ρ -equivariant, i.e. $\xi_{\rho}(\gamma x) = \rho(\gamma)\xi_{\rho}(x)$ for all $x \in Fix(S)$ and $\gamma \in \pi_1(S)$
- tuples of cyclically ordered points \mapsto positive tuples of flags.

Figure 16: A positive and a negative triple.

Tools and techniques

Recall that we would like to prove

Theorem (F. [Fla22]) $(\rho, \mathbb{F}) \in \overline{\text{Hit}(S, n)} \iff \rho \text{ is } \mathbb{F}\text{-positive and weakly dynamics preserving.}$

(" \Rightarrow "): Tarski–Seidenberg transfer principle

Idea: Transferring properties from the Hitchin component to the boundary.

Definition

A **semi-algebraic set** is a finite union of subsets of \mathbb{R}^m defined by finitely many polynomial equalities and inequalities.

Example

The circle $x^2 + y^2 - 1 = 0$ is semi-algebraic, as well as its inside and outside.

Figure 17: Semi-algebraic sets defined by the polynomial $x^2 + y^2 - 1$.

(" \Rightarrow "): Tarski–Seidenberg transfer principle

Let $X \subseteq \mathbb{R}^{m+1}$ be semi-algebraic and $p \colon \mathbb{R}^{m+1} \to \mathbb{R}^m$ the projection onto the first *m* coordinates.

Figure 19: Projection onto a coordinate.

Theorem (Tarski–Seidenberg)

- $p(X) \subseteq \mathbb{R}^m$ is semi-algebraic.
- If $\mathbb{R} \subseteq \mathbb{F}$ real closed, its \mathbb{F} -extension $X_{\mathbb{F}}$ —the subset of \mathbb{F}^m satisfying the polynomial equalities and inequalities defining X—is well-defined.

$$\begin{array}{ccc} X & \xrightarrow{\mathbb{F}\text{-extension}} & X_{\mathbb{F}} \\ & \downarrow^{p} & & \downarrow^{p_{\mathbb{F}}} \\ p(X) & \xleftarrow{\mathbb{F}\text{-extension}} & p(X)_{\mathbb{F}} = p_{\mathbb{F}}(X_{\mathbb{F}}) \end{array}$$

Fact: $(\rho, \mathbb{F}) \in \overline{\text{Hit}(S, n)} \iff \rho \in \text{Hit}(S, n)_{\mathbb{F}}$

Proposition (F. [Fla22])

Let $(\rho, \mathbb{F}) \in \overline{\text{Hit}(S, n)}$. Then ρ is injective.

Proof: For $Id \neq \gamma \in \pi_1(S)$ consider $X_{\gamma} = \{\rho \in Hit(S, n) \mid \rho(\gamma) \neq Id\} \subset \mathbb{R}^M$. Then X_{γ} is semi-algebraic and $X_{\gamma} = Hit(S, n)$. Tarski-Seidenberg $\implies (X_{\gamma})_{\mathbb{F}} = Hit(S, n)_{\mathbb{F}}$, so ρ is injective.

Proposition (F. [Fla22])

Let $(\rho, \mathbb{F}) \in \overline{\text{Hit}(S, n)}$. Then $\rho(\gamma)$ has distinct, positive eigenvalues for all $\text{Id} \neq \gamma \in \pi_1(S)$.

Proof of (" \Rightarrow ")

Definition

Let $M \in GL(n, \mathbb{F})$ with distinct, positive eigenvalues $\lambda_1 > \ldots > \lambda_n > 0$ and corresponding eigenspaces ℓ_1, \ldots, ℓ_n . Its **stable flag** F_M^+ is

$$F_{M}^{+} = \left(\{ 0 \} \subset \ell_{1} \subset \ell_{1} \oplus \ell_{2} \subset \ldots \subset \ell_{1} \oplus \ldots \oplus \ell_{n-1} \subset \mathbb{F}^{n} \right).$$

Recall that we would like to prove

Theorem (F. [Fla22]) $(\rho, \mathbb{F}) \in \overline{\text{Hit}(S, n)} \iff \rho \text{ is } \mathbb{F}\text{-positive and weakly dynamics preserving.}$

Proof of (" \Rightarrow ").

• Define an equivariant limit map for $\rho \in Hit(S, n)_{\mathbb{F}}$ by

$$\xi_{\rho} \colon \operatorname{Fix}(S) \to \operatorname{Flag}(\mathbb{F}^{n}), \ \gamma^{+} \mapsto F^{+}_{\rho(\gamma)}$$

• Use Tarski–Seidenberg $\implies \xi_{
ho}$ is positive.

("⇐"): Bonahon-Dreyer coordinates

Fix a maximal geodesic lamination *L* on *S*.

 \rightsquigarrow ideal triangulation of \tilde{S}

Figure 20: The lift \tilde{L} of L to \tilde{S} .

("⇐"): Bonahon-Dreyer coordinates

Figure 21: The lift \tilde{L} of L to \tilde{S} .

Theorem (Bonahon-Dreyer [BD14])

The map Hit(S, n) $\to \mathbb{R}^N$ that assigns to a Hitchin representation ρ with limit map $\xi_{\rho} : \operatorname{Fix}(S) \to \operatorname{Flag}(\mathbb{R}^n)$

- the triangle invariants of $(\xi_{\rho}(x), \xi_{\rho}(y), \xi_{\rho}(z))$ for every ideal triangle with vertices x, y, z, and
- the shear invariants of $(\xi_{\rho}(x), \xi_{\rho}(y), \xi_{\rho}(z), \xi_{\rho}(w))$ for every geodesic with adjacent ideal triangles with vertices x, y, z, w

is a homeomorphism onto an explicit semi-algebraic subset $X \subset \mathbb{R}^N$.

Definition

A matrix in $GL(n, \mathbb{F})$ is **totally positive**, if all its minors are positive.

Example

$$M_1 = \begin{pmatrix} 1 & 2 \\ 1 & 3 \end{pmatrix}, M_2 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 5 \\ 1 & 4 & 8 \end{pmatrix}$$
 are totally positive.

("⇐"): Gantmacher-Krein

Figure 22: ¹⁰ PageRank algorithm.

Theorem (Perron-Frobenius)

A positive matrix has a largest positive eigenvalue.

Theorem (Gantmacher-Krein [GK02])

A totally positive matrix has distinct, positive eigenvalues.

¹⁰Source: Wikipedia

("⇐"): Fock-Goncharov and positivity

Theorem (Fock-Goncharov [FG06])

Let (F_1, \ldots, F_k) be a positive k-tuple of flags, (F'_1, F'_2, F'_3) a positive subtriple (distinct from (F_1, F_2, F_3)), and assume $g(F_1, F_2, F_3) = (F'_1, F'_2, F'_3)$ for some $g \in PGL(n, \mathbb{F})$. Then g is conjugate to a totally positive matrix.

Figure 23: Six points cyclically ordered in Fix(S).

Proposition (F. [Fla22])

Let ρ be \mathbb{F} -positive. Then $\rho(\gamma)$ has distinct, positive eigenvalues for all non-trivial $\gamma \in \pi_1(S)$.

Thank you for your attention!

References i

Francis Bonahon and Guillaume Dreyer. Parameterizing Hitchin components. *Duke Math. J.*, 163(15):2935–2975, 2014.

Marc Burger, Alessandra Iozzi, Anne Parreau, and Maria Beatrice Pozzetti.

The real spectrum compactification of character varieties: characterizations and applications.

C. R. Math. Acad. Sci. Paris, 359:439–463, 2021.

Gregory W. Brumfiel.

The real spectrum compactification of Teichmüller space.

In *Geometry of group representations (Boulder, CO, 1987)*, volume 74 of *Contemp. Math.*, pages 51–75. Amer. Math. Soc., Providence, RI, 1988.

Suhyoung Choi and William M. Goldman. **Convex real projective structures on closed surfaces are closed.** *Proc. Amer. Math. Soc.*, 118(2):657–661, 1993.

References ii

- Vladimir V. Fock and Alexander B. Goncharov. **Moduli spaces of local systems and higher Teichmüller theory.** *Publ. Math. Inst. Hautes Études Sci.*, (103):1–211, 2006.

Xenia Flamm.

Characterizing Hitchin representations over real closed fields, 2022. arXiv:2208.13611.

Felix Gantmacher and Mark Krein.

Oscillation matrices and kernels and small vibrations of mechanical

systems.

AMS Chelsea Publishing, Providence, RI, revised edition, 2002. Translation based on the 1941 Russian original, Edited and with a preface by Alex Eremenko.

William M. Goldman.

Topological components of spaces of representations.

Invent. Math., 93(3):557–607, 1988.

Nigel J. Hitchin.

Lie groups and Teichmüller space. *Topology*, 31(3):449 – 473, 1992.

10001099, 51(3).447 475, 1

François Labourie.

Anosov flows, surface groups and curves in projective space. *Invent. Math.*, 165(1):51–114, 2006.

Darren D. Long, Alan W. Reid, and Morwen Thistlethwaite. Zariski dense surface subgroups in SL(3, \mathbb{Z}). Geom. Topol., 15(1):1–9, 2011.