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Abstract

This thesis will examine the first homology of a finite, regular cover of a finite
graph as a representation of the group of deck transformations. Although
we can characterize it in terms of representation theory, new questions arose
with respect to subrepresentations spanned by elevations of particular ele-
ments in the free group. Recent work has shown that there are examples
where primitive homology, the subrepresentation spanned by elevations of
primitive elements, does not generate all of homology. The main contribu-
tion of this thesis is to broaden the correspondence and dictionary between
the representation theory of the group of deck transformations on the one
hand, and topological properties of homology classes on the other hand.
This thesis uses known results and methods to extend them to primitive
commutator homology, where we will present analogous findings.
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1 Introduction

Given a surface S, we know that the homology classes which are realized by
simple closed curves on this surface are exactly the indivisible ones. Given
a finite, regular cover S of S, classifying the homology classes realized by
elevations of simple closed curves in S becomes a significantly harder ques-
tion. We will look at the first homology of the cover not only as a vector
space but also as a representation of the group of deck transformations. The
field of representation theory of finite groups is well elaborated and gives us
many tools at hand. This thesis aims at developing a correspondence and
dictionary between the representation theory of the groups of deck trans-
formations on the one hand and topological properties of homology classes
on the other hand. Instead of surfaces, we will mainly look at graphs, more
precisely at the wedge of n circles for n > 2.

The homology of finite, regular covers of graphs as representations of the
group of deck transformations has been studied for a while arising not only
in a topological context but also in an algebraic one when studying relation
modules. In particular, a main result by Gaschiitz gives a decomposition of
the homology with coefficients in C into the irreducible representations of
the group of deck transformations.

Theorem 1.1 (Gaschiitz). Let X be the wedge of n circles, n > 2, and
p: Y — X a finite, reqular cover with group of deck transformations G. Then
H1(Y;C) = Cuiv © C[G]®"L, which means that the homology decomposes
into the trivial representation and n — 1 copies of the reqular representation

of G.

A proof of this theorem will be presented in Section [3} following Grune-
wald et al. in [GLLMI5]. In Subsection we will give an example of an
infinite cover to see that the theorem does not hold in the infinite case.

In Section [4] we will define primitive elements in free (abelian) groups
and collect a list of their important properties. We will present the work of
Osborne and Zieschang [OZ81] in which they give an explicit way of listing
all primitive elements in a free group of rank two. We are also interested in
studying how primitive elements lift to a given finite, regular cover. Here
we consider free groups as fundamental groups of graphs. We will define
primitive homology HY"™(Y;C) in Subsection as the subrepresentation
of the homology of the cover that comes from primitive elements in the
original space. A natural question to ask in this context is whether primitive
homology generates the whole homology group. We will sketch a proof of
the following theorem by Malestein and Putman [MP17] that answers the
question in the negative.

Theorem 1.2 (Malestein-Putman). For alln > 2 there exists a finite index,
normal subgroup R < F,, with HY"™(Y;C) # H1(Y;C), where p: Y — X is
the unique finite, reqular cover of X with p.(m1(Y)) = R.



To prove the above theorem, we construct a finite group and a repres-
entation of the former that violates the following representation-theoretic
obstruction formulated by Farb and Hensel in [FH16L Theorem 1.4].

Theorem 1.3 (Farb-Hensel). Let X be the wedge of n circles, n > 2, and
let p: Y — X be a finite reqular G-cover defined by ¢: F,, — G for n > 2.
Then
H{)rim(Y; C) < Cuiv ® @ V;(n_l) dim(Vi)’
Vi €lrrPi™ (¢,.G)

where IrrP™ (¢, G) C Irr(G) is the subset of those irreducible representations
of G that have the property that there is a primitive element in F,, whose
image in G has a nonzero fixed point.

At the end of Section [ we will study the orbit span of the elevation
of a single primitive element in homology. We will show that this span is
an induced representation. A main result of this thesis is to show that we
cannot characterize homology classes of elevations of primitive elements by
this property.

In Section [b| we will transfer the above results to commutators of primit-
ive elements. We will define primitive commutator homology H{°™™(Y’; C),
the subrepresentation coming from elevations of commutators of primitive
elements. It is possible to formulate an analogue to the representation-
theoretic obstruction as in [FH16, Theorem 1.4]. The proof uses surface
topology. In Subsection [5.1| we try to gain more insight into primitive com-
mutator homology using the results for primitive homology. For this pur-
pose, we will look at iterated covers, namely such where commutators of
primitive elements lift to primitive elements. A main result is the following
proposition.

Proposition 1.4. For n = 2 there exists a finite, reqular cover p: ¥ — X
such that H{*™™(Y; C) # ker(ps).

We will also show that we cannot characterize primitive commutators by
the span of their elevations in homology.

The last section is detached from the rest of the thesis. We will compute
the set of homology classes of elevations of primitive elements in rank two
for cyclic covers using the theory of Osborne and Zieschang. This is import-
ant when trying to construct covers that have the property that primitive
homology does not coincide with homology.



2 Preliminaries

In this section we explain the notation used in this thesis and introduce
important algebraic and topological concepts.

2.1 Notations and Basic Concepts

We start by defining graphs, and follow the definition by Hatcher as in
[Hat02, Section 1.A].

Definition 2.1. A graph T" is a one-dimensional CW complex. We call the
0-cells vertices and the 1-cells edges. Two vertices v, u form an edge if there
exists a 1-cell in I' that is attached to v and u. An edge is oriented if we
choose a parameterisation of the edge. If all its edges are oriented, then we
call " a directed graph. The graph I is said to be finite if it has only finitely
many vertices and edges.

This definition naturally endows a graph with a topology, and we can
study its fundamental group and its homology groups. There is a completely
combinatorial definition given by Serre in [Ser80]. We can endow the latter
with a topology such that the two definitions are equivalent for finite graphs.
We allow multiple edges and self-loops in our graphs. Throughout this thesis
all graphs are supposed to be finite if not otherwise stated.

Definition 2.2. Let I" be a graph. Then a map ¢: I' — I' is called a graph
automorphism, if ¢ is a self-CW-homeomorphism of I'. In other words, ¢
permutes the set of vertices and preserves edges and non-edges, i.e. two
vertices (u,v) form an edge if and only if the pair (¢(u), p(v)) also forms an
edge.

For n € N, n > 2 we denote by X the wedge of n copies of one-
dimensional spheres, denoted by S?, i.e. the graph with one vertex xy and n
self-loops. We chose an orientation of the edges and label the oriented edges
by z1,...,z, as illustrated in the following.

The theorem of Seifert-van Kampen implies that the fundamental group of
X is

Wl(X) - <\/ Sl) = *?zlﬂl(sl) - >|<zT'LzlZ = Fy,
=1



where by % we denote the free product of the corresponding groups and by
F, = F(z1,...,xy,) the free group on the generators xy, ..., x,.

Let p: Y — X be a cover. Then Y is a graph with vertex set p~!(zg).
Choose 3o € p~(x0) as base point for Y. The edge set of Y are the lifts of
the edges of X, i.e. the CW structure on Y is obtained by pulling back the
CW structure of X via the map p. For further details refer to [Hat02, Lemma
1A.3]. Note that Y is a 2n regular graph with indegree and outdegree being
n for all vertices of Y. This follows as p is a local homeomorphism and X
satisfies this property.

Since X and Y are path-connected, the base points are not important
when computing their fundamental groups. Nevertheless, in some definitions
it is crucial to consider the base points to get well-defined objects. Thus we
sometimes write m1(Y") for m(Y,yo) and 71 (X) for m1(X,zg) if we do not
want to emphasize the base points. Denote by

P m(Y) = m(X), [fl=[po f]

the induced group homomorphism on fundamental groups. Note that the
homomorphism p, is injective. The map p induces a map on chain complexes
Ps: Co(Y) = Co(X) which commutes with the differential operators. This
implies that we get a map on homology p.: H1(Y;Z) — H;(X;Z), which we
will also denote by p,. It will be clear from the context whether we consider
the map on fundamental groups or on homology. If we assume the cover to
be finite, then Y is a finite graph and we have the transfer map

pg: Co(X) = Cu(Y), x Y &

zep~i(z)

The map py commutes with the differential operators and induces thus a
map on homology, which we will also denote by p.

We denote by G := Deck(Y,p) the group of deck transformations of
the cover p: Y — X. If p.(m1(Y)) is normal in (X)), the cover is called
regular. If p is regular, then G is isomorphic to 71 (X)/p«(m(Y)). If the
cover is finite, then so is this quotient, which means that the group of deck
transformations is a finite group. Note that being a regular cover means
that G acts by graph automorphisms transitively on the edges and on the
vertices of Y. This action descends to an action on homology, so G acts
linearly on H;(Y;Z). We need the following definition to make use of the
cellular structure of Y.

Definition 2.3. Let Z be a CW complex with k-skeleton Z*. Denote by
H}.(Z%) the singular homology of Z* and by Hy(Z*, Z¥~1) the singular ho-
mology of Z* relative to Z*~!. We have natural maps

dy: He(Z%, 2871 — Hy (2870, g Hi(Z8) — Hy(ZF, 2771



coming from the long exact sequences of the pairs (Z*, Z*=1). Set
Ci(Z2) = Hp(Z*, Z2"71)
for k > 0 with Z_1 = @. Set O = jp_1 o dx. We obtain the cellular chain

complex

e Con(2) T Cn(2) O

P

Hk_l(ZkJ—l)

The homology groups of this chain complex are called cellular homology
groups.

Then [Hat02, Theorem 2.35] shows that the cellular homology groups
are isomorphic to the singular ones. Note that for a CW-complex Z with
k-skeleton Z*, the relative homology group Hy(Z7,Z7~1) is zero for j # k
and free abelian for j = k, with a basis the k-cells of Z, cf. [Hat02, Lemma
2.34]. Thus we can think of the relative homology groups as formal linear
combinations of the k-cells of Z with coefficients in Z, i.e.

Cw(Z)=Hy(2" 25 = P 1z
k-cells in Z
For an abelian group A, we define the homology of Z with coefficients in A

as the homology of the chain complex

Cu(Z;A) =Cr(Z) ez A= P A
k-cells in Z

Note that Cy(Z;Z) = Cr(Z), and we use both notations interchangeably.

In our setting, we can choose an orientation of Y by pulling back the
orientation of X. By the above consideration and since Y is a graph, i.e. a
one-dimensional CW complex, we can identify

Hy(Y;Z) = ker(0y),

where

O1: C1(Y;Z) = Co(Y3Z), e t(e) — o(e)

is the map that assigns to an edge its terminal minus its original vertex.
Therefore, we have for A any abelian group that

H\(Y;Z) @z A= Hi(Y; A).

Thus we can view H1(Y;Z) C H1(Y;Q) C H1(Y;C) by the natural inclu-
sions. For A = C, we obtain a linear representation of G on H;(Y;C), i.e.



we have a linear representation of the group of deck transformations on the
first homology of the covering space with coefficients in C.

Recall that we can also define a finite, regular cover of X in the following
way. Let G be some finite group and ¢: m(X) = F,, — G a surjective group
homomorphism. Then ker(¢) < F, is a finite index, normal subgroup of
the free group. By covering space theory, there exists a finite, regular,
path-connected cover p: Y — X with p.(m(Y)) = ker(¢) and group of
deck transformations G. Throughout this thesis we will use both definitions
depending on which one fits better in the respective context.

There is the following theorem by Hurewicz relating fundamental groups
and first homology. It holds for higher homotopy and homology groups as
well.

Theorem 2.4. Let X be a topological space. By regarding loops as singular
1-cycles, we obtain a homomorphism h: w1 (X, x9) — H1(X;Z). If X is
path-connected, then h is surjective and has kernel the commutator subgroup
of m(X), so h induces an isomorphism from the abelianization of m(X)
onto H1(X;Z).

A proof can be found in [Hat02, Theorem 2A.1]. Set H := ker(¢). An
immediate consequence of the above is that we can identify Hq(Y;Z) with
H/[H, H]. The action of G is identified with the natural action of G = F,,/H
on H/[H, H], which is induced by the conjugation action of F,, on H.

We are particularly interested in topological spaces with free funda-
mental groups. An important property of the automorphism group of a
free group is presented in the following.

Theorem 2.5. Let F,, be the free group on the generators x1,...,T,, n > 2.
Then the automorphism group Aut(F,) of F, is generated by the following
four elements, called elementary Nielsen moves or transformations.

1. (NT1) x1 = x2, w2 — x1, T; — x; for 3<i<n;

2. (NT2) x; = 41 for 1 <i<n—1, z,— x;

3. (NT3) x1 — 331_1, T = 2 for 2 <1< n;

4. (NT4) 1 — x122, T — x; for 2 <i<n.

This result is due to Nielsen and a proof can be found in [Nie24, §1].

Proposition 2.6. Let X be the wedge of n circles, n > 2, with base point
o the unique vertex in X. Then the group homomorphism

.t HE(X) — Aut(F,)

is bijective, where HE(X) denotes the group of homotopy equivalences of X
up to homotopy.



Proor. This follows from [Hat02, Proposition 1B.9], since X is con-
nected and an Eilenberg-MacLane space for dimension one and the group
F,, so mi(X) = {1} for all ¢ > 2 and 7 = 0 and 7;(X) = F,,. Thus every
homomorphism from 7 (X, xg) to itself is induced by a map from (X, zg)
to itself, that is unique up to homotopy fixing x¢g. But this implies that
for every automorphism ¢ € Aut(mi(X,z9)) = Aut(F,) we find a map
f+(X,2z0) = (X,z0) with fu = ¢ and a map g: (X,z9) — (X, z9) with
g« = ¢~ 1. Thus fg and gf induce the identity on F,, which implies that fg
and ¢gf are homotopic to the identity maps. But this means nothing else
than that f is a homotopy equivalence with f, = ¢. Also by the cited pro-
position, we know that f is unique up to homotopy fixing xg, which implies
injectivity. U

A more basic way to prove the above is to explicitly write down four
homotopy equivalences whose induced maps on the fundamental group are
the four elementary Nielsen moves defined in Theorem The proposition
also holds for finite graphs, as they are homotopy-equivalent to a wedge of
n circles for some n € N.

If not otherwise stated, we denote by X the wedge of n copies of S* for
n > 2 and by p: Y — X a finite regular path-connected cover with group
of deck transformations G. We write 1 or 15 for the neutral element in an
abstract group G. When working with concrete abelian groups we write 0
for the neutral element.

All computations are done in [GAPI§|, which is also the source for the
character tables presented in this thesis.

2.2 Cayley Graphs as Covering Spaces

In the following we give a more generalized definition of Cayley graph as is
common in literature.

Definition 2.7. Let G be a finitely generated group and let S C G be a
finite generating multiset, i.e. a set that may contain multiple instances of
the same elements. Denote by ks the multiplicity of the element s € S. The
Cayley graph Cay(G, S) of G with respect to the generating multiset S is the
graph that has the elements of G as vertices and kg edges from g to h if and
only if there exists s € S with g = hs.

Note that since S is a generating set, Cay(G, S) is connected. Extending
the definition to multisets allows our Cayley graphs to have multiple edges.
The group G acts on Cay(G,S) by left multiplication. This action is free
on vertices and edges, which means that all vertex and edge stabilizers are
trivial.

Proposition 2.8. Let X be a wedge of n copies of S* with n > 2, G a
finite group and ¢: m(X) = F, = F(z1,...,2,) — G a surjective group



homomorphism. Then the cover defined by ¢ is the Cayley graph Cay(G,.S)
of G with respect to the generating multiset S = {¢(x1),...,P(x,)} based
at the vertex 1 € G. Furthermore, the action of G on Cay(G,S) by left
multiplication is the action of G as group of deck transformations.

PrROOF. We have to show that Cay(G, S) is a covering space of X with
covering map p: Cay(G,S) — X such that p.(71(Cay(G, S),1q)) = ker(¢)
and that the action of G on Cay(G,S) is the action of the group of deck
transformations.

The edges in Cay(G, S) are labeled by the elements in S. If there are
multiple edges between two vertices, all labeled by some s € S, then the
multiplicity of s in S is exactly the number of 1 < j < n with ¢(z;) = s.
Thus we can label all of these edges by a unique z;. If the multiplicity
of s € S is one, then we label all edges, which are labeled by s, by the
single element x; that has the property that ¢(z;) = s. We define a map
p: Cay(G,S) — X which sends all vertices of Cay(G, S) to xp and an edge
labeled by x; to the edge of X corresponding to the free generator x;. It is
thus enough to show that every vertex is incident to 2n half-edges, where a
half-edge is the barycentric subdivision of an edge in the graph. Because we
consider S as a multiset, we have |S| = n and thus every s € S defines two
half-edges incident to the vertex 1¢ € . Namely, for s € S, the vertices
s and s~! are adjacent to 1g since s = 1gs and 1g = s~ 's. Note that
lg = s = s~ ! is possible. Thus 1¢ is incident to 2n half-edges and therefore
also every other vertex, because the action of G on Cay(G,S) sends 1¢ to
every vertex g € G by an automorphism of graphs, which preserves the
number of incident half-edges.

Let w € ker(¢). This means that the word w, considered as an element
in G, is trivial. Going along the edges labeled by the letters of w defines a
closed curve in Cay(G, S). Thus w € p.(m1(Cay(G, 5)), 1lg).

On the other hand, given a closed loop in Cay(G,S) at the identity
vertex, going along the edges defines a word w € F), that starts and ends in
the same vertex. Thus it represents a trivial word in G, which is equivalent
to w € ker(¢).

We claim that left multiplication with ¢ € G defines a deck transform-
ation of Cay(G,S). We have to check that we obtain an automorphism of
graphs and that the covering map p is preserved. The first claim is clear. For
the second property, note that if an edge from h — h’ is labeled by s, which
is equivalent to A’ = hs, left multiplication with g sends h to gh, h' to gh’,
and the edge between these two vertices is still labeled by s, since gh’ = ghs.
This proves that left multiplication by g defines a deck transformation.

On the other hand, since Cay(G,S) is connected, a deck transform-
ation of Cay(G,S) is defined by what it does on one point. Thus take
f € Deck(Cay(G, S),p) a deck transformation and set g = f(lg) € G.
Then left multiplication with g defines a deck transformation that sends the



vertex 1g to g. By uniqueness, the latter agrees with f. U

2.3 Results from Representation Theory

In this subsection we present some basics from representation theory. All
of the following results can be found in [[sa94, Chapters 1, 2 and 5], if not
otherwise stated.

2.3.1 Definition and Basic Properties

Definition 2.9. Let G be a group, K a field and V' a K-vector space. A
representation of G on V is an action of G on V by linear automorphisms, or
equivalently, a homomorphism X: G — Autg (V). If V is finite-dimensional,
the dimension of V' over K is called the degree of the representation.

Example 2.10. The trivial and the regular representation are important
examples that will play an essential role throughout this thesis.

1. Let G be a finite group, V' = K the one-dimensional K-vector space.
Define the action of G on V to be trivial, i.e. gv = v for all g € G,
v € V. This representation is the trivial representation and written as
Ktriv-

2. Let G be a group. The group algebra K[G] of G is the K-vector
space with basis elements the elements of G and finite formal linear
combinations, i.e.

K[G] = Z aqg | ag € K, only finitely many a, # 0
geG

The group G acts on itself by left multiplication. We can extend
this action to an action of G on K[G]. This defines a representation.
Indeed, it is a permutation representation, i.e. a representation where
each group element acts as a permutation on a basis, as the action
of an element g € G permutes the basis vectors of K[G]. Note that
if G is finite, then K[G] is finite-dimensional and the degree of the
representation is |G|.

Given a representation of a group G we can construct a K[G]-module
structure on V' by K[G]-linear extension. Conversely, given a finitely gen-
erated K[G]-module, we obtain a representation of G' by restriction of the
action to G. We will thus use both descriptions interchangeably.

Definition 2.11. Let GG be a group and V a representation of G. A vector
subspace W < V is called a subrepresentation if it is invariant under the
action of G. The representation V' # {0} is called irreducible if its only



subrepresentations are the trivial one and V itself. The representation V is
called semisimple if every subrepresentation W of V' has a complement, i.e.
there exists a subrepresentation U of V' such that V =W & U.

In the language of modules, subrepresentations correspond to submod-
ules. Note that not every representation is semisimple. Nonetheless, there
is the following important result by Maschke.

Theorem 2.12 (Maschke). Let G be a finite group and V' a representation

of G over K. ThenV is semisimple if the characteristic of K does not divide
Gl

An easy consequence is that every representation of a finite group over
C is a direct sum of irreducible representations. Note that one-dimensional
representations are always irreducible. In particular, the trivial represent-
ation Ciyy is irreducible. In fact, for a finite abelian group, all irreducible
representations over C are one-dimensional.

Definition 2.13. Let G be a finite group and let V', W be representations of
G over K. A homomorphism of representations is a linear map ¢: V — W
that is G-equivariant, i.e. for all g € G and v € V we have ¢(gv) = gp(v).
The representations V' and W are isomorphic as representations if there
exists a homomorphism of G-representations that is an isomorphism of K-
vector spaces.

2.3.2 Character Theory

As we are interested mainly in representations of finite groups of finite degree
over the complex numbers, in the following all representations are finite-
dimensional and over C. Recall that the theorem of Maschke implies that
all such representations are semisimple. The following results hold in more
generality for other fields as well.

Definition 2.14. Let G be a finite group and V a representation of G given
by the homomorphism X: G — Autc (V). The map

xv: G—=K, yy =TroX,

where Tr: Autc(V) — C is the trace map, is called the character of the
representation V.

Note that characters are constant on conjugacy classes. It is easy to see
that isomorphic representations have the same character. The study of the
characters of G is called character theory. A list of results from this field of
study is presented in the following.

10



Proposition 2.15. Let G be a finite group and let Irr(G) be the set of
isomorphism classes of the irreducible G-representations. Let k(G) be the
number of conjugacy classes in G. Then

It (G)| = k(G).
In particular, k(G) < oo.
Note that if G is abelian, then k(G) = |G|.

Definition 2.16. Let M be a G-representation and V'’ an irreducible G-
representation. We define

MV)= > V.
V<M, V=V

Let V1,..., Vi(q) be representatives of the isomorphism classes of the irredu-
cible G-representations with V; = Cyyiy. Then the M (V;) for 1 < i < k(G)
are called the homogeneous components of M.

It follows that M = @fﬁf) M (V). For the regular representation we can
explicitly compute the homogeneous components.

Proposition 2.17. Let G be a finite group. Then for M = C[G] the regular
representation, we have M(V;) = V;dlm(vi) for all 1 <i < k(G). Thus

KG)
cla) =P,
=1

If G is abelian, then C[G] = @ﬁll Vi.
Definition 2.18. Given a group G, let C be a set of representatives of the
conjugacy classes of G. The square matrix
[XV(g)]VEIrr(G)79€C
is the character table of the group G.

Example 2.19. For G = S3 we have C = {(), (23),(123)}, as conjugacy
classes in symmetric groups are defined by their cycle type. We obtain the
following character table, where x1 corresponds to the trivial character.

[1s, =0 (2,3) (1,2,3)

X1 1 1 1
Y2 1 —1 1
X3 2 0 -1

Note that the entries in the first column specify the degrees of the respective
representations, as the identity element in G gets mapped to the identity
matrix, whose trace is precisely the degree of the representation.

11



Definition 2.20. Let G be a finite group. A class function on G is a
function f: G — C which is constant on conjugacy classes. We define an
inner product on the set of class functions in the following way: for class
functions f, f/ on G we put

1 -
(fi f') = @ Z f(9)f'(9)-
geG
Note that all characters are class functions.

Proposition 2.21. Let G be a finite group. We have the following identity,
known as the orthogonality relations,

(Xi» X5) = 0ijy
for xi, x; irreducible characters of G.

This means that the irreducible characters are orthogonal with respect
to the inner product (-,-) defined on the set of class functions.

Definition 2.22. If V and W are two representations of G, then we set
<‘/7 W> = <XV7 XW>7
where xy and xp are the characters of V and W, respectively.

Proposition 2.23. Let G be a finite group, V and W representations of G.
Then V 2 W if and only if xv = xw -

This proposition makes the field of character theory so powerful, as rep-
resentations are already determined by their traces.

2.3.3 Induced and Restricted Representations

Definition 2.24. Let G be a finite group and H < G a subgroup. Given a
representation V' of G, we can define a representation Resg(V) of H by re-
stricting the representation of G to H. On the other hand, if we start with a
representation W of H, we can build the representation Ind%(W), a repres-
entation of G, in the following way: Let g1 = 1, go, ..., gx be representatives
of the cosets of H in G, i.e. g; € G with the property that G = |_|f:1 g:H,
where k := [G : H]. Set

k
Ind% (W) = @giW,
=1
where g;W is a copy of W as C-vector space for all 1 <4 < k. Then for

g € G, we have gg; = g;i)hi with g;i) € {g1,...,9x} and h; € H for all
1 <i < k. The action of G on Ind% (W) is defined as

k k k
g (E giwz’> = E 9giw; = E ;i) hiwi
. . . v
=1 =1 i=1 EW

12



for all g € G and Zle giw; € Indfl(W). This representation is called the
induced representation and it is of degree [G : H]dim(W). It is unique up
to isomorphisms of representations.

It is easy to see from the construction that inducing representations is
transitive. This means that if K, H are subgroups of G with K < H and W
a representation of K, then

Ind% (IndZ(W)) = Ind% (W).

It is also clear that the trivial representation on a subgroup H of G in-
duces the permutation representation of G/H. Thus inducing the trivial
representation from the trivial subgroup gives the regular representation,

Ind{}y (Cariv) = C[G).

Induced representations will play an important role in the course of this
thesis, which is why we will collect some relevant results about induced and
restricted representations in the following.

Proposition 2.25. Let G be a finite group, H < G a subgroup of G and
U,V,W representations of H that fit into the following exact sequence

0=-U—=V —->W=0.
Then the sequence
0 — Ind$(U) — nd% (V) — Ind%(W) — 0
s exact, i.e. inducing representations preserves exact sequences.

PRrOOF. This can be easily seen when considering an equivalent descrip-
tion of the induced representation; see for example [Ser77, Chapter 7.1].
Namely, we know

Ind (W) = C[G] ®cym W
as C[G]-modules. Now CI|G] is a free C[H]-module and thus flat, which by

definition means that tensoring with C[G] preserves exact sequences. O

Proposition 2.26. Let G be a finite group, H < G a subgroup of G and
W a representation of H. Let V := Ind$ (W) be the induced representation.
Then its character xy satisfies

1 1
XV(Q)Zf‘H‘ Eec xw (™ gz)
X
z lgzeH

forall g € G.
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Theorem 2.27 (Frobenius Reciprocity). Let G be a finite group, V a rep-
resentation of a subgroup H < G and W some representation of G. Then
the following identity holds, which is known as Frobenius reciprocity:

(Ind5(V), W) = (V,Res(W)) .
The following lemmas will be important later on in this thesis.

Lemma 2.28. Let G be a finite group and V' a representation of G over C.
Assume there exists 0 # v € V' such that Gv is linearly independent. Let
H = Stabg(v). Then

Spanc{Gv} 2 Ind% (Cyiy).

PROOF. Choose representatives g1 = 1,92, ..., g[g.m] for the cosets of
H in G. For all g € G, g can be uniquely written as g = g;h for some
1<i<|[G:H]and h € H. We then have

gv = gihv = g;v,

since h € Stabg(v). Also note that if g;v = g;v, then gj_lgi € H,sog;, € g;H
which implies i = j. Thus {g1v,...,g(g.mv} is a basis for Spanc{Gv}.

By construction, Ind$(Ceiy) = Uy @ ... @ Uic:m) as C[H]-module with
Uy = Cyiyv as C[H]-module, U; = ¢;U;. Let uy € Uy \ {0}. Then U; = (uy)
and thus U; = (g;u;) for all 1 <i < [G : H]. Define

@: Spanc{Gv} — Ind% (Ciy), giv — giui,

and C-linear extension. This is an isomorphism of C[G]-modules. O

Lemma 2.29. Let M be a C[G]-module and m € M be such that Gm is C-
linearly independent, i.e. Spancig{m} = Ind% (Ciiy) with H = Stabg(m)
by Lemma . Let g1 = 1,92,...,9c:n) € G be a set of representatives
of the cosets of H in G. Write m = mq + ... + myq), mi € M(V;), for
the decomposition of m into the homogeneous components. For an element
be M(Vi)\ {—m1} set

m’ ::m+b=(m1+b)+m2+...+mk(c)-

Then Gm' = {g1m’, ..., gic:mym’}, Gm' is C-linearly independent and we
have Spangg{m'} = Spang(g {m} = nd% (Ciy).

ProOOF. We first prove that Stabg(m') = H. Let g € Stabg(m').
Then m’ = gm’ and gm = g(m' —b) = gm’ —b = m' — b = m, thus
g € Stabg(m) = H. Let now g € H, so that gm = m. This yields
m'=m+b=gm+b=gm+ gb=g(m-+b) =gm’. Thus g € Stabg(m').

14



We now show that Gm' is linearly independent. Let 71, ... 1ia:H) € C

such that
[G:H]

Z rigim’ = 0.
i=1

We need to show that r; = 0 for all 1 <14 < [G : H|. We have

[G:H] [G:H]
0= Z rigim' = Z rigi(m +b)
i=1 i=1
[G:H] [G:H] k(G)
= Z 7‘291 miy + b Z Z rigim;
i=1 i=1 j=2
(G:H] k(G) [G:H]
= Zri (m1 +0b) —i—ZanZm]
=1 =2 =1
eM (Vi) eM(Vj)
This sum is equal to 0 if and only if
[G:H] [G:H]
Z ri | (m1+b) =0 and Z rigim; = 0 (1)
i=1 i=1

for all 2 < j < k(G).
Since b # —my, (Zﬁfﬂ ri) (my + b) = 0 if and only if S1%y, = 0,
Thus we obtain

[G:H)] [G:H] [G:H]
= ZWZ Zn my = ZTigiml-
i=1 i=1 i=1

Together with Equation this implies

[G:H]

Z rigim; = 0 for all 1 < j < k(G).

i=1
Now Y& rigim = S rig; (ng) mj) = S S rigim; = 0.
But Gm is linearly independent by assumption and thus r; = 0 for all
1 < ¢ < [G: H], which proves the first claim. The second claim follows
directly from Lemma [2.28 (]

Lemma 2.30. Let G be abelian and H, K < G subgroups. Then
Ind% (Ceriv) = Ind % (Criv)
if and only if H = K.

15



PROOF. By character theory we know that two representations over C
are isomorphic if and only if their characters agree; refer to Proposition [2.23]
Let us compute the character 1% of Indg (Ciriv). For g € G, we have

1G Z XCtI‘IV x gx)

zelG
x_lga:GH

refer to Proposition Since xc,,;, (h) = 1for all h € H and G is abelian,
we obtain

ZXCtrw G H] ]IH( ),

xGG
geH

where by 1 5 we denote the characteristic function on H. Now it follows that
Ind%((ctriv) o Ind?{((CtriV) if and only if [G: H|1yg = [G : K] 1k, which is
equivalent to H = K. O

16



3 First Homology as Representation of the Group
of Decktransformations

In this section we want to understand, given a covering space of a graph, its
first homology as a representation of the group of deck transformations. The
first subsection will deal with finite regular covers, whereas in the second
subsection we will see an example of an infinite cover.

3.1 Finite Covers and the Theorem of Gaschiitz

We will now prove the theorem of Gaschiitz and follow |[GLLMI15, Section
2.1, Theorem 2.1]. It gives an understanding of the first homology of a finite,
regular cover Y of the wedge of n copies of S', n > 2, with coefficients in C
as a representation of the group of deck transformations.

Theorem 3.1 (Gaschiitz). Let X be the wedge of n copies of S*, n > 2,
and G a finite group. Let ¢: F, = m(X) — G be a surjective group
homomorphism and p: Y — X its associated finite, reqular cover with
p«(m1(Y)) = ker(¢p) and group of deck transformations G. Then, there exists
an isomorphism of C[G]-modules

Hl(Y7 C) = (Ctriv ® C[G]®n_17

where G acts trivially on Cyiyiy and C[G] denotes the regular representation

of G.

Proor. We first want to compute H;(Y;C). To do so, we can use
cellular homology since Y is a graph, hence by definition a CW complex.
Let C;(Y;C) be the set of formal linear combinations of i-cells in Y with
coefficients in C, ¢ € N. Since Y is a graph and there are no 2-cells, the
image of the map dy: C2(Y;C) — C1(Y;C) is zero. Hence we identify

Hl(Y; (C) = ker(c‘)l: Cl (Y; (C) — C()(Y; C))/lm(ag) = ker(@l).

We first want to understand C(Y;C) and Cy(Y;C) as G-representations
and then compute ker(0).

Let yo be some vertex in Y, i.e. yg € p~1(xg), where g is the unique
vertex of X. Let eq,...,e, be the oriented edges going out of yg, where each
e; € p~(x;) as illustrated below.

17
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The group G acts freely on the orbit of ¢; for all 1 < i < n. Furthermore, the
G-orbits of e; and e; are disjoint if 7 # j, because G acts by automorphisms of
covering spaces, so fibres are preserved. Being a regular cover is equivalent
to the fact that G acts transitively on the fibres of Y. Thus we have an
isomorphism of C[G]-modules given by C[G]-linear extension of

a1: C1(Y;C) —» @ CIG], ¢j +— (0,...,0,1¢,0,...,0) = f; (2)
i=1

with 1¢ € G at the j-th position for 1 < j < n. This is well-defined, since
the e; form a C[G]-basis for C1(Y; C). We also have a bijective C[G]-module
homomorphism given by C[G]-linear extension of

(eI Co(Y;(C) — (C[G], Yo — 1a.

This is well-defined, since yg is a C[G]-basis for Cy(Y;C). Namely, G acts
transitively on the fibres and all vertices of Y are preimages of xg. The
boundary map 0; is a homomorphism of C|[G]|-modules. By Equation ,
it is enough to compute 0;(e;) for all 1 < j < n in order to understand 0,
and ker(0;). By choice of e, we have that

O(ej) =t(e;) —olej) = gjyo —yo = (g5 — 1a) o € Co(Y;C),  (3)

with g; == ¢(x;) € G. We obtain the following diagram

025 oy c) 2 cyv;c) 250

b

@, ClG] —— C[G] ——C

where p1: @, C[G] — C[G] is defined by f; — g; — 1¢ and C[G]-linear
extension to make the above square commute.
Consider the augmentation homomorphism

e: C[G] — C, Zagg»—> Zag.

geG geG
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We want to show that ag(im(9;)) = ker(e). By Equation (3)), it is clear that
ap(im(01)) C ker(e), as e(g; —1g) =1 —1=0for 1 < j <n. We want to
show that a(im(0;)) is already the whole kernel. Since dy = 0, we know
that Ho(Y;C) = ker(9p)/im(01) = Cp(Y;C)/im(d1). On the other hand,
we have C[G]/ker(e) = C and, since Y is connected, dimc(Ho(Y;C)) = 1.
Together this implies that

C = C[G]/ ker(e) — C|G]/ap(im(01)) = ao(Ho(Y; C)), (4)

using that ao(im(01)) C ker(e). Since the homology in degree zero is iso-
morphic to C and «g is an isomorphism, we obtain an equality in Equation
and thus ap(im(0;)) = ker(e).

By the theorem of Maschke, see Theorem every C[G]-module is
semisimple, that means that every submodule has a complement. Using the
definition of H;(Y;C) and the fact ao(im(0;)) = ker(e) proven above, we
obtain

C[G]P" = C1(Y;C) = H (Y;C) @ im(0y) = H1(Y;C) @ ker(e).
Additionally, we have that
ClG] = Cuiv @ ker(e).
Using the last two identities we write
H,(Y;C) @ ker(e) = C[G]®" = C[G]®" ! @ Cyiy ® ker(e).
Then semisimplicity of the group algebra implies that
Hy(Y;C) & Cuiv @ C[G)*"
which proves the theorem. O

Notice that the special case Y = X with trivial group of deck trans-
formations yields H;(X;C) = C™. The proof shows that the finiteness of
the group of deck transformations is crucial to obtain semisimplicity. In the
infinite case, Maschke’s theorem cannot be applied and we do not obtain
semisimplicity of the group algebra. In fact, the theorem is not true in the
infinite case.

Using the results from Section Proposition [2.17] we can rewrite the
result of Gaschiitz in the following way:

H(Y;C) = Cunv @ vV,
Vi€lrr(G)

We will see examples of finite, abelian covers in which we explicitly verify
the above identification.
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Example 3.2. Consider for n = 2 the mod 2-homology cover. Recall that
for m > 2 the mod m-homology cover is given by the surjective group ho-
momorphism

mod m

¢: Fy — F,/[Fn, F,] 2 2" 220 (2/mZ)" = H\(X;Z/mTZ).
Now let G == (Z/27)* = (A) x (B) and
¢: Fy = F(xy,29) > G, x1 — A, 29— B
be the above group homomorphism. This defines the following covering map

p: Y = X with p~*(21) = {e1,ea,€5,e6} and p~'(z2) = {e3, eq,e7,€8} as
illustrated below.

5 L) 331902

By Gaschiitz, refer to Theorem [3.1], we know that
dimc(H1(Y;C)) =|G|(n—1) +1=5.

We now want to find five linearly independent vectors vy, ...,v5 € H1(Y;C)
such that (v1) = Cyiy and (va, v3,v4,v5) = C[G] as G-representations.
Consider the vectors

wy = e1 + ez + es5 + eg,
Wy ‘= e3 + e4 + e7 + es,
ws ‘= e1 + ey — (€5+€6),
wy = e3+eq — (€7 + eg),

W5 :=e1 —ext+e3 —eqg+e5—eg+er—es.

It is easy to verify that these are linearly independent and in H;(Y;C), as
01(e) = t(e)—o(e) for an edge e in Y. They thus form a basis and we denote
it by W = {wi,...,ws}.
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The action of A and B on H;(Y;C) can be computed as in Proposition
With respect to this basis it is given by the following matrices

100 0 0 10 0 0 0
010 0 0 01 0 0 0
Maw=1001 0 0|, Mgw=[00 -1 0 0
000 -1 0 00 0 1 0
000 0 -1 00 0 0 -1

We have thus found a decomposition of H;(Y;C) into the irreducible one-
dimensional representations of G. Setting

V1 = Wi,

V9 = W + w3 + wyq + ws,
V3 = wg + w3 — wWq4 — Ws,
V4 = W — W3 + Wq — Ws,

Vg = W9 — W3 — W4 + W5,

these vectors form again a basis V = {vy,...,v5} with respect to which the
action of A and B on H;(Y;C) is given by the matrices

10000 10000
00100 00010
May=|0 100 0|, Mgy:==|0 00 0 1
00001 01000
00010 00100

It follows that H;(Y;C) = Cyiy @ C[(Z/2Z)?], as stated in the theorem of
Gaschiitz.

Example 3.3. Analogously, for n = 3 we can consider the mod 2-homology
cover. Let G = (Z/27)% = (A) x (B) x (C) and

¢ F3:F<1‘1,$2,IL‘3>—>G, $1i—>A, x9 — B, x3 +— C.

This corresponds to the following covering map p: Y — X where the preim-
ages of x1, x2 and z3 are represented by the different styles of arrows.
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By the theorem of Gaschiitz, we know that H;(Y;C)is 8(3 —1)+ 1= 17-
dimensional. A basis in terms of the 24 edges for this decomposition has been
computed with [GAP18], but is not presented here because of dimension
reasons.

Let G be a finite group and let Vi = Cyyy, . . ., Vi be representatives
of the isomorphism classes of the irreducible G-representations. We have
the following technical lemma that follows directly from the theorem of
Gaschiitz.

Lemma 3.4. In the setting of the theorem of Gaschiitz, the following holds:

1.

3.

4.

pxopy = [|GllH, (x;z) and p«opy = (|Gl g, (x.c), where by (|Gl g, (x:z)
we denote the map that multiplies an element of H1(X;7Z) by |G|, and
equivalently for Hy(X;C),

pu(H1(X;C)) = M(V1), with M = H1(Y;C),

ps: Hi(Y;C) — Hi(X;C) is surjective,

ker(p.) = @M M(V;) with M = H,(Y;C).

PROOF.

1.

Consider the map p, o py: C1(X;Z) — C1(X;Z). For e an edge in
C1(X;Z), we have

p«(pg(e)) = ps Z el = Z p«(€) = |G| e.
eep~i(e) eep~i(e)

Thus ps o py = [|Gll,(xz) and (P« © px) @z ide = [|Glle, (x:z)8,c-
These maps factor through homology, which proves
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2. We first claim that G acts trivially on p4(C1(X;Z)). Let g € G and
e € C1(X;Z). Then

since an element of the group of deck transformations permutes the
preimages. This identity also holds on homology. Hence the G-action
on homology is trivial and thus pu(H1(X;C)) < M(Vi). By [l}, we
know that py is injective as map Hy(Y;C) — H;(X;C). For dimen-
sionality reasons we obtain equality.

3. Follows directly from
4. This follows from [3] and Gaschiitz, refer to Theorem because
M(Vi) = C" 2 Hy(X;C) = im(py) = M ker(p.),

as C[G]-modules, where G acts trivially on H;(X;C). This implies
that ker(p.) does not have simple submodules isomorphic to Vi. As
M = M(V1) & @G M(V;), we obtain ker(p,) < 3G M(V;). For

dimensionality reasons we obtain equality.
O

Remark 3.5. The theorem of Gaschiitz is natural in the following sense:
Consider two iterated finite, regular, path-connected covers ¢q: Z — Y and
p:Y — X. Then pogq: Z — X defines a covering map.

pogq

M SN

Set H := Deck(Z,q), G := Deck(Z,poq
fit in the following exact sequence

~—

and K = Deck(Y,p). Then they

1—>H—>G£>K—>1.

Assuming that Z is a regular cover of X, we can apply the theorem of
Gaschiitz to Y and Z as covers of X and we obtain

Hy(Z;C) = Cyy ® C[G]P" !
H(Y;C) = Ciy @ C[K]® L,
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Then the induced maps on homology H;(Z;C) — H;(Y;C) coming from ¢
and from the natural surjection ¥: G — K coincide.

This follows directly from the proof of Theorem In the case of it-
erated covers, choose first a C[K]-basis e7,...,e, for C1(Y;C) as before.
Let 2o € g5 '(yo) be the base point of Z, and choose a C[G]-basis e1,..., e,
for C1(Z;C) such that ¢.(e;) = & for all 1 < i < n. We also have surjec-
tions ¢g: F, — G and ¢k : F,, — K with the property that this diagram

commutes.

F, % G

N

Set g; = ¢g(x;) and g; = ¢k (z;) for all 1 < i < n. Then the above diagram
implies that g; = ¥(g;).
We have the following diagram

0z,1

C1(Z;C) : Co(Z;C)

~ ~

@}, ClG] » C[G)

where the maps ay,1, y,0, 7,1, ¢z and py,1, pz1 are defined as in the proof
of Gaschiitz with respect to the chosen bases.

To prove the claim, we need to show two things. Firstly, we need that
the left square commutes, i.e.

Xn
Y "oz = ay 0 gs.

Secondly, we need
" (ker(pz,a)) = ker(py,1),

since we identify the homology groups with the kernel of the maps py,; and
pz1, respectively.

To prove the first identity, it is enough to verify it on a C[G]-basis, since
all maps are C[G]-module homomorphisms. Thus we compute

v oazi(e) =" (faq) = fui, avaogle) = avi(€) = fu,

where fg; and fp; are defined as in the proof of Gaschiitz for all 1 <7 < n.
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For the second identity, let « € ker(pz1). Then ¢ (pz1(x)) =0 € C[K].
Since the bottom square commutes by construction, we obtain

py 1 (P () = P(pz1(x)) = 0,

thus ¢*"(x) € ker(py1). This shows the first inclusion. For the other
direction, let = € ker(py). Consider ay}(z) € ker(dy;) < C1(Y;C). We
know by Lemma that ker(dy;1) = ¢« (ker(0z,1)), since ¢: Z — Y
is a finite, regular cover and we identify the kernels with the respective
homology. Thus we can find z € ker(dz;) with ¢.(z) = a{,ll(x) Now
az1(z) € ker(pz1) is the desired element, since the left square commutes
and thus

P Maz,1(2)) = avi(ge(2)) = ava(ayy(z)) = .

Note that this does not hold in the infinite case, even when given nice
covers. Let the notation be as above. For n = 2 and Z the universal abelian
cover with group of deck transformations G = Z? we will see in the following
subsection (Proposition that

H,(Z;C) = C[q].

Let Y be any finite, abelian cover of X with group of deck transformations
K. Then Z is a regular cover of Y and of X via composition, and G surjects
onto K via a homomorphism 1. We know by the theorem of Gaschiitz that

H(Y;C) = Cyyy ® CIK].

The diagram as in the proof above also holds in the infinite case. Where the
proof breaks down is that we cannot show that w“(ker(pzl)) = ker(py1),
since ker(pz1) = C[G] and ker(py.1) = Ciyiv ® C[K], but 9*?(C[G]) = C[K].
We only have ¢*%(ker(pz1)) C ker(py,1), which in particular implies that
¢«: Hi1(Z;C) — H;(Y;C) is not surjective. Intuitively, this makes sense, as
infinite covers miss one G-invariant summand coming from the image of the
transfer map.

In the following section, we will compute the first homology of the uni-
versal abelian cover.

3.2 The Universal Abelian Cover

The theorem of Gaschiitz fails if the cover is infinite. In this subsection
we want to understand the first homology of the universal abelian cover.
Additionally, we want to show that the Gaschiitz decomposition does not
hold in this case. Already for n = 2 we obtain a different result.
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Definition 3.6. Let X be the wedge of n copies of S, n > 2. The universal
abelian cover Y of X is the regular, path-connected cover of X defined by
the natural surjection

b: Fy — Fyf[Fp, Fp] = 2"
with base point yo € p~1(z¢) and p«(m1(Y)) = ker(¢).

Proposition implies that ¥ = Cay(Z",{e;,1 < i < n}) based at
(0,...,0), where e; denotes the i-th standard generator of Z". The group
Z" acts on the standard lattice graph I' in R", i.e. the graph with vertex set
Z" and edge set the edges from z to z +¢; for 1 < ¢ < n. Therefore I is the
Cayley graph of Z" with respect to the standard basis. We can pull-back
the orientation of the edges of X to obtain an orientation of the edges of Y.
For n = 2,3 this is illustrated in the following pictures.

A A A N A
\ \ \ \ \ :
7 7 7 7 7 N N : N N
A A A A A v A VYA YN A
7 7 7 7
N N N N N A A A A
7 7 7 7 7 N : N : N N
A 4€2 A A A \ A\ A\ Ay A
e 7 7 7 7
N ¢l N N N A A A A
7 7 7 7 7 :
(0,0) ALY aaaadly ! 2
A A A A A S YA VYA YA AN
7 7 7 7
N A A A
> > > > > (0,0, 071

We set G :=Z" to simplify notation.

Proposition 3.7. There is a surjective homomorphism of Z|G]|-modules
o: 2[G1°6) = H (V7).

In particular, Hi(Y;7Z) is isomorphic to a quotient of (g) copies of the reg-
ular representation of G as Z|G]-modules.

In order to prove this proposition, we need to understand m(Y") algeb-
raically. For this we need the following lemma.

Lemma 3.8. Let G be a group and S C G a subset of G. We define (S) to
be the smallest subgroup in G containing S and ((S)) the smallest normal
subgroup in G containing S. Then

1. ((S)) =(gsg'|s€ S ,g€eq), and
2. if G =(S), then [G,G] = (g[s1,s2]g7" | 51,52 € S,9 € G).

PROOF. We first prove
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1. “C”: Note that the subgroup on the right hand side is normal, and
setting g = 1, it contains S.

“D”: For all s € S, g € G we have gsg~! € ((S)), because S C ((S))
and ((S)) is normal in G. As ((S)) is a subgroup, we obtain that the
subgroup generated by {gsg~! | s € S,g € G} is contained in ((S)).

2. “C”: Using 1., it suffices to show that
[G, G] - <<[81,82] ‘ 81,89 € S>> = K.

We want to show that G/K is abelian; then we are done because the
commutator subgroup is the smallest normal subgroup such that the
quotient group is abelian. Note that G/K is generated by {sK | s € S}
as G = (S). But now two elements in G/K commute because K
consists of all pairwise commutators of elements in S.

“D”: For all 51,89 € S,g € G we have g[s1,s2]g7! € [G,G] because
[G, @] is normal and [s1, s9] € [G, G].

O
Additionally, we need the following tools.

Definition 3.9. Let S,T be two partially ordered sets. The lexicographic
order on the product space S x T is defined as follows

(5,t) X (8, t') = [s<s or (s=35 and t <t)].

Remark 3.10. The order defined in Definition [3.9]is indeed a partial order.
If both A and B are totally ordered, then also the lexicographic order on
the product space is total.

Lemma 3.11. The lexicographic order on G = Z' defines a total order.

Proor. This follows immediately from the preceding remark and the
fact that Z is totally ordered with the standard order. U

We are now ready to prove Proposition
PROOF [Proposition . Applying the last lemma to G = F, and
S ={x1,...,z,}, we obtain that

[Fo, Fy] = (wlzg,zj]w™ |1 <i<j<nwéeF,). (5)

In other words, the commutator subgroup of the free group is normally
generated by the pairwise commutators of its generators x1,...,x,. Hence
its abelianization is normally generated by [7;,7;], 1 < i < j < n, where by
z; we denote the image of x; in Z™ under the natural surjection.

Note that for all 1 <i < j < n, the commutator x;; = [z, z;] € ker(¢).
Hence the loop defined by going along the edges z;z;z; 1:1:]-_1, where by x,;” !
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we mean going along z; in the opposite direction, lifts to a closed loop x;;
in Y at yo. Thus it defines an element in H;(Y;Z). Namely, a path in Y
is interpreted as a 1-chain in Y with multiplicities of the edges given by the
number of times the path runs over a certain edge. We denote the element
in Hy(Y;Z) defined by x;; as [z;], the equivalence class of the lifted loop
under the homomorphism 71(Y,yo) — H1(Y;Z). Every 1 < i < j <mn
defines an element z7; € ker(¢) = [F,, F,]. By Equation (5), these (})
elements normally generate [F),, F,,]. We fix a bijection

A {(i,j)€N2]1§i<j§n}—>{keN\lng<Z>}

given by the lexicographic order of the tuples (4,7), and write &y ;) for zy;.
This leads us to define a map of Z[G]-modules by

®: Z[G]@(Z) — H(Y3Z), (g1, 79(3)) = g101] + ... +9(n)[5(")] (6)

2 2

and Z-linear continuation. Because of Equation and since
HI(Y;Z) = [Fan]/ [[FnaFn]a [Fan]] )
refer to Theorem the map ® is surjective. O

This already implies that H;(Y;Z) = Z[G]@(g)/R, where R = ker(®)
as Z[G]-modules. We will now try to understand the relations R, and we
will show that they come from relations in three-dimensional cubes. Fur-
thermore, we will give a bound on the minimal number of relations.

Before we start proving the general case, let us first consider the cases
n =2 and n = 3. In order to do so, we need to introduce some tools.

Proposition 3.12. Forn = 2, the map
®: Z|G] — Hi(Y3Z), g+ g[é1],

defined as in Equation @, is injective. In particular, Hy(Y;C) is iso-
morphic to the regular representation.

PROOF. Let z € ker(®) \ {0}. Then we can write z = % | zg; with
zi € Z \ {0} and suitable g; € G for 1 <i < k. We have

k

0=2(x) =) zglo].

=1

Consider the loop starting at gy := max{gi,...,gr} with respect to the
lexicographic order. Consider the edge e, from go + (1,0) to go + (1,1), as
illustrated in the following picture.
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The edge e appears in ®(z) non-trivially at the vertex go with non-trivial
multiplicity. On the other hand, ®(x) = 0. This implies, that there exists
a g5 € {91,...,9x} such that e appears in gj[d1]. But this can only be
at g5 = go + (1,0), which is of higher lexicographic order. This yields a
contradiction. Hence x = 0 and @ is injective. U

This lemma shows that already for n = 2 we obtain a different result
than what the theorem of Gaschiitz states. We will now show the case n = 3.
Two auxiliary lemmas will be proven after the main proposition.

Proposition 3.13. Forn = 3, the kernel of the map ® defined in Equation
(@ is generated by the element k = (1g — T3, 1lg — 1, lg¢ — T2) as Z|G]-
module, i.e.

ker(®) = SpanZ[G]{(lg —I3,1l¢ — 71,1 — T2)} = K.

PROOF. It is easy to see that (1g — T3,1¢ — 71, l¢ — T2) € ker(®).
Namely, we have

Q((1g — 73,16 — 71,1 — 72)) =
1g[01] + 1glde] + 1G[d3] — T3[01] — T1[d2] — T2[d3],

where [01] = [T1, 72|, [02] = [T2, 73] and [d3] = [T3,71]. Writing out the edges
for each commutator shows that ®(k) = 0, as illustrated in the following.
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1 -~ \ !
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There are several ways to see that this relation already generates the whole
kernel. The general proof as in Proposition [3.16| works for n = 3 as well.
Let o = (a1, az, a3) € Z[G]®? with ®(a) = 0. Then we can write

m
;= zigi, zj €L, gi € G,
i=1

with m minimal such that z;; # 0 for at least one j in 1 < j < 3. We have

m m m
0=2o(a)=12 <Z Zi1gis Y Ziai Zzi?;gi)
i=1 i=1 i=1
m m m
= zngilh] + > zi20il02] + Y zi3gi[03]
i=1 i=1 i=1

I
NE

gi (zi1[01] + zi2[02] + 2i3[d3]) - (7)

We set M = {g1,...,9m} C Z> and

-
Il

L(M) = {(z,y,2) € M | 32’ € Z with (z,y,z") = max(M)}.

We will proceed by induction on (|M|, |L(M)|) € N x N.

For |[M| =0 or |L(M)| = 0, we have that o; = 0 for all 1 < j < 3 and
thus @ =0, s0o a € K.

Let now |M]|,|L(M)| > 0. Choose g € M of highest lexicographic order.
Without loss of generality we can assume that it is g,,; otherwise reorder
the sum. Then it follows by Lemma below that z; = 23 = 0 and
zg # 0, where z; = zp,; € Z for 1 < j < 3. By Lemma below, we
have ¢ = g+ (—=1,0,1) and ¢" == g+ (—=1,1,0) € M with 2} = 29 = 2§,
where 2{,2§ € Z are the coefficients of ¢'[6;] and ¢”[d3] in Equation (7)),
respectively. Set g := g+ (—1,0,0). Then we have

=719, 9 = 39,9 = Tag.

>

Consider the element —zo9(1 — 73,1 — 71,1 — T3) € K < ker(®). Then also

o = (o1, 02, 03) — (—229(1 — 73,1 — 71,1 — 72)) € ker(®)
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and from Equation (7)),

m—1 3
(o) = i Z 2ij[05] | + g22[02]
i1 j=1
3
+g Z 29[8;] | — g'22[01] — G22[62] — g 22[03]
7j=1
m—1

Mw

gz
1

with z;; € Z since ¢, g” € M \ {g}. We have to distinguish two cases.

3
Zzy ] +gzz2[5j]a (8)
j=1

1

i

<.
I

1. If ¢ € M \ {g}, then we have found an element o/ € ker(®) with
support M \ {g}, and thus ¢’ € K by induction and therefore also
ac K.

2. If g ¢ M\{g}, set M’ == (M\{g})U{g}. Notice that g < g. Consider
the edge e: g+ (1,0,0) — g + (1,1,0). Since z3 # 0 in Equation ,
the edge e appears non-trivially in ®(o).

o AL
g e g,

A
Gx g

Because o/ € ker(®) and g ¢ M’, the edge e has to be eliminated by
the commutator [02] at the element g, == g+ (0,0, —1) = g+(1,0,—1),
i.e. g« € M’ and the multiplicity of the commutator [d2] is zo # 0. Note
that now g, € M’ is the element of highest lexicographic order, since
g ¢ M’ and for h € G with g, < h < g, it follows h = g, or h = §. But
this implies that L(M') = L(M \ {g}) = L(M) \ {g} since § and g.
have the same first two coordinates. Thus we are done by induction.

O

Lemma 3.14. Let g € M be the element of highest lexicographic order.
Then z1 = z3 = 0 and zp # 0, where z; € Z is the coefficient of g[0;] in
Equation (@ for1 <j <3.

ProoOF. We show z; = z3 = 0. Then it follows that z5 # 0 because
otherwise g ¢ M.
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Assume z; # 0. The edge e: g + (1,0,0) — g + (1,1,0) appears non-
trivially in gz;[d1].

Because ®(a) = 0, the edge e has to be eliminated by some commutator
starting at another vertex, say ¢’. The edge e belongs to four different
cubes with left lower corners at g, g1 = g + (1,0,0), g2 == g + (1,0, 1)
and g3 == g + (—1,0,—1). Note that g < g1, 9> and that none of the [0;],
1 <5 <3, at g3 can eliminate the edge e. Thus we obtain a contradiction.
If we assume z3 # 0, then we can use the same argument for the edge
e:g+(1,0,1) = g+ (1,0,0) which appears non-trivially in gz3[ds].

ALK
g

g1

Now the edge €’ is contained in exactly one of the commutators at either g,
g1 =g+ (1,0,0), g2 == g+ (1,—1,0) or g3 := g+ (0, —1,0). Again, we have
g < 91,92, and [§;] at g3 cannot eliminate €’ for any 1 < j < 3. O

Lemma 3.15. Let g € M be of highest lexicographic order. Then the ele-
ments ¢ == g+ (—1,0,1) and ¢" = g+ (—1,1,0) are in M. Furthermore,
2 = 29 = —zy, where 21, z2, 25 € Z and 2, z2, 24§ are the coefficients of
d'[01], gloa], ¢"[03], respectively.

PROOF. The proof works similary to the proof of Lemma using
that ®(«) = 0, 29 # 0 by Lemma and the fact that g is maximal. Use
the edges €’: g+ (0,0,1) — g+ (0,1,1) and €”: g+ (0,1,1) — g + (0, 1,0)
for ¢’ and ¢” respectively.
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Recall that we want to analyze the universal abelian cover Y of the wedge
of n circles. In order to understand H;(Y;Z), we use our knowledge about
the homology groups of R™. The CW structure on R™ has Z" as 0-skeleton.
The 1-cells in R™ are intervals [0, 1] attached to Z™ by the characteristic
maps f(1g7i): 0,1] - R" =+ g+ xe; for g € Z" and 1 < i < n. Now
the boundary map takes an edge to its terminal vertex minus its initial
vertex, where we orient the edges from 0 to 1. To glue in the 2-cells take
1<i<j<nandgeZ" and the characteristic maps

f(zg,i,j) [0, 1]2 — R", (21,22) = g + 7106 + T2€;.

Then we chose an orientation of the 2-cells such that for a 2-cell Q,; ;)
defined by the triple (g,1,7), we have

02 rn (Q(g,i,5)) = 9 [Tij]-

Recall that [z;;] is the homology class of the lift of the loop given by the
commutator [x;,x;] for z;,z; elements of a free basis of F;,. To define the
3-skeleton, take 1 <i < j <k <n and g € Z" and set

f(3g7i,j,k) : [0, 1]3 — Rn, (1‘1,1‘2, 33‘3) = g+ 216 + T2€; + T3€ek.

Now if Wy ;k) is a 3-cell in R”™ defined by the quadruple (g,7, j, k), then
we chose an orientation such that

Brr (Wig,iik) =Qgig) — Quasik) T Qugrik)
— Q(gtenig) T Qugtesik) = Qgteik):

This is well-defined, as opposite squares appear once with positive and once
with negative sign. We continue this process for all cubes up to dimension
n. In this way, we define a CW structure on R™. This is the standard cubic
lattice cell structure on R™.

We know that Y = Cay(G, {e;, 1 < i < n}) based at the vertex (0, ...,0).
Thus we can view it as a subcomplex of R with compatible G-actions. Note
that by construction

Oy = O1rn,

where 01y: C1(Y;Z) = Co(Y;Z) and 0y gn: C1(R™;Z) — Co(R™; Z) with
the above defined cell structure on R". We also know that the map 0 rn»
has the property that for each 2-cell ) in R™, we can find ¢ € G and
1 <i < j < n such that Oy rn(Q) = g[zsj]. We label the element z;; by
dx(i,j)» where X is the ordering of the tuples (3, 7).

Proposition 3.16. For all n > 3, the kernel of the map

o: 7[G)°() = Hy(Y;7),
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as defined in the proof of Proposition is non-trivial. In fact, let

kiji = (0,...,0,1¢ —7,0,...,0,—(1g — T;),0,...,0,1¢ — 7,0,...,0)
~— ——

—_———

A(E,9) A(i,0) AG:0)
for1<i<j<k<n. Then

ker(®) = Spang g {kiji | 1 <i<j<l<n} =K,

i.e. the kernel is generated by the Z[G]-span of the projections onto the three-
dimensional cubes in the unit cube I"™ at the vertez (0,...,0) analogously to
the case n = 3.

PROOF. It is easy to see that k;j; € ker(®) for all 1 <i < j <1 < n;
refer to the three-dimensional case in Proposition [3.13

To show that ker(®) C K, we will make use of the cell structure on R”
defined as above. We have a chain complex of the form

0i—1,rn

= Ci (R Z) ——— Gi(R™Z) —— Cia(RMZ) —— ..,
where C;(R™ Z) = @, _dim. cells Z» and the i-dimensional cells are exactly the
i-dimensional cubes. The homology of this chain complex equals Hq(R";Z);
refer to [Hat02, Theorem 2.35]. Since R™ is contractible, we know that
H;(R™;Z) =0 for all ¢ > 0. It follows that

0= HQ(Rn; Z) = ker(82,Rn)/im(837Rn),

and thus ker(0s gn) = im(93 rn).

Let z;, z; be two different elements of the chosen free basis of F,,. Then
the loop [z;, ;] lifts to a loop z;; in Y. Since Y C R", we can find a square
Qij, i.e. a 2-cell in R", such that Oy rn (Qij) = [xi;]-

Take an element a = (a, ..., O‘(Q)) € ker(®) with «; € Z[G]. Then

Write o = Z;Zl Bjig; for all 1 < 7 < (g) with r» minimal such that for
all 1 < j <r, B # 0 for at least one 7. Let @); be 2-cells in R™ with the
property that O rn(Qi) = [6;]. We can reorder the right hand side of the
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above equation to obtain

(5)

A B;il0i]

r (5)

=D 9 | D Bidhrn(Qi)
j=1

i=1

(5)
BiQi 9)
1

.
= Oy Rr Zgj
j=1

1=
But now this means nothing else than that

. (5)
Zgj Zﬁji@i € ker(Oo,gn) = im(O3 rn ).

j=1 i=1

We find a finite number of 3-cells W; € I", elements g; € G and scalars
c; € Z such that

r (5)
> gi | D BiiQi | = Ospe (Z nglWl> :
j=1 i=1 !
The map O3 rr is G-equivariant, so Osre (D> ; c1gWi) = Y, g0z rn (W)).
Plugging this in in the above Equation (9)) yields

O(a) = agidamn (Dspn(W1)),
l
which also holds in the free chain group C;(R™). Furthermore, in C;(R")
we have
aQ’Rn (837Rn(Wl)) = @(k”m)

for suitable directions 1 < ¢ < j < m < n by construction. But now we
can substract for all [ exactly these relations from « to obtain that a € K,

which proves the claim.
O
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Remark 3.17. Since the maps dyrn and O3rn are Z[G]-module homo-
morphism, it is enough to study the 3-dimensional subcubes in the n-
dimensional unit cube I™. This leads us to give a bound on the maximal
number of generators of the kernel of the map ®. We need to compute the
dimension of im(J3rn) = ker(dyrn). For the unit cube, we obtain a cell
structure with the following chain groups
cuszy= @ z=z0"

i-dim. cubes in

n-dim. unit cube
Since the unit cube is contractible, we still have H;(I";Z) = 0 for all i > 0
and Ho(I";Z) = Z. Thus ker(0; gn) = im(0;11 gn) for all i > 0. We obtain

n n
dim(ker dyn) = 3 (=1)" ! dim(Cy(I";2)) = Y (=1)"+! (”) n—i,
( ) ;( ) (Ci(I™;Z)) ;( )
For n = 3 this formula yields dim(ker 0, g») = 1, which corresponds to the
result in Proposition [3.13] For n = 4, we have 8 three-dimensional subcubes
in I, but dim(ker dygn) = 7. In fact, it has been verified by [GAP18] that
the eight elements k;;;, 1 <4 < j <[ <8, are of rank seven.
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4 Primitive Elements and Primitive Homology

4.1 Primitive Elements

Definition 4.1. Let n > 2 be an integer and F;, the free group on n gener-
ators. An element w € F), is called primitive if there exist ws,...,w, € F,
such that {w,ws,...,w,} is a free basis of F,.

In an analogous manner, an element z € Z™ is called primitive if there
exist zg,..., 2, € Z™ such that {z, za,...,2,} is a free basis of Z".

Lemma 4.2. Let F, be the free group on the generators x1,...,xy, and let
—: F, — F,/[Fn, F,) 2 Z"™ be the projection map. Then we have

1. for w € F, primitive, w € Z" s primitive, and

2. for z € Z™ primitive, there exists a primitive element w € F, with
w=z.

PROOF. The subgroup [F,, F},] is invariant under every automorphism
of F,,. This implies that an automorphism of F}, induces an automorphism
of Z™, so we get a map

O: Aut(F,) — Aut(Z") = GL(n; Z), a — ®(«)
with ®(a)(77) == a(z;). We know that ® is surjective, since every matrix in
GL(n;Z) can be obtained by a finite number of row transformations from
the identity matrix. The row transformations correspond exactly to the
Nielsen transformations which generate Aut(F},); refer to Theorem
To prove the first claim, let w € F,, be primitive. Then there exists an
a € Aut(F,) with a(w) = x;. We obtain

o(e)(w) = a(w) =71

by definition of ®. Since Ty is primitive in Z", we get that w is primitive,
which proves the first part of the lemma.

For the second claim, take z € Z" primitive. There exists an automorph-
ism 1 of Z™ with ¢ (Z1) = 2. Since ® is surjective, we can find a € Aut(F,)
with ®(a) = ¢. By definition, z = ¢ (Z7) = ®(a)(Z1). Now a(zr;) = z, so
w = «a(x1) is primitive in F,, and has the property that w = z. O

Using this lemma, it is easy to see that not all elements of F,, are prim-
itive.

Remark 4.3. Let x1,...,7, be a free basis of Fj,. Then w; = z? is not
primitive. Assuming it were, we would find words wo, . .., w, that complete
to a basis of F;,. Then, by Lemma their images in Z" would form a
basis. We could thus find a bijective group homomorphism ¢: Z" — Z"
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that sends T; to w;. Because of the definition of w;, the homomorphism ¢
could be represented by the matrix

2 % *

0 * -+ %
M =

0 % --- %

But M is not invertible over Z, hence we would obtain a contradiction.
Commutators of primitive elements are not primitive because their image
in Z" is trivial.

It is not easy to list all primitive elements in the free group for n > 3.
There is an algorithmic way to test for primitivity of words based on a
result by Whitehead; see [HL74]. Depending on the length of the word, this
algorithm has poor theoretical upper bounds on its run time. For n = 2
there is a nice way of listing primitive elements. This will be elaborated in
the following subsection.

Remark 4.4. Another important property is that the automorphism group
of a free group acts transitively on the set of primitive elements. This follows
from the universal property of the free group.

Primitive elements in Z™ however are better understood.

Definition 4.5. An element z € Z" is indivisible if for every 2’ € Z™ and
m € Z with z = mz’, we have m = %1.

The following lemma gives a constructive way to see if elements are
indivisible.
Lemma 4.6. Let z1,...,2, be a basis of Z", z = Z?zl o;z; € 7™ with
al,...,an € Z. Then z is indivisible if and only if ged(aq, ..., ap) = 1.

Proor. We first show that an indivisible element has coprime coeffi-

cients. Let m := ged(ayq, ..., a,). Then we have

z = Zaizi = mZa;zi,
with of € Z for 1 < ¢ < n. Thus ged(ay,...,a,) = m = =£1, since z is
indivisible.

For the other direction let z = mz’ for some 2’ € Z™ and m € Z. Then
mz' =z =Y «a;z; and 2’ = > (a;/m)z;. This implies that m | «; for all
1 <i<n. Thus m | ged(au,...,a,). Since ged(ay, ..., a,) = 1, we obtain
m = %1 and thus z is indivisible. U

For primitive elements in Z"™ we have the following complete character-
ization.
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Proposition 4.7. An element in Z" is primitive if and only if it is indivis-
1ble.

ProOOF. The easy direction is to show that primitive elements are indi-
visible. Let thus z; € Z" be primitive, 2’ € Z"™ and m € Z with z; = mz’.
We extend z; to a basis 21, 22, ..., 2, of Z" and write 2/ = Y_!" | a;2; with
«a; € Z for 1 < i <n. Then

n n
0O=mz —z1=m (Z%’%’) —2z1 = (moy —l)zl—l-mZozizi.
i=1

1=2

Since z1, ...,z is a basis, we obtain ma; —1 = 0. Thus ma; = 1, and since
oy € Z, it follows that m = +1, which proves that z; is indivisible.

To show that indivisible elements are primitive, we adapt a proof by
[Rad51, Lemmal] which uses Lemma and an induction on the sum of the
coefficients. Thus let z1,...,2, be a basis of Z". Let z = > | ;2 with
a; € Zfor 1 <i<nandged(ay,...,a,) = 1. Without loss of generality we
can assume «; € N, because otherwise we can replace z; by —z;. We induct
on s:=y ", a; and we claim that z is primitive.

For s = 1, there is only one «; = 1, and thus z = z; for some i, hence
z is primitive. If s > 1, there are at least two a; > 0. Up to reordering we

can assume a7 > ag > 0. With respect to the basis z1, z0 + 21, 23,..., 2n,
the coefficients of z are (a; — a9, aa,...,ay). Then

ged(ag — g, aa, ... o) = ged(ag, g,y ..o ap) =1
and

s':ozl—ag—}—ag—{—...—}—an:a1+a3—|—...—|—an<s.

By induction, we have that z = (a1 — a2)z1 + ao(z2 + 21) + Y1 g 2 s
primitive.

A constructive proof in which the basis is given explicitly can be found in
[New72, Theorem II.1.]. For a topological proof refer to [FM12l, Proposition
6.2]. O

In the following, we will see an important property of primitive elements
in free groups. Given a surjective homomorphism onto a finite, abelian
group, we can choose a basis for the free group in which this homomorphism
has a particularly nice form, i.e. redundant generators get mapped to the
trivial element.

Lemma 4.8. Let F,, be the free group on the generators x1,...,x, and G a
non-trivial, finite, abelian group. Given a surjective group homomorphism
¢: F, — G, we can find two primitive elements w,w’ € F,, such that

1. (¢p(w)) # {1}, and
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2. (p(w)) N {p(w")) = {1}.

PROOF. Since G is abelian, the map ¢ factors through Z", so we obtain
a map ¢: Z" — (. Note that ¢ is a surjective homomorphism of abelian

groups. Consider M = ker(¢) < Z"™. Now M is a Z-submodule of rank n
as the quotient Z"/M = @G is finite. Since Z" is a finitely generated free
Z-module, the invariant factor decomposition, refer to [Bos09, Chapter 2.9,
Theorem 2], tells us that we can find a basis z1,. .., 2, of Z" and coefficients
ai,...,a, € N\ {0} such that

1. aqz1,...,an2, is a basis of M, and
2. aj oy for1 <i<n-—1.

These coefficients are uniquely determined by the submodule M. We obtain

n n
7' =P Zz, and M =@ Za 2.
=1 =1

We denote by a: Z"/M — ;" Z/ciZ the isomorphism that sends

zi+M—(0,...,0,14 ;Z,0,...,0)
H‘/—/
K3

with the non-zero entry at the i-th position. Since M = ker(¢), we have
an isomorphism ¢: G — ;" Z/a;Z such that the following diagram com-
mutes, i.e. we have ¥ o ¢ = a0 pr.

F,
7l X)
78— G
pri v wi
/M —— DB L)L

From the commutativity of the diagram and the definition of o we obtain
(B(z)) N (B(z) = {1}
forall 1 <i##j <n.

The group G is non-trivial and G = Z"" /M = @' | Z/o;Z, which implies
that at least one of the o; # 1. Furthermore «; | a1, so we know that
oy # 1. Thus .

(¢(zn)) # {1}- (10)
By the previous claim, we additionally obtain

(D(20-1)) N (d(zn)) = {1} (11)
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with z,_1, 2z, € Z" primitive.
Lemma tells us that we can find primitive elements w,w’ € F,, with

W= zpn_1, and w' = z,.

Furthermore, we have ¢(w) = ¢(W) = (z,—1) and ¢(w') = d(w') = ¢(2y,).
This, together with Equations and , proves the lemma. U

4.2 Primitive Elements in Rank 2

For n = 2, there is a nice way of listing all primitive elements. This is done
in the paper [OZ81] by Osborne and Zieschang.

Theorem 4.9 (Osborne-Zieschang). Up to conjugation, the primitive ele-
ments in the free group on two generators x1,xs are

{Wm,k($17$2) | m, k € ngCd(mv k) = 1}7

where W, 1. is defined as follows.
For m,k > 0, gcd(m, k) = 1 we define a function fu, 1 Z — {1,2} by
k(D) = fr k(') if L = U'mod(m + k) and

1 ifo<li<m,
Jmx(l) = .
2 ifm<l<m+k.

We set
m+k—1

Wi k(x1, 22) = H T (14im)-
=0

For m < 0 define Wy, p(x1,22) = W_m,k(xfl,:@), and for k < 0 define
Wi ge(21,22) = Win_i(21, 25 ).

The proof of the above can be found in [OZ81, Theorem 1.2]. An im-
portant consequence of this theorem is summarized in the following remark.

Remark 4.10. Let w € Fy = F(x1,x2) be a primitive word in the letters z;
and xo. Then, up to conjugation, all exponents of x1 are either all positive
or all negative. The same is true for the exponents of x».

This will be useful in testing if certain homology classes in the covering
space appear as lifts of powers of primitives. The result allows us to give
a bound on the length of a primitive that can elevate to a given homology
class. Note that conjugation of a primitive element corresponds to elevations
at different preimages of the base point in the cover.

Another important result is the following geometric interpretation of
primitive words in rank two. Let L be the set of all lines in R? that are
parallel to one of the coordinate axes of R? and passing through Z? C R2.
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Any directed line segment in R? that does not contain a point of Z? defines
a word in F3 in the following way: Write x1 when traveling along the line
segment and crossing a vertical line of L from left to right and write zo when
crossing a horizontal line from below. Write a:l_l respectively x5 L if the lines
are crossed in the opposite direction. For (m,k) € N? with ged(m, k) = 1
the open segment from (0,0) to (m, k) does not contain any point from Z?2,
so the above process defines a word V] (21, 72), and we set

Vin e (21, 22) = w122V, 1. (1, 22).

We also define
‘/0,1(1"17332) = T2, VLO([E17$2) =1

and

Vomk (1, 22) = Vi (27, 22), Vin—k(21,22) = Vi (z1, 25 1).

For (m,k) = (5,2), as illustrated above, we obtain V5’72(x1,x2) = 222912,
and thus the associated word is

Vso(x1, 22) == x129V5 o (1, 22) = (z129) (ziz0n?).
Proposition 4.11. For (m, k) € Z* with ged(m, k) = 1 we have
Wi k(x1, 22) = Vi (21, 22).

A proof is given in [OZ81, Proposition 2.3]. From this geometric inter-
pretation it is clear that m —1 is equal to the number of z,’s in V| , (1, x2)
and k — 1 is equal to the number of z5’s. But now m is equal to the number
of x1’s in Wy, (21, 22) and k is equal to the number of x’s by definition of
Vi k(z1,22). In the following we will list some important properties of the
words V), (21, 72).

Lemma 4.12. Let (m, k) € N2, Denote by a; the number of x1’s between the
(i —1)-st and the i-th x5 in V,, ;(v1,22). Analogously, let b; be the number
of x2’s between the (i — 1)-st and the i-th x1 in V, (21, x2).
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1. If k < m, then the line segment from (0,0) to (m, k) has slope k/m < 1
and b; =1 for all 1 <i < m. Additionally,

m—1 <, < m—1 1
P B R

forall1 <i¢ <k, and
a; = Af—i+1
forall1 <i<k/2.

2. Ifk > m, then the line segment from (0,0) to (m, k) has slope k/m > 1
and a; =1 for all 1 <i < k. We have
Vz—lJ < < Vz—lJ 41
m m
forall1 <7 <m, and
bi = bim—it1
foralll <i<m/2.

PRrROOF. This just follows when analyzing the line segments in R? not
going through points of Z2. For the first part in the case k < m, note that the
line segment from (0, 0) to (m, k) crosses m — 1 vertical and k — 1 horizontal
lines. Thus we have to evenly distribute m — 1 points on k intervals, so
[(m = 1)/k] < a; < [(m—1)/k] +1.

For the second part, we compute using the functional equation for the
line segment that

for all 1 < i < k. But this we can compute, since for z,y € R, 0 < z < y we
have

{neN[z <n <y} =max(0,[y] - [z] —1).
These two observations together imply that

m

ak—i+1 = mMax (0, [(k — i+ 1)%-‘ - L(kz - ’L)?J - 1)

The case k > m works similarly by interchanging the roles of m and k,
and a; and b;. O
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4.3 Primitive Elements in the Covering Space

By the theorem of Nielsen-Schreier, refer to [Rob93l, Theorem 6.1.1], we know
that a subgroup of a free group is again free. We are also interested in finding
the free generators of this subgroup. For this we identify the free group on
n generators F;, with the fundamental group of the wedge of n circles X
based at the single vertex zg of X, with free generators the oriented edges
r1,...,T, of X. Now the above question translates into finding primitive
elements in a given covering space, since fundamental groups of covering
spaces correspond to subgroups of the fundamental group of X. Covering
spaces of graphs are graphs and thus their fundamental groups are free.

The following proposition can be used to explicitly describe the free
generators of the fundamental group of the covering space in terms of those
of X by pulling back the labels of the edges of X via the covering map p. It
can be found in [Hat02, Proposition 1A.2].

Proposition 4.13. Let Y be a connected graph with base vertex yg and T a
spanning tree in' Y with yo € T. Fach oriented edge e,, of Y \T determines a
loop fo in'Y in the following way: First go from yg to one endpoint of e, by
a path in T, then across e, then back to yo by a path in T. Then w1 (Y, yo)
is a free group with basis the classes [fa] corresponding to the edges e, of
Y\T.

We are interested in the following question: given a finite-index subgroup
of a free group, are powers of primitive elements that lie in the subgroup
also primitive in the subgroup? For this we need a more formal definition,
but before we will setup a notation for the rest of this section.

Setup 4.14. Fix n € N, n > 2, a finite group G and a surjective homo-
morphism ¢: F,, — G, where F,, = F(x1,...,x,) is the free group on n
generators. Let X be the wedge of n copies of S!. Then we can associ-
ate to ¢ a finite regular path-connected cover p: Y — X with base point
Yo € p~Y(x0) and p«(m1(Y,90)) = ker(¢). Since p. is injective, we sometimes
view 71 (Y, yo) € m (X, z0). Then

G = Fn/ ker(¢) = m (X, x0)/ps(m1(Y, y0)) = Deck(Y, p)

and G acts on Y by graph automorphisms.

Definition 4.15. Let the situation be as in Setup For an element
w € Fy, let k(w) be the minimal number such that w*®) € ker(¢). The
preferred elevation @ of w is the lift of w*(®) to Y at the base point yo. If
we want to emphasize the cover to which we elevate, we write w* ~X.

Note that k(w) is finite for all w € F,,, since G is finite. The elevation
w is a closed loop in Y, and it makes sense to consider its homology class,
which is denoted by square brackets [@]. Lifts of w*(®) at other preimages of
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xo are just called elevations. Note that we obtain all elevations by applying
all elements of the group of deck transformations G to w.

The following lemma shows that it is often sufficient to only prove certain
properties for representatives in an Aut(F,)-orbit that are of a particularly
nice form. As a consequence of Proposition [2.6] it is sufficient to verify
assumptions about primitive elements on standard primitive elements, i.e.
primitive elements that correspond to a single loop in X. We will refer to
it as the Relabeling lemma.

Lemma 4.16 (Relabeling Lemma). In the situation of Setup let w, v
be two elements in the same Aut(F),)-orbit.

1. If ¥ is primitive in H, then w is also primitive in H.

2. If G 0] is linearly independent in H1(Y;Z), then G [w] is linearly in-
dependent in Hi1(Y;Z).

PROOF. Set H = p.(m1(Y,yo)) = ker(¢). Take k(w) minimal such that
wh®) € H. We know there exists an automorphism a € Aut(F,) with
a(v) = w, since w, v lie in the same orbit. Note that

(")) = a(v)F®) = wFW) ¢ g

Thus v**) € o' (H) with k(w) minimal with this property. Now o~ '(H) is
again a finite index normal subgroup of the fundamental group of X. Then
v*(®) is primitive in a~!(H), since we can apply the assumption to v, k(w)
and o' (H). Applying a implies that w*®) = a(v*®)) is primitive in H,
which proves

To prove , we have to understand ¢’ [v¥(®)], where [v*(*)] is the image
of v*) in o~ (H)/[a Y (H),a ' (H)] and ¢’ € G' = F,/a"'(H). Recall
that the action of G respectively G’ is induced by the conjugation action
of F,, on H respectively a~!(H) as described in Subsection Note that
[w*(®)] is the image of w*(®) in H/[H, H]. Set v := v*®) and ¢ = za~'(H)
for some z € F,,. Then

g 1 = (zvz"Nla (H), o (H)).
Now we can compute

alg' ) = a(z)a(alz) " H, H] = (a(2)H) [0)] = a(g') [w"®),
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where the last equality comes from the fact that a(¢’) = a(z)h for some
h € H. We want to show that G [w*(*)] is linearly independent. Let a; € Z,

gi € G with
1G]

0= Z a;g; [wk(w)
i=1

Take g, € G’ with a(g)) = g; for all 1 <i < |G|. Then

|G| |G |G|

0= 3 el = 3w (51 ]) = o |

Since « is bijective and G[7] is linearly independent in H;(Y;Z), it follows
that a; = 0 for all 1 < i < |G|, which proves O

Note that the second conclusion of the above lemma also holds when
considering coefficients in C.

Corollary 4.17. In Setup[].1]} elevations of primitive elements are prim-
itive.

Proor. It is enough to check the claim for the preferred elevation,
since the other elevations are conjugates of the preferred one and thus also
primitive.

Let | = x; € F,, for some 1 < i < n be one of the standard primitive
elements. Set k := k(l), the minimal number such that I*¥(®) € ker(¢). The
preferred elevation [ of I is a simple closed curve in Y. Namely, for every
vertex in the covering space, there is exactly one incoming and outgoing
edge that is the preimage of x; under p. Say we come back to the vertex
y1 # yo before we return to yo. Since [ is the lift of a power of I, we only
go along edges labeled by x;. Thus we can never come back to yy which is
a contradiction to the fact that [ is a closed curve at yo by construction.

Denote by e}, the last edge in [. Then l~\ e is a tree Ty in Y. By [Hat02]
Proposition 1A.1], T; is contained in a maximal tree T with base point yo
in Y. Note that e, € Y \ T, because if e, were in T, then T' could not be
a tree, since [ is a loop. Additionally, we have f;, = [ with fi as defined in
Proposition [£.13] But this immediately implies that f is prlmltlve, since
its class is part of a free basis of m1 (Y, yo); see Proposition

Now for I € F), some primitive element, not necessarily a standard gener-
ator, the first part of the Relabeling lemma, Lemma[4.16} [I}, and Proposition
immediately imply that [ is primitive. O

4.4 Primitive Homology

In Setup the group G acts on Y and this action descends to an action
of G on Hyi(Y;C) by linear maps. We can thus study H;(Y;C) as a G-
representation.
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Definition 4.18. Let S C F,, be a subset of F},. We set
HP (Y5 C) = Spancyg {[3] | s € S} < Hi(Y;C).

We write H{ (Y — X;C) if we want to emphasize the cover to which we
elevate the primitive elements. If S is the set of primitive elements, we write
HY"™(Y;C) and call this subrepresentation the primitive homology of the
covering space Y .

Note that if S C S, then HY'(Y;C) < H(Y;C). One question that
arises naturally is whether H?"™(Y;C) = H;(Y;C). In general, the answer
is no. There is the following theorem by Malestein and Putman that answers
the question in the negative; refer to [MP17, Theorem B, Example 1.2].

Theorem 4.19. For all n > 2 there exists a finite index, normal subgroup
R < F, with HY™™(Y;C) # H1(Y;C), where p: Y — X s the unique finite,
reqular cover of X with p.(m1(Y,y0)) = R.

We will give a sketch of the proof in the following. For more details refer
to Sections 1 to 3 of [MP17].

PRrROOF. We begin by constructing a group G with the following property:
For all n > 2, p a prime, there exists a finite p-group G, i.e. a group of order a
power of p, a central subgroup C' of G and a homomorphism V: C — Z/pZ
such that H1(G;F,) = Fp, and for all g € G that have nonzero image
in H1(G;F)p), there is a power of g that lies in C \ ker(¥). Here we mean
Hy(G;F)p) = Hi(K(G,1);F,) = G/[G, Gl®zF,, with K(G, 1) the Eilenberg-
MacLane space with fundamental group G. The construction of such groups
is the hard part of this proof and uses restricted Lie algebras and Lie theory.
More details can be found in [MP17, Subsections 2.2 ff.].

A small example for n = 2 and p = 2 is the quaternion group

Qs = (z,y |2t =1,2° =% yay™ ' =27 1).

Then C can be chosen as the center of Qg, i.e. C = Z(Qg) = (%), which
is cyclic of order two, and W the identity map. Note that Qg is a 2-group
and H;(Qs;F2) = Qg/[Qs, Qs] ®z Fo = (Z/27Z)?, so the first condition is
satisfied. Furthermore, every g € Qg \ {1} has the property that some power
is equal to 22, since y? = 2.

For p a prime, we denote by ©,, the set of all p-primitive elements, i.e.
all w € F, with the property that 0 # [w] € Hi(X;F,). Note that a
primitive element is p-primitive for all primes p. This follows immediately
from Lemma [£.2] [T} and Proposition .7} Recalling

ngp(Y; C) = Spangg {[Z] | | € F,, p-primitive } ,

with the help of the above group G, we construct a finite index, normal
subgroup R < F), such that H?”(Y; C) # H1(Y;C) and such that F,/R is
a p-group.
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This is done by using the first property of the group G to define a
homomorphism p: F,, — G in order for the induced map on homology
p«: Hi(Fy;Fp) — Hi(G;Fp) to be an isomorphism. Define R := ker(p).
This is the desired normal subgroup. Next, we construct a C-representation
V' of G such that for all g € G that have nonzero image in H;(G;F,), the
action of g on V does not fix any nonzero vector. Indeed, V' can be taken
to be the induced representation of W = C, a representation of C, where
C acts on W by multiplication with p-th roots of unity using the map W.
This implies that Hf‘)p(Y;C) # H1(Y;C). But now we are done because

HP"™(Y:C) < H"(Y;C) # Hy(Y;C). 0

In particular, we can choose p = 2. The size of the group G constructed
in the above proof depends on both p and n. Although we can choose p = 2,
the group G grows exponentially fast in n.

If our data is given by a surjection ¢: F,, — G for some finite group
G, the construction in the above theorem will not tell us whether primitive
homology is all of homology. The following result gives an answer for finite
abelian and 2-step nilpotent groups, and can be found in [FH16l Proposition
3.2, Proposition 3.3].
Theorem 4.20 (Farb-Hensel). Let n > 2 and ¢: F,, — G a surjective ho-
momorphism onto a finite abelian group G. Then HY™™(Y;C) = H1(Y;C).
For n > 3, the same is true for G a finite 2-step nilpotent group.

Note that for n = 2, there are examples of 2-step nilpotent groups
where primitive homology does not coincide with homology. See for ex-
ample [FHI16 Section 7.3].

In the following we want to explicitly see the primitive elements that
generate homology for the mod 2-homology cover.

Example 4.21. Let the setup be as in Example [3.2]

Consider the primitive elements x1, x2, x122 € Fy. Set

vy = [/x\ﬂ =e] + e, Vg = B[ﬁ:\ﬂ = e5 + €g,

Vg = [555] =e7+ ey, Vg = A[JIQ] = e3 + e4.
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Furthermore, define vs := [2172] = e1 +e3 +e5 +e7. It is reasonably obvious
that the vectors vy,...,vs are linearly independent and in H;(Y;C). We
know that

dime(Hy(Y;C)) = [Gl(n— 1) +1 =5,

so HP™(Y;C) = H,(Y;C).

The main result to prove both of the above theorems is the following
obstruction specified by Farb and Hensel in [FH16, Theorem 1.4]. To prop-
erly understand this, we need the following purely representation-theoretic
definition.

Definition 4.22. Let GG be a finite group and let ¢: F,, — G be a surjective
group homomorphism. Let S C F;, be a subset of F,,. We define

Irr® (¢, G) C Irr(G)

to be the subset of those irreducible representations V' of G that have the
property that there is an element in S whose image has a nonzero fixed
point. More precisely, V € Irr¥(¢, G) if and only if there exists an element
s € Sand 0 # v € V such that ¢(s)(v) = v. If § is the set of primitive
elements, we write Irr® (¢, G) = IrrP"'™ (¢, G).

Theorem 4.23 (Farb-Hensel). In the situation of Setup we have

H{)rim(Y; C) < Cuiv ® @ V;(n_l) dim(Vi).
‘/,L'EII‘I‘prim (d)yG)

The following proposition is the main ingredient to prove the above
representation-theoretic criterion for primitive homology.

Proposition 4.24. Let the situation be as in Setup[f. 14 Let 1 be a primitive
loop in X and let | be its preferred elevation in'Y. We define z :== [l] and
g = ¢(l). Then there is an isomorphism of G-representations

Span(C[G} {[2]} = Ind<Gg> ((Ctriv)-

The proof presented in [FHI16, Proposition 2.1] uses surface topology. In
the following we will give a direct proof for graphs.

PrROOF. Let | = z; € F,, for some 1 < ¢ < n be one of the standard
primitive elements. The preferred elevation [ of [ is a simple closed curve
in Y by choice of [. We claim that Gz is linearly independent in Hy(Y;Z).
Since [ is a simple closed curve, Z == {gl | g € G} = |_|il-€:1 St is a finite
disjoint union of embedded circles. By [FHI7, Claim 2.4], the inclusion
Z — Y induces an injection I on homology, so

k
I: P H:(SYZ) — Hi(Y;Z).
=1
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Note that this is still injective when we consider homology classes with
coefficients in C. Now the action of G on the left hand side is just the

permutation action of G/(¢(l)). This is clear since Stabg(l) = (¢(1)). This
proves the proposition for standard primitive elements using Lemma [2.28
Now, let [ be some primitive element in X, not necessarily a standard
generator. By Proposition [2.6] and the Relabeling lemma, see Lemma [4.16]
, it follows that Gz is linearly independent in H;(Y;C), and by Lemma
the proposition is proven. O

Now we are ready to prove Theorem

PROOF. Let V be an irreducible G-representation. For [ a primitive loop
in X, set g; := ¢(l) and G} := (g;). Then Proposition and Frobenius
reciprocity, refer to Theorem [2.27], imply that

(Spanci{[i]}, V)e = (Indg, (Cuiv), Vg
= <(CtriV7 RGSgZ(V»Gl
= dim(V),

where by V& we denote the fixed point set of V, i.e.
VO ={veV:gv=uforall g€ G}

The last equality follows from the orthogonality relations.
Now an irreducible representation V appears in H}"™(Y’; C) if and only
if there exists a primitive element [ € F,, such that

(Spangig {1}, V)a # 0.

By the above, this is true if and only if dim(V“t) # 0, which is equivalent to
the existence of some nonzero v € V with gjv = v. Thus V € IrrP"™ (¢, G),
which proves the theorem. O

Lemma 4.25. Let the setup be as in Proposition |4.24. For z € Hi(Y;7Z),
write z = 21 + ... + zy(q) for its decomposition into the homogeneous com-
ponents, i.e. z; € M(V;) for M = H1(Y;C). Then z; € Hi(Y;Q).

PrOOF. By Lemma [, we know that p,(z) = p.(z1) € H1(X;Z),
since z € H1(Y;Z). Now since z; € M(V}), using 2| in the same lemma, we
know that there exists x € H;(X;C) such that z; = px(x). Lemma
implies that

|Gl = pe o py(z) = pe(21) = pu(2) € Hi(Y;Z).

Thus,
G| 21 = px(IG|z) € Hi1(Y; Z),

which proves the lemma. O
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Lemma 4.26. Let the setting be as in Proposition z=[l] forl a loop
on X. Then

p«(2) = [{o())] - [I] € Hi(X;2),

where ¢: F,, — G and p, is the induced map on homology.
If G is abelian, then

o0 = (O

PRrOOF. The first part is true by the definition of an elevation [ofa loop
. Namely,

pe(2) = po((l]) = p. ([1F0)) = k(1) (1.

Note that k(1) = |¢(1)].

The second claim follows easily from the first, because if G is abelian,
the map ¢: F,, — G factors through Z" as illustrated in the following com-
mutative diagram

1 —— 7T1(Y,y0) —_— 7T1(X,330) i) G ——1

J= o~

H\(Y3Z) —5— Hi(X;2)

Since the first homology with coefficients in Z is the abelianization of the
fundamental group of a path-connected space, see Theorem [2.4] the result
follows. O

This lemma shows that in the case of an abelian group, the homology
class of some elevation of a primitive loop already encodes information about
the cover ¢: F,, — G. This will be essential in understanding how much
topological data is encoded in the representation of the first homology of
the covering space.

In the following we want to show that the condition given in Proposition
from [FHI6] is not sufficient to characterize elevations of primitive ele-
ments. We already know that elevations of primitive elements are themselves
primitive in the covering space, refer to Corollary and by Proposition
[4.7] they are thus indivisible. We will show that there are indivisible homo-
logy classes in Hy(Y;Z) that satisfy the condition in Proposition but
do not come from primitive elements. The main idea is to start with the
preferred elevations of two different primitive elements and then exchange
the trivial components in the induced representations that they span. Now
the trivial and the non-trivial components do not “fit” together anymore.
This is formalized in the following proposition. An explicit example will be
given subsequently.
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Proposition 4.27. In the situation of Setup there exists z € Hi1(Y;Z)
such that

1. z is indivisible,
2. Spangyg{z} = Ind% (o) (Ciriv) as C[G]-representations for some g € G,

3. but z is not the homology class of any elevation of any primitive loop
[l on X.

PROOF. Let l/,l” be two primitive loops on X with (¢) N {(g") = {1} and

") # {1}, where ¢’ := ¢(I') and g" := $(I") € G. This is possible by Lemma
. Consider the homology classes ' = [I"] respectively 2" = [I"] € H\(Y;Z)
of the preferred elevations I’ and I” of the two primitive loops I’ and I”. By
Proposition we know that

Spangyg {2’} = Ind<Gg,>((CtriV), and Spangg{2"} = Ind<Gg,,>((CtriV).

Let Vi = Cuiy, - - ., V|g| be representatives of the isomorphism classes of the
irreducible G-representations. By the theorem of Gaschiitz, see Theorem
we know that

G|
H(Y;€) & Cuny & CIG1" = V1 0 @DV,
i=2
as (7 is abelian, and all irreducible representations over the complex numbers
are one-dimensional. We write

/ / / / " " " "
V4 :Zl+22+"'+Z|G‘7 z :Zl +22++Z|G|

for their decomposition into the homogeneous components, i.e. 2}, 2/ € V"
and z}, 2/ € V"' for 2 < i <|G|. Lemmald.25|yields that 2}, 2/ € Hy(Y;Q),
&)
P —|—...+z|'G‘ =7 -z € Hi(YV;Q).

The same holds for 2. Now set b := 2} — 2] € V"

Notice that b # —z] and b # 0 and thus b € V{* \ {—z]}. Indeed, if
b = —Z{, which is equivalent to z{ = 0, Lemma and the first part of
Lemma would imply that [I”] = 0 which contradicts the fact that [I”] is

indivisible since !” is primitive. If we assume b = 0, we would have 2] = z{.

By Lemma [3.4] 4], it follows that p.(z") = p.(2”). Then Lemma implies
that

n _ 7 1 Z” — It i<¢(l”)>i " — i<¢(l//>>i "
¢(”‘¢<\<¢<z'>>1p*( )> ¢(\<¢<z'>>r ! ]> @y “

since [I”] € H1(X;Z) indivisible and therefore [(¢(1"))|/|(¢(1"))| € Z. Thus
(¢") < {g"), which contradicts the choice of I’ and I”.
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Set

If 2 ¢ H1(Y;Z), choose m € Z minimal such that z := mz € Hy(Y;Z). Then
z is indivisible. If 2 € Hy(Y;Z), take k € Z so that z := 2/k € H|(Y;Z) is
indivisible.

Thus we have found z € H;(Y';Z) indivisible with z = ¢Z for some ¢ € Q,
Z=z24+2+.. .+ Z|/G|' Setting M = H;(Y;C) in Lemma we know
that

Spangg{z} = Spangg {2} = SpanC[G]{z/} = Indg,)((ctriv). (12)

By Proposition it follows that if z were the homology class of an
elevation of a primitive element [ in X, then Spancg{z} = Ind@(m(((:mv).
By Equation , we would also have

1) (€)= Tnl (o),

with g .= ¢(l). By Lemma this would imply that (g) = (¢).
On the other hand, we compute

P«(2) = qp«(2) = qp«(21) = qp«(2") = ¢ [{g")| [I"].
By Lemma and since G is abelian, we obtain
I L ) =4 al{g") _ al{g")| = — (T
1=5 (@) =8 (i 1) = St D=

——

=r

since [I"] € H1(X;Z) indivisible implies that r € Z. Thus (¢') = (g) < (¢").
This contradicts the fact that (¢) N (¢") = {1} and (¢) # {1}. O

In fact, we can show an even stronger result using the same techniques
as in the proof of the above proposition.

Corollary 4.28. Let z € Hi(Y;Z) be the element constructed in the proof
of Proposition . Then there is no element z* € SpanC[G}{z} which is
the homology class of an elevation of a primitive loop on X.

ProoF. If we assume there is, let z* € Spancig{z} N H1(Y;Z) be
indivisible. Then there exist a1, ..., q|g € C such that

|G|

2" = E 0 giZ
i=1

for g; € G. Additionally, we can assume that SpanC[G]{z*} = Ind<Gg*>((CtriV)
for some g* € G by Proposition This implies that (g*) = Stabg/(2*).
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We claim that Stabg(z) < Stabg(z*). But this is clear since an element
in the stabilizer of z also stabilizes z*, as G is abelian. This implies that

(¢} = Stabg(z) < Stabg(z*) = (¢%). (13)

On the other hand, we have

|G| te]
ps(z") = Z%p*(giz) = Zai p«(2),
i=1 i=1
=A

since G acts as homeomorphisms of the covering space which preserve the
projection map p. Then A € Q since both p.(z*), p«(2) are in Hi(X;Z).
Assume there exists a primitive element [* € F, with [[*] = z*. Then
g* = ¢(I*) by Proposition m Together with Lemma we have

<<§;> p*(z*)>
¢ <‘<g*>‘ p*(2)>

— g (Ll )

*

9

Il
-

[{g*)]

[(g*)]
T

_ (g//)’l’7

since [I"] € Hy(X;Z) indivisible and therefore » € Z. Thus (¢*) < (¢").
Together with Equation we obtain (¢') < (g*) < (¢”), which is a con-
tradiction. g

In the following example we want to explicitly compute the induced rep-
resentations spanned by homology classes for rank n = 2 and G = (Z/27)?
in order to see the abstract argument in a specific case.

Example 4.29. We are given the same setup as in Examples and
and set G = (Z/27Z)? = (A) x {B) to simplify notation.
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Let I! .= z1, " := x9. Then 2/ = [m = e + e, 2= [l7’] = e7 + eg and
g =o¢l')=A4, ¢ = ¢(l") = B and thus the primitives " and I” satisfy the
conditions (¢') N (¢”) = {0} and (¢’) # {0}.

A Z-basis W for H1(Y;Z) written in terms of the e;’s is given by

1100000 0\  /fw\"
00110000 wo
Ww=|o00001100]| =|w] :
00000011 wy
10101010 ws

refer to Example
A basis V for the decomposition of H;(Y;C) into the irreducible repres-
entations of G is given as in Example We have

1 1.0 0 1 1 0 0\ [fon\
0 0 1 1 0 0 1 1 V12
V=1 1 0 0 -1 -1 0 O = | ve ,
o o 1.1 0 0 -1 -1 V3
1 -11 -1 1 -1 1 -1 V4
and (vi)c = (viz)c = Vi, (v2)c = Vo, (v3)c = V3, (va)c = Vi, where
Vi,...,Vy are the irreducible representations of G corresponding to the char-
acters xi, ..., x4 in the following character table.
|1 A B AB
x1 |1 1 1 1
x2|1 1 -1 -1
x3 |1 -1 1 -1
xa |1 -1 -1 1

With respect to the basis V we have 2/ = (v11 +v2)/2 and 2’ = (v12 —v3) /2.
We set

R 1
z = 5(1112 + v2)
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as in the proof of the preceding proposition. Then

. 1 1
Z:§(w1+w2—w3+w4):5(61+€2+63—|—64—€5—66+€7+68).

We define z := 22. Then z € H;(Y;Z) and it is indivisible; see Lemma [4.6]
Now it is easy to see that
Spangyg {2’} = Spangig{vi1 +v2} = V1 © Vp = Ind<GA>((Ctriv),
Span(c[G}{z”} = Spangg{viz —vs} =V1® V3 = Ind?B> (Ciriv),
SpanC[G]{z} = SpanC[G] {’012 + ’02} = ‘/1 D ‘/2 = Ind<GA> ((Ctriv)'
If z was the homology class of an elevation of some primitive [ € F,,, then

we would need g := ¢(1) € (Z/2Z)? to be such that (g) = (A). On the other
hand, by Lemma we also know that g = ¢(p«(2)/[(g9)]). We compute

ps(2) =p«(e1 +e2+e3+eq—e5 —eg+e7 +eg) = 4[zal.
Using the formula g = ¢(p.(2)/|(g)|), we obtain

9=20([2]) = 2¢(x2) = B> = 0,

but this is a contradiction since (g) = (A).

Alternatively, Remark in Subsection [4.2] directly implies that z can-
not be homology class of an elevation of some primitive. This is because the
edges e, e9, e5 and eg appear in z once with positive and once with negative
multiplicity.

We can ask if the conditions on I’ and I” as in the proof of Proposition
4.27| are necessary. It turns out that the statement holds in a weaker sense
where we demand compatibility with the map ¢. This is illustrated in the
following example. We take the same situation as in Example and
additionally ask that (¢') = (¢”). We can show that there are cases where
the homology class cannot be realised by an elevation of a primitive element.

Lemma 4.30. Using the notation in Setup there is a finite, reqular,
path-connected cover p: Y — X with group of deck transformations G such
that there exists an indivisible element z € H1(Y';Z) with the property that

1. Spangjg{z} = Ind<Gg> (Ciriv) for some 1 # g € G with

2. 9= 9(pe(2)/2), but

3. z is not the homology class of an elevation of a primitive element in
X.
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PRrROOF. Consider the mod 2-homology cover as in Examples [3.2]
and Let G = (Z/27)* and take W and V as in Example @ as bases
for H1(Y;Z) and the Gaschiitz decomposition of H;(Y’; C), respectively.

We start with the primitive element I” = 1. By the same considerations
as in Example we see that 2/ == [I'] = e; + ey = (v11 + v2)/2 and
SpanC[G]{z'} = SpanC[G]{vn +ut=ViaVh = Inda>(CtriV).

For a general element in H;(Y;Z), we have

Zﬁz 2_51+53+ﬁ5 11+B2+524+ﬁ57)12
+51;53U2+52;54 +%U (14)

with 8 = (B1,...,85) € Z5. We want to find z € Hy(Y;Z) with

Spangyg{z} = Spang(g){2'}.

Therefore, we need 81 # B3, B2 = B4, 85 = 0 and either 51 + B3 + 85 # 0 or
Bo + B4+ B5 # 0. Then Equation simplifies to

p1+ B p1— B
= 12 % w11 + Brora + 12 Sy

with p.(z) = 2(61 + B3)x1 + 452x2. Thus

g)(lp*(z)> — AP tB3p2Ba _ pB1+Ps
2

We need 8 € Z® such that gcd(By,...,35) = 1 and B + B3 odd.

Set 3 :=(2,0,—1,0,0)T. Then ¢(p«(2)/2) = A and
z=2(e1 + e2) — (e5 + ).

Note that all four edges appearing in z are preimages of ;. By the results
of Osborne and Zieschang, see Remark [£.10] z cannot be the homology class
of an elevation of a primitive, because this primitive element would need to
include the letter 1 with positive as well as negative powers. O
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5 Primitive Commutator Homology

In this section we aim to develop an analogous theory for a different subset
of elements in the free group. Namely, we are interested in the subset of
commutators of primitive elements. It is clear that this subset is preserved
by automorphisms of the free group. This is one of the reasons why we
are interested in these specific elements. In the following we will set up the
precise notation.

Definition 5.1. Let n > 2 and let F, be the free group. A primitive
commutator in F, is a commutator of the form [w,w’] for w,w’ primitive
elements that can be extended to a basis of F,.

Remark 5.2. If we fix a basis of F},, the normal subgroup generated by
all primitive commutators is the commutator subgroup [F,,, F},] of the free
group; see the proof of Proposition Equation , and Lemma

We adapt the setup of Subsection [£.4] see Setup so let X be a
wedge of n circles, n > 2, and identify F,, with its fundamental group
based at the single vertex xg of X. For G a finite group, a surjective group
homomorphism ¢: F,, — G defines a finite, regular, path-connected cover
p: Y — X with base point yo € p~1(x0) and p.(m1(Y,v0)) = ker(¢).

Definition 5.3. For S the set of primitive commutators, we define
H{*™™(Y;C) :== H{ (YV;C) < H1(Y;C).

as in Definition [4.18] This subrepresentation is called the primitive com-
mutator homology. We also set Irr®™™(Y'; C) := Irr® (Y; C).

We have an analogue obstruction as in the primitive case; refer to The-

orem [4.23]
Theorem 5.4. In the situation of Setup [{.1]], we have

Hfomm(y; (C) < (Ctriv ® @ V'i(n_l) dim(Vi).
Vi€lrree™™ (4, Q)

The main ingredient to prove this theorem is the following proposition,
an analogue of Proposition

Proposition 5.5. Let x1,...,z, be a basis of F,,, n > 2 and set
xij = [xi, 5],
i.e. the primitive commutator of x; and x; for fized 1 <1i,j < mn. Let

K= (p(xij)) < (@(x:), ¢(x;)) = H < G.

Then we have the following isomorphism
SpanC[G] {lzij]} = IndIG(((CtriV)/Ind?I (Chriv)

of G-representations.
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Using this proposition we can prove Theorem adapting the proof of
Theorem [£.23]

PROOF [Theorem [5.4]. For x = [I,I'] a primitive commutator in F,,
set K == (p(x)) < (¢(1),0(l')) = H < G. Let V be an irreducible G-
representation. Then Proposition and Frobenius reciprocity; refer to
Theorem [2.27], imply that

(Spancig{[#]}, V)@ < (Ind% (Cuiv), Ve
= (Curiv, Resf (V) i
= dim(VF),

where the last equality follows from the orthogonality relations.

By Definitions and an irreducible representation V' appears in
H™™(Y; C) if and only if there exists a primitive commutator z = [I,!'] in
F,, such that

(Spancg{[Z]}, V) # 0.

By the above, this implies dim(V®) # 0, which is equivalent to the ex-
istence of some nonzero v € V with ¢(x)(v) = v. Thus, for V to appear
in Spangyg{[Z]}, we necessarily need V' € Irr®™"(¢, G) which proves the
theorem. (]

The proof of Proposition [5.5| consists of two parts. First, we reduce to
the case n = 2 and secondly, we use surface topology to prove the claim in
this special case. Let us have a look at the special case.

Remark 5.6. For n = 2, we have H = G and the above proposition sim-
plifies to
Spancg{[£12]} = IndF (Criv) /Criv-

We will proceed by giving a proof of Proposition [5.5

PROOF [Proposition . We first want to reduce to the case n = 2.
Denote by Y7 the subgraph of Y that corresponds to the Cayley graph of
H with generating set {¢(x;), ¢(z;)} that contains the base point yg. Now
choose representatives for the cosets of H in G, say g1 = 1,...,g(c.x]- Set
Y; = ¢;Y1 for 1 <i < [G: H|. These are pairwise disjoint subgraphs of Y,
since the vertices of Y correspond to the group elements, and every group
element is contained in exactly one Y;. By [FHI17, Claim 2.4], we know that

[G:H]
I: €D Hi(Yi;C) = Hi(Y;C)
=1

is injective, where the map I is induced by the inclusions of the graphs into
Y. Note that I is a map of G-representations, since the action of G on
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the direct sum is given by permutation of the summands according to the
permutation of the subgraphs Y;. Now set v := [z;;]. By definition of Y7,
we obtain that v € H(Y1;C) and for every h € H, we have hv € H1(Y7;C).
For g € G write g = g;h for some 1 < j < [G : H] and h € H. Thus
gv = gjhv € Hi(g;Y1;C) = H1(Y;C).

We know that

[G:H|

Spangg{v} = Z gi Spancy{v}
=1

and we want to show that this sum is direct. Let therefore 1 < j < [G : H]|
and
v* € g; Spangg{v} N Zgi Spang(y;{v}-
]
This implies v* € H1(Y;;C) N 3, ,; H1(Y;;C) by the above considerations.
But then it follows immediately that v* = 0, since [ is injective. Thus we

obtain
[G:H]

Spangg{v} = @ 9i Spang{v}.
i=1
We will show that SpanC[H]{v} o Ind%(@mv) /Ciiv. By the exactness of
induction, refer to Proposition it then follows that

Spangg {v} = Ind% (Ciriv)/ Indg (Ciriv)-

We can without loss of generality assume that H = G and n = 2. To
prove the proposition in this case, we need some surface topology. We want
to show that Spancig{[z12]} = d% (Cuiy)/Ciriv; see Remark We
identify F5 with the fundamental group of the torus with one boundary
component T and base point ty € 0T, with generators x1 and x5 the simple
closed curves as in the image below.

x2
\ (%
Then x = z12 = [z, 2] is represented by a null-homologous simple

closed curve o on T' that starts and ends at tg with the property that o = 9T'.
We have a group homomorphism ¢: 71 (7") = F, — G and we can associate
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to ker(¢) a finite, regular, path-connected cover ¢q: S — T with base point
s0 € ¢ 1(tp) and q.(m1(S,s0)) = ker(¢)). Note that S is again an orientable
surface with S = ¢ %(0T) = ¢ '(a) = a1 U... U a). The surface S is
homotopy-equivalent to Y. Set A = a3 U...U ai. We want to show that
we have the following short exact sequence of G-representations

0 — C[aS] & @C[ai] %y Spang, sy {il; - - - [ar]} = 0, (15)

=1

where the map ¢ is induced by the natural identification of the boundary of
S with the multicurve A, and ¢ sends a curve «; to its homology class. It
is clear, that ¢ is surjective and G-equivariant, since G acts by permutation
on the ;. The map 1 is injective, since for ¢ € C, 1(c9S) = 025:1 a; =0
if and only if ¢ = 0. Let g € G, then

k k
guU(0S) =g =Y o =(dS) =1)(g989),
=1 =1

because the action of G is orientation-preserving and thus trivial on 05. It
is left to show that im(¢)) = ker(yp).

By definition of homology, the boundary of a compact subsurface is null-
homologous, thus ¢(1(9S)) = 0, which shows im(¢) C ker(¢p).

For the other inclusion, we show that {[as],...,[a]} is linearly inde-
pendent in H;(S;C). Then it follows immediately that ker(¢) C im(t)),
since Zle[oai] = 0. Let now a; € C with 271;2 a;[o;;] = 0. Since S is
path-connected, for all 1 < j < n we can find an arc ¢; from 95 Ny to
0S N« that intersects 95 only in the two end points. Then the algebraic
intersection number i between o, and c; is

i(Oém, Cj) = i&mj.
We know that there exists a non-degenerate bilinear form
< s >Z Hl(S; Z) X Hl(S, 65, Z) —7Z

that evaluated on homology classes of a simple closed curve and an arc from
0S5 to 05 counts intersections with sign; see [FM12, Chapter 6.1.2]. For more
technical details refer to [Bre93, Chapter VI.11]. Thus, for all 1 < j <k we

have
k k

0= g; ailail, [¢j]) = ; a; <[Oéi;i[jcj]> = +a;.

Thus we obtain a; = 0 for 2 < j < k, which implies linear independence
and ultimately the exactness of the sequence in Equation .
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We are interested in understanding Spang, (g.c){[c1], ..., [ax]}. Using
the short exact sequence from Equation , it is enough to understand
C[0S] and @le Cloy] as G-representations.

Say aq contains the base point sg € S. Then

Stabg(a1) = (¢(z)) = K <G,

since « is simple and thus runs through ¢y only once. The curves aq, ..., ax
are the elevations of @ and G permutes these. Thus we can identify the
curves o, ..., q) with the cosets of K in G, because K is the stabilizer of
a1. Choose representatives g1 = 1,¢9,...,9r € G of the cosets of K in G.
Then

k k
D Clei] = P Cygilen] = Ind(Criv)
=1 =1

as G-representations by the defining property of the induced representation.
Thus

Spany, (s.c)flaal, -, [ox]} = Spanig{[en]} 2 IndF (Cuiv) /Cuaiv,
which proves the proposition. O

Remark 5.7. It is clear, that H{°*™(Y;C) # H;(Y;C). Namely, each
primitive commutator lies in the kernel of the induced map p, on homo-
logy, since the homology groups are the abelianizations of the respect-
ive fundamental groups; refer to Theorem We already know that
H,(Y;C) = M(V1) @ ker(p«) as G-representations by Lemma One
natural question to ask is whether H{*"™(Y’; C) = ker(ps) in general.

If n =2 and G is abelian, we have ¢(x12) = 1¢ and we obtain

G|
SpanC[G]{[fEE]} = Ind?lc}((ctriv)/(ctriv = C[CJ]/(Ctriv = @ M(V;)
1=2
for M = Hy(Y;C). This implies that Spancg{[z12]} = ker(p«) and there-
fore, H{*™™(Y'; C) = ker(px).

A more general answer to this question is presented in the following.

5.1 Iterated Covers

To see that there are examples where H{*™"(Y;C) # ker(p.) for certain
covers p: Y — X, we use the idea of iterated covers and the theorem of
Malestein-Putman; see Theorem We start with an important property
of finite, regular covers. Namely, every such cover is itself covered by a finite,
characteristic cover, which means that the fundamental group of the largest
covering space is characteristic in the fundamental group of the original
space. A definition is given in the following.
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Definition 5.8. Let G be a group. A subgroup H < G is characteristic if
it is invariant under every automorphism of G, i.e. for all ¢ € Aut(G) we
have o(H) C H.

Note that characteristic subgroups are normal.

Lemma 5.9. Let G be a finitely generated group and H I G a normal
subgroup of finite index k. Then there is a subgroup H* < H which is of
finite index in G and characteristic in G.

H* = ﬂ H'

H'’<G normal
[G:H'|=k

PROOF. Set

We will show that H* is characteristic in G and of finite index.
Let ¢ € Aut(G). For H' < G with [G : H'| = k, we know that ¢(H’) is
normal in G and [G : ¢(H’)] = k. This implies that

p(HY= (] eH)< ()| H=H,
H'<G normal H'<G normal
[G:H']=k [G:H']=k

thus H* is characteristic in G.

In order to show that H* is of finite index in G, we want to bound the
number of all normal subgroups in G of index k. If we can show that this
number is finite, it is enough to verify that the intersection of two finite-
index, normal subgroups is again a finite-index, normal subgroup. Then we
can do an induction on the number of such subgroups. It is clear that the
intersection of two normal subgroups is normal. Let Hy, Hs be two normal
subgroups of finite index in G. Then we know by the first isomorphism the-
orem for groups that Hy/(H; N Hy) = HiHy/Hs; refer to [Bos09, Chapter
1.3, Satz 8. Thus [H; : H; N Ha] < [G : Hy]. Since the index is multiplica-
tive, we obtain [G : H1NHs| =[G : Hi|-[H1 : HHNH2) < [G : Hy|-[G : Ha],
and we are done.

Now let K be a finite group of order k. We claim that

H{H < G,G/H =2 K}| < cc.

Let H' < G normal with G/H' = K, i.e. there exists an isomorphism
Yy G/H' — K. Every such isomorphism defines a surjective group homo-
morphism fy: G — G/H' — K with ker(fy) = H'. Note that ker(fg)
is independent of the choice of the isomorphism tgs. Since G is finitely
generated and K is finite, there are only finitely many surjective group ho-
momorphism G — K. The claim now follows, since every normal subgroup
of G with quotient isomorphic to K is the kernel of a surjective group ho-
momorphism G — K of which there are only finitely many.
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We additionally know, that there are up to isomorphism only finitely
many groups of order k. Altogether, this proves the lemma. O

The following is a direct application of the above lemma.

Corollary 5.10. Let the situation be as in Setup[{.1]} Then there ezists a
cover q: Z — 'Y such that poq: Z — X is a finite, characteristic cover, i.e.
m1(Z) is a characteristic subgroup of w1 (X).

Z
lﬁnite, regular
finite, characteristic Y

lﬁnite, regular

X

PROOF. We can apply the above lemma, since F;, is finitely generated,
and ker(¢) < F,, is a finite-index, normal subgroup. (]

Given a group G and a sequence of subgroups of the form K char H < G
with K characteristic in H and H normal in G, then K is also normal in G.
This is because conjugation by an element in G induces an automorphism
of H, since H is normal. Now K is characteristic in H, so it is invariant by
this automorphism.

Corollary 5.11. In the situation of Setup let q: Z —'Y be a finite,
characteristic cover, i.e. m1(Z) is a characteristic subgroup of m1(Y). Then
poq: Z — X is a finite, reqular cover.

N

finite, characteristic

<7

>~.<

finite, regular

finite, regular

X

<7

PRrOOF. This follows immediately from the above consideration for the
sequence m1(Z) char m(Y) < m(X). We obtain that m(Z) < m(X).
Furthermore, it is of finite index since

[m(X) : m(2)] = [m(X) : m(Y)] - [m(Y) : m(2)] < o0.
(]

Let us look at an example of a finite, characteristic cover of the wedge
of n circles.
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Lemma 5.12. For all n,m > 2 the mod m-homology cover is a character-
istic cover of the wedge of n circles.

PrOOF. Recall that the mod m-homology cover is given by the surjective
group homomorphism

¢: F, — F,/[Fy, F,] = 2" 24 (2 /mZ)".
The cover associated to ker(¢) is by definition a finite cover. It suffices thus
to show that ker(¢) is characteristic in F),.
Take o € Aut(F,,). We need to show that a(ker(¢)) C ker(¢). Notice
that
ker(¢) = ([z,y], 2" | z,y,2z € F},) = K.

But now a([z,y]) = [a(x),a(y)] € K and a(z™) = a(z)™ € K for all
x,y, 2 € F,, which proves the lemma. O

In order to prove that H{°™™" £ ker(p) in general, we want to reduce the
case of primitive commutator homology to the case of primitive homology.
In the latter case, we have a negative result by Malestein and Putman;
see Theorem We will look at a particular cover of the wedge of two
circles that has the property that all primitive commutators lift to primitive
elements.

Lemma 5.13. Let ¢: Fy — Fy/[Fy, Fy] = 72 nod2, (Z/27.)? be the mod 2-
homology cover of the wedge of two circles X as in Ezamples and
[£.29. We denote by p: Y — X the associated finite, characteristic cover.
Then for x == [l,1'] any primitive commutator in Fy with | # 1, its preferred
elevation T € m1(Y) is primitive. Note that this implies that every elevation
of T is primitive.

Proor. We will show the claim for the basis primitive commutator first.
Let x := [x1,x2]. Then ¢(z) = 0 and thus x lifts to a closed curve on Y.

L2

o <A~

(0
T2

Now we just need to extend x to a free basis of m(Y). For example
{x,x%,x%,xgm%x;,xgxlxﬂfl} is a free basis of 71(Y). Namely, consider
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the spanning tree illustrated as the bold lines in the picture below.

Z2

(o X1

T2

Then the construction as in Proposition [4.13] gives rise to the above free
basis.

Let [ be some primitive commutator. By Proposition 2.6} it lies in the
same Aut(Fy)-orbit as z. Thus the Relabeling lemma, see Lemma 1,
shows that [ is primitive. O

We additionally need to understand how primitive homology behaves in
iterated covers. Therefore, we need the following results.

Lemma 5.14. Let G be a group and K < H < G normal subgroups of
finite index with K normal in G. Take g in G, and let r minimal such that
g" € H, s minimal such that (¢")* € K and t minimal such that ¢' € K.
Then t =rs.

PrROOF. It is clear, that ¢ < rs since ¢"* = (¢")° € K and t minimal
with this property. To see that ¢ > rs, consider ¢* € K < H. This implies
that r | ¢, since r is the order of g in G/H. Thus t = rs’ for some s’ € N. It
suffices to show that s < s’. We have (¢")* = ¢' € K, and s chosen minimal
with the property that (¢")* € K, so s < §'. O

Corollary 5.15. In the situation of Setup take q: Z — Y a finite,
reqular cover of Y such that poq: Z — X is a finite, reqular cover with base
point zg € ¢~ (yo). Then for | any loop on X, we have

Z—=Y

1Z=X — ([YHX)

PROOF. Take r minimal such that {" € m1(Y,y0), s minimal such that
(I")* € m(Z,z) and t minimal such that I € m1(Z, 29). By Lemma
we know that t = sr. The uniqueness of lifts and the choice of base points
immediately imply that

Z—=Y

Z=X — (ZY—)X)
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Lemma 5.16. In the situation of Setup[{.1]), take q: Z —'Y a finite, regular
cover of Y such that po q: Z — X is a finite, reqular cover with base point
20 € ¢ (o). Then

g-(HY"™(Z — X;C)) € HY™ (Y - X;C),
in other words, primitive homology gets mapped into primitive homology.

PRrROOF. For [ a primitive element in 71 (X, z), Corollary implies
that

0 ([7¥]) = o ([([YHX)Z%Y]> = s [X] e mpy - x;0),

where s is as in the proof of Corollary This proves the claim. O

The following is an immediate corollary of the above lemma.

Corollary 5.17. Let the setup be as in Lemma[5.16] with the condition that
H"™™ (Y — X;C) # H1(Y;C) as K-representations with K := Deck(Y,p).
Then ,

H"™(Z = X;C) # H1(Z;C)
as G-representations with G := Deck(G,p o q).

PROOF. Assume H™™(Z — X;C) = H,(Z;C) as G-representations.
Consider the map ¢.: H1(Z;C) — H;(Y;C). By Lemma , this map
is surjective. By assumption, we have

¢ (HP"™(Z — X;C)) = H1(Y;C).

By Lemma we know that q*(Hfrim(Z — X;C)) C Hfrim(Y — X;C).
But this contradicts the fact that H"™ (Y — X;C) # H;(Y;C). O

Remark 5.18. The last corollary together with Corollary imply that
we can assume without loss of generality that the cover constructed by
Malestein and Putman in Theorem .19 is characteristic.

Now we want to bring everything together in the following proposition.

Proposition 5.19. For n = 2 there exists a finite, regular cover p: Z — X
of X such that H{*™™(Z;C) # ker(p.).

PROOF. Let p': Y — X be the mod 2-homology cover with group of deck
transformations K = (Z/27)?. By Lemma we know that this cover is
characteristic. Lemma tells us that all primitive commutators lift to
primitive elements in Y.

The space Y is again a graph with free fundamental group of rank five,
so we can apply the result of Malestein and Putman, see Theorem to
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find a finite, regular cover ¢q: Z — Y with group of deck transformations H
such that ‘
H"™(Z - Y;C) # Hi(Z;C)

as H-representations. By Remark we can without loss of generality
assume that this cover is characteristic. Therefore, p := p' oq: Z — X is
regular by Corollary Denote its group of deck transformations by G.
We want to show that H{°™(Z — X;C) # ker(ps).

Z

J’q (finite, characteristic cover of Malestein-Putman)
p (finite, regular) Y

J{p’ (mod 2-homology cover)

X

Let us assume H{""™(Z — X;C) = ker(p«). Denote by Vi = Cyyiy, . .., Vi)
representatives of the isomorphism classes of the irreducible representations

of G. Then
k(G)

H"™™(Z - X;C) = P M(Vi)
i=2
with M = Hy(Z;C) as G-representation; refer to Lemma We addi-
tionally know that
M(V1) = pu(H1(X;C)) = px (Spanc{[l],! € 71 (X) primitive})

by Lemma By definition, we have p([l]) = deGg[f]. For [ a
primitive element, it follows that p4([l]) € H} (7. C). Thus we obtain
M(Vy) < HY™™(Z — X;C). This implies that

K(G)
Hy(Z;C) = M(Vy) & @ M(V;) = H"™(Z;C) + H{"™™(Z;C).  (16)
=2

But on the other hand, we know by Lemma and Corollary that
primitive elements and primitive commutators in X both lift to primitive
elements in Y. Define

S = {7 | z € m(X) primitive or a primitive commutator}.
Then S C {l € m1(Y) primitive} and by Equation (16

H\(Z;C) = H(Z = Y;C)
< HM™(Z - Y;C)
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But this is a contradiction to the choice of cover ¢: Z — Y. O

We have seen that we can use the results of primitive homology to con-
struct counterexamples for primitive commutator homology. One can now
ask whether the questions “HP™™ # H1?” and “H{°™ = ker(p,)?” are
equivalent. From the preceding proposition we can see that given a cover
with H™™ # Hy, we can construct covers with H{o™ = ker(p,).

We now want to find an analogous result to Proposition for prim-
itive commutator homology. This means that we want to show that the
condition in Propositon [5.5]is not sufficient to characterize homology classes
of elevations of primitive commutators.

Proposition 5.20. For n = 2 there exists a finite, reqular cover p: Z — X
with group of deck transformations G and z € H\(Y;Z) such that

1. z € ker(ps),
2. Span(c[G]{z} o Ind% (Ciriv)/Chyiv for some g € G, but

3. z is not the homology class of an elevation of a primitive commutator
m X.

PROOF. Let m1(X) = F» be the free group on the generators x; and xs.
Consider the primitive commutators

/

x' =[x, 20, 2"

=[xy, x1].

We start by considering the mod 2-homology cover p': Y — X defined by
Fy, - K = (Z)2Z)? = (A) x (B), 1 ~ A, x5 — B. Then I’ := 2/ and
" = 1" are primitive in 71 (Y") by Lemma We additionally have that I’
and {” lie in one basis. For example, the elements x%, a:% and 33217%.%'2_ L com-
plete I’ and 1" to a basis of m1(Y,yp) = F5. Namely, consider the spanning
tree illustrated as the bold lines in the picture below. Then the construc-
tion as in Proposition gives rise to the elements x?, 3, roxiz, ' and
3:2:61962331_1. The last element multiplied with x5 2 gives 7" and thus the set

{o 2", 23, 23, le‘%x;l} forms a basis.

Z2

Iy X1
()7 =0
)

We now want to use the same trick as in the result for primitive elements;
refer to the proof of Proposition We put a second mod 2-homology
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cover over Y, so q: Z — Y is defined by the surjection
¢: Fs — H = (Z/22)° = (C) x (D) x (E) x (F) x (G, I' > C, " — D

and extension. Then p := p'oq: Z — Y — X is a finite, regular cover
because ¢ is characteristic; see Corollary We have

Z—Y
~7Z—X ~Y—>X ~7Z—=Y
N (@)

T =1

by Corollary and analogously for the elevation of z”. Denote by G
the group of deck transformations of the cover p: Z — X. We have the
following exact sequence of groups

1-H—-G—K-—1
Since 0 = [2] = [2"] € H1(X;Z), it follows that

[&Z—»(} , PIZ%X} € ker(ps).

We already know that ker(p,) = @fig) M(V;) with Vi = Ciiy, Vo - . -, Via)
representatives of the isomorphism classes of the irreducible representations
of G. We write
= [fz_ﬂ/} =21 +...+2
k(H)

and
|:~Z~>Y

" :| :Zi/—i-...-f-zg(H),
with 2/, 2! € M(W;), where W; = Cyiy, Wa, ..., Wiy are representatives

(RNt
of the isomorphism classes of the irreducible representations of H.
Define 2 := 2" — (2] — 2{) = 2 + 23 + ... 2z} 7)- Then £ still lies in the

kernel of p, since 2} — 2} does. Namely, define

1
eq = — g, eg = h.
EPIES PP
Then eg is a central idempotent in C[G] and M (V1) = eg(M). Thus
(1—eq)(M) = @ )M(VZ) = ker(p«). Now 2’ € ker(ps) is equivalent
to eq(2’) = 0. We also have 2} = ey (2') and 2] = ey (2”). We compute

eq(2) —2]) = eqgenz —egey?”’ = eyegs’ —eyegz” =0,

since e is central. Thus eg(2) = eq(2’ — (2] — 2{)) = 0, which is equivalent
to 2 € ker(ps).

Define z :== mz € ker(p) with m € Q such that z € Hi(Y;Z). By
the same argument as in Proposition for homology classes of elevations
of primitive elements, we obtain that z is not the homology class of an
elevation of a primitive element in Y, and thus also not the homology class
of an elevation of a primitive commutator in X. O
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6 Finite Cyclic Covers

When trying to explicitly construct covers with Hy # HP™ respectively
Hy{om™ £ ker(py ), we are not only interested in the span but also in the set of
all elevations of all primitives respectively primitive commutators. We hope
that this set is rather small compared to the whole homology group and that
we can in this way construct a cover with H™™ = H;. This appears to be
a difficult task as the set of all primitives is not even completely understood
for ranks larger than or equal to three. In the following, we try to answer
this question in the special case of a finite cyclic cover for n = 2 using the
results from Subsection [4.2]

The easiest case is the cyclic cover of order two. Let X be the wedge of
two circles based at the single vertex xg with fundamental group Fb, the free
group on the generators x1 and zo, G = Z/27Z = (A) and ¢: F, — G the
group homomorphism sending x; +— 0, o — A. This data defines a cover
p: Y — X with base point yo € p~!(x¢) and we are now interested in which
homology classes can be realized by elevations of primitives. We label the
edges in the cover in the following way.

€1

of oSt Go@L

An obvious basis for H1(Y;7Z) is {e1 + e2, e3,e4}. We know by the theorem
of Gaschiitz that H;(Y';C) decomposes as G-representation as follows

Hi(Y;C) 2 Cuiy @ C[G] = CZ;, @ Caip,

where by Cg;p, we denote the one-dimensional representation where the ac-
tion of A € G is given by multiplication with —1. It is easy to see that a
C-basis of this decomposition is given by {e; + e2, e3 + e4,e3 — e4}.

Proposition 6.1. Let z = k(e1+e2)+les+meq € H1(Y;7Z), k,l,m € Z and
ged(k,l,m) = 1. Then z is the homology class of an elevation of a primitive
element in X if and only if either

1. l=m and ged(k,2l) =1, or
2. l=m=1 and ged(k,20 £ 1) = 1.
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PROOF. Let w be a primitive word in F5. Then w lies in the conjugacy
class of some W ;(x1,z2) for some (i, j) € Z?, ged(i, ) = 1 by Theorem
of Osborne and Zieschang; refer to [OZ81]. We can assume without loss of
generality that ¢, 7 > 0, else replace a:l_l, Ty ! by x1, x2 respectively. We will
compute the elevation of W j(x1,22), and see that we either land in case
one or in case two.

We have to distinguish two cases. First, let j be odd. Then W; j(z1,x2)
does not lift to a closed loop in Y since j is equal to the number of x3’s in
the word. Note that W; ;(x1,22)? does. We begin by lifting W; j(z1,z2) to
a path in Y starting at yy. Every time xo appears in the word we switch
from vertex yo to y{, or the other way round, either going along e; or es.
Thus the number of times e; and ey appear in the lifted path differ by one
and their sum is equal to j. Therefore, we obtain an element of the form

Bes + ves + aer + (a — 1)eg € C1(Y;Z),

with 6+~ = ¢ and 2 — 1 = j, o, 8,7 € N. To obtain the preferred
elevation, we have to lift the same path at the other vertex y. Symmetry
reasons imply that

2= [Wiglen,@a)| = (B+7)es + (B+7)ea + (20— Vet + (20— ey
=j(er +e2) +ie3 + iey.

Thus z is of the desired form with [ = m = ¢ and £k = j. Additionally,
1 = ged(i,j) = ged(2i, 7) = ged(2l, k). Thus we are in Case

Now let j be even. Then W; ;(x1,x2) lifts to a closed loop. We will
use the geometric interpretation of V;';(z1,72) as in Lemma [4.12} to better
understand W j(x1,z2). The slope of the line segment defining ‘/i:j(xl, x9)
is equal to j/i.

Let us first treat the case j < ¢. This means that the slope of the line
segment defining V/;(x1,22) is less than 1 and thus all z2’s in V;;(z1,22)
only appear to the first power. Our word is thus of the form

Wij(z1,22) = (x122) T1 ... 1 X2 T1 ... T L2X] ... L1L2T] ... T] L2 T ... L1,
—_—_——  ——— —_—_——  ———

al a2 aj—1 aj

with 21:1 a, = 1 — 1. Since every time x9 appears in the word we switch
from vertex yo to y{ or the other way round, and the lift starts at yo, a,
counts the multiplicity of e3 for » odd, and the multiplicity of e4 for r even.
Note that

m=14+as+aq4+ ...+ ag,
l=a1+az+ ...+ a1
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with [ +m = 7. We now want to show that [ = m + 1, then we are in Case
Equivalently, it suffices to prove that

/2 /2

§ a2r:§ Q2r—1-
r=1 r=1

This follows directly from Lemma [, since j is even and a, = a;j_,41
forall 1 <r < j/2.
For the case j > i, the word looks like this

Wi7j($1,$2) == (l‘lxg)fbg...:Egﬂ?ll‘Q...$2$13§2...f)§'21}11’2....’E2331£C2...l‘2.
N—— —— N—_—— ——

b1 b2 bi—1 b;

Lemmal[4.12] [2 implies that the b,’s only differ by 1. Since the x1’s appear in
Wi j(x1,22) only to the first power they put weight 1 on es or e4 depending
on the current vertex. We also know that b, = b;_,4; for all 1 < r < i/2.
Since j is even and ged(i, j) = 1, it follows that ¢ is odd. We want to show
that b(;_1)/2 is odd. This implies that the number of z2’s in the middle of
the word V;;(z1,22) is odd, so the start and the end vertex do not agree.
But because b, = b;_,11 for all 1 < r < i/2, symmetry reasons imply that
Vi i(z1,22) puts exactly weight (i —1)/2 on e3 and e4. Note that

ji—1) Jli+1)
. pu— < < .
b(z—l)/2 ‘ {n S N‘ 2% <n< 2%

We compute as in Lemma [£.12]

since j is even and £ > n. Now multiplication with x1x2 to obtain the
word W; j(z1,z2) puts one more weight on either ez or e4 depending on the
base point of the elevation, which finishes the proof that every elevation of
a primitive word is either of the form [I| or

To prove the other direction, assume we are given an element of the form
z=k(e1+ez)+1l(es+eq) € Hi(Y;Z) with ged(k,l) =1 and ged(k, 21) = 1.
Consider the primitive w := W, x(z1, 22). Since k is odd, w? lifts to a closed
path in Y and [w] = z, using the same considerations as in the proof of the
other direction.
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For the second case, assume we are given z = k(ej +e2) +les +mey with
ged(k,l,m) =1, ged(k,20+1) =1and | = m=*1. Set w = Woyp; ok (21, 22).
Since the number of x2’s in w is 2k and thus even, w lifts to the first power
and satisfies [w] = z, using the same considerations as in the proof of the
other direction. O

We want to extend the above to cyclic groups of arbitrary order. An
equivalent result to Proposition [6.1] is the following.

Proposition 6.2. For k€ N, G =Z/kZ = (A) and
qbZFQ—)G, SL‘1'—>O,SL‘2'—>A,

a Z-basis for H{(Y;Z) is given by wg = e1+...+ex, w; = epr; for1 <i<n
with ey, ..., e, preimages of x1 and ex41, ..., es preimages of xa.

Then an indivisible element z = Zf:o aw; € H1(Y;Z) is primitive if
and only if oy, ..., ay € {s,5+1} for some s € Z and ged(ag, 0 o) = 1.

Note that for k& = 2 this corresponds to the claim in Proposition [6.1
PROOF. This proof is an adaption of the case G = Z/27Z. The main work
lies in understanding Lemma and the primitive words in rank two. [
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