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Abstract/Zusammenfassung

Abstract

In this thesis, we give a geometric characterization of F-Hitchin representations, where
F is a real closed field extension of R. A representation from the fundamental group of a
closed surface into PSL(n,F) is called F-Hitchin if it satisfies the same polynomial equal-
ities and inequalities as Hitchin representations in PSL(n,R). More precisely, we show
that the set of F-Hitchin representations coincides with the set of F-positive and weakly
dynamics preserving representations, i.e. representations that admit an equivariant limit
map from a dense subset of the boundary of the universal cover of the surface into the
set of full flags in Fn satisfying specific positivity properties, that mimic Fock-Goncharov
positivity [FG06].

In the first part, we give the necessary background on real algebraic geometry. This
is needed to define the real spectrum compactification of the Hitchin component, whose
study was initiated by [Bru88a] and [BIPP21b]. The points of this compactification are
represented by F-Hitchin representations for various real closed fields extensions F of R.

In the second part, we introduce a variant of the Bonahon-Dreyer coordinates
[BD14], that allows to define coordinates for F-Hitchin representations. For this, we
carefully study the configuration spaces of tuples of flags over general fields. For ordered
fields, we introduce the notion of positivity of tuples of flags, as well as total positivity
of matrices. Even though most results of this part are known to the experts for R, we
study all objects in question with the goal of generalizing to real closed fields different
from R. To keep the thesis self-contained and for lack of a good reference for the proof,
some important results of this part are proven in the appendices.

The third part concerns itself with properties of representations in the real spec-
trum compactification of the Hitchin component. One of our main results is that both
F-Hitchin and F-positive representations are positively hyperbolic. The proof in the first
case relies on the Tarski-Seidenberg transfer principle. It allows to transfer semi-algebraic
properties of representations in the Hitchin component to the boundary. In the second
case, we use the positivity of the equivariant limit map to deduce the result, follow-
ing [FG06]. We then show that the PGL(n,F)-equivalence classes of F-positive weakly
dynamics preserving representations are described by the Bonahon-Dreyer coordinates
over F. In the proof, we use that an F-positive representation can be reconstructed by
finitely many data points from its limit map. This allows us to conclude the equivalence
of F-Hitchin and F-positive weakly dynamics preserving representations. We finish by
constructing intersection geodesic currents for F-Hitchin representations. For this we
transfer the result for the case F = R in [MZ19] to the boundary using the Tarski-
Seidenberg transfer principle. The length functions of the representation can thus be
computed as intersections with the geodesic currents associated to the representation.
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Abstract/Zusammenfassung

Zusammenfassung

In dieser Arbeit geben wir eine geometrische Charakterisierung von F-Hitchin-
Darstellungen, wobei F eine reell abgeschlossene Körpererweiterung von R ist. Eine
Darstellung von der Fundamentalgruppe einer geschlossenen Fläche nach PSL(n,F)
heißt F-Hitchin, wenn sie die gleichen polynomiellen Gleichungen und Ungleichungen
wie eine Hitchin-Darstellung nach PSL(n,R) erfüllt. Genauer gesagt zeigen wir, dass
die Menge der F-Hitchin-Darstellungen mit der Menge der F-positiven und schwach dy-
namikerhaltenden Darstellungen übereinstimmt, d.h. Darstellungen, die eine äquivari-
ante Randabbildung von einer dichten Teilmenge des Randes der universellen Überla-
gerung der Fläche in die Menge der vollständigen Fahnen in Fn zulassen, die bestimmte
Positivitätseigenschaften im Sinne von Fock-Goncharov [FG06] erfüllen.

Im ersten Teil wird der notwendige Hintergrund zur reell algebraischen Geometrie
vermittelt. Mithilfe dessen können wir die Kompaktifizierung mithilfe des reellen Spek-
trums der Hitchin-Komponente definieren, deren Studium durch [Bru88a] und [BIPP21b]
initiiert wurde. Repräsentanten der Punkte dieser Kompaktifizierung sind F-Hitchin-
Darstellungen für verschiedene reell abgeschlossene Körpererweiterungen F von R.

Im zweiten Teil führen wir eine Variante der Bonahon-Dreyer-Koordinaten [BD14]
ein. Diese erlaubt es, Koordinaten für F-Hitchin-Darstellungen zu definieren. Dazu
untersuchen wir die Konfigurationsräume von Tupeln von Fahnen über allgemeinen
Körpern. Für geordnete Körper führen wir den Begriff der Positivität von Tupeln von
Fahnen sowie die totale Positivität von Matrizen ein. Obwohl die meisten Ergebnisse aus
diesem Teil den Experten im Fall R bekannt sein sollten, untersuchen wir alle in Frage
kommenden Objekte mit dem Ziel der Verallgemeinerung auf andere reell abgeschlossene
Körper. Um die Arbeit in sich geschlossen zu halten und aus Ermangelung einer guten
Referenz für die Beweise, werden einige wichtige Ergebnisse dieses Teils in den Anhängen
bewiesen.

Der dritte Teil befasst sich mit Eigenschaften von Darstellungen in der Kompaktifi-
zierung mithilfe des reellen Spektrums der Hitchin-Komponente. Eines unserer Haupter-
gebnisse ist, dass sowohl F-Hitchin- als auch F-positive Darstellungen positiv hyperbo-
lisch sind. Der Beweis im ersten Fall beruht auf dem Tarski-Seidenberg-Transferprinzip.
Dieses erlaubt, semi-algebraische Eigenschaften von Darstellungen in der Hitchin-
Komponente auf den Rand zu übertragen. Im zweiten Fall verwenden wir die Posi-
tivität der äquivarianten Randabbildung, in Anlehnung an [FG06]. Anschließend zei-
gen wir, dass die PGL(n,F)-Äquivalenzklassen von F-positiven, schwach dynamikerhal-
tenden Darstellungen durch die Bonahon-Dreyer-Koordinaten über F beschrieben wer-
den. Im Beweis verwenden wir, dass eine F-positive Darstellung durch endliche viele
Datenpunkte aus ihrer Randabbildung rekonstruiert werden kann. Daraus schließen wir
die Äquivalenz von F-Hitchin- und F-positiven, schwach dynamikerhaltenden Darstel-
lungen. Zum Schluss konstruieren wir geodätische Schnittpunktströme für F-Hitchin-
Darstellungen. Dafür übertragen wir das Resultat für den Fall F = R in [MZ19] mit-
hilfe des Tarski-Seidenberg-Transferprinzips auf den Rand. Die Längenfunktionen der
Darstellung können so als Schnittzahl mit den der Darstellung zugeordneten geodätischen
Strömen berechnet werden.
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1. Introduction

1.1. Teichmüller space and Thurston’s compactification

The Teichmüller space Teich(S) of a closed, connected, orientable surface S of genus
g ≥ 2 is a central object in the study of surfaces and their properties. It is defined as
the space of equivalence classes of pairs (X, f), where X is a hyperbolic surface and
f : S → X is a homeomorphism, referred to as a marking. Two pairs (X, f) and (Y, g)
are equivalent if there exists an isometry m : X → Y such that m◦f is isotopic to g. If X
is a hyperbolic surface and f : S → X a homeomorphism, then f induces an isomorphism
on fundamental groups f∗ : π1(S) → π1(X). The fundamental group of X acts on its
universal cover X̃ by orientation-preserving isometries. The latter can be identified with
the hyperbolic plane H2, and its group of orientation-preserving isometries is isomorphic
to PSL(2,R). Thus f gives rise to a homomorphism ρf : π1(S) → PSL(2,R). If (X, f)
and (Y, g) represent the same point in Teich(S), then ρf and ρg are conjugated by an
element of PSL(2,R). Thus Teich(S) can be naturally identified as a subset of the
character variety χ(S,PSL(2,R))—the space of reductive representations from π1(S) to
PSL(2,R) up to PSL(2,R)-conjugation. Compare Section 3.1 for a precise definition of
the character variety. In fact, the Teichmüller space forms a whole connected component
of χ(S,PSL(2,R)) that is homeomorphic to R6g−6 and consists only of equivalence classes
of faithful representations with discrete image; see [Gol80, Theorem A].

Thurston’s compactification of Teich(S), first introduced in 1976 [Thu88], has nu-
merous important applications in geometric topology. Informally speaking, a compacti-
fication turns a topological space into a compact topological space by adding “points at
infinity” to control points from “going off to infinity”. A compactification of a topolo-
gical space X is a compact topological space X such that X embeds (homeomorphism
onto its image) in X with dense image. The boundary points of the compactification
are the elements of ∂X := X \ X. There are various different compactifications, e.g.
a topological space can always be compactified by adding a point. However if X is a
parameter space of geometric structures on a manifold, we would like to compactify it
in a geometrically meaningful way, which can be a challenging problem.

The definition of Thurston’s compactification uses the data of the marked lengths of
all closed geodesics on S. This data determines the marked hyperbolic structure up to
isotopy. Thurston considered a point in Teichmüller space as a projectivized collection of
lengths of curves. He showed that the closure of Teich(S) in projective space is compact
and homeomorphic to a closed ball of dimension 6g − 6. The boundary of the compac-
tification is homeomorphic to a sphere of dimension of 6g − 7. Compactifications that
use the data of “lengths” of curves on S will be referred to as length compactifications.
Thurston’s compactification is used in the classification of elements in the mapping class
group MCG(S) of S [Thu88] as well as in the proof of the Tits alternative for MCG(S)
[Iva84, McC85] and various other results about its subgroup structure [Iva92]. The in-
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Chapter 1. Introduction

terpretation of its boundary points as measured laminations is essential in Thurston’s
definition of the so-called ending laminations of a hyperbolic 3-manifold [Thu02, Section
9.3]. It was extensively studied in [FLP12], see also [Mar22b].

1.2. The real spectrum compactification

Classical Teichmüller theory concerns itself with the study of Teichmüller space, in par-
ticular its geometric and dynamical properties. Replacing PSL(2,R) by a semisimple Lie
group G of higher rank gives rise to higher Teichmüller theory. It tries to understand
exceptional connected components of the character variety χ(S,G), consisting entirely
of faithful representations with discrete image, which we call higher Teichmüller spaces
[Wie18]. It is surprising that such components exist. For instance, they exist only for a
restricted list of Lie groups, that are in particular neither compact nor complex. Higher
Teichmüller theory is a very active field of research, that builds on various methods
from different areas of mathematics, including geometry, analysis and dynamics. Of-
ten questions in higher Teichmüller theory are motivated by properties of the classical
Teichmüller space, however there are new features that arise in higher rank. We are in-
terested in compactifying higher Teichmüller spaces, or character varieties in general. In
this thesis we will concentrate on the real spectrum compactification. Before we examine
it further let us give a short non-exhaustive overview of other existing compactifications.

Thurston’s compactification has been extended to χ(S,PSL(2,R)) and to other char-
acter varieties χ(S,G) for G of rank one by various authors [Mor86, MS84, MS85, Bes88,
Pau88, Sko90]. In higher rank, Parreau [Par12] generalized it to the so-called Weyl
chamber length compactification. All of the mentioned compactifications are length com-
pactifications and agree in the case when G = PSL(2,R). They recover Thurston’s
compactification when restricted to Teich(S). It turns out that the above compactific-
ation of χ(S,PSL(2,R)) has the property that connected components can meet at the
boundary, see Wolff [Wol11, Theorem 1.1]. There are also compactifications that only
compactify higher Teichmüller components of the character variety. For example, in rank
two there has been various work of Martone, Ouyang and Tamburelli using geometric
interpretations of representations in higher Teichmüller spaces to compactify them, see
[Ouy19, MOT21, OT21, OT23b, OT23a].

The idea to use the real spectrum to compactify Teichmüller space was first pointed
out by Brumfiel in [Bru88a]. It will be introduced in detail in Chapter 2 and Chapter 3.
We quickly summarize its most important properties here. For this let Γ be a finitely
generated group and G the real points of a connected semisimple linear algebraic group
defined over R. The real algebraic structure of the character variety χ(Γ, G) [RS90]
allows us to use real algebraic geometry to define its real spectrum compactification
RSp(χ(Γ, G)) [BCR98]. It provides a formalization for the following idea: If (ρn)n∈N is a
sequence of representations that is not contained in any compact subset of χ(Γ, G), then
some of the matrix coefficients of its image tend to infinity while others stay bounded.
Informally speaking, in the limit the unbounded coefficients will be replaced by indeterm-
inates Xi that are larger than any real number. In other words, this sequence converges
in the real spectrum compactification to a representation that has values in a matrix
group GF with coefficients in the ordered field F = R(Xi), compare Example 3.3.5. The
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1.2. The real spectrum compactification

order on F even distinguishes the different “speeds” at which matrix coefficients tend
to infinity. Arranging all these ways of “going off to infinity” in a compact topological
space is formalized by the real spectrum compactification.

This compactification has well-behaved topological properties in contrast to the
classical length compactification. Indeed, the inclusion of the character variety into its
real spectrum compactification induces a bijection on the level of connected compon-
ents (Proposition 2.3.13). Brumfiel showed that the MCG(S)-action on Teich(S) ex-
tends to RSp(Teich(S)) and that there is a MCG(S)-equivariant continuous surjection
from RSp(Teich(S)) on Thurston’s compactification, compare [Bru88a, §7]. Intuitively,
RSp(Teich(S)) distinguishes more ways in which points can “go off to infinity”. For
example, the sequence of marked hyperbolic structures obtained by pinching or twisting
along a simple closed geodesic on S lead to the same point in Thurston’s compactific-
ation [Mar22b, Section 8.2.18]—however these define different points in RSp(Teich(S)).
This can for example be deduced using Fenchel-Nielsen coordinates together with Ex-
ample 2.3.3. In [Bru88a, §8] Brumfiel shows how points in the compactification give
rise to actions on R-trees using non-Archimedean hyperbolic planes; see also [Bru88c].
Furthermore, he showed that the extension of a continuous semi-algebraic self map to
the real spectrum compactification has a fixed point—even though the compactifica-
tion is not necessarily a closed ball [Bru88b, Bru92] (Theorem 2.3.15). The price to
pay is that we no longer have a complete topological description of the compact space
RSp(Teich(S)), in contrast to Thurston’s compactification.

In a series of papers [BIPP21b, BIPP23], Burger-Iozzi-Parreau-Pozzetti generalize
Brumfiel’s idea to compactify character varieties χ(Γ, G) in all generality. Before we can
describe boundary points of RSp(χ(Γ, G)) let us introduce some notation. An ordered
field F is real closed if F[

√
−1] is algebraically closed (Definition 2.1.1). Let F be a real

closed field containing R. If X is a semi-algebraic subset of some RN , i.e. a finite union
of sets cut out by finitely many polynomial equalities and inequalities (Definition 2.1.8),
then we can define its F-extension XF as the finite union of subsets of Fn cut out
by the same equalities and inequalities (Definition 2.1.12). In particular, since G is
semi-algebraic we can consider the group GF. We have the following description of
RSp(χ(Γ, G)) due to Burger-Iozzi-Parreau-Pozzetti, which can be taken as a definition
in this introduction.

Theorem 1.2.1 ([BIPP21b, Theorem 2]). Let Γ and G be as above. Then

RSp(χ(Γ, G)) ∼=
{
(ρ,F)

∣∣∣∣ ρ : Γ→ GF reductive homomorphism,
F ⊇ R real closed field

}/
∼ ,

where ∼ is the equivalence relation generated by proclaiming ρ1 : Γ→ GF1 and ρ2 : Γ→
GF2 equivalent if there exists an order-preserving field homomorphism α : F1 → F2 such
that α ◦ ρ1 is conjugate to ρ2 in GF2 . Furthermore, (ρ,F) represents a point in the
boundary if and only if R(tr(ρ)) is a non-Archimedean field.

In particular if F is a real closed field containing R, then any reductive homomorph-
ism ρ : Γ→ GF represents a point in RSp(χ(Γ, G)). We denote by [(ρ,F)] its equivalence
class in RSp(χ(Γ, G)). The equivalence relation makes sure that the representations
ρ : Γ → GF and ρ : Γ → GF ↪→ GF′ , for F′ a real closed field extension of F, define the
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Chapter 1. Introduction

same point. From this result it follows that boundary points can be studied in terms of
representations. For higher Teichmüller spaces C of χ(Γ, G) a natural question in this
context is then the following.

Question 1.2.2. Given a representation from Γ to GF for F ⊇ R a real closed field, can
we determine “geometrically” whether or not it is in the boundary of C?

We answer this question in the case when C is the Hitchin component—a higher
Teichmüller space of the PSL(n,R)-character variety. For maximal components in
χ(S, Sp(2n,R)) this question was studied in [BIPP21b] by Burger-Iozzi-Parreau-Pozzetti.

1.3. The Hitchin component

One of the first instances of a higher Teichmüller space is the Hitchin component. In
his seminal paper [Hit92], Hitchin used Higgs bundles to show that χ(S,PSL(n,R)) for
n ≥ 3 contains three connected components, if n is odd, and six connected components,
if n is even. In the odd case, one of the three components, and in the even case, two
of the six components, are homeomorphic to R(2g−2)(n2−1). They can be characterized
as follows. We denote by ιn the irreducible n-dimensional representation from SL(2,R)
to SL(n,R), where an element of SL(2,R) acts on the n-dimensional vector space of
polynomials with real coefficients in two variables X and Y of degree n− 1 by(

a b
c d

)
. Xn−iY i−1 := (aX + cY )n−1(bX + dY )i−1.

This representation is unique up to PGL(n,R)-conjugation. We also denote by ιn the
induced representation from PSL(2,R) to PSL(n,R).

Definition 1.3.1. Fix j : π1(S) → PSL(2,R) a holonomy representation of a marked
hyperbolic structure on S, i.e. j is faithful with discrete image. The Hitchin component
Hit(S, n) is the connected component of χ(S,PSL(n,R)) containing ιn ◦ j. A representa-
tion π1(S)→ PSL(n,R) whose PSL(n,R)-conjugacy class lies in the Hitchin component
will be called a Hitchin representation.

Denote by Hit(S̄, n) the connected component of χ(S,PSL(n,R)) containing ιn ◦ j′,
where j′ is any conjugate of j under an element of PGL(2,R) \ PSL(2,R). If n is odd,
Hit(S̄, n) is the same as Hit(S, n).

Hitchin asked about the geometric significance of components in higher rank. In
[CG93], Choi-Goldman proved that for n = 3 the Hitchin component parametrizes
marked convex real projective structures on S, from which they concluded that Hit(S, 3)
consists only of faithful representations with discrete image. Using the Klein model of
the hyperbolic plane, one can see that hyperbolic structures are particular examples of
convex real projective structures, which reflects the fact that, by definition, Teichmüller
space embeds in Hit(S, 3).

More than a decade later, Labourie [Lab06] and, in independent work, Fock-Goncharov
[FG06] showed that the Hitchin component consists only of faithful representations with
discrete image, in contrast to the other components. This implies that Hit(S, n) consti-
tutes an example of a higher Teichmüller space for all n ≥ 3. Their result follows from
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1.3. The Hitchin component

the existence of a limit map with strong dynamical properties. To explain this we first
need to introduce a definition. For more details refer to Section 4.1 and Section 5.1.
Fix an auxiliary hyperbolic structure on S. Its universal cover S̃ is identified with H2,
and let ∂S̃ := ∂H2 ∼= S1 denote its circle at infinity. The action of π1(S) on S̃ extends
to a continuous action on ∂S̃. The latter is identified with S1 and inherits a cyclic
order. Let Fix(S) ⊆ ∂S̃ be the π1(S)-invariant subset of ∂S̃ of π1(S)-fixed points, i.e.
Fix(S) := {x ∈ ∂S̃ | Stabπ1(S)(x) ̸= e}. A flag in Rn is a nested sequence of n + 1 sub-
spaces of Rn of strictly increasing dimension, see Definition 4.0.1. Denote by Flag(Rn)
the set of full flags in Rn.

Definition 1.3.2. A map ξ : Fix(S)→ Flag(Rn) is positive if it maps any triple respect-
ively quadruple of cyclically ordered points in Fix(S) to a positive triple respectively
quadruple of flags (Definition 5.1.1).

A representation ρ : π1(S) → PSL(n,R) is positive if there exists a (not necessarily
continuous) positive map

ξρ : Fix(S)→ Flag(Rn),

that is ρ-equivariant, i.e. for all x ∈ Fix(S) and γ ∈ π1(S) we have ξρ(γx) = ρ(γ)ξρ(x).
The map ξρ is called the limit map of ρ.

If such a limit map exists, then it is unique. With this definition we can formulate
the following characterization of Hitchin representations.

Theorem 1.3.3 ([FG06, Theorem 1.15]). Let ρ : π1(S) → PSL(n,R) be a representa-
tion. Then ρ is PGL(n,R)-conjugate to a Hitchin representation if and only if ρ is a
positive representation.

Fock-Goncharov showed in [FG06, Theorem 1.9 and 1.10] that positive representa-
tions are injective, have discrete image and are positively hyperbolic, see Definition 1.4.4.
Furthermore, if x ∈ Fix(S) is the attracting fixed point of γ ∈ π1(S), then ξρ(x) is the
stable flag of ρ(γ), see Definition 5.3.1. Thus the same holds true for Hitchin represent-
ations.

The notion of Hitchin representations has been generalized in many ways. Hitchin
representations now fit in the broader context of so called Θ-positive representations.
Extending Lusztig’s total positivity [Lus94], Guichard-Wienhard define Θ-positivity in
[GW18] for Lie groups that are not necessarily real split. All known higher Teichmüller
spaces, e.g. maximal components introduced by Burger-Iozzi-Wienhard in [BIW03], con-
sist of Θ-positive representations. Maximal representations are defined when G is a
non-compact simple Lie group of Hermitian type. In this case one can associate to
a representation a Toledo number, which is constant on connected components and
which satisfies a Milnor-Wood type inequality. A maximal representation is a repres-
entation for which the Toledo number attains the maximal possible value. In the case
when G = PSL(2,R), the Hitchin component and the maximal component agree with
Teich(S). Guichard-Labourie-Wienhard proved in [GLW21, Theorem A] that Θ-positive
representations are discrete and faithful. It is conjectured that Θ-positive representa-
tions form unions of connected components of character varieties and that all higher
Teichmüller spaces are of this form [Wie18, BCGP+21]. A complete list of Lie groups
that admit such representations has been found in [GW18] and in independent work
using Higgs bundle techniques in [BCGP+21].
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Chapter 1. Introduction

To study the properties of Hitchin representations, Labourie [Lab06] introduced
the notion of Anosov representations using methods from dynamical systems. Hitchin
representations are Anosov, however there exist Anosov representations that are not in
higher Teichmüller components. Using this approach we can, additionally to changing
the target Lie group, change the group of definition, i.e. we can replace π1(S) by any
finitely generated hyperbolic group Γ, and look for injective representations with discrete
image. This is an active field of research, see [Can21] for an introduction to Anosov
representations.

1.4. Results

In the following we summarize our results, which partially appear in [Fla22]. The main
result of this thesis is the classification of boundary points in the real spectrum compac-
tification of the Hitchin component in terms of positivity for real closed fields.

We saw in Section 1.2 that representations of π1(S) into PSL(n,F), where F is a real
closed field extension of R, naturally occur in the real spectrum compactification of the
character variety χ(S,PSL(n,R)) and the Hitchin component Hit(S, n). As a connected
component of a semi-algebraic set, Hit(S, n) is semi-algebraic (Theorem 2.1.11). The
closure of Hit(S, n) in RSp(χ(S,PSL(n,R))) agrees with its real spectrum compactific-
ation RSp(Hit(S, n)). We define the following.

Definition 1.4.1. Let Hit(S, n)F be the F-extension of Hit(S, n), called the F-Hitchin
component. A representation π1(S)→ PSL(n,F) is F-Hitchin if its PSL(n,F)-conjugacy
class lies in Hit(S, n)F.

Remark 1.4.2. It follows from Theorem 1.2.1 and the properties of the real spectrum
that if ρ : π1(S)→ PSL(n,F) is a representation, then ρ is F-Hitchin if and only if (ρ,F)
represents a point in RSp(Hit(S, n)), compare Theorem 2.3.4 and Proposition 2.3.13.

We will show that F-Hitchin representations admit a positive limit map and are thus
F-positive, which we define now.

Given any ordered field F, the concept of positive tuples of full flags in Fn can be
defined in the same way as for R, since it only involves positivity conditions on triple
and double ratios (Definition 4.1.2 and Definition 4.2.1). Similarly, denote by Flag(Fn)
the set of full flags in Fn. With these notations we can define an F-positive map the
same way as in the real case by replacing every occurrence of R in Definition 1.3.2 by F.
This allows us to define a generalization of positive representation for general real closed
fields.

Definition 1.4.3. Let F be a real closed field extension of R. A representation ρ : π1(S)→
PSL(n,F) is F-positive if there exists a ρ-equivariant (not necessarily continuous) F-
positive map ξρ : Fix(S)→ Flag(Fn), called a limit map of ρ.

If ρ is an F-positive representation with limit map ξρ, then for all e ̸= γ ∈ π1(S)
the subspaces Va := ξρ(γ

+)(a) ∩ ξρ(γ−)(n−a+1), where γ+ and γ− ∈ Fix(S) are the
attracting respectively repelling fixed point of γ, are one-dimensional and ρ(γ)-invariant.
The eigenvalue associated to Va is denoted by λa. We say that ρ is weakly dynamics
preserving if for all e ̸= γ ∈ π1(S) we have |λ1| ≥ . . . ≥ |λn|.
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In the case F = R we recover Definition 1.3.2, and Fock-Goncharov proved that R-
positive representations are weakly dynamics preserving [FG06, Section 7]. We expect
the same to hold when F is a general real closed field. We saw in Theorem 1.3.3, that
a representation is PGL(n,R)-conjugate to a Hitchin representation if and only if it is
R-positive. In analogy to the real case, we have the following theorem.

Theorem A. Let F be a real closed extension of R. A representation ρ : π1(S) →
PSL(n,F) is PGL(n,F)-conjugate to an F-Hitchin representation if and only if it is
F-positive and weakly dynamics preserving.

Then Theorem A together with Remark 1.4.2 answers Question 1.2.2 for C =
Hit(S, n).

Corollary B. If (ρ,F) represents a point in RSp(χ(S,PSL(n,R))), then it represents
a point in RSp(Hit(S, n)) ∪ RSp(Hit(S̄, n)) if and only if ρ is F-positive and weakly
dynamics preserving.

This corollary completes the proof of a result announced in [BIPP21b, Theorem
46], compare Theorem 3.3.4. For the backward direction in the proof of Theorem A,
we introduce a multiplicative variant of the Bonahon-Dreyer coordinates for the Hitchin
component [BD14]. This variant can be extended to give coordinates for Hit(S, n)F for
every real closed field F ⊇ R (Corollary 6.4.3). We then prove the following.

Theorem C. The set of PGL(n,F)-equivalence classes of F-positive weakly dynamics
preserving representations is described by the Bonahon-Dreyer coordinates over F and
hence homeomorphic to a closed semi-algebraic subset of some FN .

For the proof of Theorem C as well the forward direction of Theorem A, a key result
is the following proposition, which holds true over R ([FG06, Theorem 1.13 (i)], and
which we believe to be of independent interest.

Definition 1.4.4. An element of PSL(n,F) is positively hyperbolic if one of its lifts
to SL(n,F) has distinct and only positive eigenvalues. A representation ρ : π1(S) →
PSL(n,F) is positively hyperbolic if ρ(γ) is positively hyperbolic for all e ̸= γ ∈ π1(S).

There is no ambiguity for odd n, since PSL(n,F) = SL(n,F) for every real closed
field F. If n is even, an element in PSL(n,F) admits two lifts that differ just by sign.

Proposition D (see Proposition 7.2.1 and Proposition 7.3.1). Let ρ : π1(S)→ PSL(n,F)
be F-Hitchin or F-positive. Then ρ is positively hyperbolic.

The rest of the thesis concerns itself with assigning geodesic currents to F-positive
weakly dynamics preserving representations. Geodesic currents were introduced by Bo-
nahon in [Bon86], providing a unifying framework for Thurston’s compactification. They
are now an active field of research by themselves and have applications in various fields
in the study of surfaces; see e.g. [ES22]. To simplify we choose a hyperbolic structure
on S, even though the following concept can be defined in a purely topological way, see
e.g. [Bon88, Fact 1].
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Definition 1.4.5. A geodesic current on S is a locally finite, π1(S)-invariant, regular
Borel measure on the space of (unoriented and unparametrized) geodesics in the universal
cover S̃ of S.

Denote by C (S) the space of geodesic currents on S endowed with the weak*-
topology, and by PC (S) := C (S)/R>0 the space of projectivized geodesic currents, the
latter being compact [Bon88, Proposition 4, Corollary 5]. Many seemingly different
objects are in fact geodesic currents, e.g. homotopy classes of closed curves on S or
isotopy classes of marked hyperbolic structures on S [Bon88, Lemma 9]. Martone-
Zhang proved in [MZ19, Theorem 3.4], that we can associate to a Hitchin representation
a geodesic current such that k-length functions of the representation can be computed
as intersections (Definition 8.1.1) with this current. More precisely, let F ⊇ R be a real
closed field that admits an order-compatible valuation υ, see Definition 8.2.1 (for F = R
we can take υ = − log). For g ∈ PSL(n,F) with distinct eigenvalues of the same sign,
let λ1(g) > . . . > λn(g) > 0 be the eigenvalues of a lift of g to SL(n,F). For every
k = 1, . . . , n− 1 we define the k-length of g as

Lk(g) := −
k∑

j=1

υ(λj(g)) +
n∑

j=n−k+1

υ(λj(g)).

These length functions can be interpreted as the translation length of an element g ∈
PSL(n,F) acting on the metric space BPSL(n,F) as defined in [BIPP21b, Section 3.4 and
4]—a higher rank analogue of the non-Archimedean hyperbolic plane defined by Brumfiel
[Bru88c].

We establish the following result announced by Burger-Iozzi-Parreau-Pozzetti
[BIPP21b, Theorem 47]. An equivalent version was proven for maximal representations
by Burger-Iozzi-Parreau-Pozzetti [BIPP21a, Theorem 1.2].

Theorem E. Let F ⊇ R be a non-Archimedean real closed field with an order-compatible
valuation υ (assumed to be − log if F = R) and let ρ : π1(S) → PSL(n,F) be F-positive
and weakly dynamics preserving. Then for every k = 1, . . . , n−1, there exists a geodesic
current µkρ such that for any e ̸= γ ∈ π1(S) we have

i(µkρ, γ) = Lk(ρ(γ)).

The current µkρ is non-zero if and only if there exists γ ∈ π1(S) with υ(|tr(ρ(γ))|) < 0.

Considering the subset RSpcl(Hit(S, n)) of closed points in RSp(Hit(S, n)), this im-
plies the following.

Corollary F. For all k = 1, . . . , n− 1 the map

RSpcl(Hit(S, n))→ PC (S),

[(ρ,F)] 7→
[
µkρ

]
is well-defined and continuous.
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1.5. Method

The key tool to establish the forward direction of Theorem A, as well as the proofs of
Proposition D (for F-Hitchin representations) and Theorem E, is the Tarski-Seidenberg
transfer principle (Theorem 2.1.13), a real closed analogue of the Lefschetz principle for
algebraically closed fields. It enables to deduce results for real closed extensions of R,
that are stated in first-order logic in the language of ordered fields, from results that
hold true over R.

To prove Theorem A, we first establish Proposition D for F-Hitchin representations
(Proposition 7.2.1). Equipped with this we can construct a limit map for an F-Hitchin
representation ρ. Namely to the fixed point of a hyperbolic element γ we associate the
stable flag of the positively hyperbolic element ρ(γ). To prove its positivity properties,
we use again the Tarski-Seidenberg transfer principle and the positivity properties of
Hitchin representations (Theorem 1.3.3).

The backward direction of Theorem A is more involved. Here we cannot apply the
transfer principle directly, as the notion of F-positive weakly dynamics preserving repres-
entation involves infinitely many conditions. We will show that, actually, a finite set of
data points suffices to determine an F-positive weakly dynamics preserving representa-
tion up to conjugation. The equivariant limit map that comes together with an F-positive
representation allows us to associate to the representation the (adapted) Bonahon-Dreyer
coordinates over F [BD14]. We then verify that these coordinates satisfy the same poly-
nomial equalities and inequalities as the ones for F-Hitchin representations, which proves
Theorem C. The difficulty lies in the proof of the closed leaf inequality (iv). Together
with the assumption of weakly dynamics preserving, this amounts to proving Propos-
ition D for F-positive representations (Proposition 7.3.1). Following Fock-Goncharov
[FG06], we instead prove Proposition 7.3.2, which asserts that the image of every non-
trivial element of π1(S) under an F-positive representation is conjugate to a totally
positive matrix with coefficients in F. We use the Tarski-Seidenberg transfer principle
to establish the theorem of Gantmacher-Krein for real closed fields, see Theorem 5.3.3.
To prove Proposition 7.3.2 we explicitly describe the image of a non-trivial element of
π1(S) under an F-positive representation in terms of matrices whose entries involve the
triple and double ratios of the representation, compare Theorem 4.3.4.

The proof of Theorem E follows closely that of [BIPP21a, Theorem 1.2] in the case
of maximal representations. It is based on their result [BIPP21a, Theorem 1.6], where
they show how to associate a geodesic current to a positive cross-ratio (Definition 8.1.2).
To show that to an F-Hitchin representation we can associate a positive cross-ratio we
use that the same statement holds true for R [MZ19, Lemma 3.6]. Left to prove is thus
the continuity in Corollary F which is a standard argument similar to the one in [Bru88a,
Proposition 5.3].

1.6. Organization

The thesis is organized as follows. Part I provides an introduction to real algebraic
geometry, character varieties and their real spectrum compactification. In Chapter 2 we
define the spectrum of a ring and the real spectrum compactification of a semi-algebraic
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set. Chapter 3 presents a semi-algebraic model for character varieties. Finally, we apply
the general theory from real algebraic geometry to character varieties and collect results
on their real spectrum compactification.

Part II provides the basics on flags and positivity in order to introduce the Bonahon-
Dreyer coordinates for Hitchin components. Even though most results are known to the
experts for R, we carefully study all objects in question with the goal of generalizing to
real closed fields different from R. In Chapter 4 we give the necessary preliminaries on
flags, including the definition of the triple and double ratios. This leads to the notions
of positive k-tuples of full flags in Chapter 5, and we explain the connection between
positivity of flags and total positivity of matrices. To keep the thesis self-contained and
for lack of a good reference for the proof, some important results in Chapter 4 and
Chapter 5 are proven in Appendix A respectively Appendix B.

We prove our results in Part III. In Chapter 7, we prove Proposition D and collect
properties of F-Hitchin representations. Section 7.4 finishes the proof of Theorem A and
Theorem C. We introduce positive cross-ratios, intersection currents and valuations in
Chapter 8 and finish the chapter with the proofs of Theorem E and Corollary F.
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2. Real algebraic geometry

In the first section we recall general definitions and results from real algebraic geo-
metry and set up notation. The second section describes the semi-algebraic structure
of character varieties following [RS90]. We finish this chapter by focusing on several
semi-algebraic descriptions of the Hitchin component.

2.1. Background on real algebraic geometry

We refer the reader to [BCR98], in particular Chapters 1, 2 and 5, for more details and
proofs.

Definition 2.1.1. An order on a field F is a total order relation ≤ compatible with the
field operations, i.e.

x ≤ y =⇒ x+ z ≤ y + z, 0 ≤ x, y =⇒ 0 ≤ xy for all x, y, z ∈ F.

A field F is orderable if F admits an order. An order ≤ on F is Archimedean if for any
x ∈ F there exists n ∈ N such that x < n. An ordered field is real closed if every positive
element is a square and every odd degree polynomial has a root.

Note that ordered fields are infinite and of characteristic zero. Thus every ordered
field contains Q.

Example 2.1.2. The fields Q and R have a unique order, whereas C cannot be ordered.
The field Q(

√
2) has exactly two distinct orderings given by the two embeddings of

Q(
√
2) ↪→ R (either we send a preferred root of X2 − 2 to

√
2 or to −

√
2). In general,

the orderings on any number field K (a finite field extension of Q) correspond bijectively
to the embeddings K ↪→ R (“the real places”). They are always Archimedean, but never
real closed.

The field of rational functions R(X) can be ordered: Indeed we can define an order
by proclaiming X > 0 but X < λ for all λ ∈ R≤0. Then R(X) is not real closed,
since X is positive but does not have a square root in R(X). With this order R(X)
is Archimedean. However, if we endow R(X) with a different order, say X > λ for all
λ ∈ R, then R(X) is non-Archimedean.

Examples of real closed fields include the real numbers, as well as the real algebraic
numbers, i.e. the real numbers that are algebraic over Q.

Remark 2.1.3. A real closed field has a unique order. Indeed, the non-negative elements
are exactly the squares.

Example 2.1.4. The field of real Puiseux series is the set of expressions

R(X)∧ :=
{ ∞∑

k=k0

ckX
k/m

∣∣∣ k0 ∈ Z, m ∈ N \ {0}, ck ∈ R
}
,
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together with formal addition and multiplication. An element
∑∞

k=k0
ckX

k/m is positive
if ck0 > 0. With this order R(X)∧ is real closed, see e.g. [BPR06, Theorem 2.91].

Definition 2.1.5. Let F be an ordered field. A real closure for F is an algebraic field
extension K that is real closed and such that the inclusion F ↪→ K is order-preserving.

Theorem 2.1.6 ([BCR98, Theorem 1.3.2]). Every ordered field (F,≤) has a real closure.
If K and K′ are two real closures of (F,≤), then there exists a unique order-preserving
F-isomorphism K and K′.

Thus in the following we can speak of the real closure of an ordered field F, and we
write Fr

.

Example 2.1.7. The real closure of Q are the real algebraic numbers Qr
= Q ∩ R.

The real closure of R(X) (together with the order X > 0 but X < λ for all λ ∈ R) is
R(X)

r
= R(X)∧alg, i.e. the field of real Puiseux series that are algebraic over R(X).

The main objects of study in real algebraic geometry are semi-algebraic sets. From
now on let F be a real closed field.

Definition 2.1.8. A subset B ⊆ Fn is a basic semi-algebraic set, if there exists a poly-
nomial f ∈ F[X1, . . . , Xn] such that

B = B(f) = {x ∈ Fn | f(x) > 0}.

A subset X ⊆ Fn is semi-algebraic if it is a Boolean combination of basic semi-algebraic
sets, i.e. X is obtained by taking finite unions and intersections of basic semi-algebraic
sets and their complements.

A subset X ⊆ Fn is algebraic if it is the zero set of a set of polynomials in
F[X1, . . . , Xn]. By Hilbert’s basis theorem algebraic sets are semi-algebraic, see e.g.
[Lan02, Theorem 4.1].

Let X ⊆ Fn and Y ⊆ Fm be two semi-algebraic sets. A map f : X → Y is called
semi-algebraic if its graph Graph(f) ⊆ X × Y is semi-algebraic in Fn+m.

Proposition 2.1.9 ([BCR98, Proposition 2.2.7]). Let f : X → Y be a semi-algebraic
map. If S ⊆ X is semi-algebraic, then so is its image f(S). If T ⊆ Y is semi-algebraic,
then so is its preimage f−1(T ).

Using the order on F we can define a topology on F, where a basis of open sets is
given by the open intervals. Note that if F ̸= R then F is totally-disconnected. However
we have the following notion of connectedness for semi-algebraic sets.

Definition 2.1.10. Let F be a real closed field. A semi-algebraic set X ⊆ Fn is semi-
algebraically connected if it cannot be written as the disjoint union of two non-empty
semi-algebraic subsets of Fn both of which are closed in X.

Theorem 2.1.11 ([BCR98, Theorem 2.4.5]). A semi-algebraic set of Rn is connected if
and only if it is semi-algebraically connected. Every semi-algebraic set of Rn has a finite
number of connected components, which are semi-algebraic.

From now denote by F ⊆ K a real closed extension of F.

14



2.2. The real spectrum of a ring

Definition 2.1.12. Let X ⊆ Fn be a semi-algebraic set given as

X =
s⋃

i=1

ri⋂
j=1

{x ∈ Fn | fij(x) ∗ij 0},

with fij ∈ F[X1, . . . , Xn] and ∗ij is either < or = for i = 1, . . . , s and j = 1, . . . , ri.
The K-extension XK of X is the set given by the same Boolean combination of sign
conditions as X, more precisely

XK =
s⋃

i=1

ri⋂
j=1

{x ∈ Kn | fij(x) ∗ij 0}.

Note that XK is semi-algebraic and depends only on the set X, and not on the
Boolean combination describing it, see [BCR98, Proposition 5.1.1]. The proof of this is
based on the Tarski-Seidenberg transfer principle.

Theorem 2.1.13 (Tarski-Seidenberg transfer principle, [BCR98, Theorem 5.2.1]). Let
X ⊆ Fn+1 be a semi-algebraic set. Denote the projection pr : Fn+1 → Fn onto the first
n coordinates by pr. Then pr(X) ⊆ Fn is semi-algebraic. Furthermore, if K is a real
closed extension of F, and prK : Kn+1 → K is the projection on the first n coordinates,
then

prK(XK) = (pr(X))K.

Using this one can prove an extension theorem for semi-algebraic maps.

Theorem 2.1.14 ([BCR98, Propositions 5.3.1, 5.3.3, 5.3.5]). Let X ⊆ Fn and Y ⊆ Fm

be two semi-algebraic sets, and f : X → Y a semi-algebraic map. Then (Graph(f))K is
the graph of a semi-algebraic map fK : XK → YK, that is called the K-extension of f .
Furthermore, f is injective (respectively surjective, respectively bijective) if and only if
fK is injective (respectively surjective, respectively bijective), and f is continuous if and
only if fK is continuous.

Finally, we have the following relation between extension of semi-algebraic sets and
semi-algebraically connected components.

Theorem 2.1.15 ([BCR98, Proposition 5.3.6 (ii)]). Let X ⊆ Fn be semi-algebraic.
Then X is semi-algebraically connected if and only if XK is semi-algebraically connected.
More generally, if C1, . . . , Cm are the semi-algebraically connected components ofX, then
(C1)K, . . . , (Cm)K are the semi-algebraically connected components of XK.

2.2. The real spectrum of a ring

In this section we introduce the notion of the real spectrum of a ring. We follow [BCR98,
Chapters 7.1 and 7.2]. Let A be a commutative ring with 1. In our examples, A will often
be a polynomial ring or the coordinate ring of an algebraic set, compare Section 2.3.

Definition 2.2.1. The real spectrum RSp(A) is the topological space

RSp(A) = {(p,≤) | p ⊆ A prime ideal ,≤ is an order on the fraction field Frac(A/p)}

15
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together with the following subbasis of open sets: For a ∈ A let

U(a) := {(p,≤) ∈ RSp(A) | ap > 0},

where ap is the image of a in Frac(A/p) under the homomorphism

A→ A/p→ Frac(A/p).

Remark 2.2.2. This topology is called the spectral topology on RSp(A).

Remark 2.2.3. Contrary to the spectrum of a ring (where we consider all prime ideals),
we restrict our attention here to so called real ideals, which motivates the name of the real
spectrum. An ideal is called real if, whenever a21 + . . .+ a2k ∈ I for some a1, . . . , ak ∈ A,
we have ai ∈ I for all i = 1, . . . k, see [BCR98, Definition 4.1.3]. By [BCR98, Lemma
4.1.6] we see that a prime ideal I ⊆ A is real if and only if the fraction field of A/I is
orderable.

Example 2.2.4. (1) Let k be a field. The real spectrum RSp(k) of k is homeomorphic
to the set of orders on k together with the Harrison topology [BCR98, Example
7.1.4 a)]. It is non-empty if and only if k is orderable.

(2) The real spectrum of Z is one point corresponding to the zero prime ideal (0) and
the unique order on the fraction field Q of Z.

Example 2.2.5 ([BCR98, Example 7.1.4 (b), 7.5.2]). Let R[X] be the polynomial ring
in one variable. To describe RSp(R[X]) we need to understand the prime ideals of R[X].
Since R is real closed and R[X] is a principal ideal domain, all non-zero prime ideals are
generated by an irreducible polynomial which is either of degree one or two. Irreducible
polynomials of degree one correspond to maximal ideals, hence to elements of R, with
residue field R. Since R is real closed it has a unique order. Irreducible polynomials of
degree two correspond to algebraic extensions of R of degree two, which are algebraically
closed, and hence not orderable. We also need to describe the total orders on the field
of rational function R(X), which is the fraction field of R[X] corresponding to the prime
ideal (0). It suffices to order the variable X with respect to R. More precisely, we define
the following orders. For λ ∈ R we set

• λ+: We have λ <λ+ X, but X <λ+ µ for every µ ∈ R with λ < µ.

• λ−: We have X <λ− λ, but µ <λ− X for every µ ∈ R with µ < λ.

• +∞: We have µ <+∞ X for all µ ∈ R.

• −∞: We have X <−∞ µ for all µ ∈ R.

It turns out that this list is the complete set of total orders on R[X]. Putting everything
together we obtain

RSp(R[X]) = {(⟨X − λ⟩,≤R) | λ ∈ R} ∪ {((0),≤o) | o ∈ {λ±,±∞}}.

The description of prime ideals in F[X] for F any real closed field is similar. The set
of orders of F(X) is in one-to-one correspondence with the set of cuts (I, J) of F, with
I = {µ ∈ F | µ < X} and J = {µ ∈ F | X < µ}. However, in general these need not
correspond to elements in F. For example in the case F = Q ∩ R a cut can be given by
a transcendental number in R \ (Q ∩ R).
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We have an equivalent way of describing points in the real spectrum using homo-
morphisms.

Proposition 2.2.6 ([BCR98, Proposition 7.1.2]). Points (p,≤) ∈ RSp(A) are in bijec-
tion with equivalence classes of ring homomorphisms [φ : A→ F] for a real closed field F,
where we consider the equivalence relation generated by proclaiming two homomorph-
isms φ : A→ F and φ′ : A→ F′ to be equivalent if there exists an order-preserving field
homomorphism F→ F′ such that the diagram commutes:

A F

F′

φ

φ′

More precisely, given (p,≤) we get a homomorphism from A into the real closure of the
residue field Frac(A/p) with the order ≤ by composing the following maps

φ : A→ A/p ↪→ Frac(A/p) ↪→ (Frac(A/p),≤)r.

On the other hand, given [φ : A→ F] for a real closed field F, take (ker(φ),≤) with the
restriction of the order of F to Frac(A/ ker(φ)). Under this identification we have that
for a ∈ A

U(a) = {[φ : A→ F] | F real closed, φ(a) > 0}.

We now define a second topology on the real spectrum that we only use to prove
that the real spectrum is compact. If not otherwise stated, the real spectrum is always
considered with the spectral topology.

Definition 2.2.7. A subset of RSp(A) is called constructible if it can be obtained as a
Boolean combination, i.e. finite unions, finite intersections and complements, from the
sets U(a) defined above. The constructible topology is the topology on RSp(A) which
is generated by the constructible subsets, or equivalently, for which the constructible
subsets form a subbasis of the topology.

The constructible topology has more open sets than the spectral topology, since we
also define U(a)c to be open in the constructible topology.

Example 2.2.8 ([BCR98, Remark 7.1.11]). For A = k the constructible and the spectral
topology on RSp(k) agree. Indeed, for a ∈ k we have

RSp(k) \ U(a) = {orders on k for which a < 0}
= {orders on k for which− a > 0} = U(−a).

Theorem 2.2.9 ([Lam84, Theorem 4.1], [BCR98, Proposition 7.1.12]). The topological
space RSp(A) together with the constructible topology is a compact, totally disconnected
Hausdorff space. In particular, RSp(A) with its spectral topology is compact (but not
necessarily Hausdorff nor totally disconnected).
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Chapter 2. Real algebraic geometry

Proposition 2.2.10 ([BCR98, Proposition 7.1.25 (ii)]). Let C ⊆ RSp(A) be a con-
structible subset endowed with the subspace topology of the spectral topology. The
topological space Ccl of closed points of C is a compact Hausdorff space. In particular
RSpcl(A), the set of closed points of RSp(A), is a compact Hausdorff space.

Example 2.2.11 (continuation of Example 2.2.5). The points ((0),±∞) ∈ RSp(R[X])
are closed. The points ((0), λ±) ∈ RSp(R[X]) for λ ∈ R are not closed. We have {λ±} =
{λ±, λ}. The space RSpcl(R[X]) is homeomorphic to the two point compactification of
R, i.e. to the closed interval [0, 1].

We have the following characterization of closed points of RSp(A). For this we
generalize the notion of Archimedean order from Definition 2.1.1.

Definition 2.2.12. Let A ⊆ A′ ⊆ F be two subsets of an ordered field F. We say that
A′ is Archimedean over A if for all a′ ∈ A there exists a ∈ A with a′ < a.

With this new definition, an order on F is Archimedean if F is Archimedean over N.

Proposition 2.2.13 ([Bru88a, Proposition 2.2 (e)]). A point (p,≤) ∈ RSp(A) is closed
if and only if Frac(A/p) is Archimedean over φ(A), where

φ : A→ A/p ↪→ Frac(A/p) ↪→ (Frac(A/p),≤)r

is defined as in Proposition 2.2.6.

2.3. The real spectrum compactification of semi-algebraic
sets

We begin by describing the real spectrum compactification for algebraic sets. Let V ⊂ Rn

be an algebraic set, i.e. V is the zero set of a family of polynomials with coefficients in
R. Let A(V ) := R[X1, . . . , Xn]/I be the coordinate ring of V , where I is the ideal of all
polynomials vanishing on V , i.e. I = {f ∈ R[X1, . . . , Xn] | f(v) = 0 for all v ∈ V }. Note
that A(V ) is naturally an R-algebra, hence contains R.

Lemma 2.3.1. Let φ : A(V ) → F, for F a real closed field, represent a point in
RSp(A(V )). Then R ⊆ F and φ is R-linear.

Proof. The ring homomorphism φ restricted to R is injective (since the only ideals of R
are trivial and φ sends one to one), hence R ⊆ F via φ. Furthermore, for λ ∈ R and
f ∈ A(V ), we have φ(λf) = φ(λ)φ(f), since φ is a ring homomorphism.

Proposition 2.3.2 ([BCR98, Proposition 7.1.5]). The map

Ψ: V → RSp(A(V )), v 7→ (⟨X1 − v1, . . . , Xn − vn⟩,≤R),

where ≤R is the unique order on R (refer to Remark 2.1.3), is injective and induces
a homeomorphism from V , with its Euclidean topology, onto its image in RSp(A(V )),
with its spectral topology.
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2.3. The real spectrum compactification of semi-algebraic sets

Proof. The injectivity of Ψ is clear. We write V for its image in RSp(A(V )). To show
the second part we consider for every ε > 0 and v = (v1, . . . , vn) ∈ V the element

fε,v(X1, . . . , Xn) := ε−
n∑

i=1

(Xi − vi)2 ∈ A(V ).

Then

V ∩ U(fε,v) = {(⟨X − w⟩,≤R) ∈ RSp(A(V )) | w ∈ V, fε,v
⟨X−w⟩

> 0}

=
{
w ∈ V

∣∣∣ n∑
i=1

(wi − vi)2 < ε
}
,

which is the usual basis of the Euclidean topology of V .

Example 2.3.3. We have already seen an example of the above proposition in Ex-
ample 2.2.5 for V = R.

We now consider R2 with its standard basis (e1, e2). Let R[X,Y ] be the polynomial
ring in two variables. The sequences sn := Ψ(ne1) and s′n := Ψ(ne2) converge (up to
subsequence) in RSp(R[X,Y ]), since the latter is compact. We claim that limn→∞ sn ̸=
limn→∞ s′n. We first verify that limn→∞ sn = (⟨Y ⟩,≤+∞), where ≤+∞ denotes the order
as in Example 2.2.5 on the fraction field of R[X,Y ]/⟨Y ⟩ ∼= R[X]. Then we show that
limn→∞ s′n ̸= (⟨Y ⟩,≤+∞).

Let us describe the basic open sets U(f) with (⟨Y ⟩,≤+∞) ∈ U(f). By definition,

this mean that f
⟨Y ⟩

>+∞ 0. If we write

f(X,Y ) =
∑
i,j

aijX
iY j =

∑
i

ai0X
i +

∑
j ̸=0,i

aijX
iY j ,

we see that f(X,Y ) + ⟨Y ⟩ =
∑

i ai0X
i + ⟨Y ⟩. Thus f ⟨Y ⟩

>+∞ 0 is equivalent to asking
that p(X) := f(X, 0) =

∑
i ai0X

i >+∞ 0. The latter means that the coefficient adeg p,0
of Xdeg p is positive.

Choose any f ∈ R[X,Y ] with (⟨Y ⟩,≤+∞) ∈ U(f). Recall that for (x, y) ∈ R2 we
have Ψ(x, y) ∈ U(f) if and only if f(x, y) > 0. Thus sn ∈ U(f) for all n ≥ n0 ∈ N, since
f(ne1) = f(n, 0), which is positive for all n large enough by the assumption on f . Thus
for all open neighborhoods U of (⟨Y ⟩,≤+∞), there exists n0 ∈ N such that sn ∈ U for
all n ≥ n0, in other words limn→∞ sn = (⟨Y ⟩,≤+∞).

On the other hand, if we choose f ∈ R[X] ⊆ R[X,Y ] with (⟨Y ⟩,≤+∞) ∈ U(f) and
constant term c ≤ 0 (which exists by the above considerations), then f(ne2) = f(0, n) =
c ≤ 0, so s′n /∈ U(f) for all n ∈ N. Thus limn→∞ s′n ̸= (⟨Y ⟩,≤+∞).

Theorem 2.3.4 ([BCR98, Theorem 7.2.3]). Let V ⊆ Fn be an algebraic set. If X ⊆ V
is a semi-algebraic set given by a Boolean combination of the basic semi-algebraic sets
B(fi) for some fi ∈ A(V ) (Definition 2.1.8), then we define X̃ to be the constructible
subset of RSp(A(V )) given by the same Boolean combination of the open sets U(fi)
(Definition 2.2.1).
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(1) There is an isomorphism of Boolean algebras

{semi-algebraic subsets of V } ↔ {constructible subsets of RSp(A(V ))}

X 7→ X̃,

X̃ ∩ V ←[ X̃.

(2) X is closed (respectively open) if and only if X̃ is closed (respectively open).

Remark 2.3.5 ([BCR98, Corollary 7.2.4, Remark 7.2.5]). It turns out that X̃ is intrins-
ically defined by the semi-algebraic set X (up to homeomorphism) and does not depend
on the algebraic set V in which X is embedded.

Proposition 2.3.6 ([BCR98, Proposition 7.2.7]). Let X be a closed (respectively open)
semi-algebraic subset of an algebraic set V . Then X̃ is the smallest (respectively largest)
closed (respectively open) subset of RSp(A(V )) whose intersection with Ψ(V ) is Ψ(X).

With this at hand we are now ready to define and study the properties of the real
spectrum compactification of semi-algebraic sets.

Definition 2.3.7. Let X ⊆ V ⊆ Rn be a semi-algebraic subset of some algebraic set V .
Its real spectrum compactification RSp(X) is the closure of its image

X ⊆ V Ψ
↪−→ RSp(A(V )).

The definition of the compactification depends on an embedding X ⊆ V . This is
not the case if we restrict ourselves to closed semi-algebraic sets. The following result,
together with Remark 2.3.5, implies that in this case the real spectrum compactification
RSp(X) is intrinsic to X.

Lemma 2.3.8. Let X ⊆ V ⊆ Rn be a closed semi-algebraic subset of some algebraic
set V . Then RSp(X) = X̃.

Proof. We use Proposition 2.3.6. Clearly Ψ(X) ⊆ RSp(X) ∩ Ψ(V ). But since Ψ is a
homeomorphism onto its image (Proposition 2.3.2) we have equality. If Y is now any
closed subset of RSp(A(V )) with Y ∩ Ψ(V ) = Ψ(X), then Ψ(X) ⊆ Y , and since Y is
closed, also the closure of Ψ(X) is in Y . Thus RSp(X) = X̃ by Proposition 2.3.6.

From now on let X ⊆ V be a closed semi-algebraic set. We saw in Example 2.2.5 and
Example 2.2.11 that in general X is not open in RSp(X) (not even for algebraic sets).
Moreover, RSp(X) with its spectral topology is in general not Hausdorff (Theorem 2.2.9),
which is something one often desires when compactifying a Hausdorff topological space.
Both of these issues can be resolved when considering the subset of closed points, see
Theorem 2.3.11.

Definition 2.3.9. Let RSpcl(X) := X̃cl be the subset of closed points in RSp(X).

Remark 2.3.10. If we view X ⊆ V as a closed semi-algebraic subset of some algebraic
set V , then RSpcl(X) = X̃ ∩ RSpcl(A(V )), since X̃ is closed by Theorem 2.3.4 (2).
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Theorem 2.3.11. The closed semi-algebraic set X is dense in RSp(X), and open and
dense in RSpcl(X). In particular, RSpcl(X) provides a compactification of X.

Before proving this we need the following lemma. Recall that all points in Ψ(X) are
closed. On the other hand for boundary points we have the following implication using
the point of view of homomorphisms as in Proposition 2.2.6.

Lemma 2.3.12. Let X ⊆ V ⊆ Rn be a closed semi-algebraic subset of some algebraic
set V , and A(V ) = R[X1, . . . , Xn]/I(V ) the coordinate ring of V . Let [φ : A(V )→ F] ∈
∂RSpcl(X). Then φ(A(V )) is non-Archimedean over R; in other words, there exists
i ∈ {1, . . . , n} such that |φ(Xi)| > µ for all µ ∈ R.

Proof. Assume that φ : A(V ) → F represents a point in ∂RSpcl(X) and is such that
φ(A(V )) is Archimedean over R. We know that Frac(A(V )/ ker(φ)) is Archimedean
over φ(A(V )), since the homomorphism represents a closed point, see Proposition 2.2.13.
Thus Frac(A(V )/ ker(φ)) is Archimedean over R and hence a subfield of R, compare e.g.
[Pla13]. Since it contains R we obtain Frac(A(V )/ ker(φ)) = R. Thus φ : A(V ) → R
is surjective, since it is also R-linear by Lemma 2.3.1. Hence ker(φ) corresponds to a
maximal ideal in A(V ), i.e. a point in Ψ(X). This is a contradiction, since we started
with a point in the boundary.

Proof of Theorem 2.3.11. By definition X is dense in RSp(X). For the second claim we
simplify the exposition and assume that X = V . Similar arguments then also prove the
general case.

We need to prove that the image of V is open and dense in RSpcl(A(V )). We already
know that V is dense in RSp(A(V )), hence also in RSpcl(A(V )). For v ∈ V let Ψ(v) =
(⟨X−v⟩,≤R) be its image in RSpcl(A(V )). We construct an open neighbourhood of Ψ(v)
contained in Ψ(V ), which implies that the latter is open in RSpcl(A(V )). Consider, as
in the proof of Proposition 2.3.2, the element fε,v ∈ A(V ). Then clearly Ψ(v) ∈ U(fε,v)
and we claim that

U(fε,v) ∩ RSpcl(A(V )) ⊆ Ψ(V ).

We take the point of view of homomorphisms as in Proposition 2.2.6. We immediately
see that if φ : A(V )→ F is in U(fε,v), then

|φ(Xi)− vi| ≤ ε for all i = 1, . . . , n,

which implies that φ(A(V )) is Archimedean over R. However the only closed points
Archimedean over R are points in Ψ(V ), see Lemma 2.3.12, which proves the claim.

RSpcl(X)

X

RSp(X)

open and dense

dense

Let us collect some important properties of the real spectrum compactification of
closed semi-algebraic sets. Recall that in this case we have RSp(X) = X̃.
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Proposition 2.3.13 ([BCR98, Proposition 7.5.1]). Let X be a semi-algebraic set.
Then X is semi-algebraically connected if and only if X̃ is connected. Furthermore,
if X1, . . . , Xm are the semi-algebraically connected components of X, then X̃1, . . . , X̃m

are the connected components of X̃.

From this remark we immediately obtain that the real spectrum compactification
of a closed connected semi-algebraic set is connected. The following proposition tells us
that semi-algebraic maps extend continuously to the compactification.

Proposition 2.3.14 ([BCR98, Proposition 7.2.8]). Let X and Y be two semi-algebraic
sets and f : X → Y a semi-algebraic map. Then there exists a unique map f̃ : X̃ → Ỹ
such that for all semi-algebraic subsets Y ′ ⊆ Y we have

f̃−1(Ỹ ′) = ˜f−1(Y ′).

If additionally f is a homeomorphism then so if f̃ .

In 2.2.5, we saw that RSpcl(R) is homeomorphic to the closed interval. In higher
dimension, this compactification is no longer a closed ball. However, there is still a
fixed-point theorem for this compactification.

Theorem 2.3.15 ([Bru88b], Hopf fixed point theorem for semi-algebraic maps [Bru92]).
Let X ⊆ Rn be a semi-algebraic set and f : X → X a continuous semi-algebraic map
with tr(f∗) ̸= 0, where

tr(f∗) =
n∑

i=0

(−1)i tr(f∗ : Hi(X;Q)→ Hi(X;Q))

is the Lefschetz number of f . Then either f has a fixed point in X or f̃ has a closed
fixed point in X̃.

Remark 2.3.16. If X ⊆ Rn is contractible semi-algebraic, then tr(f∗) = 1 for any
continuous semi-algebraic map f : X → X, so the Hopf fixed point theorem implies a
Brouwer fixed point theorem for semi-algebraic maps, compare [Bru88b].
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3. Character varieties and
compactifications

3.1. Character varieties

Let Γ be a finitely generated group. Let G ≤ GLn be a connected semisimple algebraic
group defined over R. Its real points G(R) are a real Lie group. Let G be a subgroup
of G(R) which contains the identity component of G(R), i.e. G(R)◦ ⊆ G ⊆ G(R).
Note that G is not necessarily a real algebraic group. However, since G has finite index
in G(R), it is open and closed, hence made out of components of G(R) and therefore
semi-algebraic.

Example 3.1.1. If we take G = PGLm ≤ GLm2 , then PGLm(R)◦ = PSLm(R), which
has index two in PGLm(R), and G can thus be either PSLm(R) or PGLm(R).

The topology of G endows the space Hom(Γ, G) of group homomorphisms from Γ
to G with the topology of point-wise convergence. The group G acts on Hom(Γ, G) by
conjugation, i.e. for all ρ ∈ Hom(Γ, G) and g ∈ G we have

(g.ρ)(γ) := gρ(γ)g−1 for all γ ∈ Γ.

Definition 3.1.2. A representation ρ : Γ→ G is reductive if, seen as a linear representa-
tion on Rn, it is completely reducible, i.e. a direct sum of irreducible subspaces. Similarly,
if F is a real closed field extension and GF the F-extension of G (Definition 2.1.12), we
say that ρ : Γ→ GF is reductive if, seen as a linear representation on Fn, it is completely
reducible.

Denote the set of reductive homomorphisms from Γ to G by Homred(Γ, G). Any
irreducible representation is reductive.

Theorem 3.1.3 ([Bou12, §20, p. 376 Corollaire a)]). Let ρ, ρ′ : Γ → GL(n,R) be two
reductive linear representations of Γ with tr(ρ(γ)) = tr(ρ′(γ)) for all γ ∈ Γ. Then ρ and
ρ′ are conjugate, i.e. there exists g ∈ GL(n,R) with ρ(γ) = gρ′(γ)g−1 for all γ ∈ Γ. In
other words, reductive representations are up to isomorphism determined by their trace
function. The same holds true for reductive representations into GL(n,F).

The subset of reductive homomorphisms is invariant under the action of G on
Hom(Γ, G) by conjugation, which allows us to define the following.

Definition 3.1.4. The character variety is the topological quotient

χ(Γ, G) := Homred(Γ, G)/G,

where G acts on Homred(Γ, G) by conjugation.
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The following theorem explains why we restrict our attention to the set of reductive
representations.

Theorem 3.1.5. Let Γ and G be as above. A representation ρ : Γ → G is reductive if
and only if the orbit G · ρ is closed in Hom(Γ, G).

For a proof of this result see e.g. [Sik12, Theorem 30] based on an argument by
[JM87, Theorem 1.1]. From this we see that the quotient Hom(Γ, G)/G has non closed
points in general. This is the reason why we replace Hom(Γ, G) by Homred(Γ, G) in the
above definition. In fact more is true.

Theorem 3.1.6. The character variety χ(Γ, G) is a Hausdorff topological space.

This follows from Theorem 3.2.8. For more details on the subtleties in the various
definitions of character varieties and how they relate, we refer to [Mar22a, Sections 2
and 3].

3.2. Semi-algebraic models for character varieties and
their components

Let Γ and G be as in Section 3.1. The real semi-algebraic structure of G endows the space
Hom(Γ, G) with a real semi-algebraic structure by choosing a finite set of generators for
Γ. More precisely, if F = {γ1, . . . , γk} is a finite generating set for Γ, the map

ev: Hom(Γ, G)→ GF , ρ 7→ (ρ(γ1), . . . , ρ(γk))

induces a homeomorphism between Hom(Γ, G) and its image XF (Γ, G). Note that
XF (Γ, G) is a semi-algebraic subset of RN for some N ∈ N. If F ′ is a different choice
of a generating set for Γ, then XF (Γ, G) and XF ′(Γ, G) are semi-algebraically homeo-
morphic. From now on we drop the choice of a generating set F from the notation.
Denote by Xred(Γ, G) the image under the map ev of the space of reductive homomorph-
isms Homred(Γ, G). We show in Lemma 3.2.9 that Xred(Γ, G) is real semi-algebraic as
a subset of X(Γ, G). From now on we identify Hom(Γ, G) and Homred(Γ, G) with their
respective images under the map ev.

Definition 3.2.1. A semi-algebraic model for χ(Γ, G) is a semi-algebraic, continuous
map

p : Homred(Γ, G)→ Rd

for some d ∈ N, such that the fibres over the image of p are exactly the G-orbits, and p
induces a homeomorphism Homred(Γ, G)/G

∼−→ Im(p) ⊆ Rd.

Note that Im(p) as the image of a semi-algebraic map is semi-algebraic, see Propos-
ition 2.1.9.

Lemma 3.2.2. A semi-algebraic model for χ(Γ, G) is unique up to semi-algebraic homeo-
morphism, that means that if p : Homred(Γ, G) → Rd and p′ : Homred(Γ, G) → Rd′ are
two such models, then there exists a unique semi-algebraic homeomorphism f : Im(p)→
Im(p′) with f ◦ p = p′.
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Proof. Assume we have two semi-algebraic models p and p′ for χ(Γ, G). The map p
factors through Im(p′), since both p and p′ have the same fibres, and induces a continuous
bijective map p̄ : Im(p′)→ Im(p). We claim that p̄ is also semi-algebraic. We have

Graph(p̄) = {(x, y) ∈ Im(p′)× Im(p) | p̄(x) = y}
= {(x, y) ∈ Im(p′)× Im(p) | ∃ c ∈ Homred(Γ, G) s.t. p

′(c) = x, p(c) = y},

which by Tarski-Seidenberg, see Theorem 2.1.13, is a semi-algebraic set since both p and
p′ are semi-algebraic. Reversing the roles of p and p′ in the above argument proves the
claim.

If C ⊆ Hom(Γ, G) is a G-invariant connected component–hence semi-algebraic by
Theorem 2.1.11–consisting of reductive homomorphisms, we can define in an analogous
way a semi-algebraic model for the quotient C/G. Indeed, the restriction to C of the
semi-algebraic model for the whole character variety coming from [RS90, Theorem 7.6]
provides a semi-algebraic model for C/G. In general we can find different such mod-
els, which are related by semi-algebraic homeomorphisms, see Lemma 3.2.2. In fact,
for connected components of geometric significance, there are often other semi-algebraic
models that exploit their geometric interpretation. For example in Chapter 6 we in-
troduce a variant of the Bonahon-Dreyer coordinates for the Hitchin component, which
generalize the shear coordinates for Teichmüller space (the case of PSL(2,R)) developed
by Thurston [Thu22, Section 9] and [Bon96, Theorem A].

Lemma 3.2.3. Let p : C → Rd be a semi-algebraic model for C/G, with image p(C). For
a real closed field extension R ⊆ F, we can consider the F-extension of this model, i.e.

pF : CF → Fd

with image p(C)F = pF(CF). Then the fibres over p(C)F are exactly the GF-orbits.

Proof. For ρ ∈ C the fibre over p(ρ) := [ρ] is exactly its G-orbit, since p is a semi-algebraic
model. Hence

p−1([ρ]) = {ρ′ ∈ C | p(ρ) = p(ρ′)}
= {ρ′ ∈ C | ∃ g ∈ G : ρ = gρ′g−1}
= prC

(
{(ρ′, g) ∈ C ×G | ρ = gρ′g−1}

)
,

which is semi-algebraic as a projection of a semi-algebraic set by the Tarski-Seidenberg
principle (Theorem 2.1.13). Thus the pF-fibre over p(C)F is a GF-orbit; see also The-
orem 2.1.14.

C CF

p(C) p(C)F

p

F-extension

pF

F-extension
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Chapter 3. Character varieties and compactifications

The aim for the rest of this section is to show the existence of a semi-algebraic model
for χ(Γ, G). For this we follow Richardson-Slodowy [RS90]. We first state the general
theory developed by the authors and later apply it to character varieties. Let G be as
before. Choose a Cartan involution θ : G → G and let K = Gθ be the subgroup of
fixed points of θ. Then K is compact. Furthermore the Lie algebra g of G splits as a
direct sum in the +1 and −1 eigenspaces of θ, denoted k respectively p. Let V be a
finite dimensional complex vector space and G→ GL(V) a rational representation of G
defined over R. The real structure of V is a real vector space V and we are interested
in the orbit spaces of the induced G-action on V , i.e. G→ GL(V ).

Remark 3.2.4. For all v ∈ V there exists a unique closed G-orbit in the closure of G ·v,
see [RS90, Section 7.3.1]. This allows us to define the following, compare [RS90, Section
7.2].

Definition 3.2.5. Let V//G be the set of closed G-orbits on V . We define

π : V → V//G, v 7→ unique closed G-orbit in the closure of G · v.

We endow V//G with the quotient topology under the map π and call it the Richardson-
Slodowy quotient of V by G.

In the following we describe how V//G is homeomorphic to a closed semi-algebraic
set in some Rd, which implies that V//G is Hausdorff.

The action of G on V induces a homomorphism g→ gl(V ), the Lie algebra of GL(V ).
There is a K-invariant scalar product ⟨ , ⟩ on V such that p acts on V by self-adjoint
operators, compare [RS90, Section 2].

Definition 3.2.6. We say that v ∈ V is a minimal vector if ⟨v, v⟩ ≤ ⟨gv, gv⟩ for all
g ∈ G. The set of minimal vectors is denoted byM.

The main results about minimal vectors are the following.

Theorem 3.2.7 ([RS90, Theorem 4.3, 4.4]). Let v ∈ V . Then the following hold.

(1) v ∈M ⇐⇒ ⟨X · v, v⟩ = 0 for all X ∈ p. Furthermore, if v ∈M then G · v ∩M =
K · v.

(2) G · v ∩M ≠ ∅ if and only if G · v is closed.

Theorem 3.2.8 ([RS90, Theorem 7.6, 7.7]). The inclusion M ⊆ V induces a homeo-
morphism M/K → V//G. In particular, V//G is homeomorphic to a closed semi-
algebraic set in some Rd.

More generally, if X is a closed G-invariant subset of V , setMX =M∩X. Then
the continuous map MX/K → X//G determined by the inclusion map MX ↪→ X is a
homeomorphism. If, in addition, X is a real semi-algebraic subset of V , then X//G is
homeomorphic to a closed semi-algebraic set in some Rd.

By Theorem 3.2.7 (1) we see that M is an algebraic subset of V , compare [RS90,
Remark 4.5 (e)]. Thus the fact thatM/K is homeomorphic to a closed semi-algebraic
subset of some Rd follows from classical results in the study of quotients by compact
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3.3. The real spectrum compactification of character varieties

Lie groups and go back to Schwarz [Sch75]. We refer to [RS90, Section 7.1] or for more
details to [NGSdS03, Section 11].

We apply the general theory to character varieties in the following way: The map
which associates to a reductive homomorphism the K-equivalence class of the minimal
vector of its conjugacy class is a semi-algebraic model for the character variety, refer to
Theorem 3.2.11. Let us describe it in more detail. As in Section 3.1 let Γ be a finitely
generated group on k generators and G ⊆ Mat(m,R) = Rm×m a closed semi-algebraic
subset. We consider the vector space V =

⊕k
i=1Mat(m,R), on which G acts diagonally

by conjugation. We saw in Section 3.2 how Hom(Γ, G) can be naturally identified with a
closed semi-algebraic subset X := X(Γ, G) ⊆ V , which is invariant under G-conjugation.
Thanks to Theorem 3.1.5 and Theorem 3.2.7 (2) minimal homomorphisms are reductive,
i.e. MX ⊆ Xred := Xred(Γ, G). Let us take this moment to explain something we
announced at the beginning of this section.

Lemma 3.2.9. The set Xred is semi-algebraic.

Proof. Consider the semi-algebraic setM′ := {(x, g) ∈ X×G | g ·x ∈MX} ⊆ X×G. By
the Tarski-Seidenberg transfer principle, see Theorem 2.1.13, the image of the projection
map

pr:M′ → X, (x, g) 7→ x

is semi-algebraic. But pr(M′) is exactly Xred by Theorem 3.2.7 (2).

Remark 3.2.10. By Theorem 3.1.5, the reductive homomorphisms are exactly those
with closedG-orbit, hence their Richardson-Slodowy quotients agree, i.e.X//G = Xred//G.
Since minimal homomorphisms are reductive, we also haveMXred =MX .

Theorem 3.2.11. The composition of maps

p : Homred(Γ, G)
ev−→ Xred π−→ Xred//G ∼=MXred/K ⊆ Rd

is a semi-algebraic model for χ(Γ, G).

Proof. We apply Theorem 3.2.8 to Xred, and obtain that p is continuous, surjective onto
a semi-algebraic set in Rd such that the fibres over the image of p are exactly theG-orbits,
and such that p induces a homeomorphism of Homred(Γ, G)/G onto its image.

3.3. The real spectrum compactification of character
varieties

We finish the preliminaries by combining the results of Section 2.3 and Section 3.2. In
the last subsection we saw that χ(Γ, G) is homeomorphic to a closed semi-algebraic set
X(Γ, G) := MXred/K of some Rd. Using the results from Section 2.3 we can embed
χ(Γ, G) in the compact space

RSp(χ(Γ, G)) := X̃(Γ, G) ⊆ RSp(R[X1, . . . , Xd])

with dense image, and hence the latter provides a compactification of χ(Γ, G).
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We saw in Theorem 1.2.1 that a point in the compactification can be represented
by a reductive representation ρ : Γ → GF for F ⊇ R a real closed field. Even more is
true: In the equivalence class of (ρ,F) there is a “smallest” field of definition for ρ. Let
us make this precise.

Definition 3.3.1. Let F be a real closed field and ρ : F→ GF a homomorphism. Then
F is ρ-minimal if there is no proper real closed subfield K ⊆ F such that ρ is conjugate
into GK by an element of GF.

Proposition 3.3.2 ([BIPP23]). If ρ : Γ → GF is reductive, then there exists a unique
real closed subfield Fρ ⊆ F such that ρ is GF-conjugate to a representation ρ′ : Γ→ GFρ

and Fρ is ρ′-minimal.

We can now state a refined version of Theorem 1.2.1 from the introduction.

Theorem 3.3.3 ([BIPP21b, Theorem 2]). Let Γ and G be as above. Then

RSp(χ(Γ, G)) ∼=
{
(ρ,Fρ)

∣∣∣∣ ρ : Γ→ GFρ reductive homomorphism,
Fρ ⊇ R real closed, ρ-minimal

}/
∼ ,

for the same equivalence relation as in Theorem 1.2.1. Points in the boundary correspond
to representations into GFρ for Fρ a non-Archimedean field. Moreover Fρ is of finite
transcendence degree over R.

Let us now focus on the case when Γ = π1(S) is a surface group and G = PSL(n,R).
The Hitchin component Hit(S, n) ⊆ χ(S,PSL(n,R)) is again closed semi-algebraic as it
is a connected component of a closed semi-algebraic set. We denote by RSp(Hit(S, n))
its real spectrum compactification. By Theorem 2.3.4 and Proposition 2.3.13 it agrees
with the closure of Hit(S, n) in RSp(χ(S,PSL(n,R))). Recall from Definition 1.4.1 that
a representation ρ : π1(S)→ PSL(n,F) is F-Hitchin if its PSL(n,F)-equivalence class lies
in the F-extension of Hit(S, n).

Theorem 3.3.4 ([BIPP21b, Theorem 46]).

RSp(Hit(S, n)) ∼=
{
(ρ,Fρ)

∣∣∣∣ ρ : π1(S)→ PSL(n,Fρ) is Fρ-Hitchin,
Fρ ⊇ R real closed, ρ-minimal

}/
∼ .

Furthermore, Fρ = R(tr(Ad(ρ)))r, where Ad is the adjoint representation of PSL(n,Fρ).
In addition, (ρ,Fρ) represents a closed point if and only if Fρ is Archimedean over the
ring of traces R[tr(Ad(ρ))] of Ad ◦ ρ.

Loosely speaking, the goal of the following chapters is to replace the word “Fρ-
Hitchin” by the word “Fρ-positive weakly dynamics preserving” in this theorem. Let us
end the preliminaries by illustrating in an example how one can think of a sequence of
representations to converge in the real spectrum compactification.

Example 3.3.5. Let ∆ := ∆(3, 3, 4) := ⟨a, b | a3 = b3 = (ab)4 = 1⟩ be the (3, 3, 4)-
triangle rotation group. It contains a surface subgroup π1(S) of genus two of finite
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3.3. The real spectrum compactification of character varieties

index. Long-Reid-Thistlethwaite [LRT11] prove that for all t ∈ R the restriction of

ρt : ∆→ PSL(3,R),

a 7→

0 0 1
1 0 0
0 1 0

 , b 7→

1 2− t+ t2 3 + t2

0 −2 + 2t− t2 −1 + t− t2
0 3− 3t+ t2 (t− 1)2


to π1(S) are Hitchin representations. Denote by ρ := limt→∞ ρt the limit of this se-
quence of representations as t → ∞ in RSp(χ(∆,PSL(3,R))). By similar argument as
in Example 2.2.5 and Example 2.3.3, ρ can be represented by the homomorphism

ρ : ∆→ PSL(3,R(X)
r
),

a 7→

0 0 1
1 0 0
0 1 0

 , b 7→

1 2−X +X2 3 +X2

0 −2 + 2X −X2 −1 +X −X2

0 3− 3X +X2 (X − 1)2

 ,

where R(X)
r
denotes the real closure of R(X) together with the order +∞, compare

Example 2.2.5. The restriction of ρ to π1(S) then describes a point in RSp(Hit(S, 3)) and
is R(X)

r
-Hitchin. Note that t→ −∞ gives a different limit point in the compactification.

29



30



Part II.

Coordinates for the Hitchin
component
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4. Configuration spaces of tuples of flags

In this part we describe an explicit semi-algebraic model for the Hitchin component. It
is based on the seminal work of Fock-Goncharov [FG06]. For an introduction to their
work in low-dimensional cases we recommend [CTT20], [FG07], and more generally
[Pal13]. Originally defined for non-closed surfaces, Bonahon-Dreyer [BD14] adapt their
coordinates to closed surfaces. To define them we make use of the positive limit map into
the flag variety associated to Hitchin representations, see Theorem 1.3.3. Thus before
we introduce them, we need to study the configuration space of tuples of flags and the
notion of positivity.

For now let F be any field.

Definition 4.0.1. A (full) flag E in Fn is an increasing sequence of subspaces in the
finite-dimensional F-vector space Fn, i.e.

E =
(
{0} = E(0) ⊂ E(1) ⊂ . . . ⊂ E(n−1) ⊂ E(n) = Fn

)
,

such that dim
(
E(a)

)
= a for all a = 0, . . . , n.

Given a flag E we use the notation E(a) to denote the a-dimensional subspace of
Fn defined by E. In this thesis we are only concerned with full flags, and we omit the
word full in the following when referring to full flags in Fn. The natural action of the
general linear group GL(Fn) on Fn induces an action on the space of flags Flag(Fn). The
action descends to an action of the projective linear group PGL(Fn) on Flag(Fn), which
is transitive.

Definition 4.0.2. A k-tuple (E1, . . . , Ek) of flags in Fn is called transverse if for every
a1, . . . , ak ∈ {0, . . . , n} with

∑k
i=1 ai = n

E
(a1)
1 + . . .+ E

(ak)
k = Fn.

The space of k-tuples of transverse flags is denoted by Flag(Fn)(k).

Definition 4.0.3. For k ≥ 1 consider the diagonal action of PGL(Fn) on Flag(Fn)(k).
The space

Conf (k)(F) := Flag(Fn)(k)/PGL(Fn)

is the configuration space of k-tuples of transverse flags in Fn.

We observe that PGL(Fn) acts transitively on flags. For a pair of transverse flags
(E,F ) the subspaces E(a) ∩ F (n−a+1) for a = 1, . . . , n are one-dimensional and in direct
sum. By considering a basis adapted to this line decomposition of Fn one sees that
PGL(Fn) acts transitively on pairs of transverse flags. Hence Conf (1)(F) = Conf (2)(F) =
{·}. As soon as k > 2 we have |Conf (k)(F)| > 1. We will now parametrize Conf( (3)(F)
and Conf (4)(F).
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Chapter 4. Configuration spaces of tuples of flags

4.1. Triple ratios and configuration spaces of triples of flags

The goal of this section is to find coordinates to describe the configuration space Conf (3)(F).
We begin with the following observation about the stabilizer in PGL(Fn) of a triple of
transverse flags.

Proposition 4.1.1. Let (E,F,G) ∈ Flag(Fn)(3) be a transverse triple of flags. Then
StabPGL(Fn)(E,F,G) = {IdPGL(Fn)}.

Proof. By the transversality of the triple, we can choose a basis e′1, . . . , e
′
n of Fn such

that for all a = 0, . . . , n

E(a) = ⟨e′1, . . . , e′a⟩, and F (a) = ⟨e′n, . . . , e′n−a+1⟩.

Let 0 ̸= g ∈ G(1) be a generator, and write g =
∑n

i=1 gie
′
i for some gi ∈ F. Again by

transversality, gi ̸= 0 for all i = 1, . . . , n, and we set ei := 1
gi
e′i. Then e1, . . . , en is a

basis of Fn such that g = e1 + . . . + en. Let now φ ∈ GL(Fn) be in the stabilizer of
(E,F,G). The matrix M representing φ in the basis e1, . . . , en is diagonal. Since M
maps the vector e1+ . . .+en to a non-trivial multiple of itself, it follows that there exists
0 ̸= α ∈ F such that M = diag(α, . . . , α), and thus M lies in the center of GL(n,F).

To parametrize the configuration space of triples of transverse flags, we introduce
so-called triple ratios, which are rational maps from Flag(Fn)(3) to F. The triple ratios
are expressed in terms of the exterior algebra

∧n Fn of Fn. If E is a full flag, then
for every a between 0 and n the space

∧aE(a) is isomorphic to F. Choose a non-zero
element e(a) ∈

∧aE(a). We use the same notation to denote its image in
∧a Fn. The

following definition is independent of the choices of e(a) ∈
∧aE(a).

Definition 4.1.2. Let (E,F,G) be a transverse triple of flags in Fn. For a, b, c ∈
{1, . . . , n− 2} with a+ b+ c = n, we define the (abc)-triple ratio Tabc of (E,F,G) by

Tabc(E,F,G) =
e(a+1) ∧ f (b) ∧ g(c−1)

e(a−1) ∧ f (b) ∧ g(c+1)

· e
(a) ∧ f (b−1) ∧ g(c+1)

e(a) ∧ f (b+1) ∧ g(c−1)
· e

(a−1) ∧ f (b+1) ∧ g(c)

e(a+1) ∧ f (b−1) ∧ g(c)
∈ F.

Since the ratios involve elements of ΛnFn, Tabc(E,F,G) is an element in F. Note
that all of the involved expressions are non-zero by the transversality of the triple. The
triple ratios are invariant under the action of PGL(Fn). In fact the following theorem
relates the triple ratios and the action of PGL(Fn) on Flag(Fn)(3).

Theorem 4.1.3 ([FG06, Section 9], [Bon23, Theorem 4.1]). Let F be a field, and
(E,F,G), (E′, F ′, G′) ∈ Flag(Fn)(3) two triples of transverse flags. Then there exists
φ ∈ PGL(Fn) with φ(E,F,G) = (E′, F ′, G′) (which is unique by Proposition 4.1.1) if
and only if

Tabc(E,F,G) = Tabc(E
′, F ′, G′)

for all a+ b+ c = n, a, b, c ∈ N>0.
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Furthermore, for all (a, b, c) ∈ N3
>0 such that a + b + c = n, pick xabc ∈ F \ {0}.

Then there exists a triple of transverse flags (E,F,G) such that Tabc(E,F,G) = xabc for
all such (a, b, c) ∈ N3

>0. Thus there is a one-to-one correspondence between

Conf (3)(F)←→ (F \ {0})
(n−1)(n−2)

2 .

We will give a proof of the first statement in the above theorem in Appendix A,
which follows [Bon23].

Let us draw our attention to the low-dimensional cases. For n = 2 a flag in F2 is
nothing but a line in F2, hence a point in FP1, the one-dimensional projective space over
F. Two lines in F2 are transverse if they are distinct, hence define different points in
FP1. Basic linear algebra shows that we can send any triple of distinct lines in F2 to any
other, hence Flag(F2)(3)/PGL(F2) is just one point, which is consistent with the fact
that for n = 2 there are no triple ratios.

For n = 3 there is exactly one triple ratio T111(E,F,G) for (E,F,G) ∈ Flag(F3)(3).
If F is an ordered field, the triple ratio is positive if and only if, in an affine chart of the
2-dimensional projective space FP2, the points E(1), F (1) and G(1) are on the boundary
of a convex domain bounded by the lines E(2), F (2) and G(2), as in Figure 4.1; see [FG06,
Lemma 9.1]. Positivity of tuples of flags will be discussed in more detail in Section 5.1.

Figure 4.1.: A configuration of a positive (left) and a negative (right) triple in F3 visu-
alized in an affine chart of FP2.

In fact, the case n = 3 is more general than it seems, since all triple ratios of a
transverse triple of flags in Fn for any n > 3 arise in this way. A more precise statement
can be found in Appendix A.1.

4.2. Double ratios and configuration spaces of quadruples
of flags

Let us now turn our attention to the case k = 4. We consider another PGL(n,F)-
invariant rational function, so-called double ratios, which are, similarly to the triple
ratios, expressed in terms of the exterior algebra

∧n Fn of Fn, and we keep the notations
that were introduced in Section 4.1.
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Chapter 4. Configuration spaces of tuples of flags

Definition 4.2.1. Let (E,F,G,H) be a transverse quadruple of flags in Fn. For a =
1, . . . , n− 1 we define the a-th double ratio Da of (E,F,G,H) by

Da(E,F,G,H) = − e
(a) ∧ f (n−a−1) ∧ g(1)

e(a) ∧ f (n−a−1) ∧ h(1)
· e

(a−1) ∧ f (n−a) ∧ h(1)

e(a−1) ∧ f (n−a) ∧ g(1)
.

For later use we also define the a-th quadruple ratio Qa of (E,F,G) by

Qa(E,F,G) =
e(a−1) ∧ f (n−a) ∧ g(1)

e(a) ∧ f (n−a−1) ∧ g(1)
· e

(a) ∧ f (1) ∧ g(n−a−1)

e(a−1) ∧ f (1) ∧ g(n−a)

· e
(a+1) ∧ f (n−a−1)

e(a+1) ∧ g(n−a−1)
· e

(a) ∧ f (n−a)

e(a) ∧ g(n−a)

for all a = 1, . . . , n− 1.

We remark that the definition of the double ratios only involves the one-dimensional
subspaces of the flags G and H. We summarize Lemmas 5, 6 and 7 from [BD14], which
relate the different ratios defined above and explain how they behave under permutations
of the involved flags in the following lemma. The proof is a direct computation.

Lemma 4.2.2 ([BD14, Lemmas 5, 6, 7]). Let (E,F,G) be a transverse triple of flags in
Fn.

(1) Tabc(E,F,G) = Tbca(F,G,E) = Tbac(F,E,G)
−1 for all a+ b+ c = n, a, b, c ∈ N>0,

(2) Qa(E,F,G) =
∏

b,c≥1,b+c=n−a Tabc(E,F,G) for all a = 1, . . . , n− 1.

Let H be a fourth flag in Fn such that (E,F,G,H) is a transverse quadruple.

(3) Da(E,F,H,G) = Da(E,F,G,H)−1 for all a = 1, . . . , n− 1,

(4) Da(F,E,G,H) = Dn−a(E,F,G,H)−1 for all a = 1, . . . , n− 1.

Even though we will not use the following theorem it illustrates why we consider
double ratios, and how triple and double ratios can be used to parametrize the config-
uration space of quadruples of flags.

Theorem 4.2.3 ([FG06, Proposition 5.5]). Let F be a field, and (E,F,G,H),
(E′, F ′, G′, H ′) ∈ Flag(Fn)(4) two quadruples of transverse flags. Then there exists φ ∈
PGL(Fn) with φ(E,F,G,H) = (E′, F ′, G′, H ′) (which is unique by Proposition 4.1.1) if
and only if

Tabc(E,F,G) = Tabc(E
′, F ′, G′),

Tabc(E,G,H) = Tabc(E
′, G′, H ′),

Da(E,G, F,H) = Da(E
′, G′, F ′, H ′)

for all a+ b+ c = n, a, b, c ∈ N>0 and a = 1, . . . , n− 1.
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4.3. Triangulations of polygons and parametrizing the base change

4.3. Triangulations of polygons and parametrizing the
base change

We explain how to associate triple and double ratios to a transverse k-tuple of flags.
The following definition is used to single out preferred subtriples and -quadruples. Let
y1, . . . , yk be distinct points on the unit circle S1 that are cyclically ordered in clockwise
direction, and P the inscribed polygon that we obtain by connecting consecutive points
by a straight line.

Definition 4.3.1. An ideal triangulation of P is a collection of oriented diagonals E =
{e1, . . . , ek−3}, i.e. straight lines in P that do not intersect and that connect two non-
consecutive vertices, such that P \E is a union of k−2 triangles, together with a choice of
preferred vertex xti ∈ {y1, . . . , yk} for each triangle t1, . . . , tk−2. Let V = {xt1 , . . . , xtk−2

}.

A choice of ideal triangulation (E ,V) gives the following information, compare Figure 4.2.

– Each connected component t of P \ E , together with a choice of preferred vertex
xt ∈ V, singles out a triple of vertices (xt, x

′
t, x

′′
t ) that appear in this clockwise

order around the circle.

– Each oriented diagonal e ∈ E is contained in the closure of exactly two connected
components of P \ E with vertices xe+ , xer , xe− and xe+ , xe− , xel respectively, and
therefore e singles out four vertices xe+ , xer , xe− , xel which appear in this clockwise
order around the circle.

Figure 4.2.: Part of an ideal triangulation (E ,V) of a polygon.

For every choice of ideal triangulation (E ,V) we can define a map

ϕ(E,V) : Flag(Fn)(k) → F
(n−1)(n−2)

2
(k−2) × F(k−3)(n−1) (4.1)

by assigning to a k-tuple (F1, . . . , Fk) of transverse flags the following data:

– for each triangle t of P \ E , together with a choice of preferred vertex xt ∈ V, we
compute the (n−1)(n−2)

2 triple ratios Tabc(Fxt , Fx′
t
, Fx′′

t
), and

– for each oriented diagonal e ∈ E , we compute the n − 1 double ratios
Da(Fxe+

, Fxe−
, Fxer

, Fx
el
),
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Chapter 4. Configuration spaces of tuples of flags

where we set Fyi := Fi for all i = 1, . . . , k. Note that the triple ratios depend on the
choice of preferred vertex. Any two such choices permute the flags and are thus related
by the equalities given in Lemma 4.2.2 (1).

We now explain how an ideal triangulation of P can be used to describe an element
in GL(n,F) that maps one subtriple of a k-tuple of transverse flags to another. It is
given as a product of elementary matrices with entries given by the triple and double
ratios of subtriples and -quadruples of P singled out by the ideal triangulation. For an
interpretation of the matrices defined in the following we refer to Appendix B.1 and
Appendix B.2. Roughly speaking, they describe base change matrices between different
bases that can be associated to a triple of transverse flags.

Definition 4.3.2. For k = 1, . . . , n− 1 let

Ek := Idn + Ek,k+1 =


Idk−1

1 1
0 1

Idn−k−1

 ∈ GL(n,F)

be the elementary upper triangular matrix with ones on the diagonal, a 1 at position
(k, k + 1) and zeroes everywhere else. We also set Fk := E⊤

k , the transpose of Ek. For
x ∈ F \ {0} and k = 1, . . . , n let

Hk(x) := diag(1, . . . , 1︸ ︷︷ ︸
k

, x, . . . , x︸ ︷︷ ︸
n−k

) =

(
Idk

x Idn−k

)
∈ GL(n,F)

be the diagonal matrix with the first k entries equal to 1, and the last n−k entries equal
to x. Furthermore, we set

S :=


(−1)n−1

. .
.

−1
1

−1
1

.
Definition 4.3.3. Let (E,F,G) be a transverse triple of flags in Fn. Define

M(E,F,G) :=
n−1∏
k=1

((
k−1∏
i=1

Fn−k+i−1Hn−k+i(xk−i,i,n−k)

)
Fn−1

)
,

where xabc := Tabc(E,F,G) denotes the (abc)-triple ratio for all integers a, b, c ≥ 1 with
a + b + c = n. Let (E,F,G,H) be a transverse quadruple of flags in Fn and denote by
dk := Dk(E,G, F,H) the k-th double ratio of (E,G, F,H) for all k = 1, . . . , n−1. Define

D(E,F,G,H) :=


1
dn−1

dn−2dn−1

. . .
d1·...·dn−1

.
In the following we describe a particular ideal triangulation of a polygon P with k

vertices x1, . . . , xk in clockwise order around the polygon. Fix 4 ≤ j ≤ k − 2. Consider
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4.3. Triangulations of polygons and parametrizing the base change

the following ideal triangulation E = Ej of P as indicated in Figure 4.3: the diagonals
of E are formed by the (directed) edges e1, . . . , ek−3, labelled from left to right, from
the vertex x3 to the vertices x1, xk, xk−1, . . . xj+2, as well as from the vertices x4, . . . , xj
to the vertex xj+2. We label the triangles obtained in this way from left to right by
t0, . . . , tk−3. For i = 1, . . . , k − 4 the preferred vertex of ti is where two diagonals of
E meet, i.e. either x3 or xj+2. We define the preferred vertex of t0 to be x3 and the
preferred vertex of tk−3 to be xj+2. For all i = 1, . . . , k− 3 the triangle ti lies to the left
of the (directed) edge ei.

Figure 4.3.: The triangulation Ej of the polygon P .

Let (F1, . . . , Fk) ∈ Flag(Fn)(k) be a transverse k-tuple of flags associated to P , i.e.
to the vertex xj we associate the flag Fj for all j = 1, . . . , k. We now compute the
matrices defined in Definition 4.3.3 for the subtriples and -quadruples singled out by
this triangulation. Every triangle ti together with its preferred vertex determines a
unique triple (Eti , Fti , Gti) of transverse flags singled out by the triple of vertices of
ti, starting at the preferred vertex, that appear in this clockwise order around P . For
example for t0 we obtain Et0 = F3, Ft0 = F1 and Gt0 = F2. We set for all i = 0, . . . , k−3

Mi :=M(ti) :=M(Eti ,Fti ,Gti )
.

Similarly every oriented diagonal ei ∈ E is contained in exactly two adjacent triangles
of P \ E , and hence the four vertices of the two adjacent triangles, starting from the
forward endpoint of ei in clockwise order around P , single out four transverse flags
(Eti , Fti , Gti , Hti). We set for all i = 1, . . . , k − 3

Di := D(ei) := S−1D(Eti ,Fti ,Gti ,Hti )
S.

With these notations we can now explain how the ideal triangulation of P can be used to
describe an element of GL(n,F) that maps one subtriple to another. The following the-
orem will later be applied in the proof of Proposition D for F-positive representations (see
Proposition 7.3.2) to an F-positive representation ρ with limit map ξρ. More precisely, for
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Chapter 4. Configuration spaces of tuples of flags

γ ∈ π1(S) we consider a transverse triple of flags (ξρ(x), ξρ(y), ξρ(z)) and its γ-translate
(ξρ(γx), ξρ(γy), ξρ(γz)), which lie in the same PGL(Fn)-orbit by ρ-equivariance of ξρ.
We can then express ρ(γ) in terms of the triple and double ratios.

Theorem 4.3.4 ([FG06, Proposition 9.2]). Let (F1, . . . , Fk) ∈ Flag(Fn)(k) be a trans-
verse k-tuple of flags associated to a polygon P with k vertices x1, . . . , xk in clockwise or-
der around the polygon. Assume either that there exists 4 ≤ j ≤ k−2 so that (F1, F2, F3)
and

(1) (Fj+2, Fj , Fj+1), or

(2) (Fj+1, Fj+2, Fj)

have the same triple ratios, and let φ ∈ PGL(Fn) be the element that maps (F1, F2, F3)
to the corresponding triple. Then, in the respective cases, there exists a basis of Fn in
which φ is represented by

(1) Mφ :=
(∏k−j−1

i=1 DiMi

)(∏k−3
i=k−j+1DiSM

−1
i S−1

)
, or

(2) Mφ :=M0

(∏k−j−1
i=1 DiMi

)(∏k−4
i=k−j+1DiSM

−1
i S−1

)
Dk−3,

where the Di and Mi are defined as above associated to the ideal triangulation Ej as
described before.

A self-contained proof of this theorem is presented in Appendix B.3.
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5. Positivity

5.1. Positivity of tuples of flags

The definitions from the last section allow us to define positive triples and quadruples
of flags in Fn for F any ordered field. It is defined analogously as in [BD14] for R.

Definition 5.1.1. A triple (E,F,G) of flags in Fn is called positive if the triple is
transverse and all triple ratios are positive. A quadruple (E,F,G,H) of flags in Fn

is called positive if the quadruple is transverse, the triples (E,F,G) and (E,G,H) are
positive, and all double ratios of (E,G, F,H) are positive.

Example 5.1.2. For n = 3, Figure 4.1 shows a positive triple of transverse flags and a
negative triple (that means with a negative triple ratio) of transverse flags. A quadruple
of flags in F3 is positive if and only if the convex quadruple in FP2 formed by the
one dimensional subspaces, is inscribed in the convex quadruple formed by the two-
dimensional subspaces [FG07, Lemma 2.4], compare Figure 5.1.

Let B = (e1, e2, e3) be a basis of F3, and let E = (⟨e1⟩ ⊆ ⟨e1, e2⟩ ⊆ F3) the ascending,
F = (⟨e3⟩ ⊆ ⟨e2, e3⟩ ⊆ F3) the descending flags associated to B and

G =
(
⟨e1 + e2 + e3⟩ ⊆ ⟨e1 + e2 + e3, e2 + (t+ 1)e3⟩ ⊆ F3

)
for t ∈ F.

Then (E,F,G) is positive if and only if t > 0. Note that up to PGL(F3)-action, every
triple of transverse flags is of the above form.

We can also define a notion of positivity for k-tuples of flags with k ≥ 4 by fixing
the additional data of an ideal triangulation (Definition 4.3.1).

Definition 5.1.3. Let E be an ideal triangulation of a polygon with k vertices. A k-
tuple of flags (F1, . . . , Fk) ∈ Flag(Fn)(k) is positive if ϕ(E,V)(F1, . . . , Fk) has only positive

coordinates. We denote the space of positive k-tuples of flags by Flag(Fn)(k,+).

Example 5.1.4. For n = 3, a k-tuple of positive flags can be visualized in FP2 as a
k-gon defined by the one-dimensional subspaces inscribed into a k-gon defined by the
two-dimensional subspaces, see Figure 5.1.

At first sight, it seems that this definition depends on the choice of triangulation
(E ,V). Fock-Goncharov proved in [FG06, Theorem 5.8, Theorem 9.1] that if a k-tuple is
positive with respect to one triangulation it is positive with respect to any other. From
this is also follows that if (E,F,G,H) is a positive quadruple, then all possible subtriples
are positive. Their proof gives an explicit rational expression, which preserves positivity,
for the change of coordinates under a flip of a diagonal, that is, for a pair of adjacent
triangles we remove the edge that forms the diagonal and add an edge that forms the
other diagonal of that quadrilateral. Since we can get from any ideal triangulation of a
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Chapter 5. Positivity

Figure 5.1.: A configuration of a positive quadruple (left) and a positive 8-tuple (right)
in F3 visualized in an affine chart of FP2.

polygon to any other by a sequence of flips of diagonals [Hat91], we obtain the desired
result. We also recommend [Mar19b, Section 2.2] for a detailed account of how the
flip of a diagonal changes the coordinates ϕ(E,V). Since the triple and double ratios are
PGL(Fn)-invariant, a k-tuple is positive if and only if a k-tuple in the same PGL(Fn)-
orbit is. We refer the reader to [FG06] for the more general definition of positivity for
k-tuples of flags which clarifies the minus sign in the definition of the double ratios.

Remark 5.1.5. In light of the above definition of positive k-tuples of flags an F-positive
map Fix(S) → Flag(Fn) (Definition 1.3.2) can equivalently be defined as a map that
sends k-tuples of distinct points in Fix(S), occurring in this clockwise order, to positive
k-tuples of flags for any k ≥ 3.

5.2. Total positivity

In this section we shed light on the connection between positivity of flags and total
positivity of matrices. For a more conceptual approach to the latter definition we refer
the reader to [Lus94].

Definition 5.2.1. Let F be an ordered field. An element in GL(n,F) is totally non-
negative, respectively totally positive, if all its minors are non-negative, respectively
positive. An upper respectively lower triangular matrix in GL(n,F) is totally positive if
all its minors are positive, except the minors that are necessary zero because the matrix
is triangular.

Example 5.2.2. Consider the matrices

M1 =

1 2 3
1 3 5
1 4 8

 , M2 =

1 2 0
1 3 5
0 4 8

 , M3 =

1 2 3
0 2 4
0 0 3

 .

ThenM1 is totally positive,M2 is totally non-negative andM3 is upper triangular totally
positive.

The following theorem is due to Fock-Goncharov, see [FG06, Section 9]. We also refer
to [Pal13, Section 4.4] and [Mar19b, Section 5.1] for a detailed treatment of this theorem
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in the case F = R. The version in which it is stated here is adapted for our setting from
[Mar19b, Proposition 5.4]. A self-contained proof which relies on Theorem 4.3.4 can be
found in Appendix B.4.

Theorem 5.2.3 ([FG06, Theorem 9.3]). Under the hypotheses and conclusions of The-
orem 4.3.4, if we additionally assume that (F1, . . . , Fk) ∈ Flag(Fn)(k,+) is a positive
k-tuple of flags, then Mφ is a totally positive matrix.

5.3. Positive hyperbolicity

Over real closed fields, totally positive matrices are positively hyperbolic.

Definition 5.3.1. Let F be a real closed field. A matrix M ∈ GL(n,F) is positively
hyperbolic if all its eigenvalues λ1, . . . , λn ∈ F are distinct and positive. In this case we
sort them in descending order, i.e. we assume λ1 > . . . > λn > 0. If M is positively
hyperbolic, thenM is diagonalizable over F. In this case, let V1, . . . , Vn be the eigenspaces
corresponding to the eigenvalues λ1 > . . . > λn > 0. We define its stable flag F+

M and
its unstable flag F−

M by

F+
M = (V1 ⊆ V1 ⊕ V2 ⊆ . . . ⊆ V1 ⊕ . . .⊕ Vn−1) ,

F−
M = (Vn ⊆ Vn ⊕ Vn−1 ⊆ . . . ⊆ Vn ⊕ . . .⊕ V2) .

For positively hyperbolic elements of PSL(n,F) (Definition 1.4.4) we define analogously
their stable and unstable flags.

Example 5.3.2. Let M = diag(2, 1, 1/2) be a diagonal matrix in a basis (e1, e2, e3) for
F3. Then F+

M = (⟨e1⟩ ⊆ ⟨e1, e2⟩ ⊆ F3).

Theorem 5.3.3. Let F be a real closed field, and M ∈ GL(n,F) totally positive. Then
M is positively hyperbolic.

Proof. We first assume that the theorem holds for the field Qr
of real algebraic numbers,

the real closure of Q. Then we can prove the theorem using the Tarski-Seidenberg
transfer principle as in the proof of Proposition 7.2.1. Indeed, every real closed field
F contains Qr

. Since the set of totally positive matrices Pos(n,Qr
) in GL(n,Qr

) is a
semi-algebraic subset of (Qr

)n×n, we can consider the projection onto the first n × n
coordinates of the semi-algebraic set

{M, v1, . . . , vn, λ1, . . . , λn |M ∈ Pos(n,Qr
),

vi ∈ Fn \ {0}, λi ∈ F, Mvi = λivi, λ1 > . . . > λn} → Pos(n,Qr
),

which is surjective by assumption. By the Tarski-Seidenberg transfer principle, see
Theorem 2.1.13, we obtain that for any real closed field F, the extension of the above
map to a map between the F-extensions is still surjective. Since Pos(n,Qr

)F = Pos(n,F),
we conclude.

Let now M ∈ GL(n,Qr
) be a totally positive matrix. Since Qr ⊂ R, we can apply

the theorem of Gantmacher-Krein, which tells us that M ∈ GL(n,R) is diagonalizable
over R with distinct positive eigenvalues λ1 > . . . > λn > 0 ∈ R, see [GK02, Theorem
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6.1]. Left to show is that the eigenvalues are algebraic over Q. Since they are the roots
of the characteristic polynomial, which has only real algebraic coefficients they are by
definition algebraic over an algebraic extension of Q, hence algebraic.

Remark 5.3.4. The last theorem implies that a totally positive matrix in GL(n,F)
is positively hyperbolic. Conversely, He-Lusztig proved in [HL22, Theorem 2.6] that a
positively hyperbolic matrix can be conjugated to lie in Pos(n,F).

As a consequence we can associate to every totally positive matrix its stable flag.
We now show that this defines a semi-algebraic map.

Lemma 5.3.5. The spaces Flag(Fn), Flag(Fn)k and Flag(Fn)(k) are semi-algebraic.

Proof. The product of Grassmannians Gr(1, n)F× . . .×Gr(n−1, n)F is an algebraic set,
see for example [BCR98, Proposition 3.4.4]. In the proof they define a bijection

Ψk : Gr(k, n)F → {M ∈ Mat(n,F) |M⊤ =M, M2 =M, tr(M) = k} =: Hk

V 7→ PV ,

where PV is the matrix of the orthogonal projection on V with respect to some scalar
product on Fn. If V,W ⊆ Fn are two subspaces, then V ⊆W if and only if PWPV = PV .
Thus the image of Flag(Fn) under the map Ψ1 × · · · ×Ψn−1 is the algebraic set

{(M1, . . . ,Mn−1) ∈ H1 × · · · ×Hn−1 |Mi+1Mi =Mi for all i = 1, . . . , n− 2}.

Thus Flag(Fn) and Flag(Fn)k are algebraic. Since being transverse is a semi-algebraic
condition, it follows that Flag(Fn)(k) is semi-algebraic.

Lemma 5.3.6. Let F be a real closed field. The map

f : Pos(n,F)→ Flag(Fn), M 7→ F+
M

is semi-algebraic. The same is true if we replace the stable flag by the unstable flag.

Proof. We need to prove that Graph(f) is semi-algebraic (Definition 2.1.8). We have

Graph(f) = {(M,F ) ∈ Pos(n,F)× Flag(Fn) | F = F+
M}

= {(M,F ) ∈ Pos(n,F)× Flag(Fn) | ∃λ1 > . . . > λn ∈ F>0, v1, . . . , vn ∈ Fn :

det(v1| . . . |vn) ̸= 0, Mvi = λivi, v1, . . . , vi ∈ F (i) for all i = 1, . . . , n}.

As in the proof of Theorem 5.3.3, we can conclude that Graph(f) is semi-algebraic as
the projection of a semi-algebraic set to its first coordinates (Theorem 2.1.13). Note
that the condition v1, . . . , vi ∈ F (i) can be expressed as PF (i)(vj) = vj for all j = 1, . . . , i;
see the proof of Lemma 5.3.5.

44



6. A variant of the Bonahon-Dreyer
coordinates

6.1. The coordinates

In [BD14] and [BD17], Bonahon-Dreyer introduce coordinates to parametrize the Hitchin
component, which in the case n = 2 agree with the shear coordinates associated to a
maximal geodesic lamination (Definition 6.1.1) to parametrize Teichmüller space, see
[Thu22, Section 9] and [Bon96, Theorem A]. In the following, we give a slight variant
of Bonahon-Dreyer’s parametrization presented in [BD14], that gives a semi-algebraic
model of the Hitchin component in the sense of Definition 3.2.1. It allows thus to be
generalized to real closed fields different from R. The coordinates built on the existence
of positive limit maps for Hitchin representations, see Theorem 1.3.3 due to Labourie and
Fock-Goncharov. We would like to emphasize that what is presented here differs only
from the original Bonahon-Dreyer coordinates by not taking logarithms and requiring
an additional positivity condition. For the convenience of the reader, we recall the
definition of the coordinates here. For a more detailed description and more information
we recommend [BD14].

In order to define the coordinates we need to fix some topological data on the
connected, closed, oriented topological surface S of genus g ≥ 2. Choose an auxiliary
hyperbolic metric on S. Denote by ∂S̃ the boundary of the universal cover S̃ of S.

Definition 6.1.1. A lamination λ of S is a closed subset of S that is partitioned into
smooth curves, called the leaves of the lamination. A geodesic lamination λ on S is a
lamination of S whose leaves are geodesics. We say λ is finite if λ has finitely many
leaves. It is called maximal if it is maximal with respect to inclusion. In this case a
connected component of its complement S \ λ is called an ideal triangle.

Figure 6.1.: A maximal geodesic lamination of S (left) and of a pair of pants (right).
The white and shaded regions are ideal triangles.

Example 6.1.2. To obtain a finite maximal geodesic lamination on S we can first
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decompose S into pairs of pants. Then for each pair of pants choose three infinite
geodesics that spiral around the three boundary components, see Figure 6.1.

Fix a maximal geodesic lamination λ of S with finitely many leaves, and denote
by λ̃ ⊂ S̃ its lift to S̃. Although geodesic laminations can be defined in a metric-
independent way and, in particular, are purely topological objects, see for example
[Thu02, Proposition 8.9.4] or [Bon01, Lemma 18], it is convenient here to fix a hyperbolic
metric on S. Furthermore, we (arbitrarily) choose an orientation on each leaf of λ. Note
that the leaves of λ come in two flavours: there are closed leaves and infinite, or so called
open leaves. Finally, for every closed geodesic leaf γ in λ we choose an arc k that is
transverse to λ, cuts γ in exactly one point x, and has endpoints in S \ λ. We write
∂λ̃ ⊆ ∂S̃ for the endpoints of the leaves of λ̃. Since λ is a closed subset of S, we observe
that ∂λ̃ ⊆ Fix(S).

We now describe the Bonahon-Dreyer coordinates that parametrize the Hitchin com-
ponent. Let ρ : π1(S) → PSL(n,R) be a Hitchin representation in the equivalence class
of [ρ] ∈ Hit(S, n), and ξρ : Fix(S) → Flag(Rn) the limit map associated to ρ by The-
orem 1.3.3. Before we define the invariants let us quickly explain where they come from.
Since ρ is determined by ξρ we would like a way to encode the limit map. However it
turns out that it suffices to have the data of the flag decoration, i.e. the restriction of
ξρ to ∂λ̃ ⊆ Fix(S). By ρ-equivariance of ξρ this is the same as the data of a k-tuple
of positive flags for some k, since λ has only finitely many leaves. We have seen in
Chapter 4 that triple and double ratios are crucial in encoding the data of k-tuples of
positive flags. Thus we associate to [ρ] the following invariants.

(1) Triangle invariants: For every ideal triangle t of S \ λ and every vertex v of t, we
associate for a, b, c ∈ N≥1 with a+ b+ c = n the triangle invariant

T ρ
abc(t, v) := Tabc(ξρ(ṽ), ξρ(ṽ

′), ξρ(ṽ
′′)),

where ṽ, ṽ′, ṽ′′ are the vertices of a lift t̃ of t to S̃, ṽ is the vertex corresponding to
the vertex v of t, and Tabc is the (abc)-triple ratio (Definition 4.1.2) of the triple of
flags. The vertices ṽ, ṽ′, ṽ′′ ∈ Fix(S) are labelled in clockwise order around t̃.

(2) Shear invariants for infinite leaves: For every infinite leaf h ∈ λ, let h̃ be a lift of
h to S̃, h± ∈ Fix(S) its positive respectively negative endpoint, and z, z′ ∈ Fix(S)
the third vertices of t̃ and t̃′, respectively, where t̃ and t̃′ are the ideal triangles
that lie on the left respectively right side of h̃ (where the orientation of h̃ comes
from the orientation of h which was part of the topological data), see Figure 6.2.
We associate to h for a = 1, . . . , n− 1 the shear invariant

Dρ
a(h) := Da(ξρ(h

+), ξρ(h
−), ξρ(z), ξρ(z

′)),

where Da denotes the a-th double ratio (Definition 4.2.1) of the quadruple of flags.

46



6.1. The coordinates

Figure 6.2.: The construction of the shear invariants for infinite leaves.

(3) Shear invariants for closed leaves: For every closed leaf γ ∈ λ, let γ̃ be a lift of γ to
S̃, γ± ∈ Fix(S) its positive respectively negative endpoint, and z, z′ ∈ Fix(S) are
vertices of the triangles t̃ and t̃′ defined by the arc k intersecting γ in the following
way: Lift k to an arc k̃ that intersects γ̃ in exactly one point. The two endpoints of
k̃ lie in two ideal triangles t̃ and t̃′, that each share one vertex with the endpoints
of γ̃ (this is by definition of the arc k), and such that t̃ lies to the left of γ̃ and t̃′ to
the right of γ̃. Now z, z′ are the vertices of t̃ respectively t̃′ that are not adjacent
to a component of S̃ \ (t̃ ∪ t̃′) that contains γ̃, see Figure 6.3 for one of the four
possible configurations. We associate to γ for a = 1, . . . , n− 1 the shear invariant

Dρ
a(γ) := Da(ξρ(γ

+), ξρ(γ
−), ξρ(z), ξρ(z

′)),

where Da denotes the a-th double ratio (Definition 4.2.1) of the quadruple of flags.

Figure 6.3.: The construction of the shear invariants for closed leaves.

Remark 6.1.3. We note that the above definitions do not depend on the choice of ρ
in its equivalence class, since if ρ′ and ρ are conjugate by an element g ∈ PSL(n,R),
then ξρ = gξρ′ . This is however not a problem since the triple and double ratios are
PSL(n,R)-invariant.
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6.2. The relations

The Bonahon-Dreyer coordinates are not independent but satisfy the following relations.

(i) Positivity condition: For every ideal triangle t ∈ S \ λ and every vertex v of t, the
triangle invariants T ρ

abc(t, v) are positive for all a, b, c ∈ N≥1 with a + b + c = n.
Similarly for every (infinite or closed) leaf l ∈ λ the shear invariants Dρ

a(l) are
positive for all a = 1, . . . , n− 1.

(ii) Rotation condition: For every ideal triangle t ∈ S\λ with vertices v and v′ such that
v′ immediately follows v when going in clockwise direction around the boundary
of t, and for every a, b, c ∈ N≥1 with a+ b+ c = n, we have

T ρ
abc(t, v) = T ρ

bca(t, v
′).

(iii) Closed leaf equality : For every closed leaf γ ∈ λ and every a = 1, . . . , n − 1, we
have

Lright
a (γ) = Lleft

a (γ),

where Lright
a (γ) and Lleft

a (γ) will be defined in the following paragraph.

(iv) Closed leaf inequality : For every closed leaf γ ∈ λ and every a = 1, . . . , n − 1, we
have

Lright
a (γ) > 1.

Recall that we chose an orientation on each leaf of λ. Let us now quickly define Lright
a (γ)

and Lleft
a (γ) for γ a closed leaf of the finite maximal lamination λ. Choose a side of γ.

Denote by hl and tl for l = 1, . . . , k the infinite leaves and the ideal triangles that spiral
on the chosen side of γ. An infinite leaf appears twice in this list if its two ends spiral
on the selected side of γ. The spiralling of the triangle tl on this side of γ occurs in the
direction of a vertex which we call vl. Define

Da(hl) :=

{
Dρ

a(hl), if hl is oriented toward γ,

Dρ
n−a(hl), if hl is oriented away from γ.

If the chosen side is the right side of γ, we define

Lright
a (γ) :=

k∏
l=1

Da(hl)
k∏

l=1

∏
b+c=n−a

T ρ
abc(tl, vl),

if the spiralling of the triangles occurs in the direction of the orientation of γ, and
otherwise

Lright
a (γ) :=

(
k∏

l=1

Dn−a(hl)

k∏
l=1

∏
b+c=a

T ρ
(n−a)bc(tl, vl)

)−1

.

Similarly, if the chosen side is the left side of γ, we define

Lleft
a (γ) :=

(
k∏

l=1

Da(hl)
k∏

l=1

∏
b+c=n−a

T ρ
abc(tl, vl)

)−1

,
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if the spiralling of the triangles occurs in the direction of the orientation of γ, and
otherwise

Lleft
a (γ) :=

k∏
l=1

Dn−a(hl)
k∏

l=1

∏
b+c=a

T ρ
(n−a)bc(tl, vl).

Note that the triangles and infinite leaves that spiral towards a side of γ differ depending
on which side of γ we choose.

6.3. The parametrization

Suppose the geodesic lamination λ has p closed leaves and q infinite leaves, and its
complement S \ λ consists of r ideal triangles. There are (n − 1)(n − 2)/2 triples of
integers a, b, c ≥ 1 with a+ b+ c = n. For

N = 3r (n−1)(n−2)
2 + (p+ q)(n− 1)

the functions {Tabc} and {Da} define a map from the Hitchin component to RN satisfying
the following properties:

(A) For all a, b, c ∈ N≥1 with a+ b+ c = n, the function Tabc associates a positive real
number Tabc(t, v) to every triangle t ∈ S \ λ and to every vertex v of t;

(B) For all a = 1, . . . , n − 1, the function Da associates a positive real number Da(l)
to each leaf l ∈ λ;

(C) For every triangle t ∈ S \ λ and all indices a, b, c ∈ N≥1 with a + b + c = n, the
functions Tabc satisfy the rotation condition as in Section 6.2 (ii);

(D) For every closed leaf γ ∈ λ and every index a = 1, . . . , n−1, the functions Tabc and
Da satisfy the closed leaf equality and the closed leaf inequality as in Section 6.2
(iii) respectively Section 6.2 (iv).

Consider now the semi-algebraic subset P ⊆ RN defined by the properties (A)-(D).
More precisely, let

(xabc,t,v, ym,l) ∈ RN

where a+ b+ c = n, m = 1, . . . , n− 1, v is a vertex of t ∈ S \λ and l is a leaf of λ. Then
P is the set of all (xabc,t,v, ym,l) ∈ RN satisfying:

– xabc,t,v, ym,l > 0 for all a, b, c, t, v,m, l (Positivity condition (i));

– xabc,t,v = xbca,t,v′ for all a, b, c, t, where v
′ ∈ t is the vertex that follows v in clockwise

direction (Rotation condition (ii));

– For every closed leaf of λ and every index 1, . . . , n− 1 the coordinates xabc,t,v, ym,l

satisfy the closed leaf equality and inequality as in (iii) respectively (iv).

We have seen in Section 6.1 and Section 6.2 that the map that assigns to a Hitchin
representation its triangle and shear invariants has image in P. In fact, the image of the
map is exactly P.
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Chapter 6. A variant of the Bonahon-Dreyer coordinates

Theorem 6.3.1 ([BD14, Theorem 17]). The semi-algebraic set P ⊆ RN is homeo-
morphic to Hit(S, n).

The difficult part of the proof is the construction of a representation from a given
point in P that has the correct Bonahon-Dreyer coordinates. From a point in P they
construct a flag decoration ∂λ̃→ Flag(Rn) and show that there is a unique representation
ρ : π1(S)→ PGL(n,R) for which the flag decoration is ρ-equivariant. They conclude by
showing that this representation is valued in PSL(n,R), a Hitchin representation and
has the right invariants.

Using this parametrization we can define a semi-algebraic model for the Hitchin
component in the sense of Definition 3.2.1.

Definition 6.3.2. We define HomHit(π1(S),PSL(n,R)) as the connected component of
Hom(π1(S),PSL(n,R)) that contains ιn ◦ j as defined in Definition 1.3.1.

With this definition Hit(S, n) ∼= HomHit(π1(S),PSL(n,R))/PSL(n,R). Thus a Hitchin
representation is the same as an element of HomHit(π1(S),PSL(n,R)).

Proposition 6.3.3. The map

prBD : HomHit(π1(S),PSL(n,R))→ P

defined by Bonahon-Dreyer in Section 6.1 (1)-(3) is a semi-algebraic model for Hit(S, n).

Proof. The map prBD is continuous and its image P is by Theorem 6.3.1 homeomorphic
to Hit(S, n), thus the fibres over P are exactly the PSL(n,R)-orbits. We need to prove
that prBD is a semi-algebraic map. Let y = (y1, . . . , yk) be the finite set of points in
Fix(S) that are endpoints of the lifts of the leaves of the lamination λ needed to define
the Bonahon-Dreyer coordinates. The points y1, . . . , yk define a polygon P . Given a
k-tuple of transverse flags we can assign it to the polygon P . In the same way as in the
definition of the Bonahon-Dreyer coordinates we then obtain a map

ϕλ : Flag(Rn)(k) → RN ,

for N as in Section 6.3 by assigning the triangle and shear invariants Section 6.1 (1)-(3)
according to λ. The map prBD is then the composition of the maps ϕλ ◦ ξy, where the
latter is defined as

ξy : HomHit(π1(S),PSL(n,R))→ Flag(Rn)(k),

ρ 7→ (ξρ(y1), . . . , ξρ(yk)).

We show that ϕλ and ξy are semi-algebraic. Refer to Lemma 5.3.5 for the real semi-
algebraic structure on Flag(Rn)(k). The map ϕλ is given by the triple and double ratios,
and is hence semi-algebraic as a regular rational mapping on Flag(Rn)(k).

Let us discuss ξy. Let γ1, . . . , γk ∈ π1(S) with γ+i = yi. Recall from Section 1.3 that
ξρ(yi) = F+

ρ(γi)
for all i = 1, . . . , k. By Lemma 5.3.6 it follows immediately that ξy is

semi-algebraic. Putting the two maps together we obtain that prBD is semi-algebraic.
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6.4. Extension to real closed fields

Let F be a real closed field extension of R. We would like to generalize the coordinates
for the F-Hitchin component.

Definition 6.4.1. Let HomHit(π1(S),PSL(n,F)) be the F-extension of
HomHit(π1(S),PSL(n,R)).

Lemma 6.4.2. The F-extension HomHit(π1(S),PSL(n,F)) is the semi-algebraically con-
nected component of Hom(π1(S),PSL(n,F)) that contains ιn ◦ j as defined in Defini-
tion 1.3.1.

Proof. This follows from Theorem 2.1.11 and Theorem 2.1.15.

Corollary 6.4.3. The semi-algebraic set PF ⊆ FN is homeomorphic to Hit(S, n)F.

Proof. We consider the F-extension of the semi-algebraic model for Hit(S, n), i.e.

prBD
F : HomHit(π1(S),PSL(n,F))→ PF.

By Lemma 3.2.3, prBD
F induces a continuous bijection between Hit(S, n)F and PF. To

prove that this is a homeomorphism, we consider the inverse map of prBD from P →
Hit(S, n). It is continuous and semi-algebraic, thus its extension to F is continuous; see
Theorem 2.1.14.
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Part III.

Hitchin representations over real
closed fields
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7. Properties of boundary
representations

7.1. F-Hitchin representations lift to SL(n,F)

Let F be a real closed field. The group SL(n,F) is naturally an algebraic subset of the
set of n× n-matrices, denoted Mat(n,F), which we can identify with Fn2

.

Lemma 7.1.1. The group PGL(n,F) is algebraic. The group PSL(n,F) is semi-algebraic.

Proof. By the Skolem-Noether theorem, see e.g. [GS06, Theorem 2.7.2], PGL(n,F) is
isomorphic to the set of F-algebra automorphisms Aut(Mat(n,F)) of the set of n × n-
matrices, and the isomorphism is given by the adjoint representation

Ad: PGL(n,F)→ Aut(Mat(n,F)), [A] 7→ (M 7→ AMA−1).

Thus PGL(n,F) ∼= Aut(Mat(n,F)) ⊆ GL(n2,F) is a real algebraic subset of Fn4+1,
since being an F-algebra automorphism is an algebraic condition. Hence PSL(n,F)—
as a connected component of the algebraic set PGL(n,F)—is real semi-algebraic, see
Theorem 2.1.11.

As in the real case, we have PSL(n,F) = SL(n,F) when n is odd, and PSL(n,F) is
an index two subgroup of SL(n,F) when n is even. Thus the following considerations
only concern the case when n is even.

Lemma 7.1.2. The natural projection map SL(n,F)→ PSL(n,F) is semi-algebraic.

Proof. The projection map is realized by the semi-algebraic map

Ad: SL(n,F)→ Aut(Mat(n,F)), A 7→ (M 7→ AMA−1).

Remark 7.1.3. If F is a real closed extension of R, the extension to F of the real semi-
algebraic sets SL(n,R) and PSL(n,R) correspond to the groups SL(n,F) respectively
PSL(n,F).

Let S be a closed connected orientable surface of genus at least two, and π1(S) its
fundamental group. We denote by G either SL(n,R) or PSL(n,R). We saw in Section 3.2
how we identify the space Hom(π1(S), G) with a real semi-algebraic set by choosing a
finite set of generators for π1(S). Assume from now on that R ⊆ F.

Remark 7.1.4. The adjoint representation Ad in the proof of Lemma 7.1.2 induces
a continuous semi-algebraic map, which we also denote by Ad, between the spaces of
homomorphisms

Ad: Hom(π1(S),SL(n,F))→ Hom(π1(S),PSL(n,F)).
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Chapter 7. Properties of boundary representations

Definition 7.1.5. We define

HomHit(π1(S),SL(n,F)) := Ad−1
F (HomHit(π1(S),PSL(n,F)))

as the set of F-Hitchin representations into SL(n,F) (as opposed to PSL(n,F)).

Proposition 7.1.6. The space HomHit(π1(S),SL(n,F)) is non-empty and semi-algebraic.
Furthermore, every F-Hitchin representation lifts to an F-Hitchin representation into
SL(n,F).

Proof. Goldman proved in [Gol80, Theorem A] that representations j : π1(S)→ PSL(2,R)
that are discrete and faithful lift to representations into SL(2,R), and hence ιn ◦j lifts to
SL(n,R) ⊆ SL(n,F); see Definition 1.3.1. Thus HomHit(π1(S),SL(n,F)) is non-empty.
The set HomHit(π1(S),SL(n,F)) is semi-algebraic as it is the preimage of a semi-algebraic
set under a semi-algebraic map, see Proposition 2.1.9.

Since the set of Hitchin representations is connected, it follows that all Hitchin
representations lift. In other words, the map Ad, when restricted to the set of Hitchin
representations into SL(n,R),

Ad: HomHit(π1(S),SL(n,R))→ HomHit(π1(S),PSL(n,R))

is surjective. If now F is a real closed field extension of R, the extension of the map Ad
to F, when restricted to F-Hitchin representations into SL(n,F),

AdF : HomHit(π1(S), SL(n,F))→ HomHit(π1(S),PSL(n,F))

is still surjective, see Theorem 2.1.14. Hence every F-Hitchin representation is the image
of an F-Hitchin representation into SL(n,F) under the map AdF, and thus every F-
Hitchin representation lifts to an F-Hitchin representation into SL(n,F).

Remark 7.1.7. Note that HomHit(π1(S), SL(n,F)) is only semi-algebraically connected
if n is odd. Otherwise it is a union of 22g+1 semi-algebraically connected components if
n is even, where g is the genus of S. This follows from the equivalent statement over R
and Theorem 2.1.15.

7.2. F-Hitchin representations are positively hyperbolic

For this section let F be a real closed field extension of R. Recall that a representation
ρ : π1(S) → PSL(n,F) is called positively hyperbolic if for every non-trivial γ ∈ π1(S)
the element ρ(γ) is positively hyperbolic (Definition 1.4.4).

Proposition 7.2.1. Let ρ : π1(S)→ PSL(n,F) be an F-Hitchin representation. Then ρ
is positively hyperbolic.

Proof. Fix a non-trivial γ ∈ π1(S). Since HomHit(π1(S),SL(n,R)) is real semi-algebraic
we can consider the real semi-algebraic subset Xγ ⊆ R2g(n×n) × Rn×n × Rn defined by

Xγ :=
{
(ρ′, v1, . . . , vn, λ1, . . . , λn) | ρ′ ∈ HomHit(π1(S), SL(n,R)),
vi ∈ Rn \ {0}, λi ∈ R, ρ′(γ)vi = λivi for all i = 1, . . . , n,

det(v1| . . . |vn) ̸= 0, λ1 > . . . > λn > 0 or λ1 < . . . < λn < 0} .
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Then the projection pr onto the first 2g(n × n) coordinates gives a surjection of semi-
algebraic sets onto the component of Hitchin representations into SL(n,R)

pr : Xγ ↠ HomHit(π1(S),SL(n,R)),
(ρ′, vi, λi) 7→ ρ′.

This map is surjective since for every Hitchin representation ρ′ : π1(S) → SL(n,R) and
every non-trivial γ ∈ π1(S) the matrix ρ′(γ) is diagonalizable over R with distinct
eigenvalues all of the same sign; refer for example to [BD14, Proposition 8 and Lemma
9], since every Hitchin representation into SL(n,R) is a lift of a Hitchin representation
into PSL(n,R). By the Tarski-Seidenberg transfer principle, see Theorem 2.1.13, we
obtain that for any real closed extension F of R,

prF((Xγ)F) = (pr(Xγ))F = HomHit(π1(S),SL(n,F)).

This means that F-Hitchin representations into SL(n,F) are diagonalizable over F with
distinct eigenvalues all of the same sign. Now every F-Hitchin representation into
PSL(n,F) lifts to an F-Hitchin representation into SL(n,F) (Proposition 7.1.6), which
proves the lemma.

7.3. F-positive representations are positively hyperbolic

We have seen that F-Hitchin representations are positively hyperbolic in the last section.
Now we deduce that F-positive representations are positively hyperbolic. This result is
crucial in the backward direction of the proof of Theorem A; namely it will imply the
closed leaf inequality Section 6.2 (iv). Recall that a representation ρ : π1(S)→ PSL(n,F)
is F-positive if there exists a ρ-equivariant F-positive map ξρ : Fix(S)→ Flag(Fn), i.e. ξρ
maps any triple respectively quadruple of cyclically ordered points in Fix(S) to a positive
triple respectively quadruple of flags (Definition 5.1.1). In particular, Remark 5.1.5
implies that ξρ maps any k cyclically ordered points in Fix(S) to a positive k-tuple of
flags (Definition 5.1.3) for any k ≥ 3.

Proposition 7.3.1. Let ρ : π1(S) → PSL(n,F) be F-positive. Then ρ is positively
hyperbolic.

The proof of this proposition follows from Theorem 5.3.3 and the following propos-
ition. Recall that an element in GL(n,F) is totally positive, if all its minors are positive
(Definition 5.2.1).

Proposition 7.3.2. Let F be an ordered field (not necessarily real closed) and ρ : π1(S)→
PSL(n,F) an F-positive representation. Then for all γ ∈ π1(S) non-trivial, ρ(γ) ∈
PSL(n,F) admits a lift ρ(γ)′ to SL(n,F) that is conjugate (in GL(n,F)) to a totally
positive matrix.

The idea of the proof is to recover F-positive representation from their limit maps
which are transverse and equivariant with respect to the representation. This allows us
to explicitly describe the image of the representation in terms of the triple and double
ratios.
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Proof of Proposition 7.3.2. Let γ ∈ π1(S) non-trivial. Fix the topological data λ on S
that is needed to define the Bonahon-Dreyer coordinates, see Section 6.1, such that the
geodesic representative of γ is not a leaf of λ.

We begin by explaining how to associate to γ and λ a finite polygon Pγ,λ,x0 inscribed
in ∂S̃. This description follows [Mar19b, Section 5.2]. Choose a point x0 on the axis
of γ in the interior of an ideal triangle t0 of S̃ \ λ̃. We remark that all sides of t0 are
lifts of open leaves of λ. In the following we are considering the two triangles t0 and its
γ-translate γt0, see Figure 7.1. We make two observations.

First, there are only finitely many lifts of closed leaves in λ that separate t0 and γt0.
Indeed, if a lift of a closed leaf separates t0 and γt0 it must intersect the axis of γ, but
the geodesic representative of γ intersects only finitely many times the (finitely many)
closed leaves in λ. Since the preimage under the covering map of a closed geodesic is
a discrete subset of S̃ there are finitely many lifts of a closed geodesic that separate t0
and γt0, since x0 and γx0 have a finite distance, namely the length of γ in the chosen
auxiliary hyperbolic metric on S.

Secondly, if we choose for every lift η̃ of a closed leaf η of λ, that separates the two
ideal triangles, and a lift k̃η of a transverse arc kη, that intersects η̃ but none of the sides
of t0 and γt0, then there exists only finitely many lifts of infinite leaves that separate t0
and γt0, and that do not intersect any of the chosen lifts k̃η. In fact, since λ is a closed
subset of S, both ends of an open leave spiral towards closed leaves in λ. If infinitely
many lifts of an open leaf separate t0 and γt0, then so does a lift of the closed leaf
towards which the open leaf spirals, call it η ∈ λ. By the choice of k̃η and the condition
that we only consider those lifts of open leaves that do not intersect k̃η, we single out a
finite number of lifts of open leaves.

Figure 7.1.: Definition of the finite polygon Pγ,λ,x0 in the case that one lift of a closed
leaf η in λ separates t0 and γt0

We label by (e1, . . . , ep), by proximity to t0, the finite collection of lifts of those open
leaves of λ that separate the triangles t0 and γt0, and that do not intersect any of the
lifts k̃η of the transverse arcs, where we assume that e1 is the edge of t0 closest to γt0,
and ep is the edge of γt0 closest to t0. We set e0 := γ−1ep and ep+1 := γe1, and define

E = Eγ,λ,x0 = (e0, . . . , ep+1).
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7.4. Equivalence of F-Hitchin and F-positive weakly dynamics preserving
representations

The vertices that are endpoints of elements in E determine a finite cyclically ordered
list of points (x1, . . . , xk) on ∂S̃, which defines the desired polygon P = Pγ,λ,x0 . It is
important to remark that the set of triangles defined by E is not necessarily a subset of
S̃ \ λ̃ as soon as one of the elements of E is the lift of a closed leaf in λ. Label the vertices
of t0 by x1, x2, x3 in clockwise order, and the vertices of γt0 by y1 = γx1, y2 = γx2,
y3 = γx3 such that the open leaf e1 ∈ λ̃ connects x1 to x3. We have the two possible
cases depicted in Figure 7.2, since the geodesic representative of γ is not a leaf of λ.

Figure 7.2.: The possible cases of how the axis of γ intersects the triangles t0 and γt0.

Let ξρ be the limit map associated to the F-positive representation ρ as in Definition 1.4.3.
The important observation is that we can recover ρ from ξρ. Indeed by ρ-equivariance
of ξρ, we obtain that there exists φγ ∈ PGL(Fn) such that

(ξρ(y1), ξρ(y2), ξρ(y3)) = φγ(ξρ(x1), ξρ(x2), ξρ(x3)).

By uniqueness (Proposition 4.1.1) there exists a basis of Fn in which φγ is represented
by ρ(γ) ∈ PSL(n,F).

Since ξρ is positive, it sends the vertices of the polygon Pγ,λ,x0 to a positive tuple
of flags, see Remark 5.1.5. Since γ is not a leaf of λ and the surface is closed, we are in
the setting of Theorem 5.2.3 applied to the finite polygon Pγ,λ,x0 and the two triples of
flags (ξρ(x1), ξρ(x2), ξρ(x3)) and (ξρ(y1), ξρ(y2), ξρ(y3)). The theorem tells us that there
exists a (potentially different) basis of Fn in which a lift of φγ is represented by a totally
positive matrix Mφγ . Since φγ is as well represented by ρ(γ), also ρ(γ) admits a lift
ρ(γ)′ to SL(n,F) that is conjugate to Mφγ , which is what we had to prove.

7.4. Equivalence of F-Hitchin and F-positive weakly
dynamics preserving representations

We recall Theorem A.

Theorem A. Let F be a real closed extension of R. A representation ρ : π1(S) →
PSL(n,F) is PGL(n,F)-conjugate to an F-Hitchin representation if and only if it is
F-positive and weakly dynamics preserving.
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Chapter 7. Properties of boundary representations

Proof ( =⇒ ). We first prove the “only if” direction, namely we show that an F-Hitchin
representation (Definition 1.4.1) is F-positive weakly dynamics preserving
(Definition 1.4.3). Let thus ρ : π1(S) → PSL(n,F) be an F-Hitchin representation. By
Proposition 7.2.1, we know that for every non-trivial γ ∈ π1(S) we can lift ρ(γ) to a mat-
rix ρ(γ)′ ∈ SL(n,F) which is diagonalizable over F with eigenvalues λ1 > . . . > λn > 0.
We can now construct a limit map ξρ : Fix(S) → Flag(Fn) associated to ρ that has
the desired properties. For x ∈ Fix(S), choose a non-trivial γ ∈ π1(S) with x = γ+,
where we write γ+, γ− for the attracting respectively repelling fixed point of γ acting
on Fix(S) ⊆ ∂S̃. Then we define ξρ by

ξρ : Fix(S)→ Flag(Fn), x 7→ F+
ρ(γ)′ ,

where F+
ρ(γ)′ denotes the stable flag of ρ(γ)′ (Definition 5.3.1). We need to check that

this map is well-defined since we made several choices (the choice of γ and the choice of
a lift of ρ(γ)). Indeed, first note that the definition of ξρ is independent of the choice
of the lift of ρ(γ) to SL(n,F), since two lifts differ by multiplication with ±1, which
preserves the eigenspaces and the moduli of the eigenvalues. Furthermore, for any non-
trivial γ1, γ2 ∈ π1(S) with x = γ+1 = γ+2 , we have γ−1 = γ−2 , and thus γk11 = γk22 for some
k1, k2 ∈ Z. But then, since we know that both ρ(γ1) and ρ(γ2) are diagonalizable and
they agree up to some power (since γ1 and γ2 do), they must have the same eigenspaces
and hence F+

ρ(γ1)′
= F+

ρ(γ2)′
, which shows that the map ξρ is well-defined.

The map ξρ is ρ-equivariant: Let γ ∈ π1(S) be a non-trivial element and η+ ∈ Fix(S)
for some non-trivial η ∈ π1(S). Then

ξρ(γ · η+) = ξρ((γηγ
−1)+) = ρ(γ)ξρ(η

+),

by observing that γ · η+ is the attracting fixed point of γηγ−1, and that the stable flag
of ρ(γηγ−1) = ρ(γ)ρ(η)ρ(γ)−1 is obtained by applying ρ(γ) to the stable flag of ρ(η).

To verify that ξρ is F-positive, we use the Tarski-Seidenberg transfer principle, in
the same way as we did in Proposition 7.2.1. By Remark 5.1.5 it suffices to check that
ξρ sends any triple and quadruple of distinct points to a triple respectively quadruples
of positive flags.

(a) We first show that the image of any two distinct points is transverse (Defini-
tion 4.0.2). Let x = γ+, y = η+ be distinct points in Fix(S) for γ ̸= η ∈ π1(S).
We need to show that the flag tuple (ξρ(γ

+), ξρ(η
+)) is transverse, i.e. for all

j = 0, . . . , n we have
ξρ(γ

+)(j) + ξρ(η
+)(n−j) = Fn.

Since ξρ(γ
+) is defined as the stable flag of ρ(γ) the above transversality condition

can be encoded in the following polynomial inequality

det(v1| . . . |vj |w1| . . . |wn−j) ̸= 0 for all j = 0, . . . , n,

where vi and wi are eigenvectors of ρ(γ) respectively ρ(η) with eigenvalues λi
respectively µi with |λ1| > . . . > |λn| > 0 and |µ1| > . . . > |µn| > 0. We should
in fact first lift ρ to a Hitchin representation into SL(n,F), but this is possible
without problems by the considerations in Section 7.1, compare also the proof of
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Proposition 7.2.1 for more details. By the Tarski-Seidenberg transfer principle
(Theorem 2.1.13) this inequality holds true over F since it holds true over R; see
Theorem 1.3.3.

(b) We verify that any three distinct points positively oriented around the circle are
mapped to a positive triple of flags. Let x1 = γ+1 , x2 = γ+2 , x3 = γ+3 be distinct
points in Fix(S) for some non-trivial γ1, γ2, γ3 ∈ π1(S), positively oriented around
the circle. We need to show that the flag triple (ξρ(γ

+
1 ), ξρ(γ

+
2 ), ξρ(γ

+
3 )) is positive,

i.e. it is transverse and all triple ratios are positive. In other words, for all integers
a, b, c ≥ 0 with a+ b+ c = n we have

ξρ(γ
+
1 )

(a) + ξρ(γ
+
2 )

(b) + ξρ(γ
+
3 )

(c) = Fn,

and for all integers a, b, c ≥ 1 with a+ b+ c = n we have

Tabc
(
ξρ(γ

+
1 ), ξρ(γ

+
2 ), ξρ(γ

+
3 )
)
> 0.

We have already seen in (a) how to encode the transversality condition in a semi-
algebraic way. The positivity condition on the triple ratios can be encoded by the
following boolean combination of polynomial inequalities[

det(v1| . . . |va+1|w1| . . . |wb|u1| . . . |uc−1)

· det(v1| . . . |va|w1| . . . |wb−1|u1| . . . |uc+1)

· det(v1| . . . |va−1|w1| . . . |wb+1|u1| . . . |uc) > 0 and

det(v1| . . . |va−1|w1| . . . |wb|u1| . . . |uc+1)

· det(v1| . . . |va|w1| . . . |wb+1|u1| . . . |uc−1)

· det(v1| . . . |va+1|w1| . . . |wb−1|u1| . . . |uc) > 0
]

or[
det(v1| . . . |va+1|w1| . . . |wb|u1| . . . |uc−1)

· det(v1| . . . |va|w1| . . . |wb−1|u1| . . . |uc+1)

· det(v1| . . . |va−1|w1| . . . |wb+1|u1| . . . |uc) < 0 and

det(v1| . . . |va−1|w1| . . . |wb|u1| . . . |uc+1)

· det(v1| . . . |va|w1| . . . |wb+1|u1| . . . |uc−1)

· det(v1| . . . |va+1|w1| . . . |wb−1|u1| . . . |uc) < 0
]

for all integers a, b, c ≥ 1 with a+ b+ c = n, where vi, wi and ui are eigenvectors of
ρ(γ1), ρ(γ2) respectively ρ(γ3) with eigenvalues λi, µi respectively νi with |λ1| >
. . . > |λn| > 0, |µ1| > . . . > |µn| > 0 and |ν1| > . . . > |νn| > 0. As in (a), we
should consider a lift of ρ to an F-Hitchin representation into SL(n,F). Again by
the Tarski-Seidenberg transfer principle, this property holds true over F since it
holds true over R.

(c) Let x1, x2, x3, x4 be distinct points in Fix(S) occurring in this order around the
circle. We need to show that the flag quadruple

(ξρ(x1), ξρ(x2), ξρ(x3), ξρ(x4))
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is positive, i.e. the flag quadruple is transverse, the two flag subtriples
(ξρ(x1), ξρ(x2), ξρ(x3)) and (ξρ(x1), ξρ(x3), ξρ(x4)) are positive, and all double ra-
tios are positive. In particular, for all a = 1, . . . , n− 1 we have

Da (ξρ(x1), ξρ(x3), ξρ(x2), ξρ(x4)) > 0.

Choose γj ∈ π1(S) non-trivial distinct so that γ+j = xj for all j = 1, 2, 3, 4. We
have already seen in (a) and (b) how the transversality condition and the positivity
of the triple ratios can be expressed using polynomial equalities and inequalities.
The positivity of the double ratios is expressed similarly as the positivity of the
triple ratios in (b). Again by the Tarski-Seidenberg transfer principle, this property
holds true over F since it holds true over R.

This proves that ρ is F-positive. Furthermore, by definition of ξρ, we immediately have
that ρ is weakly dynamics preserving, which proves one direction.

For the “if” direction we establish Theorem C, which we recall here.

Theorem C. The set of PGL(n,F)-equivalence classes of F-positive weakly dynamics
preserving representations is described by the Bonahon-Dreyer coordinates over F and
hence homeomorphic to a closed semi-algebraic subset of some FN .

Proof. For the proof we use Proposition 7.3.1 and the multiplicative variant of the
Bonahon-Dreyer coordinates for parametrizing the Hitchin component as in Chapter 6.
Fix therefore the necessary topological data λ on the surface S, see Section 6.1. We
use the same notation as in Chapter 6. Suppose the geodesic lamination λ has p closed
leaves and q infinite leaves, and its complement S \ λ consists of r ideal triangles. Set

N = 3r (n−1)(n−2)
2 + (p+ q)(n− 1).

The idea of the proof is as follows. We define a map Ψ from the set of F-positive
weakly dynamics preserving representations to FN by associating to a representation the
F-valued triangle and shear invariants using the F-positive limit map as in Section 6.1.
If ρ : π1(S)→ PSL(n,F) is an F-positive weakly dynamics preserving representation, we
show that Ψ(ρ) satisfies the relations (i)-(iv) of Section 6.2 . In other words, Ψ(ρ) ∈ PF—
the F-extension of the polytope P ⊆ RN that is homeomorphic to the Hitchin component
Hit(S, n), compare Section 6.3 and Section 6.4.

The triangle and shear invariants can be defined using a flag decoration, by which
we mean an equivariant map from ∂λ̃→ Flag(Fn). Thus, in the same way as in (1)-(3)
in Section 6.1 we can associate triangle and shear invariants to F-positive representations
using only the associated limit map restricted to ∂λ̃ ⊆ Fix(S). This defines the map Ψ.

Let us show that Ψ satisfies (A)-(D) in Section 6.3 over F. The positivity conditions
(A) and (B) follow from the F-positivity of the limit map. Note that the rotation
condition (C) follows directly since it is a property of triple ratios and how they behave
under permutation of the flags, see Lemma 4.2.2 (1). Left to show are therefore the closed
leaf equality and closed leaf inequality (D). For Hitchin representations, the proof of the
closed leaf equalities relies on [BD14, Proposition 13]. We prove in a complete analogue
fashion the multiplicative version of this proposition for the coordinates associated to
F-positive representations; see also [BD14, Remark 15] for a multiplicative version of the
statement of [BD14, Proposition 13].
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Proposition 7.4.1. Let ρ : π1(S) → PSL(n,F) be an F-positive representation with
limit map ξρ. For every closed leaf γ ∈ λ and every a = 1, . . . , n− 1, we have

Lright
a (γ) =

λa(ρ(γ)
′)

λa+1(ρ(γ)′)
= Lleft

a (γ),

where λa(ρ(γ)
′) is the eigenvalue of a lift ρ(γ)′ of ρ(γ) to SL(n,F) corresponding to the

one-dimensional eigenspace ξρ(γ
+)(a) ∩ ξρ(γ−)(n−a+1).

Proof. By Proposition 7.3.1, we can lift ρ(γ) ∈ PSL(n,F) to ρ(γ)′ ∈ SL(n,F) such
that the matrix ρ(γ)′ is diagonalizable with eigenvalues λa(ρ(γ)

′) > 0 and ρ(γ)′ acts by

multiplication with λa(ρ(γ)
′) on ξρ(γ

+)(a)/ξρ(γ
+)(a−1). We will show that Lright

a (γ) =
λa(ρ(γ)′)

λa+1(ρ(γ)′)
and Lleft

a (γ) = λa(ρ(γ)′)
λa+1(ρ(γ)′)

. Note that this quotient is independent of the lift of

ρ(γ) since two lifts differ by multiplication with ±Idn.
The proof works in the same way as the proof of [BD14, Proposition 13] by replacing

τabc by Tabc and σa byDa (where τabc = log(Tabc) and σa = log(Da) following the notation
from [BD14]) and by writing everything multiplicatively. We also refer to this reference
for more details on the computations. The important observation is how ρ(γ)′ acts on
the flags ξρ(γ

±) associated to the endpoints of γ; see Equation (7.1).
We only discuss the exemplary case when we are on the right-hand side of γ and

the spiralling of the triangles occurs in the direction of the orientation of γ. We recall
the definition of

Lright
a (γ) =

k∏
l=1

Da(hl)
k∏

l=1

∏
b+c=n−a

T ρ
abc(tl, vl),

which we will show is equal to λa(ρ(γ)′)
λa+1(ρ(γ)′)

.

Let h1, . . . , hk and t1, . . . , tk be the infinite leaves in λ and the ideal triangles in S \λ
that spiral on the right side of γ and assume the spiralling occurs in the direction of the
orientation of γ. Let the labelling be such that tl is bounded on the left by hl−1. Let vl
be the vertex of tl in the direction of the spiralling. See Figure 7.3 for the corresponding
picture in the universal cover. We set E := ξρ(γ

+), Fl := ξρ(xl), where xl is the endpoint
of h̃l different from γ+, and it is convenient to also define G1 := Fk and Gl := Fl−1 for
l = 2, . . . , k + 1. By the choice of orientation we have γ h̃1 = h̃k+1 and γ t̃1 = t̃k+1. We
first remark that

Da(hl) = Da(E,Fl, Fl−1, Fl+1) = Da(E,Gl+1, Gl, Fl+1), and

T ρ
abc(tl, vl) = Tabc(E,Fl, Fl+1) = Tabc(E,Fl, Gl),

where the first equality follows by checking the two cases (hl is oriented towards γ or
not) and using the properties of the double ratios under permutation of flags. We rewrite
Da(E,Fl, Fl−1, Fl+1) to obtain

Da(hl) = Da(E,Fl, Fl−1, Fl+1) =[
e(a) ∧ f (n−a−1)

l ∧ g(1)l

e(a−1) ∧ f (n−a)
l ∧ g(1)l

·
e(a) ∧ f (n−a)

l

e(a+1) ∧ f (n−a−1)
l

]

·

[
e(a−1) ∧ f (1)l+1 ∧ g

(n−a)
l+1

e(a) ∧ f (1)l+1 ∧ g
(n−a−1)
l+1

·
e(a+1) ∧ g(n−a−1)

l+1

e(a) ∧ g(n−a)
l+1

]
.
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Figure 7.3.: Spiralling in the universal cover.

Note that the minus sign disappears when we swap the order in the wedge product in
the nominator and denominator of the third factor, since it involves exterior powers of
degrees that differ by one. What is important to note is that within the first bracket
only the index l appears, and in the second bracket only the index l + 1.

The second step is to reorder
∏k

l=1Da(hl) =
∏k

l=1Da(E,Fl, Fl−1, Fl+1). Using the
last equality and an index shift, we obtain

k∏
l=1

Da(hl) =

[
e(a) ∧ f (n−a−1)

1 ∧ g(1)1

e(a−1) ∧ f (n−a)
1 ∧ g(1)1

· e(a) ∧ f (n−a)
1

e(a+1) ∧ f (n−a−1)
1

]

·
k∏

l=2

([
e(a) ∧ f (n−a−1)

l ∧ g(1)l

e(a−1) ∧ f (n−a)
l ∧ g(1)l

·
e(a) ∧ f (n−a)

l

e(a+1) ∧ f (n−a−1)
l

]

·

[
e(a−1) ∧ f (1)l ∧ g(n−a)

l

e(a) ∧ f (1)l ∧ g(n−a−1)
l

·
e(a+1) ∧ g(n−a−1)

l

e(a) ∧ g(n−a)
l

])

·

[
e(a−1) ∧ f (1)k+1 ∧ g

(n−a)
k+1

e(a) ∧ f (1)k+1 ∧ g
(n−a−1)
k+1

·
e(a+1) ∧ g(n−a−1)

k+1

e(a) ∧ g(n−a)
k+1

]
.

Since xk+1 = γ x1 we have Fk+1 = ξρ(γ x1) = ρ(γ)ξρ(x1) = ρ(γ)F1 by ρ-equivariance of
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ξρ. The last bracket simplifies to

e(a−1) ∧ f (1)k+1 ∧ g
(n−a)
k+1

e(a) ∧ f (1)k+1 ∧ g
(n−a−1)
k+1

·
e(a+1) ∧ g(n−a−1)

k+1

e(a) ∧ g(n−a)
k+1

=
e(a−1) ∧ ρ(γ)′f (1)1 ∧ ρ(γ)′g(n−a)

1

e(a) ∧ ρ(γ)′f (1)1 ∧ ρ(γ)′g(n−a−1)
1

· e
(a+1) ∧ ρ(γ)′g(n−a−1)

1

e(a) ∧ ρ(γ)′g(n−a)
1

=
(ρ(γ)′−1e(a−1)) ∧ f (1)1 ∧ g(n−a)

1

(ρ(γ)′−1e(a)) ∧ f (1)1 ∧ g(n−a−1)
1

· (ρ(γ)
′−1e(a+1)) ∧ g(n−a−1)

1

(ρ(γ)′−1e(a)) ∧ g(n−a)
1

= λa(ρ(γ)
′)
e(a−1) ∧ f (1)1 ∧ g(n−a)

1

e(a) ∧ f (1)1 ∧ g(n−a−1)
1

· 1

λa+1(ρ(γ)′)

e(a+1) ∧ g(n−a−1)
1

e(a) ∧ g(n−a)
1

,

since ρ(γ)′−1 acts trivially on
∧n(Fn), and for all a = 1, . . . , n, we have

ρ(γ)′
(
e(a)
)
=

(
a∏

i=1

λi(ρ(γ)
′)

)
e(a). (7.1)

Indeed, since the spiralling occurs in the direction of the orientation of γ and the flag
associated with the positive endpoint of γ is the stable flag of ρ(γ), see the proof of
Proposition 7.3.1, Equation (7.1) holds. Thus

k∏
l=1

Da(hl) =
λa(ρ(γ)

′)

λa+1(ρ(γ)′)

·
k∏

l=1

([
e(a) ∧ f (n−a−1)

l ∧ g(1)l

e(a−1) ∧ f (n−a)
l ∧ g(1)l

·
e(a) ∧ f (n−a)

l

e(a+1) ∧ f (n−a−1)
l

]

·

[
e(a−1) ∧ f (1)l ∧ g(n−a)

l

e(a) ∧ f (1)l ∧ g(n−a−1)
l

·
e(a+1) ∧ g(n−a−1)

l

e(a) ∧ g(n−a)
l

])

=
λa(ρ(γ)

′)

λa+1(ρ(γ)′)

k∏
l=1

Qa(E,Fl, Gl)
−1,

by definition of Qa. By Lemma 4.2.2 (2), we have

k∏
l=1

Da(hl) =
λa(ρ(γ)

′)

λa+1(ρ(γ)′)

k∏
l=1

∏
b+c=n−a

Tabc(E,Fl, Gl)
−1,

which, by definition of Fl and Gl, yields

λa(ρ(γ)
′)

λa+1(ρ(γ)′)
=

k∏
l=1

Da(hl)
k∏

l=1

∏
b+c=n−a

T ρ
abc(E,Fl, Gl),

=

k∏
l=1

Da(hl)

k∏
l=1

∏
b+c=n−a

T ρ
abc(tl, vl) = Lright

a (γ),
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which was to prove.
If the spiralling occurs in the opposite direction of the orientation of γ, then we con-

sider the flag E = ξρ(γ
−) associated with the negative endpoint of γ, which is therefore

the unstable flag of ρ(γ). Thus

ρ(γ)′
(
e(a)
)
=

(
n∏

i=n−a+1

λi(ρ(γ)
′)

)
e(a)

for all a = 1, . . . , n. Adapting the above computation to this case concludes the argu-
ment.

To consider the left-hand side of γ, we can reverse the orientation of γ and consider
the right-hand side to obtain the result by observing that Dρ

a(γ) is replaced by Dρ
n−a(γ).

The above proposition immediately implies the closed leaf equality in (D). Further-
more by Proposition 7.4.1, the closed leaf inequality amounts to showing that

λa(ρ(γ)
′)

λa+1(ρ(γ)′)
> 1

for all a = 1, . . . , n − 1. Since ρ is assumed to be weakly dynamics preserving (Defin-

ition 1.4.3), it follows that |λa(ρ(γ))|
|λa+1(ρ(γ))| ≥ 1 for all a = 1, . . . , n − 1. Proposition 7.3.1

implies that λa(ρ(γ)
′) are all of the same sign and distinct, and thus the closed leaf

inequality holds. Thus Ψ satisfies conditions (A)-(D), in other words Im(Ψ) ⊆ PF. The
forward direction of Theorem A imply that Im(Ψ) = PF.

Let ρ, ρ′ : π1(S) → PSL(n,F) be two F-positive representations that are weakly
dynamics preserving with limit map ξρ respectively ξρ′ . Left to show is that if Ψ(ρ) =
Ψ(ρ′), then ρ and ρ′ are conjugate in PGL(n,F). Let Ψ(ρ) = Ψ(ρ′) = (xabc,t,v, ym,l) ∈ FN ,
where a, b, c ≥ 1 are integers with a + b + c = n, m = 1, . . . , n − 1, v is a vertex of
t ⊂ S \ λ and l is a leaf of λ. The idea of the proof is to reconstruct a flag decoration
F : ∂λ̃→ Flag(Fn) from the triple and double ratios, which will agree up to an element
of PGL(n,F) with ξρ and ξρ′ , when the latter are restricted to ∂λ̃.

Recall the notations (1)-(3) from Section 6.1 in the definition of the Bonahon-Dreyer
coordinates. The statement of the following lemma in the real case is [BD14, Lemma
24]. It can be proven in a complete analogue fashion for general real closed fields by
writing everything multiplicatively.

Lemma 7.4.2. Let (xabc,t,v, ym,l) ∈ PF. Then there exists a flag decoration F : ∂λ̃ →
Flag(Fn) such that

(1) xabc,t,v = TF
abc(t, v) for every component t of S \ λ, for every vertex v of t, and

integers a, b, c ≥ 1 with a+ b+ c = n;

(2) ym,l = DF
m(l) for every leaf l of λ and integer m = 1, . . . , n− 1.

Furthermore, F is unique up to postcomposition by an element of PGL(n,F).
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Since Ψ(ρ) = Ψ(ρ′), the uniqueness statement in the above lemma implies that there
exists g ∈ PGL(n,F) with gξρ|∂λ̃ = ξρ′ |∂λ̃. Thus for x ∈ ∂λ̃ and γ ∈ π1(S) we have

(gρ(γ)g−1)(ξρ′(x)) = gρ(γ)ξρ(x) = gξρ(γx) = ξρ′(γx).

Similarly, for a triple of distinct points x, y, z ∈ ∂λ̃ we have

(gρ(γ)g−1)(ξρ′(x), ξρ′(y), ξρ′(z)) = (ξρ′(γx), ξρ′(γy), ξρ′(γz)),

which implies that gρ(γ)g−1 = ρ′(γ) by ρ′-equivariance of ξρ′ and Proposition 4.1.1.
Thus ρ and ρ′ are conjugate, which finishes the proof.

Corollary 7.4.3. Let ρ, ρ′ : π1(S) → PSL(n,F) be two representations, where ρ is F-
positive weakly dynamics preserving and ρ′ is F-Hitchin. Assume that Ψ(ρ) = prBD

F (ρ′).
Then ρ and ρ′ are conjugate in PGL(n,F).

Proof. Denote the limit map of ρ′ constructed in the proof of the forward direction of
Theorem A by ξρ′ , and let ξρ denote the limit map of ρ. Viewing ρ′ as an F-positive
weakly dynamics preserving representation, we see immediately from the definitions of
Ψ and prBD

F that
Ψ(ρ′) = prBD

F (ρ′) = Ψ(ρ).

We conclude using Theorem C.

We can now finish the proof of Theorem A.

Proof of Theorem A (⇐= ). Let ρ be an F-positive representation that is weakly dy-
namics preserving. Then its PGL(n,F)-equivalence class [ρ] corresponds under the
above homeomorphism from Theorem C to a point in PF. But since PF is homeo-
morphic to Hit(S, n)F (Corollary 6.4.3) this point gives rise to [ρ′] ∈ Hit(S, n)F. Now
Ψ(ρ) = prBD

F (ρ′), and thus by Corollary 7.4.3 we have that ρ and ρ′ are conjugate in
PGL(n,F). Since Hit(S, n)F is the space of PSL(n,F)-equivalence classes of F-Hitchin
representations, it follows that ρ is PGL(n,F)-conjugate to an F-Hitchin representa-
tion.

7.5. F-positive weakly dynamics preserving representations
are irreducible

Let F be a field and Γ a finitely generated group.

Definition 7.5.1. A representation ρ : Γ → GL(Fn) is irreducible if the only ρ(Γ)-
invariant subspaces of Fn is {0} or Fn. Denote by GrF the space of all non-trivial
subspaces of Fn. A representation ρ : Γ → PGL(Fn) is irreducible if its action on GrF
has no fixed point.

Remark 7.5.2. Let γ1, . . . , γk be a finite generating set for Γ and W ⊆ Fn a vector
subspace. Then ρ(Γ)W ⊆ W if and only if ρ(γj)W ⊆ W for all j = 1, . . . , k. A similar
statement holds true for projective representations.

67



Chapter 7. Properties of boundary representations

From now on let F be real closed. We would like to show that F-positive weakly dy-
namics preserving representations are irreducible. We already know by [Lab06, Lemma
10.1] that Hitchin representations are irreducible. Thus the following proposition is an
easy consequence of the Tarski-Seidenberg transfer principle and Theorem A.

Proposition 7.5.3. Let ρ : π1(S) → PSL(n,F) be F-positive and weakly dynamics
preserving. Then the restriction of ρ to every finite index subgroup is irreducible.

Proof. Let γ1, . . . , γ2g be a finite set of generators for π1(S). We saw in Lemma 5.3.5
that Gr(k, n) is algebraic for all k = 1, . . . , n− 1. Since Gr = GrR is the finite union of
Gr(1, n)R, . . . ,Gr(n− 1, n)R it is also algebraic. Consider the semi-algebraic set

{(ρ, V ) ∈ HomHit(π1(S),PSL(n,R))×Gr | ρ(γ1)V = V, . . . , ρ(γ2g)V = V }.

Then [Lab06, Theorem 10.1] implies that this set is empty. By the Tarski-Seidenberg
transfer principle (Theorem 2.1.13), so is its F-extension. Since F-positive weakly dy-
namics preserving representations are F-Hitchin, see Theorem A, we conclude that F-
positive weakly dynamics preserving representations are irreducible. The restriction of
ρ to every finite index subgroup of π1(S) corresponds to an F-Hitchin representation of
the corresponding cover of S, thus the restricted representation is also irreducible.
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8. Intersection geodesic currents for
boundary representations

8.1. Positive cross-ratios and intersection currents

More information on geodesic currents can be found in [ES22] or [Mar22b].
As was hinted at in the introduction, the space of geodesic currents C (S), see Defin-

ition 1.4.5, comes equipped with an intersection form generalizing the geometric inter-
section number. Recall that we endow S with an auxiliary hyperbolic structure. Denote
by G the space of (unoriented and unparametrized) geodesics of S̃.

Definition 8.1.1. Consider G(2) ⊆ G × G the set of pairs of transversely intersecting
geodesics. We define the intersection form

i : C (S)× C (S)→ R≥0, i(µ, η) := (µ× η)(G(2)/π1(S)),

where µ× η is the product measure.

Bonahon proved that i is finite, continuous, symmetric and bilinear, and generalizes
the geometric intersection number of homotopy classes of closed curves on S [Bon86,
Proposition 4.5].

To associate to a representation in a higher rank Teichmüller space a geodesic cur-
rent, we make use of positive cross-ratios. There are many (non-equivalent definitions) of
cross-ratios. The convention of how to arrange the arguments in the cross-ratio follows
[MZ19, Definition 2.4]. However the cross-ratio is defined on a smaller set and is not
assumed to be continuous as in [BIPP21a, Definition 3.1]. Compare also to [BIPP21a,
Remark 3.2] for a comparison between the various definitions in the literature.

Definition 8.1.2. Let X ⊆ ∂S̃ be a π1(S)-invariant non-empty subset, e.g. Fix(S),
and let X [4] denote the set of positively oriented, i.e. cyclically ordered (in clockwise
direction), quadruples in X. A cross-ratio is a π1(S)-invariant function

B : X [4] → R,

that is

(1) symmetric, i.e. for all x = (x, y, z, w) ∈ X we have B(x, y, z, w) = B(z, w, x, y),
and

(2) additive, i.e. B(x, y, z, w) +B(x, y, w, t) = B(x, y, z, t) for all x, y, z, w, t ∈ X that
are positively oriented.
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A cross-ratio B is positive if B(x, y, z, w) ≥ 0 for all (x, y, z, w) ∈ X [4]. Denote the set
of positive cross-ratios on X by CR+(X). The B-period of a non-trivial γ ∈ π1(S) with
γ± ∈ X is

ℓB(γ) := B(γ+, γ−, x, γx)

for some (any) x ∈ X \ {γ±} such that (γ+, γ−, x, γx) ∈ X [4], where γ+ respectively γ−

is the attracting respectively repelling fixed point of γ. A geodesic current µ ∈ C (S) is
an intersection current for B if for every non-trivial γ ∈ π1(S) with γ± ∈ X we have
ℓB(γ) = i(µ, γ), where we view γ as a geodesic current; see e.g. [Bon88, §1].

Example 8.1.3. The Liouville current is an intersection current for the pull-back of the
standard cross-ratio on ∂H2 via the developing map [Bon88, Proposition 14].

For a general cross-ratio, intersection currents do not need to exist. If we assume
X = ∂S̃ and B continuous, then an observation of Hamenstädt in [Ham99], refer to
[MZ19, Appendix A] for a detailed proof, implies that if B is positive, then there exists
a unique intersection current for B. More generally, we have the following.

Theorem 8.1.4 ([BIPP21a, Theorem 1.6]). Let X ⊆ ∂S̃ be a π1(S)-invariant non-
empty subset and B a positive cross-ratio on X. Then there is a geodesic current µ on
S such that for all e ̸= γ ∈ π1(S)

ℓB(γ) = i(µ, γ).

The geodesic current µ depends continuously on the cross-ratio B, where CR+(X) is
endowed with the subspace topology of the topological vector space of cross-ratios on X
with the topology of pointwise convergence.

8.2. Valuations and big elements

For an introduction to valuations we refer the reader to [EP05].

Definition 8.2.1. Let F be a field. A valuation on F is a map

υ : F→ R ∪ {∞}

such that e−υ : F → R is a norm that satisfies the triangle inequality. The valuation is
trivial if υ(a) = 0 for all a ∈ F×, otherwise non-trivial.

If F is ordered, we say that a valuation υ is order-compatible if for all 0 < x ≤ y ∈ F
we have υ(x) ≥ υ(y). We say that υ is non-Archimedean if υ(x+ y) ≥ min{υ(x), υ(y)}.
Two valuations υ and υ′ are equivalent if there exists r ∈ R positive with υ = rυ′.

Lemma 8.2.2. Let υ be a valuation on F. Then υ(1) = 0, υ(ζ) = 0 for ζ a root of unity
in F, υ(x−1) = −υ(x) and υ(−x) = υ(x) for all x ∈ F. If υ is non-Archimedean and
x, y ∈ F with υ(x) ̸= υ(y), then υ(x+y) = min{υ(x), υ(y)}. If F is ordered and υ is non-
Archimedean order-compatible, then for x, y ∈ F>0 we have υ(x+ y) = min{υ(x), υ(y)}.

Proof. For the first statements see [EP05, Section 1.3 and (1.3.4)]. For the last statement
we can without loss of generality assume that υ(x) < υ(y). We already know υ(x+ y) ≥
υ(x). Since x, y > 0 we have x + y ≥ x, and thus by order-compatibility of υ we have
υ(x+ y) ≤ υ(x).
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Example 8.2.3. The function − log is an order-compatible valuation on R. The map
R(X)→ R∪{∞}, p

q 7→ deg(q)−deg(p), where deg denotes the degree of the polynomial,
is an order-compatible non-Archimedean valuation on R(X) with the order +∞, compare
Example 2.2.5.

Definition 8.2.4. Let F be an ordered field. A positive element b ∈ F is big if for all
x ∈ F there exists n ∈ N such that x < bn. For b a big element, the logarithm with basis
b is defined by

logb : F>0 → R, x 7→ inf{q ∈ Q | x ≤ bq}.

Note that a big element is always bigger than 1.

Lemma 8.2.5 ([Bru88a, Proposition 5.2.(f)-(g)]). Let b be a big element in an ordered
field F. To b we can associate the following non-trivial order-compatible valuation

υb : F→ R ∪ {∞}, x 7→

{
− logb(|x|) if x ̸= 0,

∞ if x = 0.

If F is non-Archimedean, so is υb.

Lemma 8.2.6 ([Bru88a, Proposition 5.2.(d)]). Let b and b′ ∈ F be two big elements.
Then logb′ = logb′(b) · logb, i.e. the logarithms differ by a positive scalar multiple.

It follows that the associated valuations υb and υ
′
b are equivalent (with scaling factor

−υb′(b) = logb′(b) > 0).

Example 8.2.7. In R every element larger than 1 is a big element in the above sense. If
F is an Archimedean ordered field, i.e. a subfield of R, then logb is the usual logarithm,
for which the last lemma is known.

In R(X) with the order +∞, X is a big element. The valuation υX associated to
X is the one from Example 8.2.3. If F is any non-Archimedean field then no rational
number is big.

Lemma 8.2.8. Let F be an ordered field with a big element b ∈ F and υ any order-
compatible valuation on F. Then

υ = −υ(b) · υb.

In other words, up to scaling, all order-compatible valuations come from the construction
in Lemma 8.2.5, hence are equivalent by Lemma 8.2.6.

Proof. Let x ∈ F be positive. Then υb(x) = − inf{q ∈ Q | x ≤ bq}. Assume x ≤ bq,
then υ(x) ≥ qυ(b) by order-compatibility of υ. Since b is big, υ(b) < 0 and hence
υ(x)/υ(b) ≤ q. This implies that υ(x)/υ(b) ≥ −υb(x), as the latter is defined as the
infimum over all such q.

Take now q′ ∈ Q with q′ < υ(x)/υ(b). Assume x ≤ bq
′
. By order-compatibility

υ(x) ≥ q′υ(b) and hence υ(x)/υ(b) ≤ q′, a contradiction. Thus υ(x) = −υ(b) · υb(x). By
Lemma 8.2.2 the same conclusion holds for x < 0, since υ(−x) = υ(x).

Lemma 8.2.9 ([Bru88a, §5], [Bou98, Chapter VI, §10]). Let K ⊆ F be an ordered field
of finite transcendence over a subfield K which contains a big element. Then F contains
a big element.
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8.3. Positive cross-ratios for F-positive weakly dynamics
preserving representations

Theorem 8.3.1 ([MZ19, Proposition 2.24, Theorem 3.4]). Let ρ : π1(S)→ PSL(n,R) be
a Hitchin representation. Then for all k = 1, . . . , n− 1, there exists a unique cross-ratio
Bρ

k such that for all γ ∈ π1(S) non-trivial

ℓBρ
k
(γ) = log

λ1(ρ(γ)) · . . . · λk(ρ(γ))
λn−k+1(ρ(γ)) · . . . · λn(ρ(γ))

,

where λ1(ρ(γ)) > . . . > λn(ρ(γ)) > 0 are the absolute values of the eigenvalues of ρ(γ).
Furthermore, the cross-ratio Bρ

k is positive.

In particular, it follows from this together with Theorem 8.1.4, that there exists
an intersection current µkρ for ρ. Similar results hold for maximal representations in
Sp(2n,R) [Lab08, Section 4.2] and Θ-positive representations in PO(p, q) [BP21, The-
orem 4.9].

The following lemma is a generalization of the above theorem to F-Hitchin rep-
resentations. Recall that a representation ρ : π1(S) → PSL(n,F) is called F-Hitchin if
it lies in the F-extension of the real semi-algebraic Hitchin component Hit(S, n), see
Definition 1.4.1. Let now F be a real closed field together with a non-trivial order-
compatible valuation υ. Recall from 1.4 that for g ∈ SL(n,F) totally hyperbolic and for
k = 1, . . . , n− 1 we define the k-length of g as

Lk(g) := −
k∑

j=1

υ(λj(g)) +

n∑
j=n−k+1

υ(λj(g)).

Lemma 8.3.2. Let F ⊇ R be a real closed field with non-trivial order-compatible
valuation υ (if F = R we assume υ = − log). Let ρ : π1(S) → PSL(n,F) be F-positive
weakly dynamics preserving with associated F-positive limit map ξρ : Fix(S)→ Flag(Fn).
Then for all k = 1, . . . , n− 1

Bρ
k := 1

2

(
B̃ρ

k + B̃ρ
n−k

)
,

is a positive cross-ratio on Fix(S), where for x = (x1, . . . , x4) ∈ Fix(S)[4] we define

M̃ρ
k (x) :=

ξρ(x1)
(n−k) ∧ ξρ(x3)(k)

ξρ(x1)(n−k) ∧ ξρ(x4)(k)
· ξρ(x2)

(n−k) ∧ ξρ(x4)(k)

ξρ(x2)(n−k) ∧ ξρ(x3)(k)
, and B̃ρ

k(x) = −υ(M̃
ρ
k (x)).

Here we adapt the same notation as in Section 4.1 to define M̃ρ
k (x). Furthermore, for

all e ̸= γ ∈ π1(S) we have
ℓBρ

k
(γ) = Lk(ρ(γ)).

Proof. Since ξρ is ρ-equivariant, it follows that Bρ
k is π1(S)-invariant. Symmetry and

additivity are computations.
For F = R and υ = − log in the proof of Theorem 8.3.1, Martone-Zhang prove that

already the expression B̃ρ
k(x) is positive for all x ∈ Fix(S)[4]. Equivalently M̃ρ

k (x) ≥ 1
for all x ∈ Fix(S)[4]. Thus for fixed x ∈ Fix(S)[4] the set

Sx :=
{
ρ ∈ HomHit(π1(S),PSL(n,R)) | M̃ρ

k (x) ≥ 1
}
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8.3. Positive cross-ratios for F-positive weakly dynamics preserving representations

is semi-algebraic by Lemma 5.3.6, and equal to HomHit(π1(S),PSL(n,R)). Hence by
the Tarski-Seidenberg transfer principle (Theorem 2.1.13) the same holds true for its F-
extension, i.e. (Sx)F = HomHit(π1(S),PSL(n,F)) for all x ∈ Fix(S)[4]. Since F-positive
weakly dynamics preserving representations are PGL(n,F)-conjugate to F-Hitchin rep-
resentations (Theorem A), Bρ

k is PGL(n,F)-invariant, and υ is order-compatible this
concludes the positivity of Bρ

k .
To show that ℓBρ

k
(γ) = Lk(ρ(γ)) we use similar arguments as in the proof of Pro-

position 7.4.1. Hence for y = (γ+, γ−, x, γx) we have using Equation (7.1)

M̃ρ
k (y) =

ξρ(γ
+)(n−k) ∧ ξρ(x)(k)

ξρ(γ+)(n−k) ∧ ρ(γ)ξρ(x)(k)
· ξρ(γ

−)(n−k) ∧ ρ(γ)ξρ(x)(k)

ξρ(γ−)(n−k) ∧ ξρ(x)(k)

=

1
λk+1·...·λn

1
λ1·...·λn−k

=
λ1 · . . . · λk

λn−k+1 · . . . · λn
,

where λ1 > . . . > λn are the eigenvalues of ρ(γ)′, a lift of ρ(γ) to SL(n,F). With the
definition of Bρ

k and the order-compatibility of υ, the claim follows.

We are ready to prove Theorem E, which we restate here.

Theorem E. Let F ⊇ R be a non-Archimedean real closed field with an order-compatible
valuation υ (assumed to be − log if F = R) and let ρ : π1(S) → PSL(n,F) be F-positive
and weakly dynamics preserving. Then for every k = 1, . . . , n−1, there exists a geodesic
current µkρ such that for any e ̸= γ ∈ π1(S) we have

i(µkρ, γ) = Lk(ρ(γ)).

The current µkρ is non-zero if and only if there exists γ ∈ π1(S) with υ(|tr(ρ(γ))|) < 0.

Proof. Lemma 8.3.2 shows that for every k = 1, . . . , n − 1 we can associate to ρ a
positive cross-ratio Bρ

k , whose period is equal to the k-length. Theorem 8.1.4 applied to
X = Fix(S) and B = Bρ

k provides a geodesic current µkρ with the desired intersection
property.

Left to show is the last statement. We only need to consider the non-Archimedean
case. If g ∈ SL(n,F) is totally hyperbolic with positive eigenvalues λ1(g) > . . . >
λn(g) > 0, then by order-compatibility of υ we have υ(λ1(g)) ≤ . . . ≤ υ(λn(g)). Thus
by an iterated application of the last statement of Lemma 8.2.2 we have

υ(tr(g)) = υ

( n∑
j=1

λj(g)

)
= min

j=1,...,n
υ(λj(g)) = υ(λ1(g)).

Furthermore, since det(g) = 1 we have λn(g) < 1 and thus υ(λn(g)) ≥ 0.
We first show one direction of the claim for k = 1. Recall that υ(x) = υ(−x) for all

x ∈ F (Lemma 8.2.2), and hence υ(tr(ρ(γ)) is independent of a choice of lift of ρ(γ) to
SL(n,F). If there exists γ ∈ π1(S) with υ(tr(ρ(γ))) < 0, then by the above remark, we
have

i(µ1ρ, γ) = L1(ρ(γ)) = −υ(λ1(ρ(γ))) + υ(λn(ρ(γ))) ≥ −υ(tr(ρ(γ))) > 0,
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and hence µ1ρ is non-zero. For k > 1 we note that Lk(ρ(γ)) ≥ L1(ρ(γ)) and hence µkρ ̸= 0.
Conversely, assume that µ1ρ is non-zero. Otal [Ota90, Théorème 2] proved that

geodesic currents are determined by their intersection function, and hence there exists
e ̸= γ ∈ π1(S) with

0 < i(µ1ρ, γ) = L1(ρ(γ)) = −υ
(

λ1(ρ(γ))
λn(ρ(γ))

)
.

Now assume by contradiction that υ(tr(ρ(γs))) ≥ 0 for all s ∈ N. Newton’s identities, see
e.g. [Kal00], imply that the coefficients of the characteristic polynomial of ρ(γ) belong
to the ring O := {x ∈ F | υ(x) ≥ 0}. Since O ⊆ F is a valuation ring, it is integrally
closed in F, see [EP05, Theorem 3.1.3.(1)], and hence λ1(ρ(γ)), . . . , λn(ρ(γ)) ∈ O. Since∏n

j=1 λj(ρ(γ)) = 1, it follows that λ1(ρ(γ))
λn(ρ(γ))

= λ1(ρ(γ))
2λ2(ρ(γ)) · · ·λn−1(ρ(γ)) ∈ O, a

contradiction. The same argument works for general k > 1.

The above theorem allows us to assign to closed points in the real spectrum com-
pactification of the Hitchin component RSpcl(Hit(S, n)) a projective class of a geodesic
current. Let us recall the following characterization from Section 3.3:

RSpcl(Hit(S, n)) ∼=

(ρ,Fρ)

∣∣∣∣∣∣
ρ : π1(S)→ PSL(n,Fρ) is Fρ-Hitchin,
Fρ ⊇ R real closed, ρ-minimal,
Fρ Archimedean over R[tr(Ad(ρ))]


/
∼ .

where Fρ is the ρ-minimal field; see Definition 3.3.1 and Theorem 3.3.4.

Lemma 8.3.3. For all k = 1, . . . , n− 1 the map

φk : RSp
cl(Hit(S, n))→ PCR+(Fix(S)),

[(ρ,Fρ)] 7→ [Bρ
k ]

is well-defined and continuous.

Let us show how this lemma implies Corollary F, which we recall here.

Corollary F. For all k = 1, . . . , n− 1 the map

RSpcl(Hit(S, n))→ PC (S),

[(ρ,F)] 7→
[
µkρ

]
is well-defined and continuous.

Proof. For every k = 1, . . . , n− 1 the map is given as the following composition of maps

RSpcl(Hit(S, n))→ PCR+(Fix(S))→ PC (S),

where the first map is continuous by Lemma 8.3.3, and the second map is given by
Theorem 8.1.4 (before projectivizing) and proven to be continuous.

Before we prove Lemma 8.3.3 we need some preliminary considerations.
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Lemma 8.3.4. Let (ρ,F) represent a point in RSpcl(Hit(S, n)) with F = Fρ the ρ-
minimal field (Definition 3.3.1). Let F be a finite symmetric generating set for π1(S)
and E = F 2n−1. Set

bρ :=
∑
γ∈E

tr(ρ(γ))2 ∈ F. (8.1)

Then bρ is positive and a big element in F.

Proof. Since bρ is a sum of squares, it is clearly positive. If (ρ,F) represents a closed
point then F, the minimal field of definition, is non-Archimedean by Theorem 3.3.4 and
of finite transcendence degree over R, hence contains a big element (Lemma 8.2.9). Since
the trace determines the representation (Theorem 3.1.3), we have that tr(ρ(γ))2 is big
for some γ ∈ π1(S). A result of Procesi [Pro76] tells us that there is a finite set of traces
that we need to consider (here the traces of the images of γ ∈ E under ρ suffice). Thus
bρ is big.

Thus to (ρ,F) we can associate the non-trivial order-compatible valuation υρ := υbρ
from Lemma 8.2.5, which is unique up to scaling by Lemma 8.2.8.

Lemma 8.3.5. If (ρ,Fρ) and (ρ′,Fρ′) represent the same point in RSpcl(Hit(S, n)), then

Bρ
k = Bρ′

k .

Proof. Let us abbreviate F := Fρ and F′ := Fρ′ . Also write b := bρ and b′ := bρ′

for the corresponding big elements defined in Equation (8.1). Since (ρ,F) and (ρ′,F′)
represent the same point, we can without loss of generality assume that there exists an
order-preserving isomorphism α : F→ F′ and g ∈ PSL(n,F′) such that for all γ ∈ π1(S)

α(ρ(γ)) = gρ′(γ)g−1.

We note that if ξρ′ is the limit map of ρ′ then gξρ′ is the limit map of α ◦ ρ. It is easy

to see that αM̃ρ
k = M̃α◦ρ

k = M̃ρ′

k . Since the trace is conjugation invariant we also have
bρ′ = bα◦ρ = α(b). Hence

Bρ
k = 1

2

(
logb(M̃

ρ
k ) + logb(M̃

ρ
n−k)

)
= 1

2

(
logα(b)(M̃

ρ′

k ) + logα(b)(M̃
ρ′

n−k)
)

= 1
2

(
logb′(M̃

ρ′

k ) + logb′(M̃
ρ′

n−k)
)

= Bρ′

k .

Proof of Lemma 8.3.3. For all k = 1, . . . , n−1 the map φk is well-defined by Lemma 8.3.5.
We would like to show that φk is continuous, where RSpcl(Hit(S, n)) is endowed with
the spectral topology, CR+(Fix(S)) with the topology of pointwise convergence and
PCR+(Fix(S)) with the quotient topology. The following sets form a subbasis of closed
sets for the topology on CR+(Fix(S)): For U ⊆ R≥0 closed and x = (x1, x2, x3, x4) ∈
Fix(S)[4], we define the closed set

C(U, x) = {b ∈ CR+(Fix(S)) | b(x) ∈ U}.
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A basic closed set is of the form

C([0, t], x) = {b ∈ CR+(Fix(S)) | b(x) ≤ t}

for t > 0.
By Lemma 8.3.5 we can lift φk to a map

φ̃k : RSp
cl(Hit(S, n))→ CR+(Fix(S)), [(ρ,Fρ)] 7→ Bρ

k

such that the diagram

RSpcl(Hit(S, n)) CR+(Fix(S))

PCR+(Fix(S))

φ̃k

φk

commutes. It suffices thus to show that φ̃k is continuous. We show that φ̃−1
k (C([0, t], x))

is closed in RSpcl(Hit(S, n)) for all t > 0 and x ∈ Fix(S)[4]. We have

φ̃−1
k (C([0, t], x)) =

{
[(ρ,F)] ∈ RSpcl(Hit(S, n)) | φ̃k([(ρ,F)]) ∈ C([0, t], x)

}
=
{
[(ρ,F)] ∈ RSpcl(Hit(S, n)) | Bρ

k(x) ≤ t
}

=
{
[(ρ,F)] ∈ RSpcl(Hit(S, n)) | logbρ

(
(M̃ρ

k (x)M̃
ρ
n−k(x))

1/2
)
≤ t
}

=
⋂
p
q
>t

{
[(ρ,F)] ∈ RSpcl(Hit(S, n)) |

(
M̃ρ

k (x)M̃
ρ
n−k(x)

)1/2 ≤ b p/q
ρ

}
=
⋂
p
q
>t

{
[(ρ,F)] ∈ RSpcl(Hit(S, n)) |

(
M̃ρ

k (x)M̃
ρ
n−k(x)

)q ≤ b2pρ }
The left hand side of the expression(

M̃ρ
k (x)M̃

ρ
n−k(x)

)q ≤ b2pρ
depends rationally on ρ, since all involved flags that are needed to define the left hand
side are the stable flags of ρ(γ1), . . . , ρ(γ4), where xi = γ+i . By Lemma 5.3.6, we know
that the stable flag depends rationally on the positive hyperbolic element. Thus⋂

p
q
>t

{
[(ρ,F)] ∈ RSpcl(Hit(S, n)) |

(
M̃ρ

k (x)M̃
ρ
n−k(x)

)q ≤ b2pρ } ⊆ RSpcl(Hit(S, n))

is closed, which was to prove.
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Appendix A.

Parametrization of configurations of
triples of flags by triple ratios

A.1. Triple ratios and low dimensions

The arguments follow closely [Bon23], that describe the real case. Let now F be any
field. At the end of Section 4.1 we already hinted at the fact that low-dimensional
cases are more general than it seems at first glance Let us make this precise. For
(E,F,G) ∈ Flag(F3)(3) and integers a, b, c ≥ 1 with a + b + c = n we consider the
(n− 3)-dimensional subspace

Wabc := E(a−1) + F (b−1) +G(c−1) ⊆ Fn.

We can define three flags E,F ,G in the 3-dimensional quotient space Fn/Wabc using the
projection Fn → Fn/Wabc. More precisely we have

E
(1)

:= E(a)/Wabc
∼= E(a)/E(a−1) ⊆ E(2)

:= E(a+1)/Wabc
∼= E(a+1)/E(a−1),

F
(1)

:= F (b)/Wabc
∼= F (b)/F (b−1) ⊆ F (2)

:= F (b+1)/Wabc
∼= F (b+1)/F (b−1),

G
(1)

:= G(c)/Wabc
∼= G(c)/G(c−1) ⊆ G(2)

:= G(c+1)/Wabc
∼= G(c+1)/G(c−1),

where the isomorphisms follow from the transversality of the flags (E,F,G).

Lemma A.1.1. Let (E,F,G) ∈ Flag(Fn)(3) be a transverse triple of flags, and let
a, b, c ≥ 1 be integers with a+ b+ c = n. Then the triple of flags (E,F ,G) in Fn/Wabc

constructed above is transverse.

Proof. By symmetry we only need to consider two cases.

Assume first that E
(1) ⊆ F (2)

. Then E(a)+F (b−1)+G(c−1) ⊆ E(a−1)+F (b+1)+G(c−1),
which contradicts the transversality of (E,F,G), since it implies that

E(a) + F (b+1) +G(c−1) ⊆ E(a−1) + F (b+1) +G(c−1),

and the left hand side has dimension a+ (b+ 1) + (c− 1) = n, whereas the right hand
side only has dimension (a− 1) + (b+ 1) + (c− 1) = n− 1.

Assume now that E
(1) ⊆ F (1)

+G
(1)

. Then E(a)+F (b−1)+G(c−1) ⊆ E(a−1)+F (b)+
G(c), which contradicts the transversality of (E,F,G), since it implies that

E(a) + F (b) +G(c) ⊆ E(a−1) + F (b) +G(c),

and the left hand side has dimension a+ b+ c = n, whereas the right hand side only has
dimension (a− 1) + b+ c = n− 1.
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In the following we relate the triple ratios of (E,F,G) to the triple ratios of (E,F ,G).
More precisely we have the following relation.

Proposition A.1.2. Let (E,F,G) ∈ Flag(Fn)(3) be a transverse triple of flags, and let
a, b, c ≥ 1 be integers with a+ b+ c = n. Then

T111(E,F ,G) = Tabc(E,F,G),

where E,F ,G are the transverse flags in the 3-dimensional quotient space Fn/(E(a−1)+
F (b−1) +G(c−1)).

Proof. Let us choose non-zero generators e(a−1) ∈
∧a−1E(a−1), f (b−1) ∈

∧b−1 F (b−1)

and g(c−1) ∈
∧c−1G(c−1), and vectors ea ∈ E(a), ea+1 ∈ E(a+1), fb ∈ F (b), fb+1 ∈ F (b+1),

gc ∈ G(c) and gc+1 ∈ G(c+1) in such a way that

e(a−1) ∧ ea ̸= 0 in
∧a

E(a), e(a−1) ∧ ea ∧ ea+1 ̸= 0 in
∧a+1

E(a+1)

f (b−1) ∧ fb ̸= 0 in
∧b

F (b), f (b−1) ∧ fb ∧ fb+1 ̸= 0 in
∧b+1

F (b+1)

g(c−1) ∧ gc ̸= 0 in
∧c

G(c), g(c−1) ∧ gc ∧ gc+1 ̸= 0 in
∧c+1

G(c+1).

We compute

Tabc(E,F,G) =
e(a−1) ∧ ea ∧ ea+1 ∧ f (b−1) ∧ fb ∧ g(c−1)

e(a−1) ∧ f (b−1) ∧ fb ∧ g(c−1) ∧ gc ∧ gc+1

· e
(a−1) ∧ ea ∧ f (b−1) ∧ g(c−1) ∧ gc ∧ gc+1

e(a−1) ∧ ea ∧ f (b−1) ∧ fb ∧ fb+1 ∧ g(c−1)

· e
(a−1) ∧ f (b−1) ∧ fb ∧ fb+1 ∧ g(c−1) ∧ gc
e(a−1) ∧ ea ∧ ea+1 ∧ f (b−1) ∧ g(c−1) ∧ gc

=
ēa ∧ ēa+1 ∧ f̄b
f̄b ∧ ḡc ∧ ḡc+1

· ēa ∧ ḡc ∧ ḡc+1

ēa ∧ f̄b ∧ f̄b+1
· f̄b ∧ f̄b+1 ∧ ḡc
ēa ∧ ēa+1 ∧ ḡc

= T111(E,F ,G).

A.2. Snakes and their associated bases

Let A ⊆ Fn be a linear subspace. The dual subspace of A is the linear subspace A⊥ ⊆
(Fn)∗, the space of linear functionals on Fn that vanish on A. If A is a-dimensional,
then A⊥ is (n − a)-dimensional. Let (E,F,G) ∈ Flag(Fn)(3). We will associate a line
decomposition of (Fn)∗ using the flags E, F and G, and a so-called snake. To define
snakes, we have to introduce some notation.

Recall that the triple ratios are indexed by integers a, b, c > 0 with a+ b+ c = n. It
is convenient to think of these arranged in a discrete triangle

Θn = {(a, b, c) ∈ Z3 | a+ b+ c = n, a, b, c ≥ 0}.

We also define the interior of Θn by

int(Θn) = {(a, b, c) ∈ Z3 | a+ b+ c = n, a, b, c > 0}.
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To remember the expressions e(a
′) ∧ f (b′) ∧ g(c′) ∈

∧n Fn that appear in the definition
of the triples ratios Tabc(E,F,G) (Definition 4.1.2), we can visualize them as forming a
small hexagon in Θn around (a, b, c) ∈ Θn. Whether they appear in the numerator or
denominator alternates as we go around the hexagon.

Figure A.1.: The discrete triangle Θn (left), its interior int(Θn) and visualizing the (abc)-
triple ratio (right).

Definition A.2.1. A snake σ is a sequence of points σ(k) = (αk, βk, γk) in Θn−1 for
k = 1, . . . n such that

(1) σ(1) = (n− 1, 0, 0), and

(2) σ(k + 1) =

{
(αk − 1, βk + 1, γk), or

(αk − 1, βk, γk + 1).

The conditions mean that a snake always starts at the bottom left of the discrete
triangle Θn−1 and can only go up or right. We always have αk = n−k for all k = 1, . . . , n.
There are two special snakes σtop and σbot, called the top and bottom snakes, defined by

σtop(k) = (n− k, k − 1, 0),

σbot(k) = (n− k, 0, k − 1) for all k = 1, . . . , n.
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Figure A.2.: A snake (left) and the top and bottom snakes (right) in Θn−1.

Recall that we would like to define a line decomposition of (Fn)∗ using the transverse
flag triple (E,F,G) and a snake σ in Θn−1. For σ(k) = (αk, βk, γk) consider

Lk :=
(
E(αk) + F (βk) +G(γk)

)⊥
⊆ (Fn)∗

for all k = 1, . . . , n. Since (E,F,G) is transverse, dim(E(αk) + F (βk) + G(γk)) = αk +
βk + γk = n− 1 (see the sentence after Definition 4.0.2), and hence dim(Lk) = 1.

Lemma A.2.2. The lines L1, . . . , Ln ⊆ (Fn)∗ associated to a snake σ in Θn−1 and
(E,F,G) ∈ Flag(Fn)(3) define a line decomposition of (Fn)∗, i.e.

(Fn)∗ =
n⊕

k=1

Lk.

Proof. We already know that the Lk’s are all 1-dimensional. By definition each Lk ⊆
E(αk)

⊥
= E(n−k)⊥, since αk = n − k. An induction shows that L1, . . . , Lk generate

E(n−k)⊥, and hence L1, . . . , Ln generate E(0)⊥ = (Fn)∗. For dimension reasons the lines
are in direct sum.

For the special snakes σtop and σbot we obtain the following line decompositions of
(Fn)∗ associated to the transverse triple (E,F,G), namely for all k = 1, . . . , n we have

Ltop
k =

(
E(n−k) + F (k−1)

)⊥
, Lbot

k =
(
E(n−k) +G(k−1)

)⊥
.

We would like to refine this information by choosing non-zero vectors uk ∈ Lk in such a
way, that u2, . . . , un are uniquely determined by u1, (E,F,G) and σ. The way that we
will define the vectors uk will show that if we scale u1 by x ∈ F \ {0} then u2, . . . , un
will be scaled by x as well. Thus the so constructed basis of (Fn)∗ will be unique up to
scaling, and we will call it the basis associated to (E,F,G) by σ.

Let (E,F,G) ∈ Flag(Fn)(3) and σ a snake in Θn−1. We define inductively the basis
of (Fn)∗ associated to (E,F,G) by σ. Choose u1 ∈ L1 = (E(n−1))⊥ a non-zero generator.
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From now on, uk ∈ Lk for k ≥ 2 will be uniquely defined by u1. By definition of σ we
have

σ(k + 1) =

{
(αk − 1, βk + 1, γk), or

(αk − 1, βk, γk + 1).

In the first case, the snake slithers up, in the second case, it slithers right. Depending
on these two ways the snake can slither, let

Lup
k+1 :=

(
E(αk−1) + F (βk+1) +G(γk)

)⊥
,

Lrt
k+1 :=

(
E(αk−1) + F (βk) +G(γk+1)

)⊥
be the two possibilities for Lk+1. Then L

up
k+1, L

rt
k+1 and Lk all belong to the 2-dimensional

plane Pk := (E(αk−1) + F (βk) + G(γk))⊥, and all three lines are pairwise distinct, i.e.
Lup
k+1 ̸= Lrt

k+1, L
up
k+1 ̸= Lk and Lrt

k+1 ̸= Lk. Since they are all contained in Pk which is
2-dimensional, they are linearly dependent, and there exists unique non-zero elements
uupk+1 ∈ L

up
k+1 and urtk+1 ∈ Lrt

k+1 such that

uk + uupk+1 + urtk+1 = 0.

We define

uk+1 :=

{
uupk+1 if Lk+1 = Lup

k+1,

−urtk+1 if Lk+1 = Lrt
k+1.

Definition A.2.3. The basis B∗ := {u1, . . . , un} is the basis of (Fn)∗ associated to
(E,F,G) by σ. For the special snakes σtop and σbot we obtain two bases B∗top =

{utop1 , . . . , utopn } and B∗bot = {ubot1 , . . . , ubotn } of (Fn)∗.

Example A.2.4. Let (E,F,G) be a triple of transverse flags. We would like to compute
B∗top = {utop1 , . . . , utopn }. To ease notation we denote the vectors by u1, . . . , un. Choose a
basis e1, . . . , en of Fn such that for all i = 0, . . . , n, we have

E(i) = ⟨e1, . . . , ei⟩, F (i) = ⟨en, . . . , en−i+1⟩, G(1) = ⟨e1 + . . .+ en⟩.

Denote by e∗1, . . . , e
∗
n its dual basis. By definition of σtop, for all i = 1, . . . , n, we have

Lup
i =

(
E(n−i) + F (i−1)

)⊥
= ⟨e1, . . . , en−i, en, . . . , en−i+2⟩⊥ = ⟨e∗n−i+1⟩,

Lrt
i =

(
E(n−i) + F (i−2) +G(1)

)⊥
= ⟨e1, . . . , en−i, en, . . . , en−i+3,

n∑
j=1

ej⟩⊥

= ⟨e∗n−i+1 − e∗n−i+2⟩.

Recall that the vectors u1, . . . , un are defined recursively. Choose u1 = e∗n. Then ui =
uupi ∈ ⟨e∗n−i+1⟩ with ui−1+u

up
i +urti = 0 and urti ∈ ⟨e∗n−i+1− e∗n−i+2⟩. Set ui = µie

∗
n−i+1,

and urti = νi(e
∗
n−i+1−e∗n−i+2) for some µi, νi ∈ F\{0}. We need to determine µi. Putting

it together we obtain

0 = µi−1e
∗
n−i+2 + µie

∗
n−i+1 + νi(e

∗
n−i+1 − e∗n−i+2) =⇒ −µi = νi = µi−1,

and thus, using µ1 = 1,

ui = µie
∗
n−i+1 = (−1)i−1e∗n−i+1 for all i = 1, . . . , n.
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A.3. Snake moves

Recall that if A and A′ are two bases of Fn the base change matrix TA′
A expressing A′

in A is defined as follows: we write the i-th basis vector of A′ in the basis A and the
corresponding coefficients form the i-th column of TA′

A . We would like to compute the

base change matrix T
B∗
bot

B∗
top

expressing the basis B∗bot in the basis B∗top. For this we make

use of so-called snake moves: the diamond and the boundary move. They allow us to
replace a snake by a different snake, which differs from the original one in exactly one
point. If we iteratively apply these moves we can transform σtop into σbot.

Definition A.3.1. A diamond move at step k + 1 replaces a snake σ given by

σ(k) = (αk, βk, γk),

σ(k + 1) = (αk − 1, βk + 1, γk),

σ(k + 2) = (αk − 2, βk + 1, γk + 1)

by a snake σ′ given by

σ′(j) = σ(j) for all j ≤ k
σ′(k + 1) = (αk − 1, βk, γk + 1),

σ′(j) = σ(j) for all j ≥ k + 2.

The snakes σ and σ′ differ only at the point k + 1.

Figure A.3.: A diamond move at step k + 1.

Let σ and σ′ be two snakes in Θn−1 such that σ′ is obtained from σ by a diamond
move at step k + 1. Let B∗ and B′∗ be the two bases of (Fn)∗ associated to (E,F,G) ∈
Flag(Fn)(3) by the snakes σ respectively σ′. We now relate the change of basis to the
triple ratio T(αk−1,βk+1,γk+1)(E,F,G). This can be visualized by drawing Θn−1 and Θn

in the same picture, and by observing that we obtain the snake σ′ from the snake σ in
Θn−1 by sweeping over the vertex (αk − 1, βk + 1, γk + 1) in Θn, see Figure A.4. This is
formalized in the following proposition.
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Figure A.4.: The visualization of the base change of a diamond move at step k + 1: the
snake in Θn−1 sweeps through the vertex (αk − 1, βk + 1, γk + 1) in Θn.

Proposition A.3.2. Let σ and σ′ be two snakes in Θn−1 such that σ′ is obtained from
σ by a diamond move at step k + 1. Let B∗ = {u1, . . . , un} and B′∗ = {u′1, . . . , u′n} be
the two bases of (Fn)∗ associated to (E,F,G) ∈ Flag(Fn)(3) by the snakes σ respectively
σ′. Then, after a possible normalization so that u1 = u′1, we have for all i = 1, . . . , n

u′i =


ui, if i ≤ k,
uk + uk+1, if i = k + 1,

T(αk−1,βk+1,γk+1)(E,F,G)ui, if i ≥ k + 2,

where σ(k) = (αk, βk, γk) and xk := T(αk−1,βk+1,γk+1)(E,F,G) ∈ F \ {0} denotes the
(αk − 1, βk + 1, γk + 1)-triple ratio associated to (E,F,G). In particular, we have

TB′∗
B∗ =


Idk

1 1
0 1

xk Idn−k−2

 ,

where Idm denotes the m×m identity matrix.

Proof. We structure the proof in four steps.
Step 1: i ≤ k. Because σ and σ′ coincide at all points σ(i) = σ′(i) for all i ≤ k, we

have u′i = ui for all i ≤ k once we have normalized such that u′1 = u1.
Step 2: i = k + 1. Recall that

uk+1 :=

{
uupk+1 if Lk+1 = Lup

k+1,

−urtk+1 if Lk+1 = Lrt
k+1,
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with uupk+1 and urtk+1 unique such that uk + uupk+1 + urtk+1 = 0. Since B∗ is associated to
(E,F,G) by σ we are in the case that

Lk+1 = Lup
k+1.

Thus uk+1 = uupk+1. On the other hand, for σ′ we are in the case that

L′
k+1 = (L′

k+1)
rt,

and thus u′k+1 = −(u′k+1)
rt. Since σ(k) = σ′(k) we have by uniqueness that

uupk+1 = (u′k+1)
up and urtk+1 = (u′k+1)

rt.

Putting this together we obtain

u′k+1 = −(u′k+1)
rt = −urtk+1 = uk + uupk+1 = uk + uk+1,

which is what we had to prove.
Step 3: i > k + 2. Let us assume that we know already that

u′k+2 = T(αk−1,βk+1,γk+1)(E,F,G)uk+2 (which will be proven in Step 4). Since σ(i) =
σ′(i) for all i ≥ k + 2, this assumption directly implies that

u′i = T(αk−1,βk+1,γk+1)(E,F,G)ui,

for all i > k + 2, since the definition of ui only uses ui−1 and σ(i).
Step 4: i = k + 2. It is left to show that

u′k+2 = T(αk−1,βk+1,γk+1)(E,F,G)uk+2,

and we will see how the triple ratios appear. Recall that σ(k + 2) = σ′(k + 2) =
(αk − 2, βk + 1, γk + 1). Thus uk+2, u

′
k+2 ∈ Lk+2 = (E(αk−2) + F (βk+1) +G(γk+1))⊥, and

hence there exists x ∈ F \ {0} such that

u′k+2 = xuk+2.

We need to show that x = xk = T(αk−1,βk+1,γk+1)(E,F,G).
By definition of uk+2 and u′k+2 we have

uk+1 − uk+2 ∈
(
E(αk−2) + F (βk+2) +G(γk)

)⊥
,

u′k+1 + u′k+2 ∈
(
E(αk−2) + F (βk) +G(γk+2)

)⊥
.

Figure A.5.: The definition of uk+2 and u′k+2.
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Thus the linear forms uk = u′k, uk+1, u
′
k+1, uk+2 and u′k+2 in (Fn)∗ are elements of

(E(αk−2) + F (βk) + G(γk))⊥, hence they all vanish on E(αk−2) + F (βk) + G(γk) which is
(n− 3)-dimensional. Hence we have induced linear forms

uk, uk+1, uk+2, u
′
k, u

′
k+1, u

′
k+2 : Vk → F

on the 3-dimensional quotient space Vk := Fn/(E(αk−2) + F (βk) +G(γk)).
The flags E, F , G ∈ Flag(Fn) induce flags E, F , G ∈ Flag(Vk) by

E
(1)

= E(αk−1)/E(αk−2) ⊆ E(2)
= E(αk)/E(αk−2)

F
(1)

= F (βk+1)/F (βk) ⊆ F (2)
= F (βk+2)/F (βk)

G
(1)

= G(γk+1)/G(γk) ⊆ G(2)
= G(γk+2)/G(γk),

as in Appendix A.1. The transversality of (E,F,G) implies that (E,F ,G) is transverse
in Vk, see Lemma A.1.1. In particular, (F ,G) is transverse, and we can choose a basis
{f̄ , ḡ, h̄} for Vk such that

f̄ ∈ F (1)
, ḡ ∈ G(1)

, and h̄ ∈ F (2) ∩G(2)
.

Choose a generator ē1 ∈ E
(1)

. Since (E,F ,G) is transverse, the coefficients of ē1 in the
basis {f̄ , ḡ, h̄} are non-zero. We can therefore rescale the basis elements in such a way
that

ē1 = f̄ + ḡ + h̄.

Finally, add a vector ē2 to form a basis {ē1, ē2} of E
(2)

. We can without loss of generality
assume that ē2 = yf̄ + zḡ with y, z ∈ F \ {0}. By definition of the triple ratios and
Proposition A.1.2 we have

T(αk−1,βk+1,γk+1)(E,F,G) = T111(E,F ,G)

=
ē(2) ∧ f̄ (1)

f̄ (1) ∧ ḡ(2)
· ē

(1) ∧ ḡ(2)

ē(1) ∧ f̄ (2)
· f̄

(2) ∧ ḡ(1)

ē(2) ∧ ḡ(1)

=
(f̄ + ḡ + h̄) ∧ (yf̄ + zḡ) ∧ f̄

f̄ ∧ ḡ ∧ h̄
· (f̄ + ḡ + h̄) ∧ ḡ ∧ h̄
(f̄ + ḡ + h̄) ∧ f̄ ∧ h̄

· f̄ ∧ h̄ ∧ ḡ
(f̄ + ḡ + h̄) ∧ (yf̄ + zḡ) ∧ ḡ

=
h̄ ∧ zḡ ∧ f̄
f̄ ∧ ḡ ∧ h̄

· f̄ ∧ ḡ ∧ h̄
ḡ ∧ f̄ ∧ h̄

· f̄ ∧ h̄ ∧ ḡ
h̄ ∧ yf̄ ∧ ḡ

= −z
y
. (A.1)

The next step is to express the linear forms uk, uk+1, uk+2, u
′
k, u

′
k+1, u

′
k+2 in the dual

basis {f̄∗, ḡ∗, h̄∗}. Recall uk+1 − uk+2 ∈ (E(αk−2) + F (βk+2) +G(γk))⊥, thus uk+1 − uk+2

vanishes on F
(2)

= F (βk+2)/F (βk). By definition of the dual basis, we have

uk+1 − uk+2 = aḡ∗

87



Appendix A. Parametrization of configurations of triples of flags by triple ratios

for some 0 ̸= a ∈ F. Similarly, we have u′k+1+u
′
k+2 ∈ (E(αk−2)+F (βk)+G(γk+2))⊥, thus

u′k+1 + u′k+2 vanishes on G
(2)

= G(γk+2)/G(γk). Hence

u′k+1 + u′k+2 = bf̄∗

for some 0 ̸= b ∈ F. Since u′k+2 = xuk+2 ∈ (E(αk−2) + F (βk+1) + G(γk+1))⊥ the form

u′k+2 = xuk+2 vanishes on F
(1)

+G
(1)

= F (βk+1)/F (βk) +G(γk+1)/G(γk), hence

u′k+2 = xuk+2 = ch̄∗

for some 0 ̸= c ∈ F. Putting everything together we obtain

uk+1 = aḡ∗ + uk+2 = aḡ∗ +
c

x
h̄∗

u′k+1 = bf̄∗ − u′k+2 = bf̄∗ − ch̄∗

uk = u′k+1 − uk+1 = bf̄∗ − aḡ∗ − c
(
1 +

1

x

)
h̄∗

We recall that

uk ∈
(
E(αk) + F (βk) +G(γk)

)⊥
uk+1 ∈

(
E(αk−1) + F (βk+1) +G(γk)

)⊥
u′k+1 ∈

(
E(αk−1) + F (βk) +G(γk+1)

)⊥
,

and hence uk vanishes on E
(2)

, uk+1 vanishes on E
(1)

+ F
(1)

and u′k+1 vanishes on

E
(1)

+G
(1)

. Remembering that ē1 = f̄ + ḡ + h̄ and ē2 = yf̄ + zḡ we obtain

0 = uk(ē1) = b− a− c(1 + 1
x)

0 = uk+1(ē1) = a+ c
x

0 = u′k+1(ē1) = b− c
0 = uk(ē2) = uk(yf̄ + zḡ) = by − az

We solve this system of equations and obtain

b = c, a = − c
x , cy = − c

xz =⇒ x = − z
y .

Thus we have shown that x = T(αk−1,βk+1,γk+1)(E,F,G), compare to Equation (A.1),
which finishes the proof.

Definition A.3.3. A boundary move replaces a snake σ ending with

σ(n− 1) = (1, βn−1, γn−1),

σ(n) = (0, βn−1 + 1, γn−1)

by a snake σ′ given by

σ′(j) = σ(j) for all j ≤ n− 1

σ′(n) = (0, βn−1, γn−1 + 1).

The snakes σ and σ′ differ only at the point n.
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A.4. Top and bottom snakes

Figure A.6.: A boundary move.

Proposition A.3.4. Let σ and σ′ be two snakes in Θn−1 such that σ′ is obtained from
σ by a boundary move. Let B∗ = {u1, . . . , un} and B′∗ = {u′1, . . . , u′n} be the two bases
of (Fn)∗ associated to (E,F,G) ∈ Flag(Fn)(3) by the snakes σ respectively σ′. Then,
after a possible normalization so that u1 = u′1, we have

u′i =

{
ui, if i ≤ n− 1,

un−1 + un, if i = n

for all i = 1, . . . , n. In particular, we have

TB′∗
B∗ =

 Idn−2

1 1
0 1

 .

Proof. For i ≤ n− 1 the snakes σ and σ′ agree. Hence u′i = ui for all i ≤ n− 1.
Let now i = n. By definition of σ, we have un = uupn with uupn ∈ (E(0)+F (βn−1+1)+

G(γn−1))⊥ such that un−1 + uupn + urtn = 0. For σ′ we have u′n = −(u′n)rt with (u′n)
rt ∈

(E(0) +F (βn−1) +G(γn−1+1))⊥ such that u′n−1 + (u′n)
up + (u′n)

rt = 0. Since un−1 = u′n−1,
we have by uniqueness that uupn = (u′n)

up and urtn = (u′n)
rt. Thus

u′n = −(u′n)rt = −urtn = un−1 + uupn = un−1 + un,

which is what we had to prove.

A.4. Top and bottom snakes

Recall the two special snakes σtop and σbot defined for all k = 1, . . . , n by

σtop(k) = (n− k, k − 1, 0),

σbot(k) = (n− k, 0, k − 1),

and the associated bases B∗top and B∗bot of (Fn)∗. Denote by Btop
= {vtop1 , . . . , vtopn } and Bbot = {vbot1 , . . . , vbotn } the bases of (Fn)∗∗ ∼= Fn dual to B∗top
respectively B∗bot, i.e.

utopi (vtopj ) = δij , u
bot
i (vbotj ) = δij .

The following proposition tells us how we can recover the transverse triple (E,F,G) from
Btop and Bbot.
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Appendix A. Parametrization of configurations of triples of flags by triple ratios

Lemma A.4.1. For all integers a, b, c ≥ 0 we have

(1) E(a) = ⟨vtopn−a+1, . . . , v
top
n ⟩ = ⟨vbotn−a+1, . . . , v

bot
n ⟩,

(2) F (b) = ⟨vtop1 , . . . , vtopb ⟩,

(3) G(c) = ⟨vbot1 , . . . , vbotc ⟩.

Proof.

(1) By definition of σtop and B∗top we have utopk ∈ Ltop
k = (E(n−k) + F (k−1))⊥, which

implies that utop1 , . . . , utopk ∈ (E(n−k))⊥ (since if i ≤ k then E(n−k) ⊆ E(n−i) and

hence (E(n−i))⊥ ⊆ (E(n−k))⊥). Now utopi (vtopj ) = 0 if i ̸= j shows that

vtopk+1, . . . , v
top
n ∈ ((E(n−k))⊥)⊥ = E(n−k).

Dimensionality reasons now imply that ⟨vtopk+1, . . . , v
top
n ⟩ = E(n−k), which shows the

first claim. The same argument applied to σbot and Bbot using Lbot
k = (E(n−k) +

G(k−1))⊥ shows that ⟨vbotk+1, . . . , v
bot
n ⟩ = E(n−k).

(2) As in the proof of (1), we have utopk ∈ (E(n−k) + F (k−1))⊥. Hence utopk , . . . , utopn ∈
(F (k−1))⊥ (since if i ≥ k then F (k−1) ⊆ F (i−1) and hence (F (i−1))⊥ ⊆ (F (k−1))⊥).
Again, utopi (vtopj ) = 0 if i ̸= j shows that

vtop1 , . . . , vtopk−1 ∈ ((F (k−1))⊥)⊥ = F (k−1),

and by dimension reasons we have ⟨vtop1 , . . . , vtopk−1⟩ = F (k−1).

(3) The same argument as in the proof of (2) applied to σbot and Bbot implies (3).

We defined in Definition 4.3.2 the matrices Ek := Idn + Ek,k+1 for k = 1, . . . , n− 1
and Fk := E⊤

k , the transpose of Ek, in GL(n,F). Furthermore, for x ∈ F \ {0} and
k = 1, . . . , n we set

Hk(x) := diag(1, . . . , 1︸ ︷︷ ︸
k

, x, . . . , x︸ ︷︷ ︸
n−k

).

With these notations we see from Proposition A.3.2 and Proposition A.3.4 that the
matrix representing the base change of a diamond move at the (k + 1)-st step is

Idk
1 1
0 1

xk Idn−k−2

 = EkHk+1(xk) = Hk+1(xk)Ek,

and the matrix representing the base change of a boundary move is Idn−2

1 1
0 1

 = En−1.
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A.4. Top and bottom snakes

Proposition A.4.2. Let σtop and σbot be the top and bottom snakes in Θn−1. Le B∗top
and B∗bot be the corresponding bases of (Fn)∗. After normalizing such that utop1 = ubot1 ,
the base change matrix expressing B∗bot in B∗top is given by

T
B∗
bot

B∗
top

=
n−1∏
k=1

En−1

(
n−k−1∏
i=1

Hn−i(xi,n−i−k,k)En−i−1

)
, (A.2)

where xi,n−i−k,k := Ti,n−i−k,k(E,F,G) denotes the (i, n−i−k, k)-triple ratio of (E,F,G).

Proof. The idea of the proof is to modify the top snake σtop by a sequence of diamond
and boundary moves until we arrive at the bottom snake σbot. Let us denote σ1 := σtop.
We start with one boundary move, followed by n − 2 diamond moves starting at step
n − 1 up to step 2, and we call the snake obtained in this way σ2. It is parallel to σ1,
slithering only upwards from position 2 on, more precisely,

σ2(1) = (n− 1, 0, 0), σ2(k) = (n− k, k − 2, 1) for all k ≥ 2.

We modify σ2 by one boundary move, followed by n − 3 diamond moves at step n − 1
up to step 3 to obtain σ3. We continue this process and obtain for all i = 1, . . . , n

σi(k) =

{
(n− k, 0, k − 1), if k < i,

(n− k, k − i, i− 1), if k ≥ i

with σn = σbot.

Figure A.7.: The sequence of snake moves from σtop to σbot.
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Appendix A. Parametrization of configurations of triples of flags by triple ratios

We make use of the following observation: If A1, A2 and A3 are three bases of a vector
space V then

TA3
A1

= TA2
A1

TA3
A2
.

Denote by B∗k the bases associated to (E,F,G) of (Fn)∗ by the snake σk for all k =

1, . . . , n. Let us describe T
B∗
2

B∗
1
. By the above remark, Proposition A.3.2 and Proposi-

tion A.3.4 we obtain the following, remembering the sequence of snake moves from σ1
to σ2:

T
B∗
2

B∗
1
= En−1 · (Hn−1(x1,n−2,1)En−2) · (Hn−2(x2,n−3,1)En−3)

· (Hn−3(x3,n−4,1)En−4) · . . . · (H2(xn−2,1,1)E1)

= En−1

(
n−2∏
i=1

Hn−i(xi,n−i−1,1)En−i−1

)
,

where xabc = Tabc(E,F,G) denotes the (abc)-triple ratio for all integers a, b, c ≥ 1 with
a+ b+ c = n. Similarly, we obtain

T
B∗
3

B∗
2
= En−1 · (Hn−1(x1,n−3,2)En−2) · (Hn−2(x2,n−4,2)En−3)

· (Hn−3(x3,n−5,2)En−4) · . . . · (H3(xn−3,1,2)E2)

= En−1

(
n−3∏
i=1

Hn−i(xi,n−i−2,2)En−i−1

)
.

More generally, from B∗k to B∗k+1 the base change is given by

T
B∗
k+1

B∗
k

= En−1

(
n−k−1∏
i=1

Hn−i(xi,n−i−k,k)En−i−1

)
.

Putting everything together, we obtain

T
B∗
bot

B∗
top

=

n−1∏
k=1

T
B∗
k+1

B∗
k

=

n−1∏
k=1

En−1

(
n−k−1∏
i=1

Hn−i(xi,n−i−k,k)En−i−1

)
.

Corollary A.4.3. Let σtop and σbot be the top and bottom snakes in Θn−1. Let Btop
and Bbot be the to (E,F,G) ∈ Flag(Fn)(3) by σtop and σbot associated bases of Fn. After
normalizing such that vtop1 = vbot1 , the base change matrix expressing Btop in Bbot is
given by

T
Btop

Bbot
=
(
T
B∗
bot

B∗
top

)⊤
=

n−1∏
k=1

((
k−1∏
i=1

Fn−k+i−1Hn−k+i(xk−i,i,n−k)

)
Fn−1

)
, (A.3)

where xabc = Tabc(E,F,G) denotes the (abc)-triple ratio for all integers a, b, c ≥ 1 with
a+ b+ c = n, and Fk = E⊤

k .
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A.5. Proof that triple ratios parametrize

Proof. This follows from Proposition A.4.2 and the following general fact from linear
algebra: If A and A′ are two bases of a vector space V and A∗ and A′∗ their dual bases,
then

TA′
A =

(
(TA′∗

A∗ )−1
)⊤

=
(
TA∗
A′∗

)⊤
.

A.5. Proof that triple ratios parametrize

We are now ready to prove Theorem 4.1.3, which we recall here.

Theorem 4.1.3 ([FG06, Section 9], [Bon23, Theorem 4.1]). Let F be a field, and
(E,F,G), (E′, F ′, G′) ∈ Flag(Fn)(3) two triples of transverse flags. Then there exists
φ ∈ PGL(Fn) with φ(E,F,G) = (E′, F ′, G′) (which is unique by Proposition 4.1.1) if
and only if

Tabc(E,F,G) = Tabc(E
′, F ′, G′)

for all a+ b+ c = n, a, b, c ∈ N>0.
Furthermore, for all (a, b, c) ∈ N3

>0 such that a + b + c = n, pick xabc ∈ F \ {0}.
Then there exists a triple of transverse flags (E,F,G) such that Tabc(E,F,G) = xabc for
all such (a, b, c) ∈ N3

>0. Thus there is a one-to-one correspondence between

Conf (3)(F)←→ (F \ {0})
(n−1)(n−2)

2 .

Proof. We only prove the first part of the statement. It is clear by the definition of the
triple ratios, that if (E,F,G) and (E′, F ′, G′) are two triples of transverse flags that lie in
the same PGL(Fn)-orbit, then their triple ratios agree. For the converse direction, recall
that we would like to show that if (E,F,G) and (E′, F ′, G′) are two triples of transverse
flags with the same triple ratios, then there exists a unique element in PGL(Fn) that
sends (E,F,G) to (E′, F ′, G′). Let Btop, Bbot and B′top, B′bot be the bases of Fn associated
to (E,F,G) respectively (E′, F ′, G′) by the top and bottom snakes σtop and σbot in
Θn−1, normalized such that vtop1 = vbot1 = (v′1)

top = (v′1)
bot. Let φ ∈ GL(Fn) be a

linear automorphism that sends Btop to B′top. Since (E,F,G) and (E′, F ′, G′) have the
same triple ratios, the base change matrix from Bbot to Btop is equal to the base change
matrix from B′bot to B′top, see Corollary A.4.3: the base change is completely determined
by the triple ratios. This implies that φ maps Bbot to B′bot. By Lemma A.4.1, φ maps
(E,F,G) to (E′, F ′, G′). Let ψ ∈ GL(Fn) be another linear automorphism of Fn with
the property that it maps (E,F,G) to (E′, F ′, G′), then ψ−1 ◦φ stabilizes the transverse
triple (E,F,G). By Proposition 4.1.1, φ and ψ define the same element of PGL(Fn),
which proves the claim.
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Appendix B.

Description of the base change by triple
and double ratios

B.1. Associated bases and their base changes

Let (E,F,G) be a transverse triple of flags in Fn. We have seen how we can associate
to (E,F,G) two bases of (Fn)∗ (and hence, by taking their duals, of Fn) by the top
and bottom snakes. It turns out, that if we consider this triple only up to cyclic per-
mutation, we can in fact, associate to (E,F,G) six bases of Fn by the top and bottom
snakes: Namely, consider the two bases associated to the triple (F,G,E) and to the
triple (G,E, F ) by the top and bottom snakes.

Figure B.1.: The six bases associated to a cyclically ordered triple of transverse flags
(E,F,G).

As in the above figure, we denote them by

BEF , BEG, BGE , BGF , BFG and BFE .

If it is not clear from the context what is the third flag G that determines the basis
corresponding to the line decomposition given by E and F , we sometimes write BEF,G

instead of BEF . Their dual bases will be decorated with an ∗. With this new notation, we
can give an interpretation of the matrices defined in Definition 4.3.2 and Definition 4.3.3
as base change matrices between the above bases.

Proposition B.1.1 ([FG06, Proposition 9.2]). Let (E,F,G) be a transverse triple of
flags in Fn, and BEF , BEG, BGE , BGF , BFG and BFE the six projective bases of Fn

associated to it by the top and bottom snakes. Then we have the following expressions
for the base change matrices:
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Appendix B. Description of the base change by triple and double ratios

(1) TBEF
BEG

=
∏n−1

k=1

((∏k−1
i=1 Fn−k+i−1Hn−k+i(xk−i,i,n−k)

)
Fn−1

)
=M(E,F,G),

(2) TBEF
BFE

=


(−1)n−1

. .
.

−1
1

−1
1

 = S,

(3) TBGE
BFE

= SM−1
(E,F,G)S

−1.

Proof.

(1) This is Corollary A.4.3.

(2) Choose a basis e1, . . . , en of Fn such that for all i = 0, . . . , n

E(i) = ⟨e1, . . . , ei⟩, F (i) = ⟨en, . . . , en−i+1⟩, G(1) = ⟨e1 + . . .+ en⟩.

Denote by e∗1, . . . , e
∗
n its dual basis. After normalizing so that u1 = e∗n, we know

by Example A.2.4 that

ui = (−1)i−1e∗n−i+1 for all i = 1, . . . , n.

On the other hand, the vectors U1, . . . , Un ∈ B∗FE are defined by the condition
Ui = −U rt

i ∈ ⟨e∗n−i+1⟩ with Ui−1 + Uup
i + U rt

i = 0 and Uup
i ∈ ⟨e∗n−i+1 − e∗n−i+2⟩.

Set Ui =Mie
∗
n−i+1, and U

up
i = Ni(e

∗
n−i+1 − e∗n−i+2). By the same argument as in

Example A.2.4 we obtain, using M1 = 1 after normalizing such that u1 = U1,

Ui =Mie
∗
n−i+1 = e∗n−i+1 for all i = 1, . . . , n.

Thus we have T
B∗
EF

B∗
FE

=


(−1)n−1

. .
.

−1
1

−1
1

 = S, and hence

TBEF
BFE

=
(
T
B∗
EF

B∗
FE

)−1
= (S−1)⊤ = S.

(3) This follows from linear algebra and (1) and (2), since

TBGE
BFE

= TBEF
BFE

TBEG
BEF

TBGE
BEG

= SM−1
(E,F,G)S

−1.

B.2. Double ratios and base changes

We now turn to the question how double ratios and the associated bases defined in
Definition A.2.3 relate. The proof is adapted from [Mar19a, Proposition 2.17]. We recall
and reprove it here to keep the notation consistent.
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B.2. Double ratios and base changes

Let (E,F,G,H) be a transverse quadruple of flags in Fn. The subtriples (E,F,G)
and (E,G,H) determine two bases B∗EG,F = {u1, . . . , un} (associated to (E,F,G) by
σbot) and B∗EG,H = {U1, . . . , Un} (associated to (E,G,H) by σtop). Both correspond to

the line decomposition Lk = (E(n−k) +G(k−1))⊥ of (Fn)∗.

Figure B.2.: The subtriples (E,F,G) and (E,G,H) of the transverse quadruple
(E,F,G,H).

Proposition B.2.1 ([FG06, Lemma 9.3]). Let (E,F,G,H) be a transverse quadruple
of flags in Fn and B∗EG,F = {u1, . . . , un} and B∗EG,H = {U1, . . . , Un} as above. After
normalizing such that u1 = U1, we have for all 1 < i ≤ n

Ui =
1

dn−i+1 · . . . · dn−1
ui,

where dk := Dk(E,G, F,H) is the k-th double ratio of (E,G, F,H) for all k = 1, . . . , n−1.
In particular, the base change matrix expressing B∗EG,H in the basis B∗EG,F is diagonal,
namely

T
B∗
EG,H

B∗
EG,F

= diag(1, 1
dn−1

, 1
dn−2dn−1

, . . . , 1
dn−i+1·...·dn−1

, . . . , 1
d1·...·dn−1

)

=


1

1
dn−1

1
dn−2dn−1

. . .
1

d1·...·dn−1

.

Proof. Choose a basis e1, . . . , en of Fn such that for all i = 0, . . . , n

E(i) = ⟨e1, . . . , ei⟩, G(i) = ⟨en, . . . , en−i+1⟩, F (1) = ⟨e1 + . . .+ en⟩.

Denote by e∗1, . . . , e
∗
n its dual basis. Pick 0 ̸= h ∈ H(1) and write h =

∑n
j=1 hjej with

0 ̸= hj ∈ F for all j = 1, . . . , n. Recall that Di(E,G, F,H) depends only on the flags E
and G, and the one-dimensional subspaces F (1) and H(1) of the flags F respectively H.
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Appendix B. Description of the base change by triple and double ratios

We compute

di = Di(E,G, F,H)

= −
e1 ∧ . . . ∧ ei ∧ en ∧ . . . ∧ ei+2 ∧ (

∑n
j=1 ej)

e1 ∧ . . . ∧ ei ∧ en ∧ . . . ∧ ei+2 ∧ (
∑n

j=1 hjej)

·
e1 ∧ . . . ∧ ei−1 ∧ en ∧ . . . ∧ ei+1 ∧ (

∑n
j=1 hjej)

e1 ∧ . . . ∧ ei−1 ∧ en ∧ . . . ∧ ei+1 ∧ (
∑n

j=1 ej)
= − hi

hi+1
.

Similar to Example A.2.4 (by swapping the roles of F and G), we have that(
E(n−i) +G(i−1)

)⊥
= ⟨e1, . . . , en−i, en, . . . , en−i+2⟩⊥ = ⟨e∗n−i+1⟩,(

E(n−i) + F (1) +G(i−2)
)⊥

= ⟨e1, . . . , en−i,
n∑

j=1

ej , en, . . . , en−i+3⟩⊥

= ⟨e∗n−i+1 − e∗n−i+2⟩, and(
E(n−i) +G(i−2) +H(1)

)⊥
= ⟨e1, . . . , en−i, en, . . . , en−i+3,

n∑
j=1

hjej , ⟩⊥ = ⟨u⟩,

with u ∈ ⟨e∗n−i+1, e
∗
n−i+2⟩ and h ∈ ker(u). Let u = e∗n−i+1 + µe∗n−i+2 for some µ ∈ F.

We then have 0 = u(h) = (e∗n−i+1 + µe∗n−i+2)(
∑n

j=1 hjej) = hn−i+1 + µhn−i+2, which

implies that µ = −hn−i+1

hn−i+2
= dn−i+1, and thus

u ∈ ⟨e∗n−i+1 + dn−i+1e
∗
n−i+2⟩.

Recall that the vectors u1, . . . , un and U1, . . . , Un are defined recursively. We normalize
such that u1 = e∗n. Since B∗EG,F is associated to (E,F,G) by σbot (see Figure B.2) we

have ui = −urti ∈ ⟨e∗n−i+1⟩ with ui−1 + uupi + urti = 0 and uupi ∈ ⟨e∗n−i+1 − e∗n−i+2⟩. Set
ui = µie

∗
n−i+1, and u

up
i = νi(e

∗
n−i+1 − e∗n−i+2). Putting it together we obtain

0 = µi−1e
∗
n−i+2 + νi(e

∗
n−i+1 − e∗n−i+2)− µie∗n−i+1 =⇒ µi = νi = µi−1,

and thus, using µ1 = 1,

ui = µie
∗
n−i+1 = e∗n−i+1 for all i = 1, . . . , n.

Similarly B∗EG,H is associated to (E,G,H) by σtop (see Figure B.2), hence Ui = Uup
i ∈

⟨e∗n−i+1⟩ with Ui−1 + Uup
i + U rt

i = 0 and U rt
i ∈ ⟨u⟩ = ⟨e∗n−i+1 + dn−i+1e

∗
n−i+2⟩. Set

Ui =Mie
∗
n−i+1, and U

rt
i = Ni(e

∗
n−i+1 + dn−i+1e

∗
n−i+2). Again we obtain

0 =Mi−1e
∗
n−i+2 +Mie

∗
n−i+1 +Ni(e

∗
n−i+1 + dn−i+1e

∗
n−i+2)

=⇒ Mi = −Ni =
Mi−1

dn−i+1
,

and thus, using M1 = 1,

Ui =Mie
∗
n−i+1 =

Mi−1

dn−i+1
e∗n−i+1

=
1

dn−i+1 · . . . · dn−1
e∗n−i+1 =

1

dn−i+1 · . . . · dn−1
ui

for all i = 1, . . . , n, which is what we had to prove.
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B.3. Proof of the description of the base change

Note that this result together with the remark in the proof of Corollary A.4.3 implies
that the base change matrix is

T
BEG,H

BEG,F
= diag(1, dn−1, dn−2dn−1, . . . , d1 · . . . · dn−1) = D(E,F,G,H),

where the latter was defined in Definition 4.3.3.

B.3. Proof of the description of the base change

In this appendix we prove Theorem 4.3.4, which we recall here.

Theorem 4.3.4 ([FG06, Proposition 9.2]). Let (F1, . . . , Fk) ∈ Flag(Fn)(k) be a trans-
verse k-tuple of flags associated to a polygon P with k vertices x1, . . . , xk in clockwise or-
der around the polygon. Assume either that there exists 4 ≤ j ≤ k−2 so that (F1, F2, F3)
and

(1) (Fj+2, Fj , Fj+1), or

(2) (Fj+1, Fj+2, Fj)

have the same triple ratios, and let φ ∈ PGL(Fn) be the element that maps (F1, F2, F3)
to the corresponding triple. Then, in the respective cases, there exists a basis of Fn in
which φ is represented by

(1) Mφ :=
(∏k−j−1

i=1 DiMi

)(∏k−3
i=k−j+1DiSM

−1
i S−1

)
, or

(2) Mφ :=M0

(∏k−j−1
i=1 DiMi

)(∏k−4
i=k−j+1DiSM

−1
i S−1

)
Dk−3,

where the Di and Mi are defined as above associated to the ideal triangulation Ej as
described before.

For the definition of the matrices Di, Mi and S we refer to Section 4.3. The idea
of the proof comes from the following observation in the proof of Theorem 4.1.3 in
Appendix A.5, which showed us how to find an explicit matrix in GL(n,F) representing
the linear automorphism φ that maps (E,F,G) to (E′, F ′, G′). Indeed, if A and A are
two bases of an n-dimensional F-vector space V , and ψ ∈ GL(V ) is such that ψ(A) = A′,
then

MA
A (ψ) = TA′

A ,

where MA
A (ψ) ∈ GL(n,F) denotes the matrix representing the linear isomorphism ψ

in the basis A. Recall that if (E,F,G) and (E′, F ′, G′) have the same triple ratios,
φ : (E,F,G) 7→ (E′, F ′, G′) is the automorphism of Fn with the property

φ (Btop) = B′top,

where Btop and B′top denote the bases of Fn associated to (E,F,G) respectively (E′, F ′, G′)
by the top snake σtop in Θn−1. By the above remark, we obtain

M
Btop

Btop
(φ) = T

B′
top

Btop
.
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We would like to give an explicit description of T
B′
top

Btop
, which involves the triple and

double ratios of all the subtriples and -quadruples of (F1, . . . , Fk) singled out by the

triangulation E of the polygon P . Similarly, we could also consider T
B′
bot

Bbot
.

Proof of Theorem 4.3.4. We use the triangulation E = Ej from Section 4.3 to describe
the base change matrix from the basis B := BF3F1,F2 to the basis B′ := BFj+1Fj+2,Fj in
case (1). By the above remarks this matrix sends (F1, F2, F3) to (Fj+2, Fj , Fj+1), and
we will show that it is equal to the desired product.

Every directed diagonal ei, i = 1, . . . , k− 3, in the triangulation E defines two bases
Bri and Bli of Fn (corresponding to the line decomposition given by the flags at the
endpoints of ei), which are associated to the triple of flags of the triangle lying to the
right and to the left of the diagonal. Observe that B = Br1 and set Brk−2 := B′. We
obtain

TB′
B =

k−3∏
i=1

T
Bl
i

Br
i
T
Br
i+1

Bl
i

.

From Proposition B.1.1(1) and (3) it follows that

T
Br
i+1

Bl
i

=

{
Mi, if 1 ≤ i ≤ k − j − 1,

SMiS
−1, if k − j ≤ i ≤ k − 3,

for all i = 1, . . . , k− 3. From Proposition B.2.1 and a close observation of the definition
of quadruple of flags associated to an oriented edge, it follows that

T
Br
i

Bl
i

= Di

for all i = 1, . . . , k − 3, which proves the claim.
For (2), we describe the base change matrix from the basis B := BF3F2,F1 to the basis

B′ := BFjFj+2,Fj+1 . We observe that

TB′
B = T

Br
1

B

(
k−4∏
i=1

T
Bl
i

Br
i
T
Br
i+1

Bl
i

)
T
Bl
k−3

Br
k−3

=Mφ,

by the same arguments as before.

B.4. Total positivity of the base change

We prove that the matrices Mφ defined in the last theorem are totally positive. This
will immediately imply Theorem 5.2.3, which we recall here.

Theorem 5.2.3 ([FG06, Theorem 9.3]). Under the hypotheses and conclusions of The-
orem 4.3.4, if we additionally assume that (F1, . . . , Fk) ∈ Flag(Fn)(k,+) is a positive
k-tuple of flags, then Mφ is a totally positive matrix.

We need some preliminary results about totally positive matrices. We begin by
recalling Cauchy-Binet’s formula, see for example [Pin10, Chapter 1]. Let B be an
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n× n-matrix over any field. For 1 ≤ i1 < . . . < ip ≤ n and 1 ≤ j1 < . . . < jp ≤ n denote
by

B

(
i1, . . . , ip
j1, . . . , jp

)
the p × p-minor of B obtained by taking the determinant of the submatrix of B with
rows i1, . . . , ip and columns j1, . . . , jp. If B,C,D are n × n-matrices over any field and
B = CD, then Cauchy-Binet’s formula states that

B

(
i1, . . . , ip
j1, . . . , jp

)
=

∑
1≤k1<...<kp≤n

C

(
i1, . . . , ip
k1, . . . , kp

)
D

(
k1, . . . , kp
j1, . . . , jp

)
.

If B is invertible, we have

B−1

(
i1, . . . , ip
j1, . . . , jp

)
=

(−1)
∑p

k=1 ik+jk

detB
B

(
j′1, . . . , j

′
n−p

i′1, . . . , i
′
n−p

)
,

where i′1 < . . . < i′n−p and j′1 < . . . < j′n−p are so that {i1, . . . , ip} ∪ {i′1, . . . , i′n−p} =
{1, . . . , n} and {j1, . . . , jp} ∪ {j′1, . . . , j′n−p} = {1, . . . , n}.

The following lemma about products of totally positive/non-negative (upper/lower
triangular) matrices (see Definition 5.2.1) is a direct application of this formula and is
classical.

Corollary B.4.1. Let F be an ordered field.

(1) The product of a totally positive matrix with a totally non-negative matrix is
totally positive. The same holds true if we restrict to the set of upper or lower
triangular matrices.

(2) The product of a totally positive lower triangular matrix with a totally positive
upper triangular matrix is totally positive.

Proposition B.4.2. If (E,F,G) ∈ Flag(Fn)(3,+) then M(E,F,G) is totally positive lower

triangular, and SM−1
(E,F,G)S

−1 is totally positive upper triangular.

The second part of the proposition follows from the first part together with the
following more general statement.

Lemma B.4.3. Let F be an ordered field. Let M ∈ GL(n,F) be a totally positive lower
triangular matrix. Then SM−1S−1 is totally positive upper triangular.

Proof. It is clear that SM−1S−1 is upper triangular. Note that S−1 = (−1)n−1S. We
make use of Cauchy-Binet’s formula, the shape of S and M , and expressing the minors
of M−1 in terms of the minors of M . By [Pin10, Theorem 2.8] we only need to prove
that

(SM−1S−1)

(
1, . . . , k

j + 1, . . . , j + k

)
> 0
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for all j = 0, . . . , n− k and k = 1, . . . , n. We compute

(SM−1S−1)

(
1, . . . , k

j + 1, . . . , j + k

)
= (−1)(n−1)k · S

(
1, . . . , k

n− k + 1, . . . , n

)
·M−1

(
n− k + 1, . . . , n

n− (j + k) + 1, . . . , n− j

)
· S
(
n− (j + k) + 1, . . . , n− j

j + 1, . . . , j + k

)
=

1

detM
·M

(
1, . . . , n− (j + k), n− j + 1, . . . , n

1, . . . , n− k

)
> 0,

since M was assumed to be totally positive lower triangular, and j ≤ n− k.

Proof of Proposition B.4.2. We recall the definition of

M :=M(E,F,G) =

n−1∏
k=1

((
k−1∏
i=1

Fn−k+i−1Hn−k+i(xk−i,i,n−k)

)
Fn−1

)
.

To simplify notation we set

Bk :=

(
k−1∏
i=1

Fn−k+i−1Hn−k+i(xk−i,i,n−k)

)
Fn−1.

Then M = B1 · . . . · Bn−1. We investigate the structure of Bk more closely, and we see
that for all k = 1, . . . , n− 1

Bk =



Idn−(k+1)

1
1 1

x1 x1
x1x2 x1x2

. . .
. . .∏k−1
j=1 xj

∏k−1
j=1 xj


for some positive elements x1, . . . , xk−1 ∈ F (the xi’s that appear in the Bk’s are exactly
the triple ratios of (E,F,G) but we only care about their positivity and not their exact
value, which is why for simplicity we omit the indices). It is clear that M is lower
triangular totally non-negative, since all Bk’s are. To check total positivity of M it
suffices to verify that

M

(
n− j + 1, . . . , n

1, . . . , j

)
> 0 for all j = 1, . . . , n

by [Pin10, Proposition 2.9] (beware of different notions in the reference: what we call
total non-negativity in this thesis is called total positivity, and what we call total pos-
itivity is called strict total positivity). We again use Cauchy-Binet’s formula and the
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shape of the Bk’s. Let us begin with the case j = 1 for simplicity:

M

(
n
1

)
=
∑

1≤j≤n

(B1 · . . . ·Bn−2)

(
n
j

)
Bn−1

(
j
1

)

= (B1 · . . . ·Bn−2)

(
n
2

)
Bn−1

(
2
1

)
= B1

(
n

n− 1

)
B2

(
n− 1
n− 2

)
· . . . ·Bn−2

(
3
2

)
Bn−1

(
2
1

)
> 0

by the definition of the Bk’s and the fact that all xi are positive. For 1 ≤ j ≤ n the
general formula is given by

M

(
n− j + 1, . . . , n

1, . . . , j

)
= (B1 · . . . ·Bj−1)

(
n− j + 1, . . . , n
n− j + 1, . . . , n

)
·Bj

(
n− j + 1, . . . , n
n− j, . . . , n− 1

)
Bj+1

(
n− j, . . . , n− 1

n− j − 1, . . . , n− 2

)
· . . . ·Bn−2

(
3, . . . , j + 2
2, . . . , j + 1

)
Bn−1

(
2, . . . , j + 1
1, . . . , j

)
.

Since all of the above factors are determinants of triangular matrices with positive entries
on the diagonal, we obtain for all j = 1, . . . , n that

M

(
n− j + 1, . . . , n

1, . . . , j

)
> 0,

which is what we had to prove.

Proof of Theorem 5.2.3. In the first case we are in the situation of Theorem 4.3.4 (1).
Using the definitions of Di, Mi and S as before, we obtain that

Mφ :=

(
k−j−1∏
i=1

DiMi

) k−3∏
i=k−j

Di(SM
−1
i S−1)


is a matrix representing φ ∈ GL(Fn) that satisfies φ(F1, F2, F3) = (Fj+2, Fj , Fj+1).
Since (F1, . . . , Fk) is by assumption a positive k-tuple of flags, the triple and double
ratios of all subtriples respectively -quadruples of flags are positive (see the discussion
after Definition 5.1.3)—in particular those, that we obtain from the triangulation Ej
defined before Theorem 4.3.4.

Proposition B.4.2 then implies that Mi is totally positive lower triangular and
SM−1

i S−1 is totally positive upper triangular for all i = 1, . . . , k − 3. Furthermore,
the matrices Di are diagonal with only positive entries on the diagonal, since all double
ratios are assumed to be positive, and conjugation by S−1 preserves positivity. Thus,
by Corollary B.4.1 (1), DiMi and Di(SM

−1
i S−1) are totally positive lower respectively

upper triangular for all i = 1, . . . , k − 3. The assumption 4 ≤ j ≤ k − 2 assures that
both of the above products in Mφ are non-empty. Corollary B.4.1 (2) implies that Mφ

is totally positive.
In the second case, we apply Theorem 4.3.4 (2), and obtain the result by the same

arguments as before.
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négative. Ann. of Math. (2), 131(1):151–162, 1990.

[Ouy19] Charles Ouyang. High energy harmonic maps and degeneration of minimal
surfaces, 2019. arXiv:1910.06999.

[Pal13] Frederic Palesi. Introduction to positive representations and Fock-
Goncharov coordinates. hal-01218570, 2013.

[Par12] Anne Parreau. Compactification d’espaces de représentations de groupes
de type fini. Math. Z., 272(1-2):51–86, 2012.

[Pau88] Frédéric Paulin. Topologie de Gromov équivariante, structures hyperbol-
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