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Résumé : La géométrie projective convexe est l’étude
des ouverts proprement convexes de l’espace projectif
réel et de leurs quotients par des groupes discrets d’au-
tomorphismes projectifs. Elle contient la géométrie hy-
perbolique, en considérant le modèle de Klein de l’es-
pace hyperbolique réel. Le cas où le quotient est com-
pact s’inscrit dans la théorie des convexes divisibles, qui
est développée depuis les années 1960 (par exemple par
Benoist) et a produit de nombreux exemples, y compris
non symétriques. En demandant que le groupe discret
n’agisse plus cocompactement mais convexe cocompacte-
ment, on obtient des variétés projectives à cœur convexe
compact. Danciger, Guéritaud et Kassel ont montré
qu’une version forte de cette condition est équivalente
au caractère P1-anosovien (au sens de Labourie) du
groupe discret considéré, offrant ainsi une caractérisation
géométrique des représentations P1-anosoviennes.

L’espace projectif réel est un exemple de variété de
drapeaux, c’est-à-dire de quotient d’un groupe de Lie
réel semi-simple G par un sous-groupe parabolique P
de G. Dans cette thèse, poursuivant des travaux d’A.
Zimmer, nous développons l’étude des domaines propres
dans les variétés de drapeaux, en généralisant des ou-
tils de la géométrie projective convexe. Nous accordons
une attention particulière aux espaces de Nagano, ou es-
paces symétriques extrinsèques, introduits par Nagano
dans les années 1960. Par définition, un tel espace est
une variété de drapeaux G/P qui s’identifie à un espace
symétrique d’un sous-groupe compact maximal de G.
Pour une large famille d’espaces de Nagano, dits de
type réel, nous construisons une distance de Kobayashi
géodésique, invariante et propre, sur tout domaine pro-
prement convexe. Nous la comparons aux distances dites
de Carathéodory introduites par Zimmer.

Selon une conjecture de rigidité de Limbeek et Zim-
mer, les domaines propres divisibles de la plupart des
variétés de drapeaux différentes de l’espace projectif réel

devraient être symétriques. La distance de Kobayashi
nous permet d’étudier cette conjecture pour les espaces
de Nagano de type réel. Par exemple, généralisant un
résultat de Zimmer pour les grassmanniennes, nous mon-
trons que lorsqu’un espace de Nagano de type réel est
de rang supérieur, la distance de Kobayashi sur ses do-
maines propres divisibles (ou même presque-homogènes)
ne peut pas être Gromov-hyperbolique. De plus, nous
démontrons la conjecture pour les variétés de drapeaux
admettant une structure causale et les univers d’Einstein
(ce dernier cas en collaboration avec A. Chalumeau), où
les domaines propres divisibles sont les diamants. Enfin,
nous démontrons que le centralisateur d’un groupe dis-
cret projectif divisant un domaine propre à bord continu
d’une grassmannienne différente de l’espace projectif est
trivial. Ce dernier résultat met en évidence une perte de
flexibilité par rapport au cas projectif réel, où le joint
de deux convexes divisibles fournit un nouveau convexe,
divisé par un groupe produit.

Si les groupes P1-anosoviens préservant des do-
maines propres dans l’espace projectif réel sont bien
compris grâce à la notion de convexe cocompacité pro-
jective, une caractérisation géométrique reste à établir
pour les groupes P -anosoviens dans les variétés de
drapeaux générales G/P . Nous déterminons des res-
trictions topologiques sur les groupes préservant un
domaine propre dans une variété de drapeaux auto-
opposée G/P , et construisons des exemples Zariski-
denses P -anosoviens préservant des domaines propres.
Dans certaines variétés de drapeaux à structure causale,
nous introduisons une notion de convexité causale, ins-
pirée de celle dans les espaces-temps conformes. Nous
montrons que tout groupe P -transverse préservant un
domaine propre de G/P agit cocompactement sur un
fermé causalement convexe de ce domaine, à bord trans-
verse ; autrement dit, ces groupes ont une dynamique
essentiellement spatiale.



Title : Geometry of proper domains in flag manifolds
Keywords : flag manifolds, discrete subgroups of Lie groups, rigidity, Nagano spaces, divisible convex sets, Anosov
representations.

Abstract : Convex projective geometry is the study of
properly convex open subsets of the real projective space,
and of their quotients by discrete groups of projective au-
tomorphisms. It contains hyperbolic geometry, by consi-
dering the Klein model of real hyperbolic space. The case
where the quotient is compact falls within the theory of
divisible convex sets, which has been developed since the
1960s (for instance, by Benoist) and has produced nu-
merous examples, including non-symmetric ones. By re-
quiring the discrete group to no longer act cocompactly
but convex cocompactly, one obtains projective manifolds
with a compact convex core. Danciger, Guéritaud, and
Kassel have shown that a strong version of this condition
is equivalent to the P1-Anosov property (in the sense of
Labourie) for the given discrete group, thus providing a
geometric characterization of P1-Anosov representations.

Real projective space is an example of a flag mani-
fold, i.e. of a quotient of a real semisimple Lie group G
by a parabolic subgroup P of G. In this thesis, building
on work of A. Zimmer, we develop the study of pro-
per domains in flag manifolds, generalizing tools from
convex projective geometry. We pay particular attention
to Nagano spaces, also called extrinsic symmetric spaces,
introduced by Nagano in the 1960s. By definition, such
a space is a flag manifold G/P that identifies with a
symmetric space of a maximal compact subgroup of G.
For a large class of Nagano spaces, called of real type,
we construct a geodesic, invariant, and proper Kobaya-
shi metric on any properly convex domain. We compare
this metric to the so-called Caratheodory metrics intro-
duced by Zimmer.

According to a rigidity conjecture of Limbeek and
Zimmer, proper divisible domains in most flag manifolds

different from real projective space should be symmetric.
Using the Kobayashi metric, we investigate this conjec-
ture for Nagano spaces of real type. For instance, gene-
ralizing a result of Zimmer for Grassmannians, we show
that when a Nagano space of real type has higher rank,
the Kobayashi metric on its proper divisible (or even
just almost-homogeneous) domains cannot be Gromov
hyperbolic. Moreover, we prove the conjecture for flag
manifolds admitting a causal structure, and for Einstein
universes (the latter case in collaboration with A. Cha-
lumeau), where the proper divisible domains are the dia-
monds. Finally, we prove that the centralizer of a discrete
projective group dividing a proper domain with conti-
nuous boundary in a Grassmannian different from real
projective space is trivial. This last result highlights a
loss of flexibility compared to the real projective case,
where the join of two divisible convex sets is again a
divisible convex set, divided by a product group.

While P1-Anosov groups preserving proper domains
in real projective space are well understood through the
notion of projective convex cocompactness, a geometric
characterization remains to be established for P -Anosov
groups in general flag manifolds G/P . We determine to-
pological restrictions on groups preserving a proper do-
main in a self-opposite flag manifold G/P and construct
Zariski-dense P -Anosov examples preserving proper do-
mains. In certain flag manifolds with a causal struc-
ture, we introduce a notion of causal convexity, inspired
by that in conformal spacetimes. We show that any P -
transverse group preserving a proper domain ofG/P acts
cocompactly on a causally convex closed subset of this
domain with transverse boundary ; in other words, the
dynamics of these groups are essentially spatial.
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mathématiques durant ces trois années. Adam, pour nos longues discussions autour de notre projet
commun, durant lesquelles j’ai beaucoup appris. Rym, pour tes idées stimulantes, et la clarté de
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les plus farfelues.

I would also like to thank the organizers of the thematic semester at the Institut Henri Poin-
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grateful to Ines Kath for introducing me to research : our work together was very enriching and
played a key role in my decision to pursue research.
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Chapitre 1

Introduction

Le contexte général de cette thèse est celui des (G,X)-structures sur les variétés.
Une variété M admet une (G,X)-structure, où G est un groupe de Lie et X un espace
homogène de G, s’il existe un atlas de cartes sur M à valeurs dans X, dont les changements
de cartes sont localement des éléments de G. Initiée par Klein dans son programme d’Er-
langen en 1872, la théorie des (G,X)-structures a connu un développement considérable
au vingtième siècle, grâce notamment aux travaux d’Ehresmann puis de Thurston (voir
e.g. [Mos16, Mar91, BP89, Gro87, Per08, Tit74, Gol22]). Le groupe fondamental π1(M)
d’une variété M admettant une (G,X)-structure admet alors une représentation dans G,
appelée holonomie ; c’est pourquoi de nombreuses problématiques géométriques sont in-
trinsèquement liées à l’étude des représentations des groupes discrets dans des groupes de
Lie.

Dans cette thèse, nous considérons le cas où G est un groupe de Lie semi-simple réel
etX une variété de drapeaux deG. Nous nous intéressons en particulier aux (G,X)-variétés
de la forme Ω/Γ, où Ω est un domaine ≪ pas trop gros ≫ (à savoir, propre) de la variété
de drapeaux X, et Γ un sous-groupe discret ≪ assez gros ≫ de G, c’est-à-dire typiquement
cocompact ou convexe cocompact. Les questions traitées sont à la fois d’ordre géométrique
(existence de quotients compacts ou convexes cocompacts de Ω), algébrique et dynamique
(étude des représentations de Γ). Le cas où X est l’espace projectif réel est bien connu
et donne lieu à la géométrie projective convexe, voir le paragraphe 1.1.1 ci-dessous. Dans
ce mémoire, nous développons de nouveaux outils et techniques, généralisant ceux de la
géométrie projective convexe, pour étudier la géométrie des domaines propres des variétés
de drapeaux, ainsi que la dynamique des groupes les préservant.

1.1 Géométrie et convexité des domaines propres dans les
variétés de drapeaux

L’étude des variétés construites par quotients de domaines propres de variétés de dra-
peaux apparâıt déjà dans des travaux d’A. Zimmer [Zim18a] ; nous en décrivons les princi-
paux objets et outils dans le paragraphe 1.1.2. Ces derniers généralisent ceux, bien connus,
de la géométrie projective convexe, que nous détaillons dans le paragraphe 1.1.1 ci-dessous.
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1.1.1 Géométrie projective convexe

Un ouvert Ω de l’espace projectif réel P(Rn+1) est dit propre s’il est borné dans
une carte affine, et proprement convexe s’il est de plus convexe dans cette carte af-
fine. Le quotient d’un ouvert proprement convexe de P(Rn+1) par un sous-groupe discret
de PGL(n+ 1,R) le préservant est une (PGL(n+ 1,R),P(Rn+1))-variété, appelée variété
projective convexe. L’étude de telles variétés s’appelle la géométrie projective convexe, et
généralise la géométrie hyperbolique réelle, puisque le modèle de Klein réalise l’espace
hyperbolique réel Hn comme un ouvert proprement convexe de P(Rn+1).

1.1.1.1 Le groupe d’automorphismes. Le groupe Aut(Ω) des éléments
de PGL(n + 1,R) préservant un ouvert propre Ω est appelé le groupe d’automorphismes
de Ω. L’ouvert Ω est dit symétrique si tout point de Ω est un point fixe isolé d’un
automorphisme involutif de Ω. Il est dit divisible s’il existe un sous-groupe discret
de Aut(Ω) qui agit de manière cocompacte sur Ω, quasi-homogène si Aut(Ω) agit de
manière cocompacte sur Ω, et presque-homogène si l’ensemble limite orbital total,
c’est-à-dire l’ensemble des points d’accumulation de toutes les Aut(Ω)-orbites de points
de Ω, est égal à son bord. La divibilité implique la quasi-homogénéité, qui elle-même
implique la presque-homogénéité. En revanche, il existe des ouverts proprement convexes
presque-homogènes et non quasi-homogènes, construits par exemple par pliage de variétés
hyperboliques de volume fini [BM20], de même qu’il existe des ouverts proprement
convexes quasi-homogènes (et même homogènes) non divisibles [Vin65]. L’abondance de
tels exemples, ainsi que celle des ouverts convexes cocompacts et géométriquement fin
(voir le paragraphe 1.3.2 plus bas), fait de la géométrie projective convexe une théorie
riche, connectée à des domaines de recherche variés, comme les sous-groupes discrets des
groupes de Lie, la dynamique, la théorie des représentations ou la théorie de Teichmüller
supérieure par exemple.

1.1.1.2 La distance de Hilbert. Un outil primordial dans l’étude des ouverts pro-
prement convexes de l’espace projectif est la distance de Hilbert. Cette dernière peut
être définie de deux manières : étant donné un ouvert proprement convexe Ω ⊂ P(Rn+1)
et x, y ∈ Ω, la distance de Hilbert HΩ(x, y) entre x et y est égale aux deux quantités
suivantes :

1. inf {log(a : x : y : b) | a, b ∈ Ω ∩ ℓx,y, a, x, y, b alignés dans cet ordre}, où ℓx,y est
une droite projective passant par x et y, et (· : · : · : ·) est le birapport (voir le
paragraphe 2.1.1.2).

2. sup
{

log
∣∣∣ ξ̃1(x̃)ξ̃2(ỹ)
ξ̃1(ỹ)ξ̃2(x̃)

∣∣∣ | ξ1, ξ2 ∈ Ω∗
}

, où Ω∗ est le dual de Ω, c’est-à-dire l’en-

semble P
(
{f ∈ ((Rn+1)∗) | f(z̃) ̸= 0 ∀z ∈ Ω}

)
. Ici, on a utilisé les notations z̃, ξ̃

pour des relevés quelconques de points z ∈ Ω et ξ ∈ Ω∗.

Si Ω est un ouvert proprement convexe, alors HΩ est une distance propre Aut(Ω)-
invariante, et les segments sont des géodésiques.

Une autre notion primordiale de la géométrie projective convexe est celle de facette. La
facette d’un point x ∈ ∂Ω est l’union des intervalles projectifs ouverts contenant x et conte-
nus dans ∂Ω (où les singletons sont considérés comme des intervalles ouverts). Les notions
de distance de Hilbert et de facette interagissent à travers des résultats asymptotiques :
par exemple, deux suites d’éléments de Ω restant à distance de Hilbert bornée doivent
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converger vers deux points d’une même facette de ∂Ω. Cette observation élémentaire a des
conséquences dynamiques assez fortes, comme par exemple le lemme classique suivant :

Fait 1.1.1 (voir par ex. [Vey70, Lem. 4]). Soit Ω un ouvert proprement convexe de P(Rn+1)
et a ∈ ∂Ω un point extremal. Supposons qu’il existe une suite (gk) ∈ Aut(Ω)N et un
point x ∈ Ω tels que gk · x → a. Alors, la suite (gk) est contractante en a, c’est-à-dire
qu’il existe un hyperplan projectif P(H) tel que pour tout compact K ⊂ P(Rn+1) ∖ P(H),
la limite de Hausdorff de (gk · K) soit {a}.

Au-delà du Fait 1.1.1, la distance de Hilbert HΩ donne de nombreuses informations
sur la dynamique du groupe d’automorphismes de Ω, ce qui en fait un outil fondamental
en géométrie projective convexe.

1.1.2 Généralisation aux variétés de drapeaux

L’espace projectif est un exemple de variété de drapeaux, c’est-à-dire du quotient G/P
d’un groupe de Lie semi-simple réel G (ici G = PGL(n+1,R)) par un sous-groupe parabo-
lique P de G (ici le stabilisateur d’une droite de Rn+1). Un sous-groupe parabolique d’un
groupe de Lie semi-simple réel G quelconque est le stabilisateur d’un point x dans le bord
visuel de l’espace symétrique riemannien XG de G. S’il existe une géodésique bi-infinie
de XG entre x et un autre point y ∈ ∂XG, alors le stabilisateur P− de y dans G est un
sous-groupe parabolique opposé à P , et la variété G/P− est la variété de drapeaux opposée
à G/P . Par exemple, l’espace projectif dual P((Rn+1)∗), qui s’identifie à l’espace des hyper-
plans projectifs de Rn+1, est la variété de drapeaux opposée de P(Rn+1). Si P et P− sont
conjugués dans G, on dit que P et G/P sont auto-opposés, et on a l’égalité G/P = G/P−

en tant que sous-ensembles de ∂XG.

1.1.2.1 Généralisation de la géométrie des domaines propres. Un domaine d’une
variété de drapeaux est un ouvert connexe. Les définitions de groupe d’automorphismes,
de symétrie, de divisibilité, de quasi-homogénéité et de presque-homogénéité pour les do-
maines d’une variété de drapeaux générale G/P sont les mêmes que dans l’espace projectif,
en remplaçant PGL(n+ 1,R) par le groupe de Lie semi-simple G (voir la partie 3.1.1.2 et
[Zim18a]).

Pour généraliser la propreté, l’idée est de remarquer que les objets de G/P qui vont
jouer un rôle d’hyperplan projectif sont les sous-ensembles de G/P de la forme

Zz = {x ∈ G/P | x n’est pas transverse à z}, où z ∈ G/P−. (1.1.1)

Une carte affine est alors le complémentaire A d’un tel ensemble dans G/P ; elle admet
une structure affine canonique. En revanche, l’adhérence d’une droite affine de A n’a en
général pas une structure naturelle de droite projective. On ne peut donc pas dire qu’un
domaine propre est convexe s’il l’est dans une carte affine. Pour généraliser la notion de
convexité, l’approche d’A. Zimmer [Zim18a] est d’utiliser la caractérisation duale de la
convexité dans l’espace projectif : un ouvert Ω ⊂ G/P est dualement convexe si pour
tout a ∈ ∂Ω, il existe ξ ∈ G/P− tel que Ω ∩ Zξ = ∅ et a ∈ Zξ. La propriété suivante, déjà
vraie dans l’espace projectif (d’après [Sho84]), reste alors valable dans toutes les variétés
de drapeaux : tout domaine propre quasi-homogène est (dualement) convexe [Zim18a].

Enfin, Zimmer définit les distances de Carathéodory par analogie avec la distance de
Hilbert, en généralisant le point (2) de la définition donnée en paragraphe 1.1.1.2 (voir la
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partie 3.1.2), à nouveau en utilisant l’analogie entre les hyperplans projectifs et les variétés
de Schubert propres maximales. Étant donné un domaine propre Ω ⊂ G/P , il existe
plusieurs distances de Carathéodory sur Ω, toutes induites par des représentations de G.
Plus précisément, soit ρ : G→ PGL(V ) une représentation réelle, irréductible, proximale
par rapport au sous-groupe parabolique P (au sens de la partie 2.3.3.2), de dimension finie.
Cette représentation induit deux plongements ιρ : G/P → P(V ) et ι−ρ : G/P− → P(V ∗).
Pour x, y ∈ Ω, la distance de Carathéodory induite par (V, ρ) entre x et y est, par définition :

CρΩ(x, y) := sup
η,ξ∈Ω∗

log
∣∣∣fξ(νx)fη(νy)

fξ(νy)fη(νx)

∣∣∣, (1.1.2)

où νx (resp. νy) est un relevé de ι(x) (resp. ι(y)) dans V ∖ {0} et fξ (resp. fη) un relevé
de ι−(ξ) (resp. de ι−(η)). On a noté Ω∗ le dual de Ω, c’est-à-dire l’ensemble des points
de G/P− qui sont transverses à tous les points de Ω.

La fonction CρΩ est une distance Aut(Ω)-invariante engendrant la topologie standard.
Si Ω est de plus dualement convexe, alors CρΩ est propre et complète. Cependant, elle ne
donne pas beaucoup d’informations sur la dynamique de Aut(Ω), car l’existence de points
≪ extremaux ≫, pour une notion duale de facette qui interagirait asymptotiquement avec
les distances de Carathéodory (comme c’est le cas pour la distance de Hilbert dans le
lemme 1.1.1), n’est pas garantie. De plus, ces distances ne sont a priori pas géodésiques. On
va voir dans les paragraphes suivants que pour certaines variétés de drapeaux (les espaces
de Nagano de type réel), on peut définir une distance de Kobayashi Aut(Ω)-invariante, qui
est géodésique dès que Ω est dualement convexe et qui vérifie des propriétés généralisant
celles de la distance de Hilbert dans l’étude du bord et du groupe d’automorphismes de Ω.

Les exemples clés de variétés de drapeaux auxquels nous nous intéressons dans cette
thèse sont listés dans les parties 1.1.2.2 à 1.1.2.5 suivantes.

1.1.2.2 Les grassmanniennes. Soient p, q ≥ 1. Le groupe G = PGL(p+q,R) agit tran-
sitivement sur l’espace Grp(Rp+q) des p-plans de Rp+q et le stabilisateur d’un point est un
sous-groupe parabolique Pp de G. Ainsi, on a l’identification naturelle Grp(Rp+q) ≃ G/Pp,
qui munit Grp(Rp+q) d’une structure de variété de drapeaux. Dans le cas où p = 1, on
retrouve l’espace projectif réel.

1.1.2.3 L’univers d’Einstein. Soient p, q ≥ 1. L’espace pseudo-euclidien Rp+1,q+1,
est l’espace vectoriel Rp+q+2 muni d’une forme bilinéaire symétrique b de signa-
ture (p+ 1, q + 1), où p+ 1 et q + 1 désignent respectivement le nombre de signes positifs
et négatifs. L’univers d’Einstein Einp,q est l’ensemble des droites isotropes de Rp+1,q+1.
C’est une variété de drapeaux auto-opposée du groupe G = PO(p+ 1, q+ 1) des éléments
de PGL(p+ q+2,R) dont un relevé dans GL(p+ q+2,R) préserve b. L’univers d’Einstein
admet une structure conforme pseudo-riemannienne de signature (p, q), et d’après le
théorème de Liouville (voir [Fra03] et le fait 2.4.1), le groupe d’automorphismes d’un
ouvert Ω ⊂ Einp,q coincide avec son groupe conforme, c’est-à-dire avec l’ensemble des
difféomorphismes de Ω qui préservent la classe conforme de la métrique de Einp,q induite
sur Ω.

1.1.2.4 Les variétés de drapeaux causales. Soit G un groupe de Lie hermitien de
type tube — condition que nous noterons HTT pour alléger la rédaction — de rang
réel r ≥ 1, et g son algèbre de Lie (la liste complète de telles algèbres de Lie g est
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donnée dans le tableau 2.1). Soit ∆ l’ensemble des racines simples restreintes de G. La
seule racine longue αr ∈ ∆ définit un sous-groupe parabolique P{αr} de G. La variété de
drapeaux Sb(g) := G/P{αr} est le bord de Shilov de l’espace symétrique riemannien XG
de G. Cette variété admet une structure causale, c’est-à-dire qu’il existe (à un sous-groupe
d’indice deux de G près) une famille lisse G-équivariante (cx)x∈Sb(g) de cônes ouverts
proprement convexes dans le fibré tangent T (Sb(g)) ; c’est pourquoi dans ce mémoire
on les appellera également les variétés de drapeaux causales. Ces variétés de drapeaux
apparaissent naturellement dans plusieurs contextes, tels que les algèbres de Jordan eu-
clidiennes et l’analyse complexe (voir par exemple [FK94]), ou encore la Θ-positivité et la
théorie de Teichmüller supérieure [GW18].

1.1.2.5 Les espaces de Nagano. Les trois familles d’exemples évoquées ci-dessus font
partie d’une famille plus large de variétés de drapeaux G/P , celles qui sont aussi des
espaces symétriques riemanniens compacts. L’étude de telles variétés a été initiée par Na-
gano [Nag65], qui observe que tout espace symétrique compact irréductible X admettant
un groupe de transformations G plus grand que son groupe d’isométries, est en fait une
variété de drapeaux de G. Ces espaces sont appelés espaces de Nagano, mais aussi es-
paces symétriques extrinsèques ou R-espaces symétriques (≪ R ≫ pour ≪ racine ≫) selon
les auteurs, et leur liste complète est connue [Nag65] et donnée dans le tableau 8.1.

Plusieurs caractérisations algébriques des espaces de Nagano, parmi les variétés
de drapeaux ou les espaces symétriques compacts, ont été étudiées, voir par exemple
[KN64, KN65]. Leur groupe de transformations a également suscité l’intérêt : Peterson
[Pet87] (pour le cas des grassmanniennes) et Takeuchi [Tak88] (pour le cas général)
ont montré que G était en fait le groupe des difféomorphismes de X préservant une
distance arithmétique définie par Chow [Cho49] (voir la partie 6.5.2), qui, dans le cas des
grassmanniennes par exemple, est la codimension de l’intersection. Kaneyuki [Kan11] a
donné une interprétation du groupe de transformations G en termes de fibrés principaux
sur X. Nous renvoyons par exemple à [Tak65, TK68, Loo71, Kan98, Kan06] pour plus de
littérature à ce sujet.

Étant donné un espace de Nagano G/P , un résultat important [Nag65] est que l’es-
pace symétrique dual non compact X(G/P ) de G/P se plonge dans G/P comme un do-
maine propre, et le groupe d’automorphismes de son image est isomorphe à son groupe
d’isométries Isom(X(G/P )). Son image est donc un domaine propre symétrique et di-
visible de G/P , au sens défini dans le paragraphe 1.1.2.1. Nous appelons réalisation
de X(G/P ) dans G/P l’image d’un tel plongement. Par exemple, tout ellipsöıde de P(Rn+1)
est une réalisation de X(P(Rn+1)) = Hn. Étant données deux réalisations Ω,Ω′ de X(G/P )
dans G/P , il existe g ∈ G tel que Ω = g ·Ω′, c’est-à-dire que, à translation près, il n’existe
qu’une seule réalisation de X(G/P ) dans G/P .

Dans ce mémoire, on pourra toujours se ramener au cas où G/P est un espace de
Nagano irréductible, c’est-à-dire que G est un groupe de Lie simple.

Makarevich a établi la liste des domaines (non nécessairement propres) symétriques des
espaces de Nagano irréductibles dont le groupe d’automorphismes est réductif et transitif
[Mak73]. L’espace projectif est le seul espace de Nagano irréductible qui contient des
domaines propres symétriques à groupe d’automorphismes réductif qui ne sont pas des
réalisations du dual non compact (voir le Lemme 5.4.1).
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1.2 Le cas compact

Une partie importante de cette thèse est consacrée à l’étude des domaines propres
divisibles des variétés de drapeaux G/P . Ces domaines produisent, par quotient,
des (G,G/P )-variétés (ou orbi-variétés) compactes. Dans le cas où G = PGL(n + 1,R)
et G/P = P(Rn+1), on retrouve la théorie classique des convexes divisibles, dont les
principaux résultats et idées sont exposés dans le paragraphe 1.2.1 ci-dessous. Dans le
cas général, nous allons voir dans le paragraphe 1.2.2 que les domaines propres divisibles
devraient, conjecturalement, être soumis à une forte rigidité (voir la question 1.2.1). Un
des objectif de cette thèse est de mieux comprendre cette rigidité.

1.2.1 Convexes divisibles

Les domaines propres de l’espace projectif réel qui sont divisibles sont nécessairement
proprement convexes [Sho84]. Il sont donc appelés convexes divisibles. Leur étude, initiée
dans les années 1960 avec les travaux de Benzecri [Ben60], a depuis été développée par de
nombreux auteurs (voir par exemple [Vin65, Gol90, CLT15]), en particulier par Benoist au
début des années 2000 [Ben00, Ben03, Ben05, Ben06]. Le cas strictement convexe est bien
compris, tandis que le cas non strictement convexe est encore en cours de développement
[Isl25, CLM20, Zim23, Bla24]. Voir par exemple [Ben08, Mar14] pour des survols de cette
théorie et d’autres références.

Un ouvert proprement convexe de P(Rn+1) est dit irréductible s’il ne peut pas s’écrire
comme un joint d’ouverts proprement convexes d’espaces projectifs réels plus petits.
D’après [Vey70, Ben03], si un convexe divisible n’est pas irréductible, il s’écrit en fait
comme un joint de convexes divisibles. La théorie des convexes divisibles se ramène donc
au cas où Ω est irréductible. Dans ce cas, soit Ω est symétrique (au sens défini dans le pa-
ragraphe 1.1.1.1), soit Aut(Ω) est un sous-groupe discret Zariski-dense de PGL(n+ 1,R) ;
voir [Vin65, Koe99, Ben03].

Il existe une liste exhaustive des domaines propres symétriques irréductibles en toute
dimension [Koe99]. Tous les domaines de cette liste s’identifient à des espaces symétriques
riemanniens, et leur groupe d’isométries cöıncide avec leur groupe d’automorphismes (en
tant qu’ouverts de l’espace projectif). L’exemple le plus simple est l’espace hyperbolique
réel Hn plongé dans l’espace projectif P(Rn+1) via le modèle de Klein.

Il existe également des convexes divisibles non symétriques : certains réseaux co-
compacts Γ de PO(n, 1) admettent des déformations Zariski-denses dans PGL(n + 1,R)
[JM87] ; d’après un théorème d’ouverture de Koszul [Kos68], l’image d’une telle petite
déformation de Γ dans PGL(n + 1,R) divise encore un convexe, non symétrique (par
Zariski-densité de Γ). Il existe également plusieurs constructions explicites de convexes
divisibles irréductibles non symétriques ; les premiers exemples ont été construits par
Kac–Vinberg en dimension 2, en utilisant des groupes de Coxeter [KV67]. Kapovich a en-
suite construit des exemples qui ne sont pas quasi-isométriques à des espaces symétriques,
et dont le groupe d’automorphismes est discret et Gromov-hyperbolique, en toute di-
mension n ≥ 4 [Kap07]. Des exemples avec un groupe d’automorphismes discret et non
Gromov-hyperbolique ont été construits en dimensions projectives 3, 4, 5, 6 par Benoist
[Ben06] et 4, 5, 6 par Choi–Lee–Marquis [CLM20] et en dimension 3 par Ballas–Danciger–
Lee [BDL18], et plus récemment, en toute dimension projective n ≥ 3 par Blayac–Viaggi
[BV24].
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A. Zimmer a récemment prouvé que les convexes divisibles de P(Rn+1) sont sou-
mis à une certaine rigidité [Zim23] : ceux dont le groupe d’automorphismes ne contient
pas d’isométrie de rang 1 sont nécessairement symétriques de rang supérieur. La diver-
sité des exemples non symétriques met cependant en lumière l’importance des résultats
généraux les concernant, au-delà de ceux concernant les actions cocompactes sur les es-
paces symétriques riemanniens.

1.2.2 Domaines propres divisibles des variétés de drapeaux et rigidité

la question de savoir si la théorie des convexes divisibles se généralise à d’autres variétés
de drapeaux que l’espace projectif réel a été posée par Limbeek–Zimmer. Les réalisations
des duaux non compacts d’espaces de Nagano (voir la partie 1.1.2) sont des exemples
de convexes divisibles dans des variétés de drapeaux différentes de l’espace projectif,
mais ils sont symétriques. Le problème consiste à déterminer s’il existe des exemples non
symétriques, comme dans le cas projectif :

Question 1.2.1 ([LZ19]). Étant donnés un groupe de Lie semi-simple réel non compact G
et un sous-groupe parabolique P de G, tous les domaines propres divisibles de G/P sont-ils
symétriques ?

On peut poser la même question en remplaçant ≪ divisible ≫ par ≪ quasi-
homogène ≫ (et même par ≪ presque-homogène ≫, voir la question 8.9.1). Une réponse
positive dans le cas quasi-homogène implique une réponse positive à la question 1.2.1.
L’avantage est que l’étude des domaines propres quasi-homogènes se ramène au cas où G
est simple, par le fait suivant :

Fait 1.2.2 ([Zim18a, Thm 1.7]). Soit G un groupe de Lie semi-simple à centre trivial et
sans facteur compact, de la forme G = G1 × · · · × Gk, où les Gi sont des groupes de Lie
simples non compacts. Pour tout sous-groupe parabolique P de G, il existe des sous-groupes
paraboliques Pi ≤ Gi tels que P = P1 × · · · × Pk. Soit maintenant Ω ⊂ G/P un domaine
propre quasi-homogène. Alors, il existe des domaines propres quasi-homogènes Ωi ⊂ Gi/Pi
tels que Ω = Ω1 × · · · × Ωk.

La question 1.2.1 admet une réponse négative dans le cas où G = PO(n, 1) pour n ≥ 3
et où P est l’unique (à conjugaison près) sous-groupe parabolique propre de G. Dans ce
cas, la variété de drapeaux G/P est la sphère conforme, et admet des domaines propres
divisibles non symétriques (ici ≪ propre ≫ signifie simplement que le complémentaire du
domaine est d’intérieur non vide). Par exemple, l’ensemble limite d’une représentation
obtenue par déformation de l’inclusion naturelle d’un réseau cocompact de SO(2, 1)
dans SO(3, 1), appelée quasi-fuchsienne, est un quasi-cercle, qui sépare la sphère conforme
en deux domaines propres divisibles. D’après le paragraphe 1.2.1, la question 1.2.1 admet
également une réponse négative dans le cas où G = PGL(n + 1,R) et G/P = P(Rn+1).
Cependant, pour d’autres variétés de drapeaux G/P , on observe une plus forte rigidité, et
A. Zimmer conjecture que tout domaine propre divisible de G/P est homogène [Zim18a,
Conj. 2.6]. Suite aux observations faites dans cette thèse, nous pensons qu’il devrait
même être symétrique (voir la partie 8.9).

La question 1.2.1 admet une réponse positive pour les variétés de drapeaux G/P où P
est un sous-groupe parabolique propre non maximal :
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Fait 1.2.3 ([Zim18a, Thm 1.5]). Soient G un groupe de Lie simple réel non compact
et P ≤ G un sous-groupe parabolique propre non maximal. Il n’existe aucun domaine
propre quasi-homogène dans G/P .

Les variétés de drapeaux définies par des sous-groupes paraboliques maximaux restent
donc à étudier : la question 1.2.1 admet une réponse partielle positive pour les grass-
manniennes complexes [Fra89], où les domaines proprement convexes divisibles sont bi-
holomorphes à un domaine propre symétrique. A. Zimmer a renforcé ce résultat pour
l’espace projectif complexe P(Cn+1) pour n ≥ 2 [Zim18b], en montrant que les domaines
proprement convexes divisibles y étaient symétriques. La question 1.2.1 admet également
une réponse partielle positive pour les grassmanniennes auto-opposées Grp(R2p) [LZ19].
Dans ces deux derniers cas, les auteurs montrent — sous des hypothèses additionnelles de
convexité dans une carte affine — qu’il n’existe, à translation près par l’action de G, qu’un
seul domaine propre divisible dans G/P , et que ce domaine est symétrique. Dans cette
thèse, nous nous intéressons à ces questions pour plusieurs nouveaux cas de variétés de dra-
peaux. Nous y démontrons la rigidité (voir le chapitre 8) et, suivant une idée déjà présente
dans [LZ19], nous l’interprétons comme un phénomène de rigidité de rang supérieur (voir
la partie 8.9).

Remarque 1.2.4. Retirer l’hypothèse de propreté dans la question 1.2.1 permet davan-
tage de flexibilité. En effet, comme mentionné en début de partie 1.2, il existe de nom-
breux exemples de domaines divisibles non propres et non symétriques dans des variétés
de drapeaux G/P , construits, par exemple, comme domaines de discontinuité pour des
représentations anosoviennes [Fra05, GW12, KLP18] (voir la partie 1.3.2).

1.3 Le cas non compact

Dans cette section, nous discutons le cas des (G,X)-variétés non compactes, avec un
accent sur celles qui sont convexes cocompactes. Une n-variété hyperbolique complète M
est dite convexe cocompacte si son groupe fondamental Γ ≤ PO(n, 1) agit cocompactement
sur un convexe fermé non vide de l’espace hyperbolique réel XPO(n,1) = Hn. Dans ce cas M
peut être identifiée au quotient Hn/Γ, et son cœur convexe, à savoir, le plus petit sous-
ensemble non vide géodésiquement convexe de M qui est bordé par des hypersurfaces
totalement géodésiques, est compact. De nombreux exemples de variétés hyperboliques
convexes cocompactes non compactes existent (voir, par exemple, [Kas18]).

1.3.1 Quotients d’espaces symétriques et rigidité

Tout sous-groupe discret d’un groupe de Lie simple réel G de rang réel r ≥ 2 agis-
sant de manière cocompacte sur un ensemble fermé (géodésiquement) convexe de l’espace
symétrique riemannien XG de G est un réseau cocompact de G [Qui05, KL06]. Ainsi,
la généralisation géométrique intuitive de la convexe cocompacité devient rigide en rang
supérieur. Plusieurs tentatives de définitions plus flexibles de la convexe cocompacité en
rang supérieur ont émergé au cours des vingt dernières années, certaines ayant abouti avec
succès, notamment celle des représentations anosoviennes.
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1.3.2 Représentations anosoviennes et structures géométriques

Une généralisation de la convexe cocompacité basée sur les propriétés dynamiques
des sous-groupes discrets convexes cocompacts de PO(n, 1) a été développée au cours
des vingt dernières années, à travers les représentations anosoviennes ; voir la partie 2.3
pour une définition. Ces représentations ont été introduites par Labourie [Lab06] dans
son étude des représentations de Hitchin des groupes de surfaces, puis généralisées et
approfondies par Guichard–Wienhard [GW12]. Elles sont discrètes, fidèles et structu-
rellement stables, ce qui en fait un concept clé dans les récents développements de la
théorie de Teichmüller supérieure [GW12, Wie18, GLW21, BK23, BGL+24] et des struc-
tures géométriques [GW12, KLP18, DGK18, DGK24].

La propriété d’être anosovienne dépend (à conjugaison près) du choix d’un sous-groupe
parabolique propre P de G ; une représentation est dite P -anosovienne si elle est anoso-
vienne par rapport à P . Lorsque G = PO(n, 1), le parabolique P est nécessairement le seul
— à conjugaison près — sous-groupe parabolique propre P1 de G, et les représentations P1-
anosoviennes cöıncident avec les représentations convexes cocompactes. Pour un groupe de
Lie réductif réel G et un parabolique P quelconques, les propriétés dynamiques de l’action
d’une représentation P -anosovienne sur la variété de drapeaux G/P sont désormais bien
comprises (voir la partie 2.3.2).

Les images des représentations P -anosoviennes sont appelées sous-groupes P -
anosoviens de G, et elles appartiennent à la vaste famille des sous-groupes P -transverses
ou P -antipodaux (voir par exemple [KLP17, CZZ23] et la partie 2.3). Cette famille est
caractérisée par des propriétés dynamiques plus faibles que celles des représentations
anosoviennes et inclut, par exemple, les sous-groupes relativement anosoviens au sens de
[ZZ22, KL23].

La question de savoir si de tels groupes possédant de fortes propriétés dynamiques
fournissent des exemples de (G,G/P )-variétés M a été soulevée par de nombreux auteurs,
en particulier dans le cas où M est un quotient Ω/Γ, où Ω est un ouvert, propre ou non,
de G/P , et Γ est un sous-groupe P -transverse de G préservant Ω :

1. Dans [Fra05, GW12], pour certains groupes de Lie semi-simples G et certains
sous-groupes paraboliques non nécessairement conjugués P, P ′, des exemples de
variétés (G,G/P ′)-compactes sont construits comme quotients Ω/Γ d’un ouvert
bien choisi Ω ⊂ G/P ′ préservé par un sous-groupe P -anosovien Γ ≤ G. Une
approche générale est développée dans [KLP17]. Ces ouverts sont en général non
propres.

2. Danciger–Guéritaud–Kassel [DGK18, DGK24] et A. Zimmer [Zim18a] introduisent
une notion de convexe cocompacité dans l’espace projectif : si Γ préserve un
ouvert proprement convexe Ω de P(Rn+1) et agit cocompactement sur son cœur
convexe C ⊂ Ω, et si le bord idéal de C ne contient pas de segment projectif,
alors Γ est dit fortement convexe cocompact dans P(Rn+1). Un sous-groupe
discret Γ ≤ PGL(n + 1,R) est fortement convexe cocompact si et seulement s’il
est P1-anosovien (où P1 est le stabilisateur d’un droite de Rn+1) et préserve un
domaine propre de P(Rn+1) [DGK24] ; voir aussi [Zim21] pour le cas fortement
irréductible.

3. Cooper–Long–Tillman définissent une variété projective géométriquement finie
comme le quotient Ω/Γ d’un domaine strictement convexe Ω ⊂ P(Rn+1) par un
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sous-groupe discret Γ ≤ PGL(n+ 1,R), tel que le cœur convexe de Ω/Γ soit l’union
d’un ensemble compact et d’un nombre fini de bouts, appelés cusps [CLT15].
Fléchelles–Islam–Zhu démontrent qu’un sous-groupe discret Γ ≤ PGL(n + 1,R)
préservant un ouvert proprement convexe dans P(Rn+1) est relativement P1-
anosovien si et seulement s’il existe un domaine proprement convexe, rond
et Γ-invariant Ω ⊂ P(Rn+1) tel que l’orbi-variété Ω/Γ est soit géométriquement
finie [Flé24]. Ici ≪ rond ≫ signifie que l’ouvert proprement convexe est strictement
convexe, et que tout point de son bord est dans un unique hyperplan d’appui.

En fait, d’après [CZZ23], tout sous-groupe discret P -transverse Γ de G préserve un do-
maine propre Ω dans un certain espace projectif P(V ), donnant ainsi lieu à une variété
projective Ω/Γ. Le point (2) (resp. (3)) ci-dessus, ainsi qu’une propriété de stabilité par
composition des représentations anosoviennes [GW12], impliquent que si Γ est en outre P -
anosovien (resp. relativement P -anosovien), alors il existe une telle variété qui soit de plus
convexe cocompacte (resp. géométriquement finie). Cependant, cette variété est a priori
modelée sur l’espace projectif, et non sur G/P . Il est donc naturel de chercher à construire
des (G,G/P )-variétés de la forme Ω′/Γ, où Ω′ est un domaine de G/P . On peut également
se demander si ce domaine peut être choisi propre, comme dans les cas des points (3) et
(4). Ceci conduit à la question suivante :

Question 1.3.1. Soient G un groupe de Lie semi-simple et P un sous-groupe parabolique
de G, et soit H ≤ G un sous-groupe P -transverse.

1. Sous quelles conditions H préserve-t-il un domaine propre dans G/P ?

2. Si H est discret et préserve un domaine propre Ω ⊂ G/P , quelles conditions
géométriques supplémentaires sur l’action de H sur Ω sont nécessaires pour garantir que H
est P -anosovien ?

1.4 Contenu du mémoire

L’objectif de cette thèse est de développer la théorie des domaines propres dans les
variétés de drapeaux, initiée par A. Zimmer [Zim18a, Zim18b] et inspirée de la géométrie
projective convexe. Dans cette partie, nous présentons le contenu du mémoire et les prin-
cipaux résultats qui y sont établis.

1.4.1 Différentes notions de convexité

Bien que la convexité duale introduite dans le paragraphe 1.1.2.1 semble être une
notion naturelle de convexité dans les variétés de drapeaux, il en existe d’autres. Une
première chose à comprendre pour généraliser la géométrie projective convexe aux variétés
de drapeaux est le lien entre les différentes notions de convexité. Contrairement au cas
projectif, la convexité duale n’est pas équivalente à la notion plus näıve de convexité dans
une carte affine. Dans les parties 3.2 et 3.3.2 et dans l’exemple 3.5.9, nous comparons ces
deux notions, en particulier sur des exemples de variétés de drapeaux concrètes.

Nous définissons une troisième notion de convexité, spécifique aux les variétés de dra-
peaux causales (définies en partie 1.1.2.4). Si un point x est contenu dans une carte affine A
de Sb(g) (avec les notations de la partie 2.2.6.2), la causalité permet de définir le futur et
le passé de x (voir la partie 2.4.4.3). Pour tout point y dans le futur de x, l’intersection du
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passé de y avec le futur de x est un diamant, noté DA(x, y). Autrement dit, il existe exac-
tement deux diamants d’extrémités x et y : ce sont les deux seules composantes connexes
propres de Sb(g) ∖ (Zx ∪Zy) (voir la définition 3.5.2). Les diamants induisent une notion
de convexité causale analogue à celle existant déjà en géométrie lorentzienne [MS08]. Un
sous-ensemble connexe X ⊂ Sb(g) est dit causalement convexe s’il est contenu dans une
carte affine A et si pour tous x, y ∈ X tels que y soit dans le futur large de x dans A, le
diamant fermé Dc

A(x, y) est contenu dans X (voir la définition 3.5.14). On montre dans
la proposition 3.5.22 que cette définition est indépendante du choix de la carte affine A
contenant X. Nous la comparons avec la convexité duale :

Proposition 1.4.1 (voir la proposition 3.5.24). Soit G un groupe de Lie hermitien de
type tube et soit Ω ⊂ Sb(g) un domaine dualement convexe. Si Ω ̸= Sb(g), alors Ω est
causalement convexe (en particulier Ω est contenu dans au moins une carte affine).

1.4.2 Groupes préservant des domaines propres

Une partie de ce mémoire, bien que ne constituant pas son cœur, est consacrée à une
étude préliminaire de la question 1.3.1, laquelle est développée dans le chapitre 4. Nous
en présentons ici les principaux résultats. Pour résumer, la propriété pour un groupe de
préserver un domaine propre s’avère assez restrictive (proposition 1.4.2 ci-dessous), tandis
que, pour une notion naturelle de convexité dans certaines variétés de drapeaux (no-
tamment la convexité causale dans les variétés de drapeaux causales), dès qu’un groupe
préserve un domaine propre Ω, la propriété d’agir de manière cocompacte sur un sous-
ensemble convexe fermé de Ω est, au contraire, très peu contraignante (voir la proposi-
tion 1.4.4 et la remarque 3.5.17).

1.4.2.1 Restrictions topologiques. La partie 1.1.2.4 est consacrée à l’étude de la ques-
tion 1.3.1.(1). Dans [Ben00, Prop. 1.2], Benoist donne une condition nécessaire et suffi-
sante pour qu’un sous-groupe fortement irréductible de PGL(n,R) préserve un ouvert
proprement convexe de P(Rn). La preuve fait intervenir certaines propriétés de base des
convexes de l’espace projectif qui ne sont plus vraies dans le cas général des variétés de
drapeaux G/P . On peut tout de même retrouver un analogue de sa condition nécessaire,
exprimée dans la proposition 4.1.5 ci-dessous.

Soit G un groupe de Lie semi-simple réel et P ≤ G un sous-groupe parabolique
auto-opposé. Soit P− un conjugué de P qui soit transverse à P . Il existe une involu-
tion s : (G/P )∖ZP− → (G/P )∖ZP− qui agit comme − id sur la carte affine (G/P )∖ZP−

contenant P , et permute les composantes connexes de (G/P ) ∖ (ZP ∪ZP−).

Si x ∈ G/P est transverse à P et P−, alors le type type(P, x, P−) du triplet (P, x, P−)
est l’orbite sous P ∩P− de la composante connexe de (G/P )∖ (ZP ∪ZP−) qui contient x.
Le type s’étend de manière G-invariante à tout triplet (a, b, c) de points deux à deux
transverses de G/P et décrit les positions relatives de a, b et c. Lorsque G est un groupe
de Lie HTT et G/P = Sb(g), il est encodé par l’indice de Maslov classique idx(a, b, c) du
triplet (a, b, c) (voir [LV80] et la partie 4.1.3).

Rappelons que l’ensemble P -limite ΛP (H) d’un sous-groupe H ≤ G est défini comme
l’ensemble des points attractifs dans G/P de suites d’éléments de H. Nous démontrons :
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Proposition 1.4.2 (voir la proposition 4.1.5 et le corollaire 4.1.7). Soient G un groupe
de Lie semi-simple réel et P ≤ G un sous-groupe parabolique auto-opposé. Soit H ≤ G
un sous-groupe préservant un domaine propre Ω ⊂ G/P tel que l’ensemble limite ΛP (H)
contienne au moins trois points deux à deux transverses. Alors il existe une composante
connexe s-invariante O de (G/P ) ∖ (ZP ∪ZP−) telle que le type type(a, b, c) d’un tri-
plet (a, b, c) ∈ ΛP (H)3 de points deux à deux transverses soit égal à la (P ∩ P−)-orbite
de O.

Dans le cas où G est un groupe de Lie HTT de rang réel r ≥ 2 et G/P = Sb(g),
alors r est pair et idx(x, y, z) = 0 pour tout triplet de points deux à deux trans-
verses (x, y, z) ∈ ΛP (H)3.

La proposition 1.4.2 fournit directement de fortes restrictions sur les domaines
propres presque-homogènes des variétés de drapeaux auto-opposées G/P telles
que (G/P ) ∖ (ZP ∪ZP−) n’ait pas de composante connexe s-invariante, comme illustré
dans la proposition 8.6.1.

Remarque 1.4.3. La proposition 1.4.2 est reliée à la notion de Propriété I définie dans
[DGR24]. Une variété de drapeaux G/P satisfait à la Propriété I si aucune compo-
sante connexe de (G/P ) ∖ (ZP ∪ZP−) n’est invariante par s ; voir la partie 2.2.6 pour
plus de détails. D’après la proposition 1.4.2, s’il existe H ≤ G préservant un domaine
propre dans G/P , alors G/P n’a pas la Propriété I. La proposition 1.4.2 implique donc
que la question 1.3.1.(1) est étroitement liée à la question suivante, posée par Dey–
Greenberg–Riestenberg et étudiée par Dey [Dey22], Dey–Greenberg–Riestenberg [DGR24]
et Kineider–Troubat [KT24] (voir la Remarque 4.1.1) : quelles sont variétés de drapeaux
auto-opposées G/P qui satisfont la Propriété I ?

Nous construisons des exemples Zariski-denses P -anosoviens de G préservant un do-
maine propre dans G/P dans la partie 4.4, comme nous allons le voir dans le para-
graphe 1.4.2.3.

1.4.2.2 Convexité et groupes transverses. Dans la partie 4.3, initialement motivée
par la question 1.3.1.(2), nous étudions la géométrie des variétés de la forme Ω/Γ, où Γ
est un sous-groupe discret P -transverse d’un groupe de Lie HTT G, préservant un do-
maine propre Ω ⊂ G/P = Sb(g) (voir la proposition 1.4.4). Étant donné un domaine
propre Ω ⊂ Sb(g) préservé par un sous-groupe discret Γ ≤ G, l’ensemble limite orbital
total Λorb

Ω (Γ) de (Ω,Γ) est l’ensemble des points d’accumulation des orbites des éléments
de Ω sous l’action de Γ (voir [DGK24]). Un cœur convexe de (Ω,Γ) est un sous-ensemble
fermé (dans Ω), connexe, causalement convexe et Γ-invariant C de Ω tel que le bord
idéal ∂iC := C ∖ C de C contienne Λorb

Ω (Γ). Nous démontrons :

Proposition 1.4.4 (voir la proposition 4.3.2). Soient G un groupe de Lie HTT et Γ ≤ G
un sous-groupe discret. Soit P ≤ G un sous-groupe parabolique tel que G/P = Sb(g). Les
assertions suivantes sont équivalentes :

1. Le groupe Γ est de type fini, P -transverse, préserve un domaine propre Ω ⊂ Sb(g),
et ΛP (Γ) contient au moins 3 points.

2. Il existe un domaine propre causalement convexe Γ-invariant Ω ⊂ Sb(g) tel que Γ
agisse de manière cocompacte sur un cœur convexe C de (Ω,Γ) dont le bord idéal
est transverse, et contient au moins trois points.
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3. Il existe un domaine propre dualement convexe Γ-invariant Ω′ ⊂ Sb(g) tel que Γ
agisse de manière cocompacte sur un cœur convexe C ′ de (Ω′,Γ) dont le bord idéal
est transverse, et contient au moins trois points.

Si ces assertions sont vérifiées, on a ∂iC = ΛP (Γ) = Λorb
Ω (Γ) = Λorb

Ω′ (Γ) = ∂iC ′.

La proposition 1.4.4 montre qu’une définition en apparence naturelle de convexe co-
compacité dans Sb(g) = G/P — point (2) de la proposition 1.4.4 — ne distingue pas
les sous-groupes P -anosoviens des autres sous-groupes discrets P -transverses de type fini
de G parmi les groupes préservant un domaine propre. Ce phénomène est dû à la nature in-
trinsèquement ≪ temporelle ≫ de la convexité considérée (convexité causale) et à la nature
≪ spatiale ≫ du comportement dynamique de Γ, déjà observée dans la proposition 1.4.2 ;
voir la remarque 4.3.4 et l’exemple 4.3.3.

1.4.2.3 Exemples. Dans la partie 4.4, nous construisons des sous-groupes P -anosoviens
Zariski-denses de groupes de Lie HTT G préservant un domaine propre dans Sb(g) = G/P ,
par déformations de sous-groupes préservant des diamants (voir la proposition 4.4.3) :

Proposition 1.4.5 (voir la proposition 4.4.2 et l’exemple 4.4.6). Soit r = 2p, avec p ∈ N∗.
Si G est un groupe de Lie HTT de rang réel r et si P ≤ G est un sous-groupe parabolique
tel que G/P = Sb(g), alors il existe des groupes de surfaces P -anosoviens Zariski-denses
dans G préservant un domaine propre dans Sb(g). Si p est pair, alors il existe aussi de
tels exemples qui ne sont ni virtuellement libres, ni des groupes de surface.

Les exemples construits dans la démonstration de la proposition 4.4.3 sont eux-mêmes
soumis à des restrictions dynamiques et topologiques, voir la proposition 4.4.5 et
l’exemple 4.4.6. Dans le cas où G = SO(n, 2), avec Sb(g) = Einn−1,1, d’autres exemples
issus de [DGK24, Sma22] apparaissent ; voir le corollaire 4.5.4 et l’exemple 4.5.5.

1.4.3 Espaces de Nagano

Les espaces de Nagano irréductibles définis dans le paragraphe 1.1.2.5 ont une struc-
ture particulière par rapport aux autres variétés de drapeaux, qui permet de construire de
nouveaux objets pour l’étude de leurs domaines propres. Par exemple, si la racine simple α
définissant l’espace de Nagano G/P (c’est-à-dire telle que G/P = G/P{α}) est de multi-
plicité 1, alors les photons tels que définis dans le paragraphe suivant ont des propriétés
d’invariance analogues à celles des droites projectives dans l’espace projectif réel. Cela
permet de construire une distance de Kobayashi (voir la partie 1.4.3.2) et de développer
une notion de facette, généralisant ainsi des notions de géométrie projective convexe.

La condition sur la multiplicité de la racine α est nécessaire pour assurer un bon com-
portement aux photons, voir la remarque 6.3.4. Une partie significative de cette thèse,
contenue dans les chapitres 5 à 7, est consacrée au développement d’une théorie des do-
maines propres dans les espaces de Nagano vérifiant cette propriété, dits de type réel. Dans
le reste de ce paragraphe, les variétés de drapeaux considérées seront toujours des espaces
de Nagano irréductibles de type réel.

Dans le tableau 8.1, la dimension de gα est égale à 1 exactement lorsque G/P est un
espace de Nagano irréductible de type réel ; c’est le cas des trois familles clés introduites
dans les paragraphes 1.1.2.2 à 1.1.2.4. Un espace de Nagano de type réel G/P est dit de
rang supérieur si son rang en tant qu’espace symétrique riemannien compact est ≥ 2, ou
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de manière équivalente, si ce n’est ni l’espace projectif réel, ni son dual (voir le tableau 8.2).
On va voir que le rang d’un espace de Nagano irréductible joue un rôle fondamental dans les
propriétés géométriques de ses domaines propres presque-homogènes, voir la partie 1.4.4.

1.4.3.1 Photons. Une action de SL(2,R) sur G/P est dite photon-génératrice si elle est
conjuguée à celle induite par le sl2-triplet associé à α. Un photon est une orbite fermée
dans G/P d’une action photon-génératrice. Il s’agit d’un cercle topologique dont les pro-
priétés sont similaires à celles des droites projectives dans P(Rn) (voir les lemmes 6.3.6
et 6.3.7). Les photons ont été définis et étudiés pour les grassmanniennes dans [LZ19], pour
les variétés de drapeaux causales dans [Gal24] et dans toutes variétés de drapeaux G/P
dans [BGL+24].

1.4.3.2 La distance de Kobayashi. Si Ω ⊂ G/P est un domaine propre, les distances
de Carathéodory ne fournissent pas suffisamment d’informations sur ∂Ω pour étudier la
dynamique du groupe d’automorphismes de Ω. À la place, nous définissons la distance de
Kobayashi, notée KΩ dans ce mémoire, qui généralise la définition (1) de la distance de
Hilbert donnée dans le paragraphe 1.1.1. Étant donnés deux points x, y ∈ Ω, une châıne de
segments de photons est un chemin continu défini par concaténation de segments contenus
dans des photons. Comme chacun des photons en question est une droite projective, on
peut calculer la longueur d’un tel chemin comme la somme des longueurs de Hilbert de
chacun de ses segments de photons. La distance de Kobayashi KΩ(x, y) entre x et y est
l’infimum des longeurs de châınes de segments de photons reliant x à y dans Ω (voir la
partie 6.4 pour plus de détails). Contrairement aux distances de Carathéodory, la définition
de la distance de Kobayashi est spécifique aux espaces de Nagano de type réel, puisqu’elle
requiert l’existence de photons satisfaisant certaines conditions d’invariance (lemmes 6.3.6
et 6.3.7) et d’abondance (observation 6.4.2). Nous démontrons alors le résultat suivant :

Théorème 1.4.6 (voir la proposition 6.4.8 et le corollaire 6.4.12). Soit G/P un espace
de Nagano irréductible de type réel et soit Ω ⊂ G/P un domaine propre. Alors KΩ est
une distance Aut(Ω)-invariante qui induit la topologie standard sur Ω. Si Ω est en outre
dualement convexe, alors KΩ est une distance propre et géodésique.

Pour démontrer la seconde assertion du théorème 1.4.6, nous comparons la distance
de Kobayashi aux distances de Carathéodory. Avec les notations de la partie 2.3.3, nous
obtenons la proposition suivante, dont la preuve est contenue dans la proposition 6.4.10
et le corollaire 6.4.12 :

Proposition 1.4.7. [voir la proposition 6.4.10] Soit G/P un espace de Nagano
irréductible de type réel et soit (V, ρ) une représentation linéaire réelle irréductible,
proximale, de dimension finie de G de plus haut poids χ = Nωα, où N ∈ N∗ et ωα est
le poids fondamental associé à α. Soit Ω ⊂ G/P un domaine propre dualement convexe
et soit CρΩ la distance de Carathéodory sur Ω induite par (V, ρ) (voir l’équation (1.1.2)).
Alors on a :

KΩ ≥
1

N
CρΩ.

En particulier, la distance KΩ est propre.

Dans la partie 6.4.7, nous montrons que dans une réalisation Ω de X(Einp,q)
dans Einp,q (resp. de X(Grp(Rp+q)) dans Grp(Rp+q)), tout couple de points peut
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être relié par une 2-châıne (resp. une min(p, q)-châıne) géodésique pour KΩ (voir les
propositions 6.4.13 et 6.4.15) et on a alors égalité entre la distance de Kobayashi et toutes
les distances de Carathéodory sur Ω. Ce phénomène est commun aux espaces de Nagano
de type réel, voir [Gal25]. Nous pensons qu’il caractérise les réalisations du dual non
compact dès que l’espace symétrique riemannien compact G/P est de rang supérieur :

Conjecture 1.4.8. Soit G/P un espace de Nagano irréductible de type réel et de
rang s ≥ 2. Soit Ω ⊂ G/P une réalisation de X(G/P ) et (V, ρ) une représentation linéaire
réelle irréductible proximale de dimension finie de G de plus haut poids χ = Nωα.
Si Ω′ ⊂ F (g, α) est un domaine propre dualement convexe tel que KΩ′ = 1

NC
ρ
Ω′ , alors Ω′

est une réalisation de X(G/P ).

1.4.4 Rigidité des convexes divisibles dans les variétés de drapeaux

Le chapitre 8 est consacré à la question 1.2.1. On remarque d’abord que les faits 1.2.2
et 1.2.3 peuvent être étendus aux domaines propres presque-homogènes, dans les
lemmes 8.1.1 et 8.1.2. Ensuite, on s’attarde sur les espaces de Nagano de type réel,
puis sur nos trois exemples clés de familles d’espaces de Nagano de type réel : les
grassmanniennes, les variétés de drapeaux causales et les univers d’Einstein. Dans les
théorèmes 1.4.14 et 1.4.17, que l’on va énoncer dans les prochains paragraphes 1.4.4.3
et 1.4.4.4, on montre que tout domaine propre presque-homogène de G/P est symétrique,
pour G/P une variété causale ou un univers d’Einstein de signature supérieure. Puisque
tout domaine propre divisible dans une variété de drapeaux est presque-homogène, les
théorèmes 1.4.14 et 1.4.14 fournissent une réponse positive à la question 1.2.1 pour les
variétés de drapeaux considérées. Ils impliquent également que, réciproquement, tout
domaine propre presque-homogène de G/P (= Sb(g) ou Einp,q) est divisible, ce qui
est faux dans l’espace projectif réel, comme mentionné dans le paragraphe 1.1.1, où les
trois notions de divisibilité, de quasi-homogénéité et de presque-homogénéité ne sont pas
équivalentes.

Dans la partie 8.9, on donne une interprétation des théorèmes 1.4.9, 1.4.14 et 1.4.17 en
termes de rigidité de rang supérieur, ce qui nous pousse à préciser la question 1.2.1 (voir
la Conjecture 8.9.1).

1.4.4.1 Non-hyperbolicité. Un célèbre résultat de géométrie projective convexe,
dû à Benoist [Ben01], est le suivant : si Γ ≤ PGL(n,R) divise un ouvert proprement
convexe Ω ⊂ P(Rn), alors les trois assertions suivantes sont équivalentes :

1. Le groupe Γ est Gromov-hyperbolique.

2. L’ouvert Ω est strictement convexe.

3. La distance de Hilbert sur Ω est Gromov-hyperbolique.

Ce comportement hyperbolique est typiquement de rang un, au sens où Ω hérite de
certaines propriétés de l’espace hyperbolique réel Hn, qui est la réalisation du dual non
compact de P(Rn+1). Or on sait que les seuls espaces de Nagano de type réel dont la
réalisation du dual non compact est de rang réel un sont les espaces projectifs réels et
leurs duaux ; voir le tableau 8.2. On peut donc s’attendre, au vu de la question 1.2.1, à ce
que ce comportement ne soit plus possible pour les espaces de Nagano de type réel de rang
supérieur. Dans [Zim18b], A. Zimmer démontre que si l’on remplace l’espace projectif réel
par la grassmannienne Grp(Rp+q) avec 2 ≤ p ≤ n−2, l’espace géodésique (Ω,KΩ) ne peut
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pas être Gromov-hyperbolique. Avec le formalisme introduit sur les espaces de Nagano,
on peut généraliser son résultat aux espaces de Nagano de type réel :

Théorème 1.4.9 (voir le théorème 8.2.2). Soit G/P un espace de Nagano irréductible
de type réel de rang supérieur. Si Ω ⊂ G/P un domaine propre presque-homogène muni
de sa distance de Kobayashi KΩ, alors l’espace métrique géodésique (Ω,KΩ) n’est pas
Gromov-hyperbolique.

Un corollaire du théorème 1.4.9, qui va dans le sens d’une réponse affirmative à la
question 1.2.1, est le suivant :

Corollaire 1.4.10 (voir le corollaire 8.2.3). Soient G/P un espace de Nagano irréductible
de type réel de rang supérieur et Γ ≤ G un sous-groupe discret. Supposons que Γ divise
un domaine propre de G/P . Alors Γ n’est pas Gromov-hyperbolique.

1.4.4.2 Rigidité dans les grassmanniennes. Soit ϕp,q la forme quadratique standard
de signature (p, q) sur Rp+q et soit B l’ensemble des p-plans de Rp+q qui sont définis
positifs pour ϕp,q. Alors B est une réalisation de X(Grp(Rp+q)) = PO(p, q)/P(O(p)×O(q))
dans Grp(Rp+q) (voir la partie 3.3.1). Limbeek–Zimmer ont montré :

Fait 1.4.11 ([LZ19]). Tout domaine divisible, convexe et borné dans une carte
affine de Grp(R2p), est une réalisation de X(Grp(R2p)), c’est-à-dire s’écrit g · Bp,p,
avec g ∈ PGL(2p,R).

Au cours de leur démonstration, ils démontrent que l’algèbre engendrée par le cen-
tralisateur dans PGL(p + q,R) d’un groupe divisant un domaine propre de Grp(Rp+q)
(avec p, q ∈ N) se décompose en une somme de sous-algèbres de dimension 1 [LZ19,
Thm 9.3]. Ce résultat est bien connu dans le cas projectif [Vey70]. En nous basant sur ce
résultat, nous menons l’étude du centralisateur d’un groupe discret divisant un domaine
propre de Grp(Rp+q) :

Théorème 1.4.12 (voir le théorème 8.5.1). Soit 2 ≤ p ≤ q. Soit Γ ≤ PGL(p + q,R)
un sous-groupe discret, agissant cocompactement sur un domaine propre Ω ⊂ Grp(Rp+q)
dont le bord est une hypersurface topologique de Grp(Rp+q). Alors toute décomposition Γ-
invariante de Rp+q est triviale.

Le théorème 1.4.12 s’applique en particulier lorsque le domaine Ω est proprement
convexe dans une carte affine.

Lorsque p = 1, on retrouve Grp(Rp+q) = P(Rq+1). Si Rq+1 = V1 ⊕ V2 est une
décomposition non triviale et si Ω1 ⊂ P(V1) et Ω2 ⊂ P(V2) sont deux domaines pro-
prement convexes dans une même carte affine, alors on peut construire un nouvel ouvert
proprement convexe joint(Ω1,Ω2) de P(Rq+1), appelé joint de Ω1 et Ω2 : on relève Ω1

et Ω2 en deux cônes ouverts proprement convexes C1, C2 d’un même demi-espace de Rq+1.
Alors joint(Ω1,Ω2) := P(C1 + C2). Topologiquement, il s’agit du produit Ω1 × Ω2 × R.
Si Ω1 et Ω2 sont divisibles, alors joint(Ω1,Ω2) l’est aussi, par un groupe qui préserve la
décomposition Rq+1 = V1 ⊕ V2.
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Dans le cas où p ≥ 2, une opération analogue est impossible. Ceci est dû au fait que,
lorsque p, q ≥ 2 et dim(V1),dim(V2) > p, on a

dim(Grp(Rp+q)) > dim(Grp(V1)) + dim(Grp(V2)) + 1. (1.4.1)

Ainsi, le joint Ω1 × Ω2 × R ne peut pas être un ouvert de Grp(Rp+q).
Dans le cadre de la preuve du théorème 1.4.12, cette contradiction peut être formalisée

par la dimension cohomologique : si Γ est un sous-groupe discret de PGL(p+q,R) agissant
cocompactement sur un domaine propre Ω ⊂ Grp(Rp+q), alors il ne peut pas agir propre-
ment discontinûment sur un joint de deux convexes Ω1 ⊂ Grp(V1) et de Ω2 ⊂ Grp(V2),
c’est-à-dire, topologiquement, un produit Ω1 × Ω2 × R. La preuve du théorème 1.4.12
consiste donc à construire, étant donnée une décomposition Γ-invariante non triviale
de Rp+q, deux domaines propres de grassmanniennes tels que Γ agisse proprement discon-
tinument sur Ω1×Ω2×R, pour obtenir dim(Ω) = dim(Ω1)+dim(Ω2)+1, en contradiction
avec l’équation (1.4.1).

Le corollaire suivant découle alors du théorème 1.4.12 et de [LZ19, Thm 9.3] :

Corollaire 1.4.13 (voir le corollaire 8.5.2). Soit 2 ≤ p ≤ q. Soit Ω ⊂ Grp(Rp+q) un
domaine propre dont le bord est une hypersurface topologique de Grp(Rp+q). Supposons
qu’il existe un sous-groupe discret Γ ≤ PGL(p + q,R) agissant cocompactement sur Ω.
Alors le centralisateur de Γ dans PGL(p+ q,R) est fini.

Le théorème 1.4.12 et le corollaire 1.4.13 vont dans le sens d’une réponse affirmative
à la question 1.2.1, puisqu’ils expriment une perte de flexibilité : si l’on peut joindre
deux convexes divisibles dans l’espace projectif réel pour en obtenir un nouveau dans un
espace projectif réel plus grand, ce procédé n’est plus possible dans les grassmanniennes
supérieures.

1.4.4.3 Rigidité dans les variétés Θ-positives. Les résultats principaux énoncés dans
cette partie sont le théorème 1.4.14 et le corollaire 1.4.16, dont les preuves sont données
dans la partie 8.3.

1.4.4.3.1 Rigidité dans les variétés causales. Les diamants dans les variétés causales
ont été définis dans le paragraphe 1.4.1. Ce sont en fait des réalisations de X(Sb(g))
dans l’espace de Nagano de type réel Sb(g). On répond positivement à la question 1.2.1
pour G/P = Sb(g) :

Théorème 1.4.14 (voir le théorème 8.3.1). Soit G un groupe de Lie simple de hermitien
de type tube. Alors tout domaine propre presque-homogène de Sb(g) est un diamant.

Tout domaine propre Ω ⊂ Sb(g) hérite d’une structure causale issue de celle de Sb(g).
Une généralisation du théorème classique de Liouville implique que Aut(Ω) est commensu-
rable au groupe conforme de Ω, c’est-à-dire au groupe des difféomorphismes f : Ω→ Ω tels
que dxf(cx) = cf(x) pour tout x ∈ Ω [Kan11] (avec les notations du paragraphe 1.1.2.4). Le
théorème 1.4.14 affirme donc que la presque-homogénéité du groupe conforme caractérise
les diamants parmi les domaines propres de Sb(g).

Plus généralement, le resultat suivant découle directement du Lemme 8.1.1 et du
théorème 1.4.14 :
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Corollaire 1.4.15. Soit G un groupe de Lie semi-simple de type Hermitien de type
tube, avec centre trivial et sans facteur compact. Écrivons G = G1 × · · · × Gk, où
chaque Gi est un groupe de Lie simple non compact de type Hermitien de type tube pour
tout 1 ≤ i ≤ k. Alors, pour tout domaine propre presque homogène Ω ⊂ Sb(g), il existe des
diamants Di ⊂ Sb(gi) pour 1 ≤ i ≤ k tels que Ω = D1×· · ·×Dk ⊂ Sb(G1)×· · ·×Sb(Gk).

1.4.4.3.2 Structures Θ-positives. La positivité totale est connue et étudiée depuis le début
du XXe siècle pour SL(N,R). Elle a été généralisée aux groupes de Lie semi-simples réels
déployés par Lusztig [Lus94]. Par ailleurs, il était connu que les groupes d’isométries des
espaces symétriques hermitiens de type tube admettent une structure causale (voir par
exemple [Kan06]).

Guichard–Wienhard ont généralisé ces deux notions de positivité totale et de causalité
avec leur notion de structure Θ-positive, où Θ est un ensemble de racines simples restreintes
d’un groupe de Lie semi-simple réel G. Ils ont classifié tous les couples (G,Θ) tels que G
admette une structure Θ-positive [GW18, GW25]. Dans leur liste, les couples (G, {αr}),
où G est un groupe de Lie HTT de rang r, constituent la seule famille où Θ est un
singleton (c’est-à-dire où le sous-groupe parabolique propre défini par Θ est maximal).
Ainsi, le théorème 1.4.14 et le Lemme 8.1.2 complètent la classification des domaines
propres presque-homogènes dans les variétés de drapeaux Θ-positives :

Corollaire 1.4.16 (voir le corollaire 8.3.4). Soit G un groupe de Lie simple réel non
compact et soit Θ un sous-ensemble des racines simples restreintes de G tel que G admette
une structure Θ-positive. Alors on a la dichotomie suivante :

1. Si |Θ| = 1, alors G est hermitien de type tube et G/PΘ = Sb(g) admet exactement
un domaine propre presque-homogène à conjugaison par G près, qui est un diamant.

2. Si |Θ| ≥ 2, alors il n’existe aucun domaine propre presque-homogène dans G/PΘ.

Ici, on a noté PΘ le sous-groupe parabolique de G défini par Θ, avec la convention
que PΘ est minimal si et seulement si Θ est l’ensemble de toutes les racines simples de G.
Par le Lemme 8.1.1, la question 1.2.1 admet une réponse positive pour les variétés de
drapeaux G/PΘ munies d’une structure Θ-positive, où G est un groupe de Lie semi-simple
(pas nécessairement simple) non compact et Θ un sous-ensemble des racines simples de G.

1.4.4.4 L’univers d’Einstein. Un diamant dans Einp,q est une réalisation
de X(Einp,q) = Hp×Hq dans Einp,q. Nous donnons une construction de ces domaines dans
la partie 3.4.2 (voir aussi [Tro24]). Dans un travail en collaboration avec Adam Chalumeau
[CG24], nous donnons une réponse positive à la question 1.2.1 pour G/P = Einp,q :

Théorème 1.4.17 (avec Chalumeau, voir le théorème 8.4.1). Tout domaine propre
presque-homogène de Einp,q est un diamant.

L’isomorphisme exceptionnel so(3, 3) ≃ sl(4,R) et la trialité dans so(4, 4) donnent
alors :

Corollaire 1.4.18 (avec Chalumeau, voir le corollaire 8.4.4). (1) Soit Ω ⊂ Gr2(R4) un
domaine propre presque-homogène. Alors Ω est une réalisation de X(Gr2(R4)). Autrement
dit, il existe g ∈ PGL(4,R) tel que Ω = g · B2,2.
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(2) Soit F l’une des deux composantes connexes de l’espace des sous-espaces totalement
isotropes maximaux de R4,4. Soit Ω ⊂ F un domaine propre presque homogène. Alors Ω
est une réalisation de X(F (g, α)). En particulier, Aut(Ω) est conjugué à SO(3, 1)×SO(1, 3)
dans SO(4, 4).

Le corollaire 1.4.18.(1) renforce le fait 1.4.11 pour p = 2, en remplaçant l’hypothèse de
divisibilité par celle, plus faible, de presque-homogénéité, et en supprimant l’hypothèse de
convexité dans une carte affine.

1.4.4.5 Une application aux (G,G/P )-structures. Étant donnée une (G,X)-

variété M , il existe une application du revêtement universel M̃ de M dans X, appelée
développante, construite par recollement d’images de cartes de M . Cette développante est
unique à multiplication par un élément de G près.

Une (G,G/P )-variété M est dite propre si l’image de sa développante est propre
dans G/P . Dans l’espace projectif réel P(Rn), le quotient d’un convexe divisible
non symétrique Ω par un sous-groupe discret Γ de PGL(n,R) le divisant fournit
une (PGL(n,R),P(Rn))-variété compacte propre Ω/Γ qui n’est pas difféomorphe de
manière G-équivariante à un quotient compact de l’espace symétrique riemannien d’un
groupe de Lie non compact. Dans les variétés de drapeaux où la rigidité a pu être
observée, la situation est différente : A. Zimmer démontre, en conséquence de son
théorème énoncé dans le fait 1.2.3, que si G est un groupe de Lie semi-simple réel et P
est un sous-groupe parabolique non maximal, alors il n’existe pas de (G,G/P )-variétés
propre [Zim18a]. Les cas énoncé dans cette partie fournissent aussi des résultats de
classification sur les (G,G/P )-variétés propres. Le résultat suivant est un corollaire du
théorème 1.4.14 :

Corollaire 1.4.19 (voir le corollaire 8.8.5). Soit G un groupe de Lie simple de type
Hermitien de type tube et soit M une (G,Sb(g))-variété compacte connexe propre. Alors,
la variété M s’identifie, en tant que (G,Sb(g))-variété, à un quotient D/Γ, où D est un
diamant de Sb(g) et Γ est un réseau cocompact de Aut(D). Ainsi, la variété M est un
revêtement fini de

(XLs/Γ
′)× S1,

où XLs est l’espace symétrique riemannien de la partie semi-simple Ls d’un sous-groupe
de Levi L de P{αr} et Γ′ est un réseau cocompact de Ls.

Le résultat suivant est un corollaire du théorème 1.4.17 (voir la partie 2.4.3.3 pour des
définitions) :

Corollaire 1.4.20 (avec Chalumeau, voir le corollaire 8.8.4). Soient p, q ≥ 2 deux entiers
et M une variété pseudo-riemannienne conformément plate de signature (p, q) (où p est le
nombre de + et q le nombre de −), propre, compacte et connexe. AlorsM est conformément
équivalente à un quotient D/Γ, où D est un diamant de Einp,q et Γ ≤ Aut(D) est un
réseau cocompact. Si de plus 1 ≤ p < q avec (p, q) ̸= (2, 3), alors à revêtement fini près,
la variété M est conformément équivalente à

Σp × (−Σq),
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où Σp et Σq sont des variétés hyperboliques compactes de dimensions respectives p et q.
En signature lorentzienne, c’est-à-dire pour q = 1, la variété M est (à un revêtement fini
près) conformément équivalente au produit Σ × (−S1), où Σ est une variété hyperbolique
compacte.

En particulier, toute (G,G/P )-variété compacte propre (avec G un HTT
et G/P = Sb(g), ou G = SO(p+ 1, q+ 1) et G/P = Einp,q) est kleinienne, autrement dit,
sa développante est un difféomorphisme sur son image. En général, il n’est même pas
assuré que cette application soit un revêtement sur son image : le principe de déformation
d’Ehresmann–Thurston fournit des structures lorentziennes conformes sur M = Σg × S1,
où Σg est une surface hyperbolique compacte de genre g ≥ 2 et l’holonomie de M est non
discrète dans SO(3, 2) (voir [Fra05, Sect. 10.3.4]).

1.4.5 Perspectives sur les espaces de Nagano

Les parties 6.5 et 8.9, concluant chacune un chapitre clé du mémoire, sont consacrées à
des discussions sur les résultats du mémoire. En particulier, nous y abordons de possibles
interprétations de la rigidité et généralisations de la distance de Kobayashi.

1.4.5.1 Rang et structure du bord. Dans le chapitre 5 et la partie 6.5, nous énonçons
des résultats fondamentaux et bien connus sur les espaces de Nagano, dont plusieurs
mettent en évidence un lien profond entre le rang de G/P et la structure des variétés de
Schubert propres maximales (définies en (1.1.1)), voir par exemple l’observation 5.1.10 et
le théorème 6.5.8.

Si G/P est un espace de Nagnano irréductible de type réel, alors, comme déjà men-
tionné, ce rang est 1 si et seulement si G/P est l’espace projectif réel ou son dual. Lorsque
ce rang est ≥ 2, une contrainte géométrique forte apparâıt sur la structure du bord d’un
domaine propre presque-homogène (voir le théorème 7.2.6). Dans les cas examinés dans ce
mémoire — c’est-à-dire ceux abordés dans les théorèmes 1.4.9, 1.4.12, 1.4.14 et 1.4.17 —
cette contrainte induit de la rigidité pour ces domaines. Nous discutons cette observation
dans la partie 8.9 et l’interprétons comme un phénomène de rang supérieur.

1.4.5.2 Sphères d’Helgason. Comme évoqué dans le paragraphe 1.4.3.1, les photons
ne sont des objets naturels que dans les espaces de Nagano irréductibles de type réel, c’est-
à-dire définis par une racine simple α de multiplicité 1 ; c’est uniquement dans ce cadre
que leurs propriétés d’invariance sont satisfaites. Lorsque α est de multiplicité k ≥ 2,
cette invariance peut être retrouvée en considérant, à la place, des sphères de dimension k,
connues sous le nom de sphères d’Helgason et introduites dans [Pet87]. Dans la partie 6.5.3,
nous discutons une potentielle généralisation de la distance de Kobayashi aux espaces de
Nagano (non nécessairement de type réels), en remplaçant les châınes de photons par
des châınes de sphères d’Helgason. Une telle pseudo-distance devrait fournir des résultats
semblables à ceux obtenus avec la distance de Kobayashi ; ces considérations font partie
d’un projet en cours.
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Chapter 2

Preliminaries

In this chapter, we set notation that will be used throughout this memoir. We recall
some structural properties of semisimple Lie groups and flag manifolds. We illustrate these
concepts through the three main examples of this thesis, namely Grassmannians, Einstein
universes, and causal flag manifolds; see Section 2.4.

2.1 Some general reminders and notation

In this section, we provide some basic reminders on objects that will be used throughout
this thesis and establish the corresponding notations.

2.1.1 Projective geometry

We start with reminders on real and complex projective spaces, cross ratios, and the
Hilbert metric.

2.1.1.1 Real and complex projective space. Given a finite-dimensional real vector
space V , we will denote by [v] the projection in P(V ) of a vector v ∈ V ∖ {0}. In the case
where V = R2, we denote by [t1 : t2] the projection in P(R2) of a vector (t1, t2) ∈ R2∖{0}.

We denote by V ∗ the space of all linear forms on V . The space P(V ∗) can be identified
with the space of hyperplanes of V , or equivalently, the space of projective hyperplanes
of P(V ), via the maps

[f ] 7→ ker(f) and [f ] 7→ P(ker(f)). (2.1.1)

An open subset of the form P(V )∖P(ker(f)) for some [f ] ∈ P(V ∗) is called an affine chart
of P(V ), and admits a canonical affine structure.

In Section 6.4.5, we will also be led to consider the complex projective spaces. Since
we will consider both real and complex vector spaces, to avoid the confusion we denote
by Pc(W ) the complex projective space of a finite-dimensional complex vector space W ,
and by [v]c the projection in Pc(W ) of a vector v ∈W ∖{0}. We use the notation [z1 : z2]c
for the projection in Pc(C2) of a vector (z1, z2) ∈ C2 ∖ {0}.
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2.1.1.2 Cross ratio and Hilbert metric of an interval. We denote by (· : · : · : ·)
the classical cross ratio on P(R2). Recall that it is SL(2,R)-invariant and satis-
fies ([1 : 0] : [1 : 1] : [1 : t] : [0 : 1]) = t.

If I ⊂ P(R2) is a proper open interval with (possibly equal) endpoints t1 and t2,
then the Hilbert pseudo-metric on I is denoted by HI and defined as follows: for any
pair s1, s2 ∈ I such that t1, s1, s2, t2 are aligned in this order (taking any order if s1 = s2
or t1 = t2), one has HI(s1, s2) := log(t1 : s1 : s2 : t2). If I = P(R2), then HI is by
convention the constant map equal to 0 on I2.

2.1.1.3 Convexity and the Hilbert metric. An open set Ω ⊂ P(Rn) is said to be
properly convex if there exists an affine chart of P(Rn) containing Ω as a bounded convex
set. The Hilbert metric on Ω is then defined as follows: given two points x, y ∈ Ω, there
exists a projective line ℓ through x and y. The projective interval I := Ω ∩ ℓ admits a
Hilbert metric, according to the previous section. Then, we define HΩ(x, y) := HI(x, y).

The Hilbert metric on a properly convex open set of P(Rn) is a proper, geodesic metric,
with projective segments being geodesics, and it is invariant under the automorphism
group

{g ∈ PGL(n,R) | g · Ω = Ω}

of Ω. For a more in-depth description of the Hilbert metric, see for instance [DLH93,
PT14, Gol22].

Remark 2.1.1. Similarly, one can define a Hilbert metric on a properly convex open
set of any affine space A, in an analogous way. If Ω ⊂ P(Rn) is properly convex, then its
projective Hilbert metric coincides with its Hilbert metric in any affine chart that contains
it as a bounded subset.

2.1.2 Signature

Let n ∈ N>0 and K = R,C or H. Given v ∈ Kn, we will denote by v the vector
whose i-th entry is the conjugate (in K) of the i-th entry of v. Let b be a K-hermitian
form on Kn, i.e.

b(u, v) = b(v, u) ∀u, v ∈ Kn

b(λu, v) = λb(v, u) ∀u, v ∈ Kn, λ ∈ K.

If Sub(Kn) is the set of all K-vector subspaces of Kn, then the quantities

p := max{dim(V ) | V ∈ Sub(Kn), b(v, v) > 0 ∀v ∈ V ∖ {0}};
q := max{dim(V ) | V ∈ Sub(Kn), b(v, v) < 0 ∀v ∈ V ∖ {0}},

are well defined and satisfy p+q ≤ n. The signature of b is the triple sgn(b) = (p, q, n−p−q).
Whenever p + q = n, we will simply denote this signature by (p, q) and say that b is
nondegenerate.

If K = R and b is nondegenerate, then the group O(b) (resp. PO(b)) will be the
subgroup of the elements of GL(n,R) (resp. PGL(b)) preserving b. The abstract Lie
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group isomorphic to SO(b) (resp. PO(b)) is SO(p, q) (resp. PO(p, q)). When there is no
ambiguity, the space Rn endowed with b will be denoted by Rp,q.

Given a matrix X ∈ Matn(K), we denote by X the matrix whose (i, j)-th entry is the
conjugate (in K) of the (i, j)-th entry of X. Let X ∈ Matn(K) be such that tX = X. Then
the K-hermitian form on Kn defined by

bX(u, v) =t vXu

for all u, v ∈ Kn is uniquely defined by X, and the signature sgn(X) of X is by definition
the signature of bX .

2.2 Preliminaries on Lie theory

In this section, we recall some well-known facts about semisimple Lie groups and fix
notations that will hold for the rest of the memoir. Illustrative examples are given and
described in detail in Section 2.4.

All the Lie groups and Lie algebras in this memoir are supposed to be linear. Given
a semisimple Lie group G, we will always denote by g its Lie algebra in this memoir. In
this section, we fix a noncompact real semisimple Lie group G.

2.2.1 sl2-triples

A triple t = (e, h, f) of nonzero elements of g satisfying the equalities
[h, e] = 2e, [h, f ] = −2f and [e, f ] = h is called an sl2-triple. There is a Lie algebras

embedding jt : sl2(R) ↪→ g such that jt(E) = e, jt(H) = h and jt(F) = f , where

E =

(
0 1
0 0

)
; H =

(
1 0
0 −1

)
; F =

(
0 0
−1 0

)
.

2.2.2 Cartan decomposition

Let B be the Killing form on g. Let K ≤ G be a maximal compact subgroup and h
be the B-orthogonal of the Lie algebra k of K in g. Then one has g = k⊕ h. The Cartan
involution of g (with respect to K) is then the Lie algebra automorphism σg : g → g
defined by (σg)|k = idk and (σg)|h = − idh. It induces a Lie group automorphism of G,
denoted by σG and called the Cartan involution of G.

2.2.3 Restricted root system

Let a ⊂ h be a maximal abelian subspace, and g0 the centralizer of a in g. We denote
by a∗ the space of all linear forms on a. For α ∈ a∗, we define

gα := {X ∈ g | [H,X] = α(H)X ∀H ∈ a}.

One has [gα, gβ] ⊂ gα+β for any α, β ∈ a∗. If α ∈ a∗ ∖ {0} satisfies gα ̸= {0}, then
we say that α is a restricted root of (g, a). We denote by Σ = Σ(g, a) the set of all
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restricted roots of (g, a). One has g = g0 ⊕
⊕

α∈Σ gα. We fix a fundamental sys-
tem ∆ = {α1, . . . , αN} ⊂ Σ, i.e. a family of restricted roots such that any root of g
can be uniquely written as α =

∑N
i=1 niαi, where the ni all have same sign for 1 ≤ i ≤ N .

The elements of ∆ are called simple restricted roots. From now on, whenever we fix a real
semisimple Lie algebra of noncompact g, it will always implicitly be endowed a fixed set ∆
of simple restricted roots.

The choice of a fundamental system determines a set of positive roots Σ+, i.e. those
roots α where the ni are all nonnegative.

For any α ∈ Σ and X ∈ gα ∖ {0}, there exists a unique scalar multiple X ′ of X such
that (X ′, [σg(X

′), X ′], σg(−X ′)) is an sl2-triple. The element [σg(X
′), X ′] does not depend

on the choice of X ∈ gα, and is denoted by hα. The family (hα)α∈∆, whose elements are
called the coroots of g, forms a basis of a, whose dual basis in a∗ is denoted by (ωα)α∈∆.

The nonnegative Weyl chamber associated with ∆ is

a+ = {X ∈ a | α(X) ≥ 0 ∀α ∈ ∆}.

For all g ∈ G, there exist k, ℓ ∈ K, and a unique µ(g) ∈ a+ such that g = k exp(µ(g))ℓ.
This defines the Cartan projection µ : G→ a+.

2.2.4 The restricted Weyl group

The restricted Weyl group W of G is the quotient NK(a)/ZK(a) of the normalizer of a
in K (for the adjoint action) by the centralizer of a in K. For its natural embedding
in GL(a), it is a finite group generated by the B-orthogonal reflexions in a with respect
to the kernels of the simple restricted roots. By duality with respect to B (which induces
a scalar product on a), the action of W on a induces an action on a∗ preserving Σ.
There exists a unique w0 ∈ W , called the longest element, such that w0 · Σ+ = −Σ+.
The element i : a∗ → a∗ defined as i = −w0 is called the opposition involution, and
satisfies i(∆) = ∆.

2.2.5 Parabolic subgroups

Let Θ ⊂ ∆ be a subset of the simple restricted roots. The standard parabolic sub-
group P+

Θ (resp. the standard opposite parabolic subgroup P−
Θ ) is defined as the normalizer

in G of the Lie algebra

u+Θ :=
⊕
α∈Σ+

Θ

gα

(
resp. u−Θ :=

⊕
α∈Σ+

Θ

g−α

)
, (2.2.1)

where Σ+
Θ := Σ+ ∖ Span(∆∖Θ). By “standard”, we mean with respect to the above

choices. One has

p+Θ := Lie(P+
Θ ) = g0 ⊕

⊕
α∈Σ+

gα ⊕
⊕

α∈Σ∖Σ+
Θ

g−α. (2.2.2)

The Lie algebra of P−
Θ is denoted by p−Θ.

For any representative k0 ∈ NK(a) of w0, one has k0P
−
Θ k0 = P+

i(Θ).
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More generally, a parabolic subgroup of type Θ of G is a conjugate of P+
Θ in G. A Borel

subgroup is a conjugate of P+
∆ in G.

The Levi subgroup associated with Θ is the reductive Lie group defined as the inter-
section LΘ := P+

Θ ∩ P
−
Θ . The unipotent radical of P+

Θ (resp. P−
Θ ) is U+

Θ := exp(u+Θ) (resp.
U−
Θ := exp(u−Θ)). One then has P+

Θ = U+
Θ ⋊ LΘ (resp. P−

Θ = U−
Θ ⋊ LΘ).

The group SΘ := [LΘ, LΘ] is a real semisimple Lie group, not necessarily connected,
and a Cartan subspace of SΘ is aΘ :=

⊕
α∈∆∖ΘR hα.

The Weyl group with respect to Θ, denoted by WΘ, is the subgroup of W generated
by the reflections sα, with α ∈ Θ. Note that W∆∖Θ is the Weyl group of SΘ.

If Θ = ∆, then P+
∆ is the standard Borel subgroup of G, and is contained in P+

Θ′ for
all Θ′ ⊂ ∆. The following equality then holds:

G =
⊔
w∈W

P+
∆wP

+
∆ . (2.2.3)

It is classically called the Bruhat decomposition of G.

2.2.6 Flag manifolds

A flag manifold is a smooth compact manifold M endowed with a transitive action of
a noncompact semisimple Lie group G, such that the stabilizer of a point of M stabilizer
of a point a parabolic subgroup P of G. In this case, there exists a subset Θ of the simpe
restricted roots of G such that M is G-equivariantly diffeomorphic to G/P+

Θ .
Two flag manifolds M,M ′ under semisimple Lie groups G,G′ are said to be equivalent

if there exists a Lie algebra isomorphism ρ : g → g′ and a diffeomorphism f : M → M ′

such that df ◦ ad(X) = ad(ρ(X)) ◦ df for all X ∈ g.
The coset space F (g,Θ) := g/p+Θ, endowed with the natural action of G induced

by Ad, is a flag manifold, called the standard flag manifold associated with g and Θ. We
then have a flag manifold equivalence

G/PΘ ≃ F (g,Θ) (resp. G/P−
Θ ≃ F (g,Θ)−). (2.2.4)

We will simply denote by g · x the action of an element g ∈ G on x ∈ F (g,Θ) (instead
of Ad(g) · x).

Equation (2.2.4) implies in particular that any flag manifold M is equivalent to the
standard flag manifold of associated with some g and Θ. We will thus always be able to
assume that M = F (g,Θ).

If i(Θ) = Θ, then we say that Θ and F (g,Θ) are self-opposite. For any rep-
resentative k0 ∈ NK(a) of the longest element w0, one has p+Θ = k0 · p−Θ, and one
has F (g,Θ) = F (g,Θ)−.

Example 2.2.1. In this example, given some integer N ∈ N>0, we denote by εi the
map εi : diag(λ1, . . . , λN ) 7→ λi, for 1 ≤ i ≤ N .

1. For g = sl(p+ q,R) = Matp+q(R), we fix the Cartan subspace

a :=
{

diag(λ1, . . . , λp+q) | λi ∈ R ∀1 ≤ i ≤ p+ q,

p+q∑
i=1

λi = 0
}
.
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Then the associate root system of sl(p+q,R) is Σ = {±(εi−εj) | 1 ≤ i < j ≤ p+q}.
A fundamental system is then

∆ := {αi := εi − εi+1 | 1 ≤ i ≤ p+ q − 1}.

If Pp := P{αp}, then the flag manifold F (g, αp) identifies with the space Grp(Rp+q)
of p-planes of Rp+q, called the Grassmannian of p-planes of Rp+q. The opposite
flag manifold identifies with the Grassmannian F (g, i(αp)) = F (g, αq) = Grq(Rp+q)
of q-planes of Rp+q. We give more details on these identifications in Section 2.4.2.

2. For g = so(p+ 1, q + 1) = {X ∈ Matp+q+2(R) |tXS + SX = 0} with 0 ≤ q ≤ p (the
case where 0 ≤ p ≤ q is symmetric) and

S =

 0 0 Jp+1

0 Iq−p 0
Jp+1 0 0

 ,

where Jk = (aij) satisfies

aij =

{
1 if j = p+ q + 2− i+ 1;

0 otherwise.

We fix the Cartan subspace

a := {diag(λ1, . . . , λp+1, 0, . . . , 0,−λp+1, . . . ,−λ1) | λi ∈ R ∀1 ≤ i ≤ p+ 1}.

The associate root system is

Σ :=

{
{±εi ± εj | 1 ≤ i < j ≤ p+ 1} ∪ {±εi | 1 ≤ i ≤ p} if p < q

{±εi ± εj | 1 ≤ i < j ≤ p+ 1} if p = q
.

A fundamental system is ∆ := {α1, . . . , αp+1}, with αi = εi−εi+1 for 1 ≤ i ≤ p, and

αp+1 =

{
εp+1 if p < q;

εp + εp+1 if p = q.

The flag manifold F (g, α1) identifies with the space Einp,q of isotropic lines
of Rp+1,q+1, called the the Einstein universe, as we will see in Section 2.4.1.

2.2.6.1 The automorphism group. The group of all Lie algebra automorphisms of g
is called the automorphism group of g and denoted by Aut(g). It is a Lie group with Lie
algebra g. When G is semisimple, the map Ad : G→ Aut(g) has finite kernel.

In general, the group Aut(g) does not act on F (g,Θ). However, it admits a finite-index
subgroup that does: indeed, any g ∈ Aut(g) induces an automorphism ψg of the funda-
mental system ∆. This defines a group homomorphism Aut(g) → Aut(∆). For Θ ⊂ ∆,
we denote by AutΘ(g) the subgroup of Aut(g) of all Lie algebra automorphisms g such
that ψg fixes Θ. This group contains the kernel Aut1(g) of f , which itself contains Ad(G).
The group AutΘ(g) acts on F (g,Θ). In particular ker(Ad) acts trivially on F (g,Θ).

Definition 2.2.2. We denote by GΘ(g) the set of finite-index subgroups of AutΘ(g).

Since ker(Ad) acts trivially on F (g,Θ), we will always be able to assume
that G ∈ GΘ(g), identifying it with its image under Ad.
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2.2.6.2 Transversality. The action of G on F (g,Θ) × F (g,Θ)− by left translations
has exactly one open orbit O, which is the orbit of (p+Θ, p

−
Θ) and is dense. Two ele-

ments x ∈ F (g,Θ) and y ∈ F (g,Θ)− are said to be transverse if (x, y) ∈ O.

If Θ is self-opposite, then a subset F of F (g,Θ) is said to be transverse if any pair of
distinct points of F is transverse.

Given a point y ∈ F (g,Θ)− (resp. x ∈ F (g,Θ)), we let Zy (resp. Zx) be the set of all
elements of F (g,Θ) (resp. F (g,Θ)−) that are not transverse to y (resp. to x):

Zy := {z ∈ F (g,Θ) | (z, y) /∈ O};
Zx := {z′ ∈ F (g,Θ) | (x, z′) /∈ O}.

(2.2.5)

It defines an algebraic hypersurface of F (g,Θ) (resp. of F (g,Θ)−), called a maximal
proper Schubert subvariety. The space F (g,Θ) ∖ Zy is called an affine chart (or more
classically a big Schubert cell) and is an open dense subset of F (g,Θ). The affine chart

Astd := F (g,Θ) ∖ Zp−Θ
(2.2.6)

is called the standard affine chart. The bijection

φstd : u−Θ
∼−→ Astd

X 7−→ exp(X) · p+Θ
(2.2.7)

induces an affine structure on Astd. Since G acts transitively on F (g,Θ)−, any affine
chart F (g,Θ)∖Zy with y ∈ F (g,Θ)− admits an affine structure, which moreover depends
only on y (and not on the choice of g ∈ G such that y = g · p−Θ).

Example 2.2.3. Take the notation of Example 2.2.1.(1). If y ∈ Grq(Rp+q) is a q-plane
of Rp+q, then in the identification F (sl(p+ q,R), αp) ≃ Grp(Rp+q), we have

Zy = {x ∈ Grp(Rp+q) | x ∩ y ̸= {0}}.

2.2.6.3 Incidence. Let Θ,Θ′ ⊂ ∆. Any element (x, y) ∈ F (g,Θ) × F (g,Θ′) can be
written (x, y) = (g · p+Θ, gw · pΘ′), with g ∈ G and w ∈W . Let

pos(Θ,Θ
′) : F (g,Θ)×F (g,Θ′)→W∆∖Θ\W/W∆∖Θ′

be the diag(G)-invariant map such that pos(Θ,Θ
′)(p+Θ, w · p

+
Θ′) = w for all w ∈ W . This

map only depends on the Lie algebra g of G. Given a point x ∈ F (g,Θ) and an ele-
ment w ∈W∆∖Θ\W/W∆∖Θ′ , let

C
(Θ,Θ′)
w (x) = {x′ ∈ F (g,Θ′) | pos(Θ,Θ′)(x, x′) = w}.

The following fact follows from the definitions:

Fact 2.2.4. Let w,w′ ∈W . If C
(Θ,Θ′)
w (x) ∩ C

(Θ,Θ′)
w′ (x) ̸= ∅, then w = w′.
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There is a partial order on W∆∖Θ\W/W∆∖Θ′ , defined in the following way: given two
elements w,w′ ∈W , we have

w ≤ w′ ⇐⇒ C
(Θ,Θ′)
w (x) ⊂ C

(Θ,Θ′)
w′ (x) for some (hence any) x ∈ F (g,Θ).

Note that this partial order admits a maximum, which is w0.

In the case where Θ′ = i(Θ), and y ∈ F (g,Θ)−, the sets C
(Θ,i(Θ))
w (y), for w ∈ W ,

are called Schubert cells defined by y. Note that the maximal proper Schubert subvariety
defined by y (in the notation of Section 2.2.6.2) is then the union of the closures of all the

Schubert cells of the form C
(Θ,i(Θ))
w (y), where w ∈W satisfies w ̸= w0. A point x ∈ F (g,Θ)

is transverse to y if and only if one has w0 ∈ pos(Θ,i(Θ))(x, y).

Example 2.2.5. With the notation of Example 2.2.1.(1), if g = sl(p + q,R),
if 1 ≤ p′ ≤ p+ q, then for all x ∈ Grp(Rp+q) and w ∈W , the integer

p− dim(y ∩ x), y ∈ C
({αp},{αp′})
w (x)

is constant on C
({αp},{αp′})
w (x). It is minimal if and only if w = w0, and maximal if and

only if w = id.

Lemma 2.2.6. 1. Let x, y ∈ F (g,Θ)− be a triple such that w0 ∈ pos(i(Θ),i(Θ))(x, y).
Then there exists z ∈ F (g,Θ) ∖ Zy such that id ∈ pos(Θ,i(Θ))(z, x).

2. Let (x, y, z) be a triple of F (g,Θ)2 × F (g,Θ)− such that id ∈ pos(Θ,i(Θ))(x, z)
and w0 ∈ pos(Θ,i(Θ))(y, z). Then w0 ∈ pos(Θ,Θ)(x, y).

Proof. 1) Since pos(i(Θ),i(Θ))(x, y) = w0, we may assume that x = p−Θ and y = w0 · p−Θ. Let
us set z := w0 · p+Θ. Then z is transverse to y, and by G-invariance of pos, we have

pos(Θ,i(Θ))(z, x) = pos(Θ,i(Θ))(p+Θ, w0 · p−Θ) = pos(Θ,i(Θ))(p+Θ, p
+
i(Θ)) = id.

2) Since id ∈ pos(Θ,i(Θ))(x, z), we may assume that (x, z) = (p+Θ, p
+
i(Θ)). By the

Bruhat decomposition (recall Equation (2.2.3)), there exist p ∈ P+
∆ and w ∈ W such

that y = pw · p+Θ. One has w0 ∈ pos(Θ,i(Θ))(y, p+i(Θ)) = pos(Θ,i(Θ))(p+Θ, w
−1 · p+i(Θ)),

which implies that w−1 = w0. Thus there exist (a, b) ∈ W∆∖Θ × W∆∖i(Θ) such
that w−1 = aw0b = ab′w0, with b′ ∈W∆∖Θ.

On the other hand, we have

pos(Θ,Θ)(y, p+Θ) = pos(Θ,Θ)(w0b
′−1a−1 · p+Θ, p

+
Θ) = pos(Θ,Θ)(p+Θ, w0 · p+Θ),

since W∆∖Θ ⊂ SΘ ⊂ LΘ. Thus w0 ∈ pos(Θ,Θ)(y, p+Θ). □

Remark 2.2.7. The cardinality of W∆∖Θ\W/W∆∖Θ′ , which corresponds to the number
of G-orbits for its action on F (g,Θ) ×F (g,Θ′) (and only depends on the Lie algebra g
of G) will sometimes be referred to as the number of incidence degrees between a pair of
points in F (g,Θ)×F (g,Θ′).
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2.3 Dynamics of groups acting on flag manifolds

In this section, we recall important definitions concerning actions of Lie groups on flag
manifolds, and their properties. We fix a semisimple Lie group G with Cartan projec-
tion µ : G→ a+, and a subset Θ of simple restricted roots of G. We recall notions on the
dynamics of the elements of G and prove lemmas that we will use in this memoir.

2.3.1 Divergent groups

Divergent groups are groups with strong dynamical properties for their action on flag
manifolds.

A sequence (gk) ∈ GN is Θ-divergent if α(µ(gk)) → +∞ for every α ∈ Θ. It is Θ-
contracting if there exists (x, ξ) ∈ F (g,Θ) × F (g,Θ)− such that gk · y → x uniformly
on compact subsets of F (g,Θ) ∖ Zξ; the pair (x, ξ) is then uniquely determined by (gk),
and we say that (gk) is Θ-contracting with respect to (x, ξ), and that x is the Θ-limit
of (gk). Let us recall the following fact, which is an immediate consequence of the Cartan
decomposition of G (see e.g. [KLP17]):

Fact 2.3.1. Let (gk) ∈ GN.

1. Assume that that there exist an open subset U ⊂ F (g,Θ) and a point x ∈ F (g,Θ)
such that gk ·U → {x} for the Hausdorff topology. Then (gk) admits a subsequence
which is Θ-contracting with Θ-limit x.

2. A sequence (gk) is Θ-divergent if and only if every subsequence of (gk) admits a Θ-
contracting subsequence.

3. The sequence (gk) admits a subsequence which is Θ-contracting with respect
to (x, ξ) ∈ F (g,Θ) × F (g,Θ)− if and only if the sequence (g−1

k ) admits a
subsequence which is i(Θ)-contracting with respect to (ξ, x).

Thus, given a Θ-divergent sequence (gk) ∈ GN, one can define the Θ-limit set of (gk)
as the set, denoted by ΛΘ(gk), of all Θ-limits of Θ-contracting subsequences of (gk).

Let H ≤ G be a subgroup. If we denote by HN
Θ the set of Θ-divergent sequences of

elements of H, then define the Θ-limit set of H as

ΛΘ(H) =
⋃

(gk)∈HN
Θ

ΛΘ(gk).

We say that H is Θ-divergent if every sequence of pairwise distinct elements of H is Θ-
divergent. If Θ ⊂ ∆ is self-opposite, a subgroup H ≤ G is called Θ-transverse if it
is Θ-divergent and its Θ-limit set ΛΘ(H) is transverse, in the sense of Section 2.2.6.2.

2.3.2 Anosov representations

Anosov representations are generalizations to arbitrary reductive Lie groups G of rank-
one convex cocompact representations of Gromov-hyperbolic groups. Labourie initially
introduced them in his work on the Hitchin component [Lab06] in 2006, and they were
then generalized and further investigated by Guichard–Wienhard [GW12]. The original
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definition is essentially dynamical, but in this memoir, we use as a definition the following
characterization of Θ-Anosov representations proven in [GGKW17]:

Definition 2.3.2. Let Γ be a discrete word-hyperbolic group and let ρ : Γ → G be a
representation. We say that ρ is Θ-Anosov if the following properties are satisfied:

1. For every sequence of elements (gk) ∈ ΓN diverging in Γ, the sequence (ρ(gk)) is Θ-
divergent.

2. There exist continuous, ρ-equivariant maps ξρ : ∂∞Γ → F (g,Θ)
and ξ−ρ : ∂∞Γ→ F (g,Θ)− which are:

a) transverse, i.e. for all x, y ∈ ∂∞Γ, we have:

x ̸= y =⇒ ξρ(x) and ξ−ρ (y) are transverse;

b) dynamics-preserving, that is, for any infinite-order element g ∈ Γ with attract-
ing fixed point a ∈ ∂∞Γ, the sequence (ρ(g)k) is Θ-contracting (resp. Pi(Θ)-
contracting) with limit ξρ(a) (resp. ξ−ρ (a)).

The maps ξρ and ξ−ρ are unique and are called respectively the boundary map and the
dual boundary map of ρ. If Θ is self-opposite, then ξρ = ξ−ρ . In this memoir we will denote
by HomΘ−An(Γ, G) the space of all Θ-Anosov representations of Γ into G. A Θ-Anosov
subgroup of G is by definition the image of a Θ-Anosov representation.

Anosov representations are discrete and faithful, and structurally stable, i.e. the set
HomΘ−An(Γ, G) is open in the set Hom(Γ, G) of all representations of Γ into G [Lab06,
GW12]. This last property allows to deform well-known Θ-Anosov groups, sometimes to
get new Zariski-dense subgroups in G. The first two properties ensure that, for sufficiently
small deformations, the group obtained remains discrete and is commensurable with the
original subgroup. We will use these properties in Section 4.4.2 to construct Θ-Anosov
Zariski-dense groups preserving proper domains in some flag manifolds.

2.3.3 Irreducible representations of semisimple Lie groups

In this section, we recall some fundamental results on (irreducible, proximal) represen-
tations of reductive Lie groups G (in the sense of [Kna96]). Some of these representations
induce an equivariant embedding of a flag manifold of G into a projective space, which,
in this memoir, will sometimes allow us to reduce general proofs on flag manifolds to
proofs in projective space. A first example will be given in Section 2.3.3.3, where we will
prove a continuity property for the orbits of Anosov representations, reducing to projective
arguments.

Let (V, ρ) be a finite-dimensional real linear (resp. projective) representation of G,
i.e. a group homomorphism G → GL(V ) (resp. G → PGL(V )). We will denote
by ρ∗ : g→ End(V ) the differential of ρ at id.

2.3.3.1 Restricted weights. For any λ ∈ a∗, the weight space defined by λ is

V λ := {v ∈ V | ρ∗(h) · v = λ(h)v ∀h ∈ a}.
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If V λ ̸= {0} we say that λ is a restricted weight of (V, ρ). Given α, λ ∈ a∗, one
has ρ∗(X) · V λ ⊂ V λ+α for all X ∈ gα. For each α ∈ ∆, the element ωα ∈ a∗ in-
troduced in Section 2.2.3 is called the fundamental weight associated with α. The cone
generated by the simple restricted roots determines a partial ordering on a∗ given by

λ ≤ λ′ ⇐⇒ λ′ − λ ∈
∑
α∈∆

R+α.

If (V, ρ) is a finite-dimensional real irreducible linear or projective representation of G, then
the set of restricted weights of (V, ρ) admits a unique maximal element for that ordering
(see [GW09, Cor. 3.2.3]). This element is called the highest weight of ρ, and denoted by χρ
or χ.

2.3.3.2 Proximality and Θ-proximal representations. An automorphism g
of GL(V ) (resp. PGL(V )) is said to be proximal in P(V ) if it has (resp. any lift of g
in GL(V ) has) a unique eigenvalue of maximal modulus and if the corresponding
eigenspace is one-dimensional.

Let Θ ⊂ ∆ be a nonempty subset of the simple restricted roots. We say that a linear
(resp. projective) representation (V, ρ) is Θ-proximal if ρ(G) contains a proximal element
and {α ∈ ∆ | ⟨χρ, α⟩ > 0} = Θ (see [GGKW17]). Note that the last condition is equivalent
to saying that χρ ∈

∑
α∈ΘNωα. If (V, ρ) is proximal, then we denote by V <χρ the sum of

all weight spaces of weights λ ̸= χρ of (V, ρ).

We will often use irreducible Θ-proximal representations in this memoir. Thus we will
use the following terminology:

Definition 2.3.3. Let g be a real semisimple Lie algebra and Θ be a subset of the
simple restricted roots of g. A triple (G, ρ, V ) is a linear (resp. projective) Θ-proximal
triple if G ∈ GΘ(g) and if (V, ρ) is a finite-dimensional, real, irreducible, linear (resp.
projective), Θ-proximal representation of G.

We will often use the following result, which allows some arguments in general flag
manifolds to reduce to arguments in real projective space:

Fact 2.3.4 ([GGKW17, Prop. 3.3]). Let (G, ρ, V ) be a linear (resp. projective) Θ-proximal
triple of g.

1. The stabilizer of V χρ in G (resp. V <χρ) is P+
Θ (resp. P−

Θ ).

2. The maps g 7→ ρ(g) · V χρ and g 7→ ρ(g) · V <χρ induce two ρ-equivariant embeddings:

ιρ : F (g,Θ) −→ P(V ) and ι−ρ : F (g,Θ)− −→ P(V ∗).

Two elements x ∈ F (g,Θ) and ξ ∈ F (g,Θ)− are transverse if and only if their
images ιρ(x) and ι−ρ (ξ) are.

3. For any sequence (gk) ∈ GN, the sequence (gk) is Θ-divergent (resp. Θ-contracting)
if and only if the sequence (ρ(gk)) ∈ PGL(V )N is {α1}-divergent (resp. {α1}-
contracting). If (gk) is Θ-contracting with Θ-limit x ∈ F (g,Θ), then the {α1}-limit
of (ρ(gk)) is ιρ(x).
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4. Let Γ be a word hyperbolic group and let ρ′ : Γ → G be a representation. The
representation ρ′ is Θ-Anosov if and only if the representation ρ ◦ ρ′ : Γ→ PGL(V )
is {α1}-Anosov.

Note that for ν ∈ V ∖ {0} and f ∈ V ∗ ∖ {0}, the transversality of [ν] ∈ P(V )
and [f ] ∈ P(V ∗) is equivalent to f(ν) ̸= 0.

With the identification (2.1.1) and the notations of Fact 2.3.4, a pair (x, ξ) ∈ F (g,Θ)×F (g,Θ)−

are transverse if and only if one has ιρ(x) /∈ ι−ρ (ξ).
In the notation of Fact 2.3.4, we have the following:

Fact 2.3.5. [Zim18a] Let Ω ⊂ F (g,Θ) be a subset with nonempty interior. There ex-
ist ξ1, . . . , ξn ∈ Ω such that P(V ) = ιρ(ξ1)⊕ · · · ⊕ ιρ(ξn).

2.3.3.3 Continuity of the orbit for Anosov representations. The map ρ 7→ ξρ,
associating to a Θ-Anosov representation its limit map, is continuous on HomPΘ−An(Γ, G).
In the next lemma, using Fact 2.3.4, we strengthen this continuity property in the case
where the hypersurfaces Zξ−ρ (η), with η ∈ ∂∞Γ, do not cover F (g,Θ).

Lemma 2.3.6. Let G be a real semisimple Lie group and Θ be a subset of the simple
restricted roots of G. Let Γ be a word hyperbolic group with boundary ∂∞Γ. Let ρ : Γ→ G
be a Θ-Anosov representation such that the set

Oρ := F (g,Θ) ∖
⋃

η∈∂∞Γ

Zξ−ρ (η)

is nonempty. Let x0 ∈ Oρ. Then the map

Ψ : HomΘ−An(Γ, G) −→
{
closed subsets of F (g,Θ)

}
; ρ′ 7−→ ρ′(Γ) · x0

is continuous at ρ for the Hausdorff topology.

Proof. For any infinite-order element g ∈ Γ, we denote by g+ and g− the attracting and
repelling fixed point of g in ∂∞Γ.

By Fact 2.3.4.(4), it suffices to prove the lemma for G = PGL(n,R) and Θ = {α1} the
first simple root of G, i.e. F (g,Θ) = P(Rn) and F (g,Θ)− = P((Rn)∗), where n ∈ N≥2.
We fix the angle metric on P(Rn), given by

d(u, v) = | sin∠(ũ, ṽ)| ∀u, v ∈ P(Rn),

where we have denoted by ũ (resp. ṽ) any lift of u (resp. of v) in P(Rn).
To prove the lemma, it suffices to prove that for any sequence of representa-

tions (ρk) ∈ Hom{α1}−An(Γ,PGL(n,R))N and for any diverging sequence (gk) ∈ ΓN, any
limit point of the sequence (ρk(gk) · x0) converges to an element of ξρ(∂∞Γ). To this end,
since P(Rn) is compact, it suffices to prove that (ρk(gk) · x0) admits a subsequence that
converges to an element of ξρ(∂∞Γ).

By [AMS95, Thm 4.1], which can be applied to (not necessarily irreducible)
Anosov representations, there exists a finite subset F ⊂ Γ and some ε > 0 such that
for any g ∈ Γ, there exists f ∈ F such that the element ρ(fg) is proximal and we
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have d(x+, H−) ≥ ε, where x+ and H− are respectively the attracting fixed point and
repelling fixed hyperplane of ρ(fg). In particular, the element fg has infinite order, and
we have x+ = ξρ((fg)+) and H− = ξ−ρ ((fg)−). Hence, up to extracting, we may assume
that there exists f ∈ F such that for all k ∈ N, the element fgk ∈ Γ has infinite order,
the element ρ(fgk) ∈ PGL(n,R) is proximal, and

d
(
ξρ((fgk)

+), ξ−ρ ((fgk)
−)
)
≥ ε.

Since ξρ is ρ-equivariant, we may actually replace gk with fgk for all k ∈ N. Then gk
has infinite order, and ρk(gk) is proximal with attracting fixed point ξρk(g+k ) and repelling
fixed hyperplane ξ−ρk(g−k ).

Up to further extracting, we may assume that there exist a, b ∈ ∂∞Γ such that gk → a
and g−1

k → b in Γ ⊔ ∂∞Γ. Note that we have a = limk→+∞ g+k and b = limk→+∞ g−k .
We know that each of the elements ρk(gk) is proximal, and we will actually prove that

the sequence (ρk(gk))k is {α1}-divergent (see Equation (2.3.1) below).
By [GW12], there exist a neighborhood U of ρ in Hom{α1}−An(Γ,PGL(n,R)) and two

constants D > 1, L > 0 such that for all ρ′ ∈ U and g ∈ Γ:

α1

(
µ(ρ′(g))

)
≥ 1

D
|g| − L,

where µ is the Cartan projection of PGL(V ) (see Section 2.2.2) and | · | is the word length
on Γ, determined by a finite generating set of Γ. Since for k large enough we have ρk ∈ U ,
this proves that

α1

(
µ(ρk(gk))

)
−→
k→+∞

+∞. (2.3.1)

This gives, for all k ∈ N:

d(ξρ((gk)
+), ξ−ρ ((gk)

−)) ≥ ε.

Taking the limit as k → +∞, we get

d(ξρ(a), ξ−ρ (b)) ≥ ε. (2.3.2)

On the other hand, we have

|||Dξρk ((gk)
+)ρk(gk)|||k ≤ e−α1

(
µ(ρk(gk))

)
, (2.3.3)

where ||| · |||k is the operator norm associated with the norm || · ||k induced by the Rieman-
nian metric d of P(Rn) on Tξρk ((gk)+)P(Rn). Let us identify Tξρk ((gk)+)P(Rn) with the affine

chart Ak := P(Rn)∖ ξ−ρk((gk)
−) via a stereographic projection at the basepoint ξρk((gk)

+).
The norm || · ||k then induces a metric dk on Ak. The same procedure, taking ξρ(a) as a
basepoint, gives us a metric d∞ on A := P(Rn)∖ξ−ρ (a). Since all of our choices are contin-

uous, and since we have ξρk(g+k ) → ξρ(a) and ξ−ρk(g−k ) → ξρ(b) (by continuity of ρ′ 7→ ξρ′

for the uniform convergence [GW12]), we deduce that dk → d∞ uniformly on compact
subsets of A2.

By the Mean value inequality, for k large enough and for all x, y ∈ A, Equation (2.3.4)
gives:

dk(ρk(gk) · x, ρk(gk) · y) ≤ e−α1

(
µ(ρk(gk))

)
dk(x, y). (2.3.4)
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By assumption on x0, we know that for k large enough, we have x0 ∈ Ak. Hence one also
has ρk(gk) · x0 ∈ Ak. On the other hand, since g+k ̸= g−k , by transversality of the limit
maps of ρk, we also have ξρk((gk)

+) ∈ Ak. Hence Equation (2.3.4) gives:

dk(ρk(gk) · x0, ξρk((gk)
+)) = dk(ρk(gk) · x0, ρk(gk) · ξρk((gk)

+))

≤ e−α1

(
µ(ρk(gk))

)
dk(x0, ξρk((gk)

+)).
(2.3.5)

But according to (2.3.2), and since ξρk((gk)
+) → ξρ(a) ∈ A, for k large enough the

points ξρk((gk)
+) remain in a bounded subset of A. Thus by uniform convergence of (dk)

to d∞ on compact subsets of A2, we have dk(x0, ξρk((gk)
+)) → d∞(x0, ξρ(a)) < +∞.

Equations (2.3.1) and (2.3.5) then implies that dk(ρk(gk) · x0, ξρk((gk)
+)) → 0. This

implies that the points ρk(gk) · x0, for k large enough, remain in a bounded subset of A.
Hence up to extracting, it converges to some point y ∈ A. Since ξρk((gk)

+) → ξρ(a), we
have

d∞(y, ξρ(a)) = lim
k→+∞

dk(ρk(gk) · x0, ξρk((gk)
+)) = 0.

Hence y = ξρ(a). Hence, up to extracting, we have ρk(gk) · x0 → ξρ(a). □

Remark 2.3.7. In Lemma 2.3.6, we made the assumption that G is semsimple. This
assumption is here in order to use Fact 2.3.4. But in [GGKW17], this fact is actually
stated for reductive Lie groups G such that have finitely many connected components
(for the real topology) of the set of real points G(R) for some algebraic group G. Hence
Lemma 2.3.6 is actually still true if G satisfies this weaker condition, with the exact same
proof.

2.4 Key Examples

In this section, we introduce several families of flag manifolds, which will be extensively
studied in this thesis. We describe their explicit construction, not only to illustrate the
concepts already introduced, but also to enable a detailed analysis of the objects that will
be introduced later in this thesis (the photons in Section 6.3, the Kobayashi metric in
Section 6.4, and the Plücker triples in Section 7.1). The notations introduced here will be
used and referred to throughout the memoir.

2.4.1 The Lorentzian Einstein universe

Let n ≥ 2. The Einstein universe of signature (n − 1, 1) is the space of isotropic
lines of Rn,2. Although it does not depend on the chosen bilinear form of signature (n, 2)
on Rn+2, in this section, we choose the one introduced in Example 2.2.1.(2), in order to
explicitly describe the parabolic subgroup P+

{α1}.

Let (e1, . . . , en+2) be the canonical basis of Rn+2. We take the notations of Exam-
ple 2.2.1.(2), in the case where p = n− 1 and q = 1.

For any vector v ∈ Rn+2, we denote by vi the i-th coordinate of v, that is v =
∑n+2

i=1 viei.
Let b be the quadratic form of signature (n, 2) on Rn+2 defined as:

b(v, w) = (v1wn+2 + vn+2w1) + (v2wn+1 + vn+1w2) +

n∑
i=3

viwi ∀v, w ∈ Rn+2.
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The Einstein universe Einn−1,1 of signature (n− 1, 1), also called the Lorentzian Einstein
universe, is then the space of isotropic lines of (Rn,2,b). The group PO(b) ≃ PO(n, 2)
acts transitively on Einn−1,1, and the stabilizer of [e1] in PO(n, 2) is P{α1}. Then (2.2.4)
gives a PO(n, 2)-equivariant identification

Einn−1,1 ≃ F (so(n, 2), α1).

The flag manifold F (so(n, 2), α1) is self-opposite, and in the above identification,
if x ∈ Einn−1,1, then one has Zx = P(x⊥)∩Einn−1,1. The standard affine chart as defined
in Equation (2.2.6) can thus be written explicitly:

Astd = Einn−1,1∖Z[e1] = Einn−1,1∖P ((Re1))⊥b)

= P
{
e1 +

n+1∑
i=2

viei − ψ
( n+1∑
i=2

viei

)
en+2

}
,

where ψ is the quadratic form of signature (n − 1, 1) on V := Span(e2, . . . , en+1) defined

by ψ
(∑n+1

i=2 viei

)
= 1

2

∑n
i=3 v

2
i + v2vn+1. The identification V ≃ Astd given by

n+1∑
i=2

viei 7−→
[
e1 +

n+1∑
i=2

viei − ψ
( n+1∑
i=2

viei

)
en+2

]
(2.4.1)

endows Astd with the structure of a Minkowski space. Still denoting by ψ the quadratic
form induced on Astd by this identification, one has (see Figure 3.1):

Astd ∩ Zy0 = {y ∈ Astd | ψ(y − y0) = 0} ∀y0 ∈ Astd.

2.4.2 Grassmannians

Let p, q ≥ 1. The Grassmannian of p-planes of Rp+q, denoted by Grp(Rp+q), is the
set of p-planes of Rp+q. Let us describe its flag-manifold structure explicitly. We denote
by (e1, . . . , ep+q) the canonical basis of Rp+q. Let

x0 := Span(e1, . . . , ep) ∈ Grp(Rp+q) and ξ∞ := Span(ep+1, . . . , ep+q) ∈ Grq(Rp+q).
(2.4.2)

We take the notation of Example 2.2.1.(1). The group PGL(p + q,R) acts transitively
on Grp(Rp+q), and the stabilizer of x0 is Pp := P{αp}. Thus Equation (2.2.4) gives
a PGL(p+ q,R)-equivariant identification

Grp(Rp+q) ≃ F (sl(p+ q,R), αp).

The flag manifold opposite to F (sl(p + q,R), αp) then admits a similar identification
with Grq(Rp+q) — note that it is self-opposite if, and only if, p = q. We make these
identifications for the rest of this section.

In this setting, we have

u−{αp} =
{[0p 0p,q

X 0q

]
| X ∈ Matq,p(R)

}
L{αp} =

{[A 0
0 B

]
| A ∈ GLp(R), B ∈ GLq(R)

}
.

(2.4.3)
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2.4.2.1 Models for the Grassmannians. The set

Ũ := {M ∈ Matp+q,p(R) | rk(M) = p}

is an open subset of Matp+q,p(R), on which the group GL(p,R) acts by right multiplica-

tion. Two matrices M,M ′ ∈ Ũ are in the GL(p,R)-same orbit if and only if they have
same image. For the rest of this memoir, we make the following GL(p+ q,R)-equivariant
identification

Ũ /GL(p,R) ≃ Grp(Rp+q); [M ] 7−→ Im(M). (2.4.4)

2.4.2.2 The Plücker embeddings. We consider the projective {αp}-proximal
triple (PGL(p+ q,R), ρ0,

∧pRp+q) of sl(p+ q,R) with highest weight ωαp ; explicitly, it is
defined by the natural action of PGL(p+ q,R) on P(

∧pRp+q):

ρ0(g) · [v1 ∧ · · · ∧ vp] = [(g̃ · v1) ∧ · · · ∧ g̃ · vp)] ∀(v1, . . . , vp) basis of Rp+q,

where g̃ is any lift of g in GL(p+ q,R). The associated embeddings via Fact 2.3.4 are the
classical Plücker embeddings:

ιρ0 : Grp(Rp+q) −→ P(
∧pRp+q)

Span(v1, . . . , vp) 7−→ [v1 ∧ · · · ∧ vp];
(2.4.5)

ι−ρ0 : Grq(Rp+q) −→ P(
∧pRp+q)∗

Span(v1, . . . , vq) 7−→ [x 7→ x ∧ v1 ∧ · · · ∧ vq]

2.4.2.3 The standard affine chart. In the identification (8.5.1), the standard affine
chart (as defined in Section 2.2.6) is

Astd := Grp(Rp+q) ∖ Zξ∞ =
{[Ip

X

]
| X ∈ Matq,p(R)

}
. (2.4.6)

Thus there is a diffeomorphism

φp : Matq,p(R) −→ Astd

X 7−→
[
Ip
X

]
.

(2.4.7)

Note that, with the natural identification of Matq,p(R) with u{αp} given by
Equation (2.4.3), the map φp identifies with φstd.

Given a point ξ :=

[
A
B

]
∈ Grq(Rp+q), with A ∈ Matp,q(R) and B ∈ Matq(R), a

computation gives:

Astd ∩ Zξ =
{[Ip

X

]
| det(B −XA) = 0

}
= φp({X ∈ Matq,p(R) | det(B −XA) = 0}).

(2.4.8)
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2.4.3 The Einstein universe of signature (p, q)

In Section 2.4.1, we have defined the Lorentzian Einstein universe. In this section, we
generalize the construction, in order to define the Einstein universes of any signature.

Let p, q ∈ N and let b a bilinear form of signature (p + 1, q + 1) on Rp+q+2. The
Einstein universe of signature (p, q) is the space of isotropic lines of (Rp+q+2,b):

Einp,q = {[v] ∈ P(Rp+1,q+1) | v ∈ Rp+1,q+1 ∖ {0}, b(v, v) = 0}.

The group G := PO(b) ≃ PO(p+1, q+1) acts transitively on Einp,q. If Px is the stabilizer
of a point x ∈ Einp,q, then Px is conjugate to the parabolic subgroup P{α1} of G (in the
notation of Example 2.2.1.(2)). Thus Equation (2.2.4) gives a PO(p+ 1, q+ 1)-equivariant
identification

Einp,q ≃ F (so(p+ 1, q + 1), α1).

We make this identification for the rest of this section.
When q = 0 (resp. p = 0), then the corresponding Einstein universe Einp,q is the

conformal sphere, denoted by Sp := PO(p+ 1, 1)/P{α1} (resp. −Sq := PO(1, q+ 1)/P{α1}).

2.4.3.1 Lightcones and photons. We briefly recall the basic tools for studying Einp,q.
For a more general overview, see [Fra05] and [BCD+08]. The flag manifold Einp,q is
self-opposite in the sense of Section 2.2.6. Given a point x ∈ Einp,q, the set Zx can be
geometrically described as the following:

Zx = P(x⊥) ∩ Einp,q .

It is called the lightcone of x. Depending on the values of p, q, there are two possibilities,
described in the following Section 2.4.3.1.1 and 2.4.3.1.2:

2.4.3.1.1 The sphere case. If p = 0 or q = 0, then Einp,q = Smax(p,q), and the lightcone
of x is equal to {x}. In the notation of Section 2.2.6.3, when Θ = Θ′ = {α1}, one
has |W∆∖Θ\W/W∆∖Θ′ | = 2: the action of PO(p+ 1, q + 1) on Smax(p,q) × Smax(p,q) has 2
orbits, which are the two sets

{(x, y) | x ̸= y};
{(x, y) | x = y}.

(2.4.9)

2.4.3.1.2 The higher-signature case. If p, q ≥ 1, then there exist 2-dimensional totally
isotropic subspaces V ⊂ Rp+1,q+1. In this case, a photon of Einp,q is the projectiviza-
tion P(V ) ⊂ P(Rp+q+2) of such a subspace. By definition, such a projective line is al-
ways contained in Einp,q. The union of all photons through a point x ∈ Einp,q coincides
with its lightcone Zx. In the notation of Section 2.2.6.3, when Θ = Θ′ = {α1}, one
has |W∆∖Θ\W/W∆∖Θ′ | = 3: the action of PO(p+ 1, q+ 1) on Einp,q ×Einp,q has 3 orbits,
which are the three sets

{(x, y) | x and y are tranverse};
{(x, y) | x and y are on a common photon but are different};
{(x, y) | x = y}.

(2.4.10)
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2.4.3.2 Plücker embedding. The natural inclusion so(p+1, q+1) ⊂ sl(p+q+2,R) given
by the description of so(p+ 1, q + 1) in Example 2.2.1.(2) induces the natural embedding

ρ1 : PO(p+ 1, q + 1) ↪→ PGL(p+ q + 2,R), (2.4.11)

which is a projective {α1}-proximal triple of so(p+1, q+1), with highest weight ωα1 . The
associated embeddings ιρ1 , ι

−
ρ1 via Fact 2.3.4 coincide with the natural embeddings

ιρ1 : Einp,q ⊂ P(Rp+q+2); [v] 7→ [v],

ι−ρ1 : Einp,q ⊂ P((Rp+q+2)∗); [v] 7→ P([v]⊥).
(2.4.12)

2.4.3.3 Reminders on conformal manifolds. In this section, we give more geometric
features of Einp,q, coming from pseudo-Riemannian geometry.

A pseudo-Riemannian conformal manifold is a manifold M equipped with a conformal
class [g], i.e. a set of the form

[g] =
{
ef · g | f ∈ C∞(M)

}
,

where g is a pseudo-Riemannian metric on M .
The signature of g will be denoted by (p, q), i.e. for all x ∈ M the quadratic form gx

on TxM has signature (p, q) in the notation of Section 2.1.2. This signature only depends
on the conformal class of g. We say that (M, [g]) is a conformal manifold of signature (p, q).
If (p, q) = (n− 1, 1) for some n ∈ N≥2, then we say that (M, [g]) is a conformal spacetime.

A tangent vector v ∈ TM is timelike (resp. lightlike, spacelike) if g(v, v) is negative
(resp. null, positive). The tangent vector v is said to be causal if it is either timelike
or lightlike. This enables us to talk about timelike curves in M (resp. causal, lightlike,
spacelike).

A smooth map φ : (M, [gM ]) → (N, [gN ]) is conformal if φ∗gN ∈ [gM ], which is
equivalent to saying that φ sends causal curves to causal curves and spacelike curves to
spacelike curves. We denote by Conf(M) the group of conformal automorphisms of M ,
and call it the conformal group of M .

Two different metrics in the same conformal class [g] define in general different
geodesics; however the image of a lightlike geodesic only depends on the conformal class
of metric [g] (see e.g. [Mar81]). It is called an unparametrized lightlike geodesic.

2.4.3.3.1 The conformal structure of the Einstein universe. For all x ∈ Einp,q, the sig-

nature of b restricted to P(x⊥) ≃ Tx Einp,q has signature (p, q). Hence it induces a
pseudo-Riemanniann metric on Einp,q with signature (p, q), still denoted by b. The
manifold (Einp,q, [b]) is a compact conformal manifold of signature (p, q). It admits a
2-sheeted conformal cover by (Sp × Sq, [gSp ⊕ (−gSq)]), with nontrivial deck transforma-
tion (x, y) 7→ (−x,−y).

The unparametrized ligthlike geodesics of (Einp,q, [b]) are exactly the photons as de-
fined in Section 2.4.3.1.

The natural action of PO(p+ 1, q + 1) on Einp,q is by conformal automorphisms, and
the conformal group of Einp,q coincides with PO(p+1, q+1). More generally, the following
fundamental result, attributed to Liouville, holds (see [Fra03]):
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Fact 2.4.1. Let p, q ∈ N such that p + q ≥ 3 and let U ,V be two connected open
subsets of Einp,q. If φ : U → V is a smooth conformal map, then there exists a
unique g ∈ PO(p+ 1, q + 1) such that g|U = φ.

In particular, for a connected open subset Ω ⊂ Einp,q, the conformal group of Ω is
precisely the subgroup of PO(p + 1, q + 1) of all transformations g preserving Ω (that
is g · Ω = Ω), see Remark 3.1.4.

2.4.3.3.2 Affine charts. Recall from Section 2.1.2 that for p, q ∈ N, we denote by Rp,q
the vector space Rp+q endowed with a bilinear form of signature (p, q).

Let A be an affine chart of Einp,q, and fix an origin 0 ∈ A. As for the Lorentzian case
(see Section 2.4.1), the restriction of any metric in [b] to A induces a bilinear form bp,q
on the vector space (A, 0) of signature (p, q). If x ∈ A, then we have

Zx ∩ A = {y ∈ A | bp,q(y − x) = 0}. (2.4.13)

This set does not depend on the choice of an origin 0 ∈ A or of the metric in [b].

2.4.4 Causal flag manifolds

If G is a simple Lie group of Hermitian tube type, that is, if the symmetric space XG
of G is irreducible and Hermitian of tube type, then we will say that G is a HTT Lie
group, and g a HTT Lie algebra. In this section, we fix an HTT Lie group G with Lie
algebra g and prove useful preliminary results.

2.4.4.1 Strongly orthogonal roots and root system. Two roots α, β ∈ Σ are called
strongly orthogonal if neither α+β nor α−β is a restricted root. Since G is of tube type,
there exists a (maximal) set {2ε1, . . . , 2εr} ⊂ Σ of strongly orthogonal roots, such that
the set ∆ = {α1, . . . , αr} is a fundamental system of Σ, where αi = εi − εi+1 for i < r
and αr = 2εr. The system Σ is then of type Cr (see e.g. [FK94]):

Σ = {±εi ± εj | 1 ≤ i ≤ j ≤ r}; Σ+ = {εi ± εj | 1 ≤ i < j ≤ r} ∪ {2εi | 1 ≤ i ≤ r};
∆ = {αi := εi − εi+1 | 1 ≤ i ≤ r − 1} ∪ {αr := 2εr}.

(2.4.14)

If Θ = {αr}, then the flag manifold F (g,Θ) is called the Shilov boundary of XG and
we will denote it by Sb(g). These flag manifolds are all listed in Table 2.1.

Since ∆ is of type Cr, its automorphism group is trivial (see e.g. [Kna96]). Hence the
opposition involution is trivial and the flag manifold Sb(g) is self-opposite. Moreover, the
groups AutΘ(g) and Aut(g) coincide, hence the group Aut(g) acts on Sb(g). Thus the
set G{αr}(g) is here just the set of all finite index subgroups of Aut(g).

Notation 2.4.2. When g is a HTT Lie algebra, Θ = {αr} and G ∈ G{αr}(g), we will
always use the following simplified notation:

u± = u±{αr}, U
± = U±

{αr}, l = l{αr}, L = L{αr},

p+ = p+{αr}, P
+ = P+

{αr}, p
− = p−{αr}, P

− = P−
{αr}.
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Since p+ is a maximal proper parabolic subalgebra of g, the center of l is
one-dimensional, and one can write l = ls ⊕ RH0, where H0 is in the center of l and ls is
the semisimple part of l. The possible values of ls are listed in Table 2.1. Note that the
Lie algebras u± are abelian.

2.4.4.2 Dilations and translations. Let g be a HTT Lie algebra. There exists H0 in
the center of l such that u± is the root space of ad(H0) for the eigenvalue ±1 (see e.g.
[Kan98]). If G ∈ G{αr}(g), then for all t ∈ R>0 we define ℓ0(t) = exp (− log (t)H0) ∈ L.
The element Ad(ℓ0(t)) acts on u± by

Ad(ℓ0(t))X =

{
tX ∀X ∈ u−;
1
tX ∀X ∈ u+.

(2.4.15)

Hence any positive dilation of Astd (see Equation (2.2.6)) at p+ = φstd(0) can be realized
as the restriction to Astd of a map of the form x 7→ ℓ0(t) · x of Sb(g) for some t ∈ R>0.

Moreover, since u− is abelian, any translation in Astd is realized as left multiplication
by an element of U− ≤ G. Each time we will talk about a translation in Astd, it will mean
that we apply a multiplication by an element of U−.

According to the two previous paragraphs, for any affine dilation d with center a
point x0 ∈ Astd, there exists g ∈ G such that d coincides with the restriction of the
map x 7→ g ·x of Sb(g) to Astd. Each time we will talk about dilating at x0 in Astd, it will
mean that we apply such a map.

Remark 2.4.3. It is not true for a general simple Lie algebra g and subset of the simple
restricted roots Θ that there exists H0 ∈ lΘ such that ad(H0)X

± = ±X± for all X± ∈ u±Θ.
This property is equivalent to u±Θ being abelian (and to (g,Θ) being a Nagano pair in
the sense of Section 5.1). When this is the case, the algebra g admits a decomposi-
tion g = g−1 ⊕ g0 ⊕ g1, with g−1 = u−Θ, g0 = lΘ and g1 = u+Θ, and [gk, gk′ ] ⊂ gk+k′

for k, k′ ∈ {−1, 0, 1}, with gm := {0} if m /∈ {−1, 0, 1}, see Section 5.1. The element H0 is
then called the characteristic element of the graded Lie algebra g, that is, each space gk
with k ∈ {−1, 0, 1} is the eigenspace of ad(H0) for the eigenvalue k.

2.4.4.3 An invariant cone and causality. It is a classical fact from [Kos10] (see also
Fact 5.1.3) that the identity component L0 of L acts irreducibly on u−. By [Ben00, Prop.
4.7] applied to this action, there exists an open L0-invariant properly convex cone c0 in u−

(see e.g. [GW25]). This cone is defined as the interior of the convex hull in u− of the
orbit Ad(L0) · v−, where v− is a nonzero vector of g−αr .

Let A be an affine chart of Sb(g). There exists g ∈ G such that A = g · Astd (re-
call Equation (2.2.6)). Given some point x ∈ A, there exists a unique X ∈ u− such
that x = g exp(X) · p+. The set

IA(x) := (g exp(X + c0) · p+) ∪ (g exp(X − c0) · p+)

only depends on A and x, not on g. It has two connected components, denoted by I+A (x),
called the future of x in A, and by I−A (x), called the past of x in A. The choice of these
components depends on g. However, we can chose them in a continuous way, i.e. we can
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chose I+A (x) (resp. I−A (x)) for all x ∈ A so that the map x 7→ I+A (x) (resp. x 7→ I−A (x)) is
continuous on A for the Hausdorff topology. We will implicitly make such a continuous
choice (called a choice of time orientation) each time we fix an affine chart A of Sb(g).

Remark 2.4.4. We have just endowed the manifold M := Sb(g) with an invariant causal
structure (see [Kan06]), i.e. a smooth G-equivariant (up to opposition) family of properly
convex open cones (cx)x∈M in TM . By [Nee25], Shilov boundaries associated with HTT
Lie groups are the only flag manifolds admitting a causal structure, which is why we will
sometimes refer to them as causal flag manifolds.

We can now define

J±
A (x) := I±A (x), the large future (resp. large past) of x in A;

C±
A (x) := ∂I±A (x), the future lightcone (resp. past lightcone) of x in A;

CA(x) := C+
A (x) ∪C−

A (x), the lightcone of x in A.

These sets satisfy the following straightforward properties:

Fact 2.4.5. Let A be an affine chart.

1. The lightcone CA(x) of x ∈ A is always contained in Zx ∩A, and I±A (x) are connected
components of A∖ Zx.

2. For all x, y, z ∈ A, one has:

* (reflexivity) x ∈ J+
A (y)⇔ y ∈ J−

A (x);

* (antisymmetry) J+
A (y) ∩ J−

A (y) = {y};
* (transitivity) [x ∈ J±

A (y) and y ∈ J±
A (z) ]⇒ x ∈ J±

A (z)

Reflexivity and antisymmetry are also true replacing “J” with “C”. Reflexivity and tran-
sitivity are also true replacing “J” with “I”.

When A = Astd, we will ommit the “A” in subscript.
In general, we do not have the equality CA(x) = Zx ∩A. This equality is specific to

the case where g = so(n− 1, 1), see Section 2.4.4.4.2.
The past, the future and the lightcone of a point x ∈ Astd are not invariant under the

stabilizer StabG(x) of x in G. However, they are locally invariant:

Lemma 2.4.6. Let x ∈ Astd and g ∈ G be such that g ·x ∈ Astd. Then for any δ1 ∈ {−,+},
there exist δ2 ∈ {−,+} and a neighborhood U of x such that g · (U ∩ Iδ1(x)) ⊂ Iδ2(g · x).

Proof. Noticing that exp(X) · Iδ1(p+) = Iδ1(exp(X) · p+) for all X ∈ u−, we may assume
that x = p+. Let us prove the lemma for δ1 = +, the proof being the same for δ1 = −.

Since g · p+ ∈ Astd, by Equation (2.2.7) one can write g = g′ exp(Y ), with Y ∈ u+

and g′ ∈ P−. There exists a neighborhood U of P , convex in Astd, such that g ·U ⊂ Astd.
Hence we have exp(Y ) · U ⊂ (g′)−1 · Astd = Astd. Recall the map ℓ0 : R>0 → L defined
in Section 2.4.4.2. Since U is convex, by Equation (2.4.15), one has ℓ0(t) · U ⊂ U for
all t ∈]0, 1]. Then:

exp(tY )·U = ℓ0(t)
−1 exp(Y )ℓ0(t)·U ⊂ ℓ0(t)−1 exp(Y )·U ⊂ ℓ0(t)−1·Astd = Astd. (2.4.16)
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Since U and I+(p+) are both convex, the set U ∩I+(p+) is connected. For this reason, by
Equation (2.4.16) and since U+ stabilizes Zp+ , the set exp(tY ) · (U ∩ I+(p+)) is contained
in a connected component of Astd∖Zp for all t ∈]0, 1], let us denote this component by V .

By continuity, this component V does not depend on t. Moreover, for t small, we have

exp(tY ) · (U ∩ I+(p+)) ∩ (U ∩ I+(p+)) ̸= ∅.

Thus V = I+(p+). Hence exp(tY ) · (U ∩ I+(p+)) ⊂ I+(p+).
Now, since g′ ∈ p−, there exist X ∈ u− and ℓ ∈ L, such that g′ = exp(X)ℓ. But the

element ℓ ∈ L either preserves I+(p+) or maps it to I−(p+) (see e.g. [GW25, Cor. 5.3]).
On the other hand, since U− is abelian, one has exp(X) ·I±(p+) = I+(exp(X) ·p+). Then:

g · (U ∩ I+(p+)) ⊂ g′ · I+(p+)

= exp(X)ℓ · I+(p+)

=

{
I+(exp(X) · p+) = I+(g · p+) if ℓ · I+(p+) = I+(p+);

I−(exp(X) · p+) = I−(g · p+) if ℓ · I+(p+) = I−(p+).
□

2.4.4.4 Examples. The complete list of Shilov boundaries associated with HTT Lie
algebras is given in Table 2.1 below.

g Sb(g) ls
so(2, n), n ≥ 3 Einn−1,1 so(n− 1, 1)

sp(2r,R) Lagr(R2r) sl(r,R)

u(r, r) Lagr(C2r) sl(r,C)

so∗(4r) Lagr(H2r) sl(r,H)

e7(−25) (E6(−26)/F4)× R e6(−26)

Table 2.1 – Shilov boundaries associated with all HTT Lie algebras.

Let us explain the notations in the table. For the notation e7(−25) and e6(−26), see
[FK94] or [OV12].

2.4.4.4.1 The Lagrangians. Let K = R,C or H, and let r ≥ 2. Let

JK =

(
0 −Ir
Ir 0

)
∈ GL(2r,K),

where Ir is the identity matrix of size r. Given a matrix g ∈ Mat2r(K), recall form
Section 2.1.2 that we denote by g the matrix whose (i, j)-th entry is the conjugate (in K)
of the (i, j)-th entry of g. Let GK :=

{
g ∈ SL(2r,K) | tgJKg = JK

}
. Then GK is a HTT

Lie group, and one has GR = Sp(2r,R), GC = SU(r, r) and GH = SO∗(4r). Let us describe
its root system explicitly. The space

a := {diag(λ1, . . . , λr,−λ1, . . . ,−λr) | λi ∈ R ∀1 ≤ i ≤ r}

is a Cartan subspace of gK. If we define

εi : diag(λ1, . . . , λr,−λ1, . . . ,−λr) 7−→ λi. (2.4.17)
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then the strongly orthogonal roots defined in Section 2.4.4.1 in can be taken to
be (2εi)1≤i≤r. Let ∆ be the associate fundamental system simple restricted roots of gK
(by Equation (2.4.14)).

Now let b be the bilinear form whose matrix in the canonical basis of K2r is JK. The
space Lagr(K2r) is the space of Lagrangians of (K,b), i.e. the space of totally isotropic r-
planes of K2r (on the left, for K = H).

The group GK acts transitively on Lagr(K2r). If (e1, . . . e2r) is the canoni-
cal basis of K2r, then the parabolic P of Notation 2.4.2 is the stabilizer in GK
of ξ0 := Span(e1, . . . , er), and P−

{αr} is the stabilizer in GK of ξ∞ := Span(er+1, . . . , e2r).

Thus Equation (2.2.4) gives a GK-identification

Lagr(K2r) ≃ Sb(gK).

We make this identification till the end of this section. This model gives the following
descriptions of u± and L:

u− =
{(0r 0

X 0r

)
| X ∈ Matr(K), tX = X

}
;

u+ = {
(

0r X
0 0r

)
| X ∈ Matr(K), tX = X

}
;

L =
{

diag(A, tA
−1

) | A ∈ GL(r,K)
}
.

The action of an element ℓ = diag(A, tA
−1

) ∈ L on v =

(
0r 0
X 0r

)
∈ u− is given by

Ad(ℓ) · v =

(
0r 0

tA
−1
XA−1 0r

)
(2.4.18)

The standard affine chart Astd = Lagr(K2r) ∖ Zp− defined in Equation (2.2.6) can be
described as follows:

Astd =
{

Im

(
Ir
X

) ∣∣∣ X ∈ Matr(K), tX = X
}
.

Then a computation gives:

Astd ∩ Zp+ =
{

Im

(
Ir
X

) ∣∣∣ tX = X, det(X) = 0
}

;

C(p+) =
{

Im

(
Ir
X

) ∣∣∣ tX = X, det(X) = 0 and txXx ∈ R≥0 ∀x ∈ Kr
}
.

Note that if r ≥ 3, then the inclusion C(p+) ⊂ Astd ∩ Zp+ is strict.

2.4.4.4.2 Einstein universe. The Einstein universe of signature (n−1, 1) has been defined
in Section 2.4.1. It has been defined as the flag manifold F (so(n, 2), α1). However, when
we consider it as the Shilov boundary associated with the HTT Lie algebra so(n, 2), given
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the setting introduced in this section, it is more relevent to reverse the ordering of the two
simple restricted roots of so(n, 2), to get Einn−1,1 = F (so(n, 2), α2).

The causal structure of Einn−1,1 as a Shilov boundary is exactly the same as its causal
structure as a Lorentzian manifold: with the notation of Section 2.4.1, for any affine
chart A of Einn−1,1 and y0 ∈ A, we have A ∩ Zy0 = CA(y0). Hence in this case, the
inclusion CA(y0) ⊂ Zy0 ∩A is an equality. By Lemma 6.3.9, which will be stated and
proven in Section 6.3, this equality is due to the fact that

|W∆∖{α1}\W/W∆∖{α1}| = 3,

as already mentioned in Section 2.4.3.1, and is specific to the case of Einn−1,1.

2.5 Equivalence between flag manifolds

Before moving on to the next chapter, we must emphasize a subtlety in the use of
certain notations for flag manifolds.

Let n ∈ N>0. In the notation of Example 2.2.1.(1), the real projective space P(R2n) is
a flag manifold of sl(2n,R) associated with sl(2n,R) and {α1}, see Section 2.4.2.

On the other hand, if (g, α) = (sp(2n,R), α1) (where the restricted root system
of sp(2n,R) has been defined in Section 2.4.4.1), then any group G ∈ G{α1}(g) acts transi-
tively on P(R2n), and the stabilizer of a point is conjugate to the parabolic subgroup P{α1}
of G. Thus the real projective space P(R2n) can also be endowed with the structure of a
flag manifold associated with sp(2n,R) and {α1}. The two flag manifolds F (sp(2n,R), α1)
and F (sl(2n,R), α1) here are equal as G-homogeneous manifolds, but are not equivalent
as flag manifolds.

From now on, whenever we talk about the real projective space or write P(Rn), it will
only be endowed with its structure of flag manifold associated with sl(n,R) and {α1}.

Similarly, whenever we talk about the Grassmannian of p-planes of Rp+q (resp. the
Einstein universe of signature (p, q)) or write Grp(Rp+q) (resp. Einp,q), they will be en-
dowed with their structure of flag manifold associated with sl(p + q,R) and {αp} (resp.
with so(p+ 1, q + 1) and {α1}).
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Chapter 3

Proper domains and convexity in
flag manifolds

The aim of this chapter is, first, to review the tools and notions that are already known
and useful for studying proper dually convex domains in flag manifolds. These tools are
built in a way that generalizes classical convex projective geometry. For this reason, the
study of proper domains is close to those of convex projective geometry.

However, several important results holding in convex projective geometry fail in the
general case, which can make the study of proper domains more challenging. We con-
duct an in-depth analysis of the different possible notions of convexity and their analogies
with the projective case, focusing on our three key examples of flag manifolds: the Grass-
mannians (Section 3.3), the Einstein universes (Section 3.4), and causal flag manifolds
(Section 3.5). Through these three families of examples, we highlight the subtleties that
arise when attempting to define convexity in flag manifolds.

3.1 Reminders: proper domains in flag manifolds

In this section, we recall some definitions and properties of domains in a flag manifold,
generalizing those of classical convex projective geometry. Most of them were introduced
in [Zim18a].

3.1.1 Generalities on proper domains

Let g be a real semisimple Lie algebra of noncompact type and Θ ⊂ ∆ a subset of the
simple restricted roots.

Definition 3.1.1. Let Ω ⊂ F (g,Θ) be a subset. We say that Ω is:

1. a domain if Ω is open, nonempty and connected;

2. proper if there exists ξ ∈ F (g,Θ)− such that Ω ∩ Zξ = ∅. In particular, if ξ = p−Θ,
then we will say that Ω is proper in Astd. This is equivalent to saying that Ω ⊂ Astd.

Remark 3.1.2. Given a proper domain Ω of F (g,Θ), we will always be able to assume
that Ω is proper in Astd. Indeed, since any G ∈ GΘ(g) acts transitively on F (g,Θ)−, there
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exists g ∈ G such that g · Ω ⊂ Astd, and the properties we will investigate on Ω will be
invariant under the action of G on F (g,Θ). In this case, it will be possible to see Ω as a
bounded domain of the affine space Astd.

3.1.1.1 The automorphism group. Given an open subset Ω ⊂ F (g,Θ) and a Lie
group G ∈ GΘ(g), the automorphism group of Ω with respect to G is

AutG(Ω) = {g ∈ G | g · Ω = Ω} .

One has:

Fact 3.1.3. [Zim18a] The group AutG(Ω) is a Lie subgroup of G. Moreover, it acts
properly on Ω as soon as Ω is a proper domain.

Since G has finite index in AutΘ(g), the group Ad(AutG(Ω)) has finite index
in AutAutΘ(g)(Ω).

Remark 3.1.4. 1. Let p, q ∈ N>0. Given an open subset Ω ⊂ Einp,q, by Fact 2.4.1, the
automorphism group AutPO(p+1,q+1)(Ω) of Ω is equal to its conformal group Conf(Ω).

2. In the case where g is a HTT Lie algebra and F (g,Θ) = Sb(g), recall that we
have AutΘ(g) = Aut(g) and the group AutAut(g)(Ω) is commensurable to the confor-
mal group of Ω, that is, the group of all invertible maps from Ω to itself that preserve
the causal structure of Ω [Kan11, Thm 2.3].

The domain Ω ⊂ F (g,Θ) is said to be homogeneous if there exists G ∈ GΘ(g), such
that AutG(Ω) acts transitively on Ω.

The domain Ω is said to be quasi-homogeneous if there exists a compact subset K ⊂ Ω
such that Ω = AutG(Ω) · K. It is said to be divisible if there exists a discrete sub-
group Γ ≤ AutG(Ω) and a compact subset K ⊂ Ω such that Ω = Γ ·K. Since Ad(AutG(Ω))
has finite index in AutAutΘ(g)(Ω), these two properties do not depend on G ∈ GΘ(g).

The full orbital limit set of Ω is the set

Λorb
Ω :=

⋃
x∈Ω

(AutG(Ω) · x) ∖ (AutG(Ω) · x),

see [DGK24]. This set does not depend on G ∈ GΘ(g), since Ad(AutG(Ω)) ≤ AutAutΘ(g)(Ω)
has finite index. If Ω is proper, since AutG(Ω) acts properly on Ω by Fact 3.1.3, we
have Λorb

Ω ⊂ ∂Ω.

Definition 3.1.5. A proper domain Ω is said to be almost-homogeneous if Λorb
Ω = ∂Ω.

A proper domain Ω ⊂ F (g,Θ) is almost-homogeneous if and only if for all a ∈ ∂Ω,
there exist x ∈ Ω and (gk) ∈ AutG(Ω)N such that gk · x → a. For any proper do-
main Ω ⊂ F (g,Θ), we have:

Ω divisible =⇒ Ω quasi-homogeneous =⇒ Ω almost-homogeneous.
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Remark 3.1.6. 1. The three properties above are in general not equivalent. For instance,
when (g,Θ) = (sl(n,R), {α1}) with n ≥ 3 (in the notation of Example 2.2.1.(1)), there
exist proper domains in F (g,Θ) = P(Rn) that are almost-homogeneous but not quasi-
homogeneous [BM20]. There also exist proper homogeneous (and thus quasi-homogeneous)
domains of P(Rn) that are not divisible [Vin65]. A consequence of Lemma 8.1.2 and
Theorems 8.3.1 and 8.4.1 will be that these three properties are equivalent when F (g,Θ) is
the Einstein Universe of signature (p, q) (p, q ≥ 1), a causal flag manifold or when |Θ| ≥ 2.

2. Since the group G does not play a role in the notions of divisibility, quasi-
homogeneity and almost-homogeneity, these properties are invariant under equivalence
of flag manifolds. However, they are not invariant under diffeomorphisms between
flag manifolds. For instance, we saw in Section 2.5 that P(R2n) = F (sl(2n,R), α1)
identifies Sp(2n,R)-equivariantly with F (sp(2n,R), α1). However, given a do-
main Ω ⊂ F (sp(2n,R), α1), the automorphism group AutSp(2n,R)(Ω) is in general smaller
(even up to finite index) than its automorphism group AutSL(2n,R)(Ω) if we see Ω as
a domain in P(Rn), see e.g. Section 8.7. One must always be careful, as the notions
of divisibility, quasi-homogeneity, and almost-homogeneity are not preserved under
diffeomorphisms between flag manifolds.

The domain Ω is said to be symmetric if for any x ∈ Ω there exists an order-two
element sx ∈ AutAutΘ(g)(Ω) such that x is the only fixed point of sx in Ω.

Note that AutG(g · Ω) = gAutG(Ω)g−1 for all g ∈ G; therefore the property of being
almost-homogeneous, resp. symmetric, is invariant under the action of G on F (g,Θ).
Thus by Remark 3.1.2, it will always be possible to assume that Ω is proper in Astd, and
given a point x ∈ Ω, we can always assume furthermore that x = p+Θ, up to translating Ω
by an element of U−.

We will make use of the following lemma:

Lemma 3.1.7. Let G ∈ GΘ(g), and let Ω,Ω′ be two proper domains of F (g,Θ) such
that Ω ⊂ Ω′. Assume that AutG(Ω) ⊂ AutG(Ω′) and that Ω is almost-homogeneous.
Then Ω = Ω′.

Proof. Let a ∈ ∂Ω. There exist x ∈ Ω and (gk) ∈ AutG(Ω)N such that gk ·x→ a. Thus (gk)
is unbounded in G. Since AutG(Ω) ⊂ AutG(Ω′), the group AutG(Ω) acts properly on the
proper domain Ω′. Thus a ∈ ∂Ω′. We have proven that Ω is closed in Ω′; since it is also
open, and Ω′ is connected, we have Ω = Ω′. □

3.1.1.2 The dual . Let Ω ⊂ F (g,Θ) be a subset. The dual of Ω is the set

Ω∗ := {ξ ∈ F (g,Θ)− | Zξ ∩ Ω = ∅} ⊂ F (g,Θ)−.

Let us recall some properties of this set (see [Zim18a]):

1. For all for all G ∈ GΘ(g), the set Ω∗ is AutG(Ω)-invariant. Equivalently, one
has AutG(Ω) ⊂ AutG(Ω∗).

2. If Ω is open, then Ω∗ is compact.

3. The domain Ω is proper if and only if its dual Ω∗ has nonempty interior.

47



Remark 3.1.8. If (g,Θ) = (sl(n,R), α1), then for any proper domain

Ω ⊂ F (g,Θ) = P(Rn),

the dual Ω∗ is properly convex, and Ω∗ = {ξ ∈ F (g,Θ) | Zξ ∩ Ω = ∅} This is not true for
a general flag manifold F (g,Θ); see Example 3.5.9.

In [Zim18a], A. Zimmer defines the following notion of convexity:

Definition 3.1.9. An open subset Ω ⊂ F (g,Θ) is dually convex if for all a ∈ ∂Ω, there
exists ξ ∈ Ω∗ such that a ∈ Zξ.

This notion of convexity generalizes the one in real projective space. Indeed,
if Ω ⊂ P(Rn) is a proper domain, then it is a classical fact that Ω is properly convex —
in the sense of Section 2.1.1.3 — if and only if for all a ∈ ∂Ω, there exists a projective
hyperplane H ∈ P(Rn) such that a ∈ H and Ω∩H = ∅. As we will see in Example 3.1.12
and in the rest of this chapter, it is in general not true in a flag manifold F (g,Θ) that
dual convexity is equivalent to convexity in an affine chart; this fact seems to be specific
to the real projective case.

Given a proper domain Ω ⊂ F (g,Θ), its bidual Ω∗∗ is a proper open set containing Ω,
not necessarily connected (see e.g. Remark 5.3.3). It is however dually convex, and each
of its connected components are also dually convex.

Definition 3.1.10. Let Ω ⊂ F (g,Θ) be a proper domain. We denote by Ω∗∗
0 the con-

nected component of Ω∗∗ which contains Ω, and call it the dual convex hull of Ω.

The dual convex hull of a proper domain is a proper dually convex domain containing Ω.
In [Zim18a], Zimmer proves that quasi-homogeneous domains are dually convex. In

this memoir, we will use the slightly stronger following result, whose proof relies on the
one of [Zim18a, Cor. 9.3]:

Proposition 3.1.11. Any proper almost-homogeneous domain of F (g,Θ) is dually con-
vex.

Proof. Since the proper domain Ω∗∗
0 given in Definition 3.1.10 is AutG(Ω)-invariant (for

any G ∈ GΘ(g)) and contains Ω, by Lemma 3.1.7 we have Ω = Ω∗∗
0 . The Proposition then

follows from the dual convexity of Ω∗∗
0 . □

Example 3.1.12. If (g,Θ) = (so(n, 1), α1) with n ≥ 1 in the notation of Section 2.4.3,
then by Equation (2.4.9), a domain Ω ⊂ Sn−1 := F (g, α1) is proper if and only if we
have Ω ̸= Sn−1. Moreover, again by Equation (2.4.9), any open subset of Sn−1 is dually
convex. Thus we cannot expect a structural result for dually convex domain of a general
flag manifold F (g,Θ), as this property is empty for the conformal sphere Sn−1. However,
proper dually convex domains of real projective space have very nice properties: they are
contractible, equal to the interior of their closure and to their bidual, and their dual is
convex. We could thus ask for which families of flag manifolds these properties, or weaker
versions of them, are satisfied. We will see in Sections from 3.3 up to 3.5, with our three
key families of flag manifolds, that most of these properties are not satisfied. However, as
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we will see in Proposition 7.1.9 of Section 7.1, that for a certain family of flag manifolds
(namely, Nagano spaces of real type, see Section 7.1), we can recover the property that
proper dually convex domains are equal to the interior of their closure, and we have a
sufficient condition for the dual to be connected.

3.1.1.3 Dual faces. Let Ω ⊂ F (g,Θ) be a proper domain. Given some point x ∈ ∂Ω,
the dual support to Ω at x is the set SuppΩ(x) := {ξ ∈ Ω∗ | x ∈ Zξ}. This set is nonempty
whenever Ω is dually convex. The dual face of x is then the subset

F d
Ω(x) :=

⋂
ξ∈SuppΩ(x)

∂Ω ∩ Zξ

of ∂Ω. The dual faces of Ω are always closed. If F (g,Θ) is the real projective space and Ω
is convex, then we recover the classical closed faces of Ω.

3.1.2 The Caratheodory metrics

Let g be a real semisimple Lie algebra of noncompact type and Θ ⊂ ∆ be a subset of
the simple restricted roots of g. Let G ∈ GΘ(g). If Ω ⊂ F (g,Θ) is a domain, then we will
say that a metric d on Ω is AutG(Ω)-invariant if d(g · x, g · y) = d(x, y) for all x, y ∈ Ω
and g ∈ AutG(Ω). In this section, we recall A. Zimmer’s construction of AutG(Ω)-invariant
metrics on proper domains Ω, called Caratheodory metrics.

Let (G, ρ, V ) be a linear or projective Θ-proximal triple of g, in the sense of Defini-
tion 2.3.3. Let ιρ : F (g,Θ) ↪→ P(V ) and ι−ρ : F (g,Θ)− ↪→ P(V ∗) be the two embeddings
induced by ρ, see Fact 2.3.4. Given x, y ∈ F (g,Θ) and ξ, η ∈ F (g,Θ)−, we choose lifts

νx ∈ ιρ(x) ∖ {0}; νy ∈ ιρ(y) ∖ {0}; fξ ∈ ι−ρ (ξ) ∖ {0}; fη ∈ ι−ρ (η) ∖ {0}.

We define the cross ratio of ξ, x, y, η relative to (V, ρ) as follows:

[ξ : x : y : η]ρ :=
fξ(νx)fη(νy)

fξ(νy)fη(νx)
. (3.1.1)

This quantity does not depend on the choice of representatives νx, νy, fξ, fη. In [Zim18a],
Zimmer introduces the following map CρΩ associated with a domain Ω ⊂ F (g,Θ):

CρΩ : Ω× Ω −→ R+

(x, y) 7−→ supξ,η∈Ω∗ log
∣∣ [ξ : x : y : η]ρ

∣∣.
By [Zim18a, Theorems 5.2 and 9.1], as soon as Ω is a proper domain of F (g,Θ), the
map CρΩ is an AutG(Ω)-invariant metric for any G ∈ GΘ(g), generating the standard
topology. Whenever this is the case, we will say that CρΩ is the Caratheodory metric on Ω
induced by ρ.

The following fact follows from the definition of the Caratheodory metrics:

Fact 3.1.13. Let (V, ρ) be a finite-dimensional representation of G such that (G, ρ, V ) is
linear (resp. projective) Θ-proximal triple of the Lie algebra g of G, in the sense of Defini-
tion 2.3.3. Let Ω ⊂ F (g,Θ) be a proper domain. For any two sequences (xk), (yk) ∈ ΩN,
we have:

1. If CρΩ(xk, yk)→ 0, then yk → x whenever xk → x (even if x ∈ ∂Ω).

2. If supk∈NC
ρ
Ω(xk, yk) < +∞ and xk, yk → x, y ∈ Ω, then y ∈ F d

Ω(x).
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3.2 Dual convexity and convexity in an affine chart

In this section, we fix a real semisimple Lie algebra of noncompact type g and a subset
Θ of the simple restricted roots of g. Let A ⊂ F (g,Θ) be an affine chart. A domain
Ω that is properly convex in A — with respect to the canonical affine structure on A —
admits, at every boundary point a ∈ ∂Ω, a supporting affine hyperplane (in A). If Ω is
moreover dually convex, it also admits a supporting maximal proper Schubert variety at
a. In this section, we highlight the connection between these two supporting varieties.

Given an algebraic variety Z, we recall that a regular point of Z is a point x ∈ Z such
that Z is a smooth variety in a neighborhood of x.

Proposition 3.2.1. Assume that the varieties of the form Zξ, with ξ ∈ F (g,Θ)−, are
hypersurfaces of F (g,Θ) (i.e. are of codimension 1). Suppose that Ω is bounded and
convex in an affine chart A, and dually convex. Let x ∈ ∂Ω ∩ A and η ∈ F (g,Θ)− such
that x ∈ Zη and Ω ∩ Zη = ∅. If x is a regular point of Zη, then Tx(Zη ∩A) is a supporting
hyperplane of Ω in A.

Proof. We may assume that A = Astd is the standard affine chart defined in Equa-
tion (2.4.6), and that x = φstd(0). Since x is a regular point of the algebraic hypersur-
face Zη ∩Astd of A, there exist a neighborhood U of 0 in u−Θ and a smooth map f : U → R
such that φ−1

std(Zη) ∩U = f−1({0}). For all Y ∈ φ−1
std(Ω) ∩U , one has f(Y ) ̸= 0. Since Ω

is convex in A, we may take U so that Ω ∩ U is connected. Then we may assume
that f(φ−1

std(Ω) ∩U ) ⊂ R>0. We have:

f(Y ) = f(0) + d0f(Y ) + o(||Y ||) = d0f(Y ) + o(||Y ||)

in a neighborhood of 0. Since f(Y ) > 0 for Y ∈ φ−1
std(Ω) ∩ U , there exists

a neighborhood V ⊂ U of 0 such that d0f(Y ) ≥ 0 for all Y ∈ φ−1
std(Ω) ∩ V .

Thus d0f(V ∩ φ−1
std(Ω)) ⊂ R≥0.

Now let us prove that d0f(φ−1
std(Ω)) ⊂ R≥0. Let us assume by contradiction that there

exists Y ∈ φ−1
std(Ω) such that d0f(Y ) < 0. For all k ∈ N>0, we set Yk := 1

kY . Then by

convexity of Ω, we have Yk ∈ φ−1
std(Ω). Moreover one has Yk → 0 as k → +∞. Let k0 ∈ N>0

such that φstd(Yk) ∈ Ω ∩ V for all k ≥ k0. Then for k ≥ k0, one has

0 ≥ d0f(Yk) =
1

k
d0f(Y ) < 0.

This is a contradiction. Thus d0f(φ−1
std(Ω)) ⊂ R≥0 and T0(φ

−1
std(Zη)) is a supporting hyper-

plane of φ−1
std(Ω). □

Remark 3.2.2. In the notation of Section 7.1, the assumptions of Proposition 3.2.1 will
be satisfied for every Nagano space F (g, α) of real type: the maximal proper Schubert
subvarieties — i.e. the varieties of the form Zξ, with ξ ∈ F (g,Θ)− — will be hypersurfaces
of F (g,Θ).
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3.3 Proper domains in the Grassmannians

In this section, we investigate proper domains of Grassmannians, i.e. the flag mani-
folds Grp(Rp+q) = F (sl(p+ q,R), αp). We will intensively use the notation introduced in
Section 2.4.2 for the Grassmannians, in particular the map φp defined in Equation (2.4.7).

3.3.1 The symmetric domain

In this section, we investigate a model of a Riemannian symmetric space embedded in
Grassmannian. This model is a proper symmetric domain of Grp(Rp+q). In the notation
of Chapter 5, it will actually be a realization of the non-compact dual of the Nagano
space Grp(Rp+q).

Let 1 ≤ p ≤ q and let b be a bilinear form of signature (p, q) on Rp+q. Recall the
notation introduced in Section 2.1.2. We define

B(b) :=
{
V ∈ Grp(Rp+q) | b|V×V is positive-definite

}
B(b)− :=

{
W ∈ Grq(Rp+q) | b|W×W is negative-definite

}
If b is the standard bilinear form on Rp+q of signature (p, q), i.e. if

bstd(x, x) = x21 + · · ·+ x2p − x2p+1 − · · · − x2p+q ∀x ∈ Rp+q, (3.3.1)

then we will write Bp,q := B(bstd). The following Propositions 3.3.1 and 3.3.2 are well
known, but we give their proof for completeness.

Let us denote by || · ||2 the L2-norm on Rp and Rq, and still denote by || · ||2 the
associated operator norm on Matq,p(R).

Proposition 3.3.1. One has

Bp,q = φp
(
{X ∈ Matq,p(R) | ||X||2 < 1}

)
,

and its dual is the closure of B(bstd)−.

Proof. Let us first prove the second assertion. Let (V,W ) ∈ Bp,q × B(bstd)−. Then by
definition, the form bstd is both positive-definite and negative on V ∩W . Thus V ∩W = {0}.
This proves that B(bstd)− ⊂ B∗

p,q. Conversely, let W ∈ B∗
p,q. If there exists w ∈ W such

that bstd(v, v) > 0, then one can complete a p-dimensional positive-definite vector space V
containing v. Then we have V ∈ Bp,q, but v ∈ (W ∩ V ) ∖ {0}, contradicting the fact

that W ∈ B∗
p,q. Thus bstd(v, v) ≤ 0 for all v ∈W , and W ∈ B(bstd)−. We have proven the

equality B(bstd)− = B∗
p,q.

Now let us prove the first assertion. Let

B := φp
(
{X ∈ Matq,p(R) | ||X||2 < 1}

)
.

Let V ∈ Bp,q. According to the previous paragraph, one has V ∩ ξ∞ = {0}, so V ∈ Astd

(recall Equation (2.4.6)) and there exists X ∈ Matq,p(R) such that V = φp(X). This says
that

V =
{( v

Xv

)
| v ∈ Rp

}
.

51



Since bstd is positive-definite on V , one has

||v||22 − ||Xv||22 = bstd

(( v
Xv

)
,

(
v
Xv

))
> 0 ∀v ∈ Rp ∖ {0}. (3.3.2)

Thus ||X||2 < 1. This proves Bp,q ⊂ B. Conversely, if V ′ := ϕp(X) ∈ B, then Equa-
tion (3.3.2) is valid for V ′. Thus (bstd)|V ′×V ′ is positive-definite, and V ′ ∈ Bp,q. This
proves the equality Bp,q = B. □

Proposition 3.3.1 implies in particular that the domain Bp,q is a proper domain
of Grp(Rp+q), since its dual has nonempty interior.

Proposition 3.3.2. Let p, q ∈ N. The domains B(b) are:

1. all translates of each other by elements of PGL(p+ q,R);

2. proper, with dual B(b)−;

3. symmetric, with transitive automorphism group with respect to PGL(p+ q,R), equal
to PO(b); they are thus also divisible and dually convex;

4. equivariantly diffeomorphic to the symmetric space of PO(p, q).

Proof. Point (1) directly follows from the fact that all bilinear forms of signature (p, q)
on Rp+q are conjugate in GL(p+ q,R). Point (2) is then then a consequence of Point (1)
and Proposition 3.3.1.

Since PO(b) preserves b, one has PO(b) ≤ AutPGL(p+q,R)(B(b)). Conversely,
let g ∈ GL(p + q,R) satisfying [g] ∈ AutPGL(p+q,R)(B(b)). Let v ∈ Rp+q with b(v, v) > 0.
For any V ∈ B(b) such that v ∈ V , one has g · v ∈ g · V , and g · V ∈ B(b).
Thus b(g · v, g · v) > 0. Since [g] ∈ AutPGL(p+q,R)(B(b)) = AutG(B(b)∗), by Point (2)
and the same argument, one has b(g · v, g · v) < 0 for all v ∈ Rp+q such that b(v, v) < 0.
Thus g also preserves the isotropic cone

{v ∈ Rp+q | b(v, v) = 0}.

It is then a classical fact that there exists λ ∈ R such that b(g ·, g ·) = λb.
Thus [g] ∈ PO(b). This proves Point (3).

By Point (2), proving Point (4) reduces to the case where b = bstd. In this case, the
group PO(bstd) acts transitively on Bp,q. An explicit computation gives that the stabilizer
of x0 = Span(e1, . . . , ep) — defined in Equation (2.4.2) — in PO(bstd) is

PO(bstd) ∩ P = P
((O(p) 0

0 O(q)

))
,

which is a maximal compact subgroup of PO(bstd) isomorphic to P(O(p) × O(q)). Thus
we have a PO(bstd)-equivariant diffeomorphism

PO(bstd)/P(O(p)×O(q)) ≃ Bp,q,

and Point (4) follows by definition of PO(p, q), since PO(bstd) has signature (p, q). □
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3.3.2 Dual convexity versus convexity in an affine chart

In this section, we give explicit examples of proper domains of Gr2(R4) which are dually
convex and convex in no affine chart, and reciprocally. In the case of causal flag manifolds,
it will be much clearer that these two notions are not equivalent, see Example 3.5.9.

By Equation (2.4.8), the algebraic subvarieties maximal proper Schubert subvarieties
of Grp(Rp+q) are hypersurfaces. Thus Proposition 3.2.1 holds in Grp(Rp+q).

Given some point ξ :=

[
A
B

]
∈ Grq(Rp+q), with A ∈ Mp,q(R) and B ∈ Matq(R), by

(2.4.8), one has Zξ ∩Astd = φp
(
{X ∈ Matq,p(R) | det(XA− B) = 0}

)
. We define the two

open sets

(Astd ∖ Zξ)
+ := φp

(
{X ∈ Matq,p(R) | det(XA−B) > 0}

)
;

(Astd ∖ Zξ)
− := φp

(
{X ∈ Matq,p(R) | det(XA−B) < 0}

)
.

Whenever Astd ∩ Zξ ̸= ∅, the open set (Astd ∖ Zξ)
+ (resp. (Astd ∖ Zξ)

−) is dense
in (Astd ∖ Zξ)

+ ⊔ Zξ (resp. (Astd ∖ Zξ)
− ⊔ Zξ). In particular, in this case, it is nonempty.

If p = q and ξ := φp(B) ∈ Grp(R2p) then we have

(Astd ∖ Zξ)
+ = φp

(
{X ∈ Matp(R) | det(X −B) > 0}

)
(Astd ∖ Zξ)

− = φp
(
{X ∈ Matp(R) | det(X −B) < 0}

)
.

Remark 3.3.3. Even if dual convexity and convexity in an affine chart are different,
dually convex domains of Grp(Rp+q) share an important property with domains that are
properly convex in an affine chart: if Ω ⊂ Grp(Rp+q) is a proper domain which is dually
convex, then int(Ω) = Ω. This is a particular case of Proposition 7.1.9, which will be
proven in Section 7.1 for any Nagano space of real type.

3.3.2.1 Supporting hyperplanes and proper Schubert subvarieties. In this sec-
tion, we assume that p = q. Lemma 3.3.4 below describes the local behavior of Schubert
hypersurfaces of Grp(R2p) near a regular point. It will allow us to construct proper do-
mains that are convex in an affine chart but not dually convex, and vice versa.

Recall the point x0 := φ2(0) defined in Equation (2.4.2).

Lemma 3.3.4. Let x := φp(X) ∈ Astd ∩ Zx0 be such that rk(X) = p − 1 — i.e. x is
a regular point of the algebraic hypersurface Zx0. Then for any neighborhood V of X
in Matp(R), there exists X± ∈ TX(φ−1

p (Zx0)) such that φp(X
±) ∈ (Astd ∖ Zx0)± ∩ V .

Note that φp(X
+) ∈ (Astd ∖ Zξ0)+ (resp. φ(X−) ∈ (Astd ∖ Zξ0)−) is equivalent

to det(X+) > 0 (resp. det(X−) < 0).

Proof of Lemma 3.3.4. Since X has rank p − 1, by Gauss’ reduction there exist two ma-
trices P,Q ∈ GLp(R) such that

X = QĨpP
−1,
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where Ĩp =

(
Ip−1 0

0 0

)
. Thus ξ =

[
P 0
0 Q

]
.

[
Ip
Ĩp

]
. Hence, up to translating x by the

element of the Levi subgroup[
P 0
0 Q

]
∈ L :=

{[A 0
0 C

]
| A,C ∈ GLp(R)

}
(see Equation (2.4.3)), we may assume that X = Ĩp. For all H = (hi,j) ∈ Matp(R), we
have

d
Ĩp

det(H) = E∗
p,p(H) = hp,p.

This map is nonzero, which means that det is a submersion at Ĩp and that

T
Ĩp

({X ∈ Matp(R) | det(X) = 0}) = ker(d
Ĩp

det) + Ĩp

= {H = (hi,j) ∈ Matp(R) | hp,p = 0}+ Ĩp.

Let ε > 0 and

Y ±
ε =

 0p−2 0p−2,2

02,p−2
0 ε
∓ε 0

 ∈ ker(d
Ĩp

det).

Then Y ±
ε ∈ ker(d

Ĩp
det), and det(Y ±

ε +Ĩp) = ±ε2. For ε small enough, one has Y ±
ε +Ĩp ∈ V .

Thus for ε small enough, the matrix X± := Ĩp + Y ±
ε works. □

The case where p = q = 2 is particularly interesting, as the regular point of Astd ∩ Zx0
are exactly the elements of Astd ∩ Zx0 that are different from x0: a point x := φ2(X) is
regular in φ−1

2 (Zx0) = {Y | det(Y ) = 0} if and only if its rank is 1.

3.3.2.1.1 Example: A domain which is both dually convex and properly convex. Let us
denote by || · || the infinite norm on Mat2(R), i.e. ||(xij)|| = maxi,j |xij |. Let B(r) be the
ball of center 0 and of radius r for this norm, with r > 0. Then φ2(B(r)) is properly
convex in Astd. It is also dually convex, as it is equal to the intersection

(Astd ∖ Zξ+1
)+ ∩ (Astd ∖ Zξ+2

)+ ∩ (Astd ∖ Zξ+3
)+ ∩ (Astd ∖ Zξ+4

)+∩

(Astd ∖ Zξ−1
)+ ∩ (Astd ∖ Zξ−2

)+ ∩ (Astd ∖ Zξ−3
)+ ∩ (Astd ∖ Zξ−4

)+,

with

ξ+1 =


1
r 0
0 0
1 0
0 1

 ; ξ+2 =


0 1

r
0 0
1 0
0 1

 ; ξ+3 =


0 0
1
r 0
1 0
0 1

 ; ξ+4 =


0 0
0 1

r
1 0
0 1

 ;

ξ−1 =


−1
r 0

0 0
1 0
0 1

 ; ξ−2 =


0 −1

r
0 0
1 0
0 1

 ; ξ−3 =


0 0
−1
r 0

1 0
0 1

 ; ξ−4 =


0 0
0 −1

r
1 0
0 1

 .
(3.3.3)

Note that we already know another example of both dually convex and properly convex
domain, which is B2,2, by Propositions 3.3.1 and 3.3.2.
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3.3.2.1.2 Example: a properly convex domain which is not dually convex. As we have
seen in Section 3.3.2.1.1, the domain φ2(B(2)) is both properly convex in Astd and dually
convex. However, if we intersect it with a well-chosen hyperplane of Astd, we can get a
new properly convex domain of Astd which is not dually convex anymore. We set:

Ω := φ2(B(2) ∩ {X | tr(X) < 1}).

Lemma 3.3.5. The domain Ω is properly convex in Astd, but it is not dually convex.

Proof. It is clear by definition that the domain Ω is properly convex in the affine chart Astd.

Let X :=

(
1 0
0 0

)
and x := φstd(X) ∈ ∂Ω. There exists a neighborhood V of X such

that φ2(V ∩ {tr = 1}) is a nonempty open subset of ∂Ω.
Assume for a contradiction that Ω is dually convex. By dual convexity, there ex-

ists ξ ∈ Ω∗ such that x ∈ Zξ. By connectedness of Ω, there exists ε ∈ {+,−} such
that Ω ⊂ (Astd ∖ Zξ)

ε. In particular, one has

φ2

(
V ∩ {tr = 1}

)
⊂ (Astd ∖ Zξ)ε (3.3.4)

Since x0 ∈ Ω, we have x0∩ξ = {0}, and thus we can write ξ =

[
Y
I2

]
, with Y =

(
y1,1 y1,2
y2,1 y2,2

)
and y1,1, y1,2, y2,1, y2,2 ∈ R. Let us distinguish the cases where Y is invertible or not.

1. If Y is invertible, then ξ ∈ Astd. If x ∈ Zξ is regular, then by Proposition 3.2.1,
the affine hyperplane φ2(TX(φ−1

2 (Zξ))) of Astd is a supporting hyperplane of Ω
at x. Since the unique supporting hyperplane of Ω at x is H0 := φ2({tr = 1}),
we have TX(φ−1

2 (Zξ)) = {tr = 1}. But Lemma 3.3.4, there exists

X−ε ∈ V ∩ {tr = 1} ∩ φ−1
2

(
(Astd ∖ Zξ)

−ε).
This is in contradiction with Equation (3.3.4). Thus x cannot be regular in Zξ. Thus
since p = 2, we have x = ξ, so X = Y −1. This is absurd because X is not invertible.

2. Now assume that Y is not invertible. Since Y ̸= 0, we have rk(Y ) = 1. Moreover,
since x ∈ Zξ, we have det(I2 − XY ) = 0, which implies that y1,1 = 1. Thus there

exist λ, µ ∈ R such that Y =

(
1 λ
µ λµ

)
. On the other hand, by Equation (3.3.4) one

has
εdet(I2 − ZY ) > 0 ∀z = φ2(Z) ∈ Ω. (3.3.5)

Write Z =

(
z1 z2
z3 z4

)
. Equation (3.3.5) is equivalent to:

ε(1− z1 − µz2 − λz3 − λµz4) > 0. (3.3.6)

Assume that ε = +. Let Z =

(
1 δ
0 −δ2

)
, with 0 < δ < 1. Since φ2(Z) ∈ Ω, by

Equation (3.3.6), we have −δµ+ δ2µ > 0 for all 0 < δ < 1. This implies that µ ≤ 0.

Noticing that φ2

((1 −δ
0 −δ2

))
∈ Ω for all 0 < δ < 1, we also get µ ≥ 0. Thus µ = 0.
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But φ2

((3
2 0
0 −1

))
∈ Ω, which, by Equation (3.3.6), implies that −1

2 > 0, contra-

diction.

Thus ε = −. We similarly get µ = 0, and since φ2

((1
3 0
0 1

3

))
∈ Ω, we get 1

3 < 0,

contradiction.

In any case, we get a contradiction, so Ω is not dually convex. □

3.3.2.1.3 Example: a dually convex domain which is convex in no affine chart. As in
Section 3.3.2.1.2, we will shrink a domain of the form B(r) for some r > 0 (in the notation
of Section 3.3.2.1.1), but this time, we want to keep the dual convexity property and lose
the “convexity in an affine chart” propery. Thus we will shrink it with a well-chosen
maximal proper Shubert subvariety. Let

Ω := φ2

(
B(1)

)
∩ (Astd ∖ Zx0)+.

Recall the elements defined in (3.3.3) for r = 1. An explicit computation gives:

2∧
R4 = ιρ0(ξ+1 )⊕ ιρ0(ξ+3 )⊕ ιρ0(ξ+4 )⊕ ιρ0(ξ+2 )⊕ ιρ0(ξ−1 )⊕ ιρ0(x0), (3.3.7)

where ιρ0 is the Plücker embedding defined in Equation (2.4.5). Note moreover that ∂Ω
contains an open subset of Zξ+i

for all 1 ≤ i ≤ 4, of Zξ−1
and of Zx0 .

Lemma 3.3.6. The open set Ω is contractible and dually convex, but there exists no affine
chart in which it is properly convex.

Proof. The open set Ω is dually convex, as it is the intersection of two dually convex
domains. Moreover, a computation using the explicit description of Ω gives that Ω is

starshaped at φ2

((1
2 0
0 1

2

))
in Astd, and hence contractible. Assume for a contradiction

that Ω is properly convex in some affine chart of Gr2(R4). Then there exists g ∈ PGL(4,R)
such that g−1 · Ω is properly convex in Astd.

By Equation (3.3.7), there exists ξ ∈ {ξ+1 , ξ
+
3 , ξ

+
4 , ξ

+
2 , ξ

−
1 , x0} such that g−1 · ξ is

transverse to ξ∞ :=

[
0
I2

]
. We can thus write g−1 · ξ = φ2(B), where B ∈ Mat2(R).

Let V ⊂ Gr2(R4) be an open subset such that V ∩ ∂Ω ⊂ Zξ is nonempty. By con-
nectedness of Ω, we may assume that Ω ⊂ (Astd ∖ Zg−1·ξ)

+. We may moreover assume
that V ∩ (Astd ∖ Zg−1·ξ)

+ ⊂ Ω. By density of regular points in Zg−1·ξ, there exists a
regular point x = φ2(X) ∈ Zg−1·ξ ∩V . By Proposition 3.2.1, the affine hyperplane φ2(H),

where H := TX(φ−1
2 (Zg−1·ξ)), is a supporting hyperplane at x to g−1 ·Ω. By Lemma 3.3.4,

there exists

X+ ∈ H ∩ φ−1
2

(
(V ∩ Zg−1·ξ)

+)
)
⊂ H ∩ φ−1

2 (Ω),

which contradicts the fact that φ2(H) ∩ Ω = ∅.
We have proven that there exists no affine chart containing Ω as a properly convex

domain. □
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3.4 Proper domains in the Einstein Universe

We define and investigate the properties of certain proper symmetric domains of Einp,q

for p, q ≥ 1, all conformally equivalent to each other, called diamonds. We start with the
Lorentzian case, that is, when (p, q) = (n− 1, 1), in Section 3.4.1, where the diamonds are
well-known and admit an explicit description in terms of causality. We generalize their
construction to higher signatures in Section 3.4.2.

The diamonds are models of the symmetric space of PO(p, 1)×PO(1, q), this symmetric
space being, with the notation of Chapter 5, the non-compact dual of the Nagano space
Einp,q. By Theorem 8.4.1, they will be the only proper almost-homogeneous domains
in Einp,q.

Let us first fix some notations for this section:

Notation 3.4.1. Let V be a finite-dimensional real vector space and b be a quadratic
form of signature (p, q) on V . The sheet Hp,q−1 ⊂ V is defined by

Hp,q−1 = {x ∈ V |b(x, x) = −1} .

The metric b restricts to a complete pseudo-Riemannian metric of signature (p, q − 1)
and of constant negative curvature on Hp,q−1. The two connected components of Hn,0 are
standard models for the real n-dimensional hyperbolic space, and we denote them by Hn.
The space Hn,1 is usually referred to as the anti de Sitter space in Lorentzian geometry.
Similarly, we define

dSp−1,q = {x ∈ V |b(x, x) = +1} ,

so that the metric b restricts to a complete pseudo-Riemannian metric of signature (p−1, q)
and of constant positive curvature on dSp−1,q. The space dSn,1 is called the de Sitter space
in Lorentzian geometry. We will use the notation −Hn to denote dS0,n.

3.4.1 Reminders on the Lorentzian diamond and its conformal
structure

Recall the setting of Section 2.4.1 for the definition of the Lorentzian Einstein universe,
in particular the quadratic form ψ on V ≃ Astd. We still denote by ψ the symmetric bilinear
form associate to ψ. Given a point x ∈ Astd ≃ Rn−1,1, its future and its past are the sets

I+(x) = {a ∈ Rn−1,1 |ψ(a− x) < 0 and ψ(a− x, en+1) < 0};
I−(x) = {a ∈ Rn−1,1 |ψ(a− x) < 0 and ψ(a− x, en+1) > 0}.

Now let x, y ∈ Astd ≃ R1,n−1 such that y ∈ I+(x). We denote by D(x, y) the domain
defined by

D(x, y) = I+(x) ∩ I−(y),

see Figure 3.1. In the notation of Section 2.4.3.3, the set D(x, y) is the union of all timelike
curves of Astd ≃ Rn−1,1 joining x to y. More generally, if x ∈ Einn−1,1 and y /∈ Zx,
a diamond with extremities x and y is a connected component of Einn−1,1∖(Zx ∪Zy)
which is proper. Note that, since PO(n, 2) acts transitively on the pairs of transverse
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points of Einn−1,1, it acts transitively on the set of diamonds, so they are all conformally
equivalent.

If x ∈ Astd, then the future I+(x) is a diamond, as it is a proper connected component
of Einn−1,1∖(Zx ∪Z[e1]).

In the notation of Section 2.4.3.3, we have the following well-known result:

Proposition 3.4.2. Any diamond of Einn−1,1 is conformally equivalent to

(Hn−1 × R, [gHn−1 ⊕ (−dt2)]).

Proof. Since all diamonds are conformally equivalent, we may consider the di-
amond I+(0) ⊂ Astd, where 0 ∈ Astd is a fixed origin. We have a conformal
identification

I+(0) −→ Hn−1 × R
x 7−→

(
x

ψ(x) , log
(
− ψ(x)

))
,

where we have conformally identified Hn−1 with {z ∈ I+(0) |ψ(z) = −1} by Nota-
tion 3.4.1. □

Now by Fact 2.4.1, for any diamond D ⊂ Einn−1,1, the group AutPO(n,2)(D) is iso-
morphic to Isom(Hn−1 × R) = PO(1, n − 1) × (Z2 ⋉ R). In particular, the domain D is
divisible, homogeneous and symmetric.

p+

I+(p+)

I−(p+)

Figure 3.1 – Past and future of p+ in Astd in
the case where (p, q) = (2, 1)

y

x

Figure 3.2 – The diamond D(x, y)
for x, y ∈ Astd and y ∈ I+(x)
(greyed-out area), seen in Astd ≃ R2,1

for (p, q) = (2, 1).

3.4.2 Diamonds and other homogeneous domains of Einp,q

The content of this section comes from joint work with Adam Chalumeau [CG24], with
some adjustments to align with the present manuscript. We generalize the construction
of Section 3.4.1 to the higher-signature case. Let p, q ≥ 1 and b be a bilinear form of
signature (p+ 1, q+ 1) on Rp+q+2. Let us write Rp+1,q+1 = V+⊕V−, where V+ and V− are
two orthogonal vector subspaces of Rp+q+2. For i ∈ {+,−}, let (pi, qi) be the signature
of Vi and we assume for instance that q+ ≤ q−. We denote by Fi the (possibly empty)
intersection Fi = Einp,q ∩ P(Vi). Let J ⊂ Einp,q be the joint of F+ and F−, that is, the
union of all photons intersecting F+ and F−, and let U := Einp,q ∖J . We then have:

Proposition 3.4.3 (with Chalumeau, see [CG24]). One has the following 4 possible cases:
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* If pi = 0 or qi = 0 for some i ∈ {+,−}, then the domain U is connected, homoge-
neous, symmetric and dense in Einp,q.

* If p+ = p− = q+ = q− = 1, then the domain U has 4 connected components, all of
which are Lorentzian diamonds.

* If q+p− = 1 and q−p+ ≥ 2, then the domain U has 3 connected components, all
of which are symmetric and two of which are proper and isomorphic to each other.
The same conclusion holds if q+p− ≥ 2 and q−p+ = 1.

* If q+p− ≥ 2 and q−p+ ≥ 2, then the domain U has 2 connected components, which
are both symmetric and nonproper.

Proof. First assume that pi, qi ≥ 1 for i ∈ {+,−}. Then

Fi = P {vi ∈ Vi | vi ̸= 0, b(vi, vi) = 0} ,

and J = P {v+ + v− ∈ V+ ⊕ V− |b(vi, vi) = 0 for i ∈ {+,−}}. Thus we have U = U+⊔U−,
where

Ui = P {v+ + v− ∈ V+ ⊕ V− | − b(v+, v+) = b(v−, v−) = i} .

Now the map

π : Hp+,q+−1 × dSp−−1,q− −→ U+

(v+, v−) 7−→ P(v+ + v−).

is a conformal 2-sheeted covering. The nontrivial deck transformation φ defined
in Section 2.4.3.3.1 centralizes PO(p + 1, q + 1), so U+ is conformally equivalent
to Hp+,q+−1 × dSp−−1,q− /x∼φ(x). It is in particular symmetric, with isometry
group SO(p+, q+ − 1) × SO(p− − 1, q−). If q+ ̸= 1 or p− ̸= 1, then at least one of the
two factors Hp+,q+−1 or dSp−−1,q− contains a lightlike geodesic γ defined over R (in the
sense of Section 2.4.3.3). To find such a geodesic, intersect any degenerate 2-plane of
signature (0, 1, 0) or (1, 0, 0) with Hp+,q+−1 or dSp−−1,q− , respectively. In particular, the
domain U+ contains a photon minus a point. Hence U+ is not proper. If q+ = p− = 1,
then the total space Hp+,0 × dS0,q− has 4 connected components and U+ is the union
of two connected components, both conformal to (−Hp+) × Hq− . In order to write the
components of U+ explicitly, let e+ ∈ Hp+,0 and e− ∈ dS0,q− . Then

U+ = D+ ⊔D−,

where

Dδ = P{v+ + v− ∈ U+ | δb(v+, e+)b(v−, e−) > 0}, δ ∈ {−,+}.

For x = P(v++v−) ∈ D+ and y = P(w++w−) ∈ D−, the signs of b(v+, w+) and b(v−, w−)
are the same. In particular the value of b(u,w) cannot be zero. This means that the light-
cone of every element ofD+ (resp.D−) does not intersectD− (resp.D+). HenceD− ⊂ D∗

+.
SinceD− is open, the domainD+ is proper. SinceD+ ⊂ D∗

−, the domainD− is also proper.

Similarly, the open set U− is symmetric and has one or two connected components
depending on the values of q− and p+. In the case where (for instance) q+ = 0, the
subset F+ is empty, and J = F− has an empty interior in Einp,q. Thus U is dense
in Einp,q. A map similar to π shows that U is connected and symmetric. □
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A diamond is then a proper connected component of a set U constructed above from a
decomposition Rp+q+2 = V+ ⊕ V−, with sgn(b|V+×V+) = (p, 1) and sgn(b|V+×V+) = (1, q).
By the proof of Proposition 3.4.3, any diamond of Einp,q is conformally equivalent to

(Hp ×Hq, [gHp ⊕−gHq ]).

Thus, by Fact 2.4.1, all diamonds are PO(p+1, q+1)-translates of each other in Einp,q,
and the automorphism group of any diamond D ⊂ Einp,q is

AutPO(p+1,q+1)(D) ≃ PO(p, 1)× PO(1, q).

Since this group is semisimple and any diamond identifies equivariantly with its symmetric
space, we have:

Fact 3.4.4. All diamonds of Einp,q are symmetric, divisible and homogeneous domains.

Let us give an explicit construction of diamonds in the standard affine chart Astd:

Construction 3.4.5 (with Chalumeau, see [CG24]). First, we chose an origin 0 of Astd,
and denote by bp,q the bilinear form on the vector space Astd of signature (p, q) induced
by the metric b on Rp+1,q+1 (as in Section 2.4.3.3.2).

Let Hp be a positive-definite p-plane in Astd, and let Hq be a negative-definite q-plane
orthogonal to Hp. We write Sp−1 and Sq−1 for the balls of center 0 and radius 1 in Hp

and Hq, respectively. By Equation (2.4.13), given a point a ∈ Sp−1 and b ∈ Sq−1, the
affine segment [a, b] is a segment of photon. Then the union S of all such segments is
a topological sphere (it is a topological join of Sp−1 and Sq−1) which separates Rp,q into
two connected components, one of which is bounded and convex. This component is a
diamond, which we denote by D here. Let us now write D as a unit ball of Astd for a
suitable norm. This norm is defined by

|x|p,q =
√

bp,q(xp, xp) +
√
−bp,q(xq, xq) ∀x ∈ Astd, (3.4.1)

where x = xp + xq ∈ Hp ⊕Hq. Then | · |p,q defines a norm on Astd which depends on Hp

and Hq, and we have:

D = {x ∈ Rp,q | |x− c|p,q < 1}.

In particular, the domain D is a convex domain of Astd for the canonical affine structure;
see Figure 3.3.

Remark 3.4.6. There is a purely causal way to define diamonds of Einp,q. In signa-
ture (p, q), one can define the future of an inextensible (p−1)-timelike curve (see [Tro24]).
In this setting, the diamond is the future of the timelike sphere Sp−1.

The following lemma is intrinsically related to the fact that the number of incidence
degrees between two points of Einp,q (p, q ≥ 1) is 3 (see Observation 5.1.10) as it is actually
a particular case of Remark 6.4.3 which will be stated later with the formalism of Nagano
spaces (see Section 5):
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y

x

Sq−1

Sp−1

Hp

Hq

0

Figure 3.3 – On the left: the Lorentzian diamond in Ein2,1. Two points in the diamond
are joined by a sequence of two segments of photons, see Lemma 3.4.7. On the right: a
diamond in Rp,q. The spheres Sp−1 and Sq−1 correspond to the subsets F+ and F− in
Proposition 3.4.3. The boundary S of D is a subset of the set J in Proposition 3.4.3.

Lemma 3.4.7 (with Chalumeau, see [CG24]). Let D be a diamond of Einp,q. Any two
points x, y ∈ D can be joined by a sequence of at most two segments of photons contained
in D, see Figure 3.3.

Proof. We consider any conformal identification D ≃ Hp × (−Hq), and see Hp × Hq as a
Riemannian symmetric space. Write x = (xp,xq) and y = (yp,yq) in the model Hp ×Hq.
We let dp, resp. dq be the hyperbolic metric on Hp, resp. Hq, and [xp,yp] (resp. [xq,yq]) the
geodesic segment between xp and yp for dp (resp. between xq and yq for dq), and γp (resp.
γq) the associate bi-infinite geodesic. Assume for instance that dp(xp,yp) < dq(xq,yq).
Let zq ∈ Hq be such that dq(xq, zq) + dq(xq,yq) = dq(zq,yq), and let zp ∈ [xp,yp] ⊂ Hp

be such that dp(xp, zp) = dp(xp, zp). Then the lightcone of z = (zp, zq) contains both x
and y. □

Remark 3.4.8. In the setting of Lemma 3.4.7, we may even chose the path between x
and y contained in a flat of D (for any conformal identification with the symmetric
space Hp × Hq): in the proof, if we chose zq ∈ γq, then z lies in the flat of Hp × Hq

generated by γp and γq. We will see in Section 6.4.7.1 that we can also construct such
paths using Construction 3.4.5; see in particular Remark 6.4.14.

3.5 Proper domains and convexity in causal flag manifolds

In this section, we first introduce, in Section 3.5.1, some proper symmetric domains in
causal flag manifolds Sb(g), called diamonds, generalizing Lorentzian diamonds introduced
in Section 3.4.1. These domains will, in fact, be the only proper almost-homogeneous
domains in causal flag manifolds, by Theorem 8.3.1. In the notation of Chapter 5, given
a HTT Lie algebra g, each diamond in Sb(g) is a realization of the non-compact dual of
the Nagano space Sb(g).
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The construction of these diamonds relies on the causal structure on Sb(g). Diamonds
allow us to define, in analogy with the case of conformal spacetimes [MS08], a notion
of causal convexity, the properties of which we study in Section 3.5.2.5. We compare it
with dual convexity in Proposition 3.5.24. This will enable us, in Section 4.3, to better
understand the geometric properties of transverse groups preserving proper domains in
Sb(g).

Notation 3.5.1. For all this section, we take Notation 2.4.2.

3.5.1 Diamonds

In this section, we generalize the construction of Section 3.4.1, but here in another
direction than the one of Section 3.4.2, the one of causal flag manifolds.

Fix a HTT Lie algebra g and G ∈ G{αr}(g). Given two transverse points x, y ∈ Sb(g),
the set Sb(g) ∖ (Zx ∪Zy) admits several connected components, exactly two of which are
proper.

Definition 3.5.2. A subset Ω of Sb(g) is called a diamond if there exist a (unique) pair of
transverse points x, y ∈ Sb(g) such that Ω is one of the two proper connected components
of Sb(g) ∖ (Zx ∪Zy). The two points x, y are then called the endpoints of Ω.

Let Dstd := I+(p+). Recall from Section 2.2.6 that there exists an order-two ele-
ment k0 ∈ G such that k0 · p+ = p−. Then D′

std := I−(p+) = k0 ·Dstd is the interior of the
dual of Dstd (see e.g. [GW25, Lem. 13.11]), and the domains Dstd and D′

std are exactly
the two diamonds with endpoints p+ and p−. They are proper in Sb(g) — although they
are not proper in Astd.

Given two transverse points x, y ∈ Sb(g), one has (x, y) = g · (p+, p−) for some g ∈ G.
The two diamonds g ·Dstd and g ·D′

std are the diamonds with endpoints x and y.
By the two previous paragraphs, any diamond is a G-translate of Dstd. In particular,

up to the action of G on Sb(g), there is only one model of diamond in Sb(g). It is
convenient to consider models of diamonds that are proper in affine charts:

Definition 3.5.3. Let A ⊂ Sb(g) be an affine chart. If x, y ∈ A and y ∈ I+(x), we
define DA(x, y) as the set I+(x) ∩ I−A (y). It is one of the two diamonds with endpoints x
and y.

For x, y ∈ A and y ∈ I+A (x), the diamond DA(x, y) is the only one of the two diamonds
with endpoints x and y that is proper in A; see Figure 3.2. When A = Astd, we will ommit
the “Astd” in subscript.

Remark 3.5.4. When g = so(n, 2), with n ≥ 3, given two transverse
points x, y ∈ Einn−1,1, the set Sb(g) ∖ (Zx ∪Zy) has exactly three connected
components (see Figure 3.1 for x = p+ and y = p−). For a general HTT Lie group G, the
set Sb(g) ∖ (Zx ∪Zy), where p, q are two transverse points, may have more connected
components. If dim(Sb(g)) ≥ 3, then there are exactly (r + 1) connected components,
where r is the real rank of G; see Section 3.5.2.2.

The following fact is well known (see e.g. [GW18, Prop. 3.7, 5.2 and Remark 5.4] and
[Kan11, Thm 2.3 and 3.5]):
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Fact 3.5.5. The diamond Dstd is a symmetric domain of Sb(g).
Moreover, if G ∈ G{α1}(g), then the action of the identity component L0 of L on Dstd

is transitive and the stabilizer of a point in Dstd is a maximal compact subgroup of L0, so
that any diamond is a model for the symmetric space of L0.

Since L ≃ Ls × R, the diamond Dstd is L-equivariantly diffeomorphic to XLs × R,
where XLs is the symmetric space of Ls. The corresponding identifications, for g ranging
in HTT Lie algebras, are listed in Table 3.1.

Remark 3.5.6. 1. The family of diamonds D(x, y), where x, y ∈ Astd and y ∈ I+(x),
forms a basis of neighborhoods of Astd.

2. Since Ls admits cocompact lattices [Bor63], any diamond is divisible.

3. Diamonds are defined more generally in any flag manifold F (g,Θ) admitting a Θ-
positive structure [GLW21]. By Zimmer’s theorem (Fact 1.2.3) and Fact 3.5.5,
these diamonds are quasi-homogeneous (resp. divisible) if and only if the flag mani-
fold F (g,Θ) is the Shilov boundary associated with a HTT Lie algebra.

Example 3.5.7 (Explicit construction of diamonds). Let us see what diamonds look like,
for different values of G.

(1) g = so(n, 2), with n ≥ 2. The diamonds are exactly those defined in Section 3.4.1.
(2) g is neither so(n, 2) for some n ≥ 2, nor e7(−25). In the notation of Sec-

tion 2.4.4.4, we have

Dstd =
{

Im

(
Ir
X

)
| X ∈ H++

r (K)
}

; D′
std =

{
Im

(
Ir
−X

)
| X ∈ H++

r (K)
}
,

where H++
r (K) = {X ∈ Matr(K) | tX = X, sgn(X) = (r, 0)} is the set of positive-

definite K-hermitian matrices of size r. In particular, we recover that the diamond Dstd

is L-equivariantly diffeomorphic to the symmetric space XLs × R = (SL(r,K)/K) × R,
where K is a maximal compact subgroup of SL(r,K), see Table 3.1.

g Dstd ≃
so(n, 2) Hn × R
sp(2r,R) (SL(r,R)/ SO(r))× R
su(r, r) (SL(r,C)/ SU(r))× R
so∗(4r) (SL(r,H)/ Sp(r))× R
e7(−25) (E6(−26)/F4)× R

Table 3.1 – The diamonds in Sb(g) for every HTT Lie algebra.

Given an affine chart A and x, y ∈ A such that y ∈ I+A (x), the diamond DA(x, y) is the
only one of the two diamonds with endpoints x and y that is proper in A. The converse
is true:

Lemma 3.5.8. Let A be an affine chart of Sb(g). Let x, y ∈ A be two transverse points.
Assume that there exists a diamond D with endpoints x and y such that D ⊂ A. Then
one of the following is satisfied:
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1. One has y ∈ I+A (x) and D = DA(x, y).

2. One has y ∈ I−A (x) and D = DA(y, x).

Proof. Let z ∈ Sb(g) be such that A = Az. Since D ⊂ Az, the point z lies in the
interior of D∗. Then by [GW18], the point x belongs to one of the two diamonds with
endpoints y, z. These two diamonds are exactly I+A (y) and I−A (y), and the lemma follows. □

Example 3.5.9. We can now give an example to Remark 3.1.8, i.e. a proper
domain of a flag manifold F (g,Θ) whose dual is not the closure of the open
set {ξ ∈ F (g,Θ) | Zξ ∩ Ω = ∅}. Let D ⊂ Einn−1,1 be a diamond, and let us consider it as
a proper domain in an affine chart A. Let y ∈ D and let us define Ω := D∖(J+

A (y)∪J−
A (y)).

Then Ω is a proper domain of Einn−1,1. Its dual is Ω∗ = D∗ ∪ {y}, but

{ξ ∈ Einn−1,1 | Zξ ∩Ω = ∅} = D∗ ̸= Ω∗.

Moreover, the dual Ω∗ of Ω is not connected.
Finally, the domain Ω is dually convex, but there exists no affine chart in which Ω is

contained as a convex domain (for the affine structure on the affine chart), since Ω is not
simply connected.

If x, y ∈ A and y ∈ J+
A (x), then we will denote by Dc

A(x, y) the Hausdorff limit of the

sequence of DA(x, yk), where (yk) ∈ I+(x) and yk → y; this limit does not depend on the
choice of the sequence (yk). If y ∈ I+(x), then one has Dc

A(x, y) = DA(x, y).Again, we
will ommit the “Astd” subscript if A = Astd.

3.5.2 Another notion of convexity: causal convexity

Let g be a HTT Lie algebra. There exists a notion of convexity in Sb(g) called dual
convexity, as mentioned in Section 3.1.1.2. In this section, we introduce another (weaker)
notion of convexity, called causal convexity, inspired from causal convexity in conformal
space-times (see [MS08]). Contrary to dual convexity, causal convexity is specific to flag
manifolds admitting a causal structure. We investigate the properties of causally convex
domains and relate the two notions of convexity.

3.5.2.1 Reminders on causal convexity in conformal spacetimes. A domain Ω of
a conformal spacetime (M, [g]) is said to be causally convex if every causal curve of M
joining two points of Ω is contained in Ω; see e.g. [MS08, pp 8].

Given two transverse points x, y ∈ Einn−1,1, there always exists a timelike curve join-
ing x to y: take for instance any smooth curve contained in one of the two diamonds with
extremities x and y. Thus, the only causally convex domains of Einn−1,1 are either empty
or Einn−1,1: the notion of causal convexity does not make sense. However, this notion
makes sense in affine charts of Einn−1,1, since those are identified with Minkowski space
(by Equation (2.4.1)), and it is then easy to check that a domain Ω ⊂ A is causally convex
if and only if for every pair a, b ∈ Ω, the diamond DA(a, b) is contained in Ω.

This observation is the inspiration of the notion of causal convexity we will introduce in
Definition 3.5.14. Before giving this definition, we first investigate, in next Section 3.5.2.2,
the connected components of Sb(g)∖ (Zx ∪Zy) that are not diamonds, where g is a HTT
Lie algebra and x, y ∈ Sb(g) are transverse.
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3.5.2.2 Other L0-orbits. In Section 3.5.1, we have defined diamonds in Sb(g). By
Fact 3.5.5, we know that the standard diamond Dstd is an L0-orbit. In this section,
we investigate the other L0-orbits in Sb(g) ∖ (Zp+ ∪Zp−). Recall the strongly orthog-
onal roots 2ε1, . . . , 2εr defined in Section 2.4.4.1. For all 1 ≤ i ≤ r, let vi ∈ g−2εi be
such that [vi, h−2εi , σg(vi)] is an sl2-triple, where h−2εi is defined in Section 2.2.3. For
all 1 ≤ i, j ≤ r such that i+ j ≤ r, we define

Xi := v1 + · · ·+ vi − vi+1 − · · · − vi+j ∈ u−.

Let Vi,j be the L0-orbit of Xi,j . We write Oi := Vi,r−i.
Using the terminology of Jordan algebras and generalizing classical Sylvester’s

law of inertia, Kaneyuki proves that the set Oi is open and is the connected
component of u− ∖ φ−1

std(Zp+) containing Xi,r−i [KAN88]. Kaneyuki also proves

that φ−1
std(Zp+) =

⊔
i+j≤r−1 Vi,j and

O i =
⊔

k≤i, ℓ≤r−i
Vk,l ∀1 ≤ i ≤ r. (3.5.1)

Finally, one has c0 = Or.

Example 3.5.10. 1. When g is neither so(n, 2) for some n ≥ 2, nor e7(−25), using the
notation of Section 2.4.4.4.1, we can describe the domains Oi, for 0 ≤ i ≤ r. By

Equation (2.4.17), one has vi =

(
0r 0
Ei,i 0r

)
, where Ei,i is the (r × r)-matrix with

every coefficient equal to 0 except the one on the i-th row and i-th column. Then,
by Equation (2.4.18), we have:

Oi =
{(0r 0

X 0r

)
| X ∈ Matr(K), tX = X and sgn(X) = (i, r − i, 0)

}
. (3.5.2)

When i = r, we recover the cone c0, and φstd(Or) is exactly the diamond Dstd

determined in Example 3.5.7. See [KAN88, Kan98] for more details.

2. When g = so(n, 2) for some n ≥ 2, in the notation of Section 2.4.1 and the identifi-
cation u− ≃ V , one has u− = O0 ∪ O1 ∪ O2, where:

O0 = {v ∈ u− | ψ(v) < 0 and vn < 0};
O1 = {v ∈ u− | ψ(v) > 0};
O2 = {v ∈ u− | ψ(v) < 0 and vn > 0}.

□

The goal of this section is to prove Lemma 3.5.12 below. To this end, let us in-
troduce some notation. Since dim(g−αr) = 1, any element X ∈ u− can be uniquely
written X = λr(X)vr +X ′, with λr(X) ∈ R and X ′ ∈

∑
β∈Σ+

{αr}
∖{αr} g−β. The map λr is

then a linear form of u−. The following holds:

Lemma 3.5.11. One has c0 ⊂ {λr > 0}.
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Proof. Recall that c0 = Ad(L0) · Xr,0. In the notation of Section 2.4.4.1, we
have l = ls ⊕ RH0, where exp(tH0) acts by positive dilations on u− for all t ∈ R (see e.g.
[Gal24, Sect. 3.2]). Hence it suffices to prove that λr(ℓ ·Xr,0) > 0 for all ℓ ∈ Ls, where Ls
is the semisimple part of L0. The Lie algebra ls admits the following decomposition

ls = g0 ⊕
⊕

β∈Σ+∩Span(∆∖{αr})

(gβ ⊕ g−β) = g0 ⊕ n+ ⊕ n−, (3.5.3)

with
n+ =

⊕
β∈Σ+∩Span(∆∖{αr})

gβ, n− =
⊕

β∈Σ+∩Span(∆∖{αr})

g−β,

and where g0 is the centralizer of a in g.
Let us set N± = exp(n±) and G0 = exp(g0). A direct computation gives

that λr(Ad(ℓ) · Xr,0) = λr(Xr,0) = 1 for all ℓ ∈ N+. On the other hand, one
has [g0 ⊕ n−, ker(λr)] ⊂ ker(λr), where

ker(λr) =
∑

β∈Σ+
{αr}

∖{αr}

g−β,

which implies that the group Ad(N−G0) preserves the kernel ker(λr). It follows
that λr(Ad(ℓ) · Xr,0) ̸= 0, for all ℓ ∈ N−G0N

+. But the set N−G0N
+ is dense in Ls,

by (3.5.3). Since N−G0N
+ is connected and λr(Xr,0) > 0, we have λr(ℓ · Xr,0) > 0 for

all ℓ ∈ N−G0N
+. But the set N−G0N

+ is dense in Ls, so λr(ℓ ·Xr,0) ≥ 0 for all ℓ ∈ Ls.
Since c0 is open, we then have c0 ⊂ {λr > 0}. □

The orbits Oi, for 0 ≤ i ≤ r, satisfy the following elementary properties:

Lemma 3.5.12. 1. For all i, one has Oi + c0 ⊂
⋃
j≥i Oj, and Oi − c0 ⊂

⋃
j≤i Oj.

2. For all i, the set Oi is equal to the interior of its closure.

3. For 1 ≤ i ≤ k ≤ j ≤ r, one has

O i ∩ Oj ⊂ Ok.

4. For all 0 ≤ i ≤ r, one has −Oi = Or−i.

Proof. Points (2), (3) and (4) follow from Equation (3.5.1). It remains to prove (1). It
suffices to prove the first inclusion, the second one admitting an analogue proof. Recall
the decomposition

u− =
∑

β∈Σ+
{αr}

g−β,

We have already defined a linear form λr on u−. But For all 1 ≤ i ≤ r, we
have 2εi ∈ Σ{αr}+ , and dim(g−2εi) = 1, so we can also define a linear form λi:
any element X ∈ u− can be uniquely written X = λi(X)vi + X ′, with λi(X) ∈ R
and X ′

i ∈
∑

β∈Σ+
{αr}

∖{2εi} g−β. The map λi is then a linear form on u−. We define

nℓ(X) := |{1 ≤ i ≤ r | λi(ℓ ·X) > 0}| ∀ℓ ∈ L0;

n(X) := max
ℓ∈L0

nℓ(X).
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For 1 ≤ i ≤ r, the integer n(X) is constant on the L0-orbit Oi. By Lemma 3.5.11, we
know that λr(Ad(ℓ) ·Xr,0) > 0 for all ℓ ∈ L0.

Let WLs be the restricted Weyl group of Ls, in the sense of Seciotn 2.2.4. Then for
all 1 ≤ i ≤ r, we have εi ∈WLs · εr (see e.g. [GK98]). Hence we have

λi(Ad(ℓ) ·Xr,0) > 0 ∀ℓ ∈ L0. (3.5.4)

Thus n(Xr,0) = r.

For 1 ≤ j ≤ r, we have Xj,r−j = wj · Xr, where wj ∈ W is the unique element of
the Weyl group sending εk to −εk for all k ≥ j + 1, and fixing εk for all k ≤ j. Thus we
have n(X) = j.

To prove the first inclusion of Point (1), by L0-invariance of c0, it suffices to prove
that Xj,r−j + c0 ⊂

⋃
k≥j Ok. Let Z ∈ c0. Then for all 1 ≤ i ≤ j, we have

λi(Xj,r−j + Z) = −λi(Xj,r−j) + λi(Z) > λi(Xj,r−j) > 0,

the second last inequality holding by Equation (3.5.4). Thus we have n(Xj,r−j + Z) ≥ j.
Equation (3.5.1) then gives Xj,r−j + c0 ⊂

⋃
k≥j Ok. □

Remark 3.5.13. Let us reprove Lemma 3.5.12.(1) in the case where g = sp(2r,R) for
some r ≥ 2.

According to the description of the Oi’s given in Equation (3.5.2), it suffices to show
that for any two symmetric matrices X,Y with Y positive-definite and X of signature
(i, r− i, 0), the signature of X+Y is (j, k, r− j−k) with j ≥ i. This follows directly from
the definition of the signature: if V is an i-dimensional real vector subspace of Rr, then
by the positivity of Y , one has tv(X + Y )v > 0 for all v ∈ V ∖ {0}. Hence, j ≥ i.

The same reasoning on the signature allows one to prove Lemma 3.5.12.(1) in the
cases g = su(r, r) and g = so(4r)∗, where r ≥ 2. However, the cases g = so(n, 2)
with n ≥ 2 and g = e7(−25) must be handled separately (even though the case g = so(n, 2)
with n ≥ 2 is well known). In order to treat all cases simultaneously, the strategy of our
proof of Lemma 3.5.12.(1) is to reconstruct this notion of signature within u−, in order to
apply the reasoning from the previous paragraph: when g = sp(2r,R), the integer n(X),
for X ∈ u−, actually coincides exactly with the positive component of the signature of X
when viewed as a symmetric (r × r)-matrix.

3.5.2.3 Causal convexity in an affine chart. In this section, we generalize the notion
of causal convexity, defined in Section 3.5.2.1, to general causal flag manifolds.

We fix an affine chart A of Sb(g). Based on the discussion of Section 3.5.2.1, we define:

Definition 3.5.14. We say that a subset X ⊂ A is causally convex in A if for all x, y ∈ X
with y ∈ J+

A (x), the closed diamond Dc
A(x, y) is contained in X.

Note that if Ω ⊂ A is open, then it is causally convex if and only if for all x, y ∈ Ω
such that y ∈ I+A (x), one has DA(x, y) ⊂ Ω.

The intersection of two causally convex sets is still causally convex. This leads to the
following definition:
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Definition 3.5.15. Let X ⊂ A. The causally convex hull ConvA(X) of X in A is the
smallest causally convex subset of A containing X. Equivalently, the set ConvA(X) is the
intersection of all causally convex subsets of A containing X.

Lemma 3.5.16. Let X ⊂ A be a subset. The causally convex hull of X in A is equal
to the union of all diamonds Dc

A(x, y), for x, y ∈ X and y ∈ J+
A (x). In particular, it is

connected whenever X is.

If Ω ⊂ A be an open subset, then the causally convex hull of Ω in A is equal to the
union of all diamonds DA(x, y), for x, y ∈ X and y ∈ I+A (x).

Proof. We prove the first assertion, the second one admitting a similar proof. Let us
define X ′ :=

⋃
x,y∈X, y∈J+

A (x)D
c
A(x, y). By definition of the causally convex hull, we

have X ′ ⊂ ConvA(X). Since X ⊂ X ′, to prove the converse inclusion, it suffices to
prove that X ′ is causally convex. Let x, y ∈ X ′ be such that y ∈ J+

A (x). By definition
of X ′, there exist x1, x2 ∈ X such that x2 ∈ J+

A (x1) and x ∈ Dc
A(x1, x2), and y1, y2 ∈ A

such that y2 ∈ J+
A (y1) and y ∈ Dc

A(y1, y2). Then by transitivity, we get that y2 ∈ J+
A (x1).

Since x1, y2 ∈ X, by definition of X ′ we have Dc
A(x, y) ⊂ Dc

A(x1, y2) ⊂ X ′. Hence X ′ is
causally convex. □

Remark 3.5.17. Lemma 3.5.16 states a property of convexity studied in this section —
causal convexity — that significantly distinguishes it from classical convexity in the real
projective setting. Indeed, in the latter case, the convex hull of a set F is in general not
equal to the union of the projective segments connecting two points of F ; instead, every
element of F is a convex combination of at most n points, where F ⊂ P(Rn). In the
case of causal convexity in causal flag manifolds, Lemma 3.5.16 is a consequence of the
intrinsic causality of our definition of convexity, and will be crucial in the proof of the
implication (1)⇒ (2) of Proposition 4.3.2.

3.5.2.4 Link with dual convexity. The goal of this section is to relate causal convexity
and dual convexity, see Proposition 3.5.19 and Remark 3.5.20 below. To this end, we need
the following lemma, which answers in particular a question of Neeb [Nee25, Problem 9.8]:

Lemma 3.5.18. Every connected component of Astd ∖ Zp+ = Sb(g) ∖ (Zp+ ∪Zp−) is
causally convex in Astd.

Proof. Le U be a connected component of Astd ∖ Zp+ . In the notation of Section 3.5.2.2,
we know that U = φstd(Oi) for some 0 ≤ i ≤ r. Let x, y ∈ U be such that y ∈ I+(x),
and let X,Y ∈ Oi be such that x = φstd(X), y = φstd(Y ). Then, by Points (1) and (3) of
Lemma 3.5.12, one has

D(x, y) = φstd

(
(X + c0) ∩ (Y − c0)

)
⊂ φstd

((⋃
j≥i

O i

)
∩
(⋃
j≤i

O i

))
⊂ U .

Since D(x, y) is open, by Lemma 3.5.12.(2), we have D(x, y) ⊂ U . □

We can now prove:
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Proposition 3.5.19. Let A be an affine chart. Any dually convex domain contained in A
is causally convex in A.

Proof. Since G acts transitively on Sb(g), we assume that A = Astd. Let Ω be a dually
convex domain of Sb(g) which is contained in Astd.

Let x, y ∈ Ω, with y ∈ I+(x). Assume that there exists a ∈ D(x, y) ∩ ∂Ω. By dual
convexity, there exists z ∈ Sb(g) such that Ω ∩ Zz = ∅ and a ∈ Zz. Since U− acts
transitively on Astd, we may assume that z = p+. By connectedness, the domain Ω is then
contained in one of the connected components of Astd ∖ Zp+ , let us denote it by O. In
particular, we have x, y ∈ O. Then, by Lemma 3.5.18, we have a ∈ O, which contradicts
the fact that a ∈ Zp+ . Thus we must have D(x, y) ⊂ Ω. □

Remark 3.5.20. The implication of Proposition 3.5.19 is not an equivalence, as there exist
causally convex domains which are not dually convex. For instance, take a diamond D
bounded in an affine chart A, and consider Ω := D∖J+

A (x) for some point x ∈ D. Then Ω
is causally convex but not dually convex.

3.5.2.5 Causal convexity in Sb(g). In this section, our goal is to prove that causal
convexity is an intrinsic notion in Sb(g), namely, whenever a subset X ⊂ Sb(g) is con-
nected, the property for X of being causally convex does not depend on the choice of an
affine chart containing X. This statement is contained in Proposition 3.5.22 below. We
will need the following lemma:

Lemma 3.5.21. Let Ω ⊂ Sb(g) be a domain contained in an affine chart. For any
subset X ⊂ Ω, the causally convex hull of X in A does not depend on the affine chart A
containing Ω. We denote it by ConvΩ(X).

Proof. Let A,A′ be two affine charts containing Ω. There exists g ∈ G0 such that g·A′ = A .
For all x ∈ Ω, one has g · x ∈ g · A′ = A.

Note that, given some point x ∈ A′, one has g · I±A′(x) = I±A (g · x). Let CA(X)
be the convex hull of X in A, and CA′(X) its convex hull in A′. Note that one
has DA(g · x, g · y) = g · DA′(x, y). Since Ω∗∗

0 is contained in both A and A′, by
Proposition 3.5.19, it contains both CA(X) and CA′(X).

Let us prove that CA(X) ⊂ CA′(X), the converse inclusion then holding by symmetry.

Let x, y ∈ X be such that y ∈ J+
A (x), and D := Dc

A(x, y) ⊂ CA(X).
Let (xk), (yk) ∈ ΩN such that xk → x, yk → y, and yk ∈ I+A (xk) for all k. For

all k ∈ N, we have DA(xk, yk) ⊂ Ω∗∗
0 ⊂ A′. Then by Lemma 3.5.8, we have xk ∈ I±A′(yk).

Thus DA(xk, yk) = DA′(xk, yk) or DA′(yk, xk). This is true for all k ∈ N,
so Dc

A(x, y) = Dc
A′(x, y) ⊂ CA′(X). By Lemma 3.5.16, this gives CA(X) ⊂ CA′(X). □

Lemma 3.5.21 allows us to prove:

Proposition 3.5.22. Let X ⊂ Sb(g) be a connected subset contained in two affine
charts A,A′. Then we have

ConvA′(X) = ConvA(X).
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Proof. Since X is connected and contained in the open set A ∩ A′, there exists a con-
nected open neighborhhod Ω of X contained in both A and A′. By Lemma 3.5.21, the
set ConvΩ(X) is then equal to both ConvA(X) and ConvA′(X). □

Proposition 3.5.22 implies in particular that the convex hull of a connected sub-
set X ⊂ Sb(g) contained in an affine chart does not depend on the affine chart containing
it:

Definition 3.5.23. Let X ⊂ Sb(g) be a connected subset contained in an affine chart.
The causally convex hull Conv(X) is by definition the causally convex hull of X in any
affine chart containing it. We say that X is causally convex if it is equal to its causally
convex hull.

We can now prove:

Proposition 3.5.24 (see Proposition 1.4.1). Any dually convex domain of Sb(g) different
from Sb(g) is causally convex.

Proof. Since Ω ̸= Sb(g), there exists a ∈ ∂Ω. By dual convexity, there exists z ∈ Sb(g)
such that a ∈ Zz and Zz ∩ Ω = ∅. Thus Ω is contained in an affine chart, namely Az. By
Proposition 3.5.19, the domain Ω is causally convex in Az and thus causally convex. □

Another straightforward but useful corollary of Proposition 3.5.22 is the following:

Corollary 3.5.25. Let X ⊂ Sb(g) be a connected subset, contained in an affine chart,
and let G ∈ G{α1}(g). Then the causally convex hull of X is AutG(X)-invariant.

3.5.2.6 The Einstein case: globally hyperbolic spacetimes. The content of this
section comes from a work in collaboration with Adam Chalumeau [CG24]. We give a
complete characterization of proper dually convex domains in the Lorentzian Einstein
universe, in terms of causality. A conformal spacetime (M, [g]) is called globally hyperbolic
if it admits a Cauchy hypersurface Σ, that is Σ is an acausal hypersurface such that any
inextensible causal curve contained in M meets Σ exactly once (see [MS08, Def. 3.74]).
Given two globally hyperbolic spacetimes M and N , a Cauchy embedding of M into N
is a one-to-one conformal map f : M → N that sends a Cauchy hypersurface of M to a
Cauchy hypersurface of N . We say that a globally hyperbolic spacetime M is maximal is
any Cauchy embedding of M is onto (see [Sal13, Sect. 3]).

Concrete examples of globally hyperbolic spacetimes are causally convex domains
of Rn−1,1. These domains have been studied in [Bar05] and [Sma]. For simplicity we will
only describe bounded causally convex domains of R1,n−1, or equivalently proper causally
convex domains of Einn−1,1. Let Ω ⊂ Rn−1,1 be a bounded causally convex domain. We
fix a spacelike hyperplane H in Rn−1,1 and we define V to be the image of the orthogonal
projection of Ω on H. If x ∈ V , then the normal line to H through x intersects Ω in a
bounded segment (f−(x), f+(x)). This defines two 1-Lipschitz functions f−, f+ : V → H⊥

which coincide on ∂V such that

Ω = {(x, t) ∈ V ×H⊥ | f−(x) < t < f+(x)}.
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Conversely, any domain defined in this way, where f−, f+ : V → H⊥ are 1-Lipschitz
functions defined on a bounded domain V ⊂ H that coincide on ∂V , is causally convex.
All these domains are seen to be globally hyperbolic. A Cauchy hypersuface of Ω is exactly
the graph of a 1-Lipschitz function h : V → H⊥ such that f− < h < f+. Moreover we
know precisely when these domains are maximal as globally hyperbolic spacetimes: with
the notation above, the domain Ω is maximal exactly when f+ and f− are eikonal (see
[Sma, Prop. 15]). We make the link between the “abstract” notion of dual convexity
and the more concrete and understood notion of causally convex maximal domains of the
Minkowski space:

Proposition 3.5.26 (with Chalumeau, see [CG24]). Let Ω be a proper causally convex
domain of Einn−1,1. Then Ω is dually convex if and only if it is globally hyperbolic maximal.

Proof. We fix a suitable stereographic projection and identify Ω with a bounded sub-
set of Rn−1,1. We write Rn−1,1 = H⊥ ⊕ H for some spacelike hyperplane H ⊂ Rn−1,1

and Ω = {(t, x) ∈ H⊥ × V | f−(x) < t < f+(x)} where V ⊂ H is a bounded domain
and f−, f+ : V → H⊥ are two 1-Lipschitz functions that coincide on ∂V . We denote
by f : ∂V → H⊥ the common value of f+ and f− on ∂V and π : Rn−1,1 → H the
projection map.

If Ω is globally hyperbolic maximal, then (see [Sma, Sect. 7.1]) Ω is a connected compo-
nent of the complementary Rn−1,1∖C(Λ), where Λ is the graph of f and C(Λ) = ∪x∈ΛC(x).
Therefore Ω is dually convex.

Assume now that Ω is dually convex. Let Ω′ = Rn−1,1 ∖ C(Λ) where Λ is the graph
of f . Since Ω is causally convex, one has Ω ⊂ Ω′. We want to show that ∂Ω ⊂ C(Λ).
Let y ∈ ∂Ω and let z ∈ Einn−1,1 such that C(z) is a supporting lightcone at y. If y ∈ Λ
then in particular y ∈ C(Λ). Assume y ̸∈ Λ, so that y = (f+(x), x) for some x ∈ V (the
case y = (f−(x), x) is similar). If y ̸= z, let Λ be the unique photon through y and z
(if y = z, take Λ to be any photon through y). The intersection Λ ∩ Ω is a lightlike
segment containing y, we write it [a, b] with a ∈ I+(b). The projection π([y, b]) = [x, π(b)]
is a segment contained in V . Assume by contradiction that this segment is contained
in V . Let v ∈ H be a unit vector collinear to π(b) − x and v′ ∈ H⊥ be a unit future
directed vector. For ε sufficiently small one has f−(b+ εv) < f+(π(b))− εv′ ≤ f+(b+ εv)
so [x, b+ ε(v + v′)/

√
2] ⊂ Ω, a contradiction with the definition of [a, b].

Therefore π([y, b]) intersects ∂V . We can always shorten [y, b] and assume that π([y, b))
is contained in V and π(b) ∈ ∂V . Therefore y ∈ Zb ⊂ C(Λ). This implies that Ω is a
connected component of Rn−1,1 ∖ C(Λ), so Ω is globally hyperbolic maximal (see [Sma,
Sect. 7.1]). □
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Chapter 4

Transverse groups preserving
proper domains in flag manifolds

This chapter, motivated by Question 1.3.1, is devoted to the study of groups preserving
proper domains in self-opposite flag manifolds, particularly in comparison with the real
projective case.

In convex projective geometry, the conditions for an irreducible subgroup of PGL(n,R)
to preserve a properly convex open subset of P(Rn) are fairly weak. By [Ben00], a necessary
and sufficient condition is that, up to finite index, the group Γ contains elements which are
proximal in P(Rn), and that all such elements have a real positive highest (in modulus)
eigenvalue. The first goal of this chapter, addressed in Section 4.1, is to determine a
necessary condition for a subgroup of a Lie group G to preserve a proper domain in one
of the flag manifolds of G. In Proposition 4.1.5, we will see that for self-opposite flag
manifolds, this property turns out to be quite restrictive.

Once a subgroup of PGL(n,R) preserves a properly convex domain, we can sometimes
read the dynamical properties of Γ in the geometry of an open set and the convex subsets
it preserves: for instance, by [DGK24], the group Γ is P1-Anosov (in the sense of Sec-
tion 2.3.2) if and only if it is strongly convex cocompact in P(Rn) in the following sense:

Definition 4.0.1. [DGK24] A discrete subgroup Γ ≤ PGL(n,R) is strongly convex co-
compact if it preserves a properly convex domain Ω ⊂ P(Rn) and acts cocompactly on a
closed convex subset C of Ω whose ideal boundary ∂iC := C ∩∂Ω contains the full orbital
limit set of Γ in Ω, and does not contain any nontrivial projective segment.

Here the full orbital limit set of Γ in Ω is, by definition, the set

Λorb
Ω (Γ) :=

⋃
x∈Ω

Γ · x∖ (Γ · x).

If G is a real reductive linear Lie group and Θ a non-empty subset of the simple restricted
roots of G, then by [GGKW17, Lem. 3.2] there exists an irreducible real Θ-proximal
representation δ : G → GL(V ), as defined in Section 2.3.3.2. Moreover, by Fact 2.3.4,
there is a δ-equivariant embedding ιδ : F (g,Θ) → P(V ). Now let Γ be a group and
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ρ : Γ→ G a representation. If ρ(Γ) already preserved a proper domain Ω ⊂ F (g,Θ), then
it is easy to see that δ ◦ ρ(Γ) will preserve a proper domain in P(V ) (typically the interior
of the convex hull of ιδ(Ω)). Furthermore, the representation ρ is Θ-Anosov if and only if
δ ◦ ρ is P1-Anosov [GGKW17]. This gives:

Fact 4.0.2 ([GGKW17, DGK24]). Let ρ : Γ→ G be a representation preserving a proper
domain Ω ⊂ F (g,Θ). The representation ρ is Θ-Anosov if and only if the image δ ◦ ρ(Γ)
is strongly convex cocompact in P(V ).

This provides a geometric characterization of Θ-Anosov groups of G that preserve
proper domains in F (g,Θ). An intrinsic geometric characterization within the flag mani-
fold F (g,Θ) would be more interesting (see Section 1.3.2 of the introduction); this is what
we study in Section 4.3. However, the restrictive condition of preserving a proper domain
(Proposition 4.1.5) excludes a number of such representations, such as the well-known
maximal representations in HTT Lie groups (see e.g. [BILW05] for more information on
maximal representations).

As seen in Chapter 3, convexity in general flag manifolds loses many structural prop-
erties when we move from real projective space to the general case. However, a lot of
properties of projective convex cocompact groups relies on the “convexity” part of con-
vex cocompactness in Definition 4.0.1. A first approach to studying groups that might
be considered “convex cocompact” in a flag manifold F (g,Θ) is to weaken the convexity
requirement and instead focus on the properties of groups that preserve a proper do-
main Ω ⊂ F (g,Θ) and act cocompactly on a closed subset of Ω which is not necessarily
convex. This is the purpose of Section 4.2.

In Section 4.3, we focus on groups satisfying a convex cocompactness property with
respect to causal convexity in causal flag manifolds (see point (2) of Proposition 4.3.2).
In Proposition 4.3.2, we show that this naive generalization of Definition 4.0.1 in causal
flag manifolds does not characterize Θ-Anosov groups, but in fact all Θ-transverse groups.
We will see that, even more than Proposition 4.1.5, this proposition highlights the restric-
tions on the topological and dynamical behavior of Θ-transverse groups preserving proper
domains in F (g,Θ) (see Remark 4.3.4).

Then, in Section 4.4, we construct examples of Zariski-dense Θ-Anosov groups of G
preserving proper domains in F (g,Θ) (for certain values of G and Θ).

This chapter highlights the challenge of defining a notion of convex cocompactness in
flag manifolds that both generalizes the one in real projective space and characterizes the
Anosov property.

4.1 Topological restrictions

In this section, we investigate the topological restrictions on groups preserving proper
domains in flag manifolds, see Proposition 4.1.5 and its Corollary 4.1.7. These restrictions
are related to the relative positions of 3 pairwise-transverse points of their limit set in the
flag manifold. We first give reminders on this notion and its properties in Section 4.1.1
below.
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4.1.1 Stable connected components

Let g be a semisimple Lie algebra and Θ ⊂ ∆ be a self-opposite subset of the simple
restricted roots of g. We know from Section 2.2.6.2 that if we remove from F (g,Θ)
a maximal proper Schubert variety Zξ (ξ ∈ F (g,Θ)), we get an affine chart, which is
contractible. Now if we remove two such Schubert varieties in generic position, we obtain
an open set that is in general no longer connected (it however has only finitely many
connected components). The stability of its connected components under a well chosen
symmetry (sΘ in what follows) is related to several topological questions concerning the
groups acting on F (g,Θ) (see Remark 4.1.1 and Proposition 4.1.5).

Following [DGR24], consider the involution

sΘ : Astd −→ Astd; φstd(X) 7−→ φstd(−X). (4.1.1)

The map sΘ induces a homeomorphism of Astd ∖ Zp+Θ
[DGR24]. We denote by EΘ the set

of connected components of F (g,Θ) ∖ (Zp+Θ
∪Zp−Θ

). The map sΘ induces a permutation

of EΘ.

Remark 4.1.1. Dey–Greenberg–Riestenberg proved [DGR24] that if EΘ has no sΘ-
invariant element, then any hyperbolic group Γ admitting a Θ-Anosov representation
Γ → G (where G ∈ GΘ(g)) is either virtually free or virtually a surface group. The
question of what flag manifolds F (g,Θ) satisfy that EΘ has sΘ-invariant elements is thus
deeply related to questions on Θ-Anosov representations. It has been investigated by
several authors:

1. If g = sl(2p,R) with p odd, then we have F (g, αp) = Grp(R2p), Astd ≃ Matp(R),
and Astd ∖ Zp+Θ

≃ O1 ⊔ O−1, with

Oε := {X ∈ Matp(R) | εdet(X) > 0}.

Since det(−X) = −det(X) for all X ∈ Matp(R), the set EΘ has no sΘ-element.
Recall Section 2.4.2 for more details on Grassmannians.

2. If g = sp(2n,R), taking the root system given in Section 2.4.4.1, if Θ contains a
simple root αi for an odd 1 ≤ i ≤ n, then EΘ has no sΘ-element [DGR24].

3. If g = sl(d,R) with d ̸= 5 and d = 2, 3, 4, 5 mod 8 and Θ = ∆, then EΘ has
no sΘ-invariant element [Dey22].

4. Kineider–Troubat have classified all the elements of EΘ, where g = so(p, q) and Θ is
any subset of the simple restricted roots of g, and investigated which ones are sΘ-
invariant, see [KT24]. □

From now on, we will use the following terminology:

Definition 4.1.2. Let F ⊂ F (g,Θ) be a subset. We denote by F 3,∗ the set of triples of
pairwise transverse points in F .

Note that if F is any subset of F (g,Θ), then the set F 3,∗ might be empty.
Until the end of this section, we fix G := AutΘ(g). The subgroup LΘ of G acts

on EΘ. If (x, y, z) ∈ F (g,Θ) are 3 pairwise transverse points, then there exists a
unique [g] ∈ G/LΘ such that g · (x, y) = (p+Θ, p

−
Θ). We denote by type(x, y, z) the LΘ-orbit

of the connected component O of F (g,Θ) ∖ (Zp+Θ
∪Zp−Θ

) containing g · y.
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Definition 4.1.3. The type of a triple (x, y, z) ∈ F (g,Θ)3,∗ is by definition the or-
bit type(x, y, z) ∈ EΘ/LΘ.

The type is a generalization of the well-known Maslov index for HTT Lie groups, which
we will recall in Section 4.1.3. It is G-invariant.

Since sΘ commutes with the action of LΘ on u−Θ, it induces a bijection of EΘ/LΘ, still
denoted by sΘ. We then have

type(x, y, z) = sΘ(type(x, z, y)) ∀(x, y, z) ∈ F (g,Θ)3,∗. (4.1.2)

Note that sΘ induces a bijection between π0(F (g,Θ)3,∗/G) and EΘ/LΘ.

Remark 4.1.4. If there exists ℓ ∈ LΘ such that ℓ|Astd
= sΘ, then Equation (4.1.2) becomes:

type(x, y, z) = type(x, z, y) ∀(x, y, z) ∈ F (g,Θ)3,∗.

This is the case if and only if the flag manifold F (g,Θ) is a Nagano space, see Remark 5.4.4.

4.1.2 The general case

In this section, we first study the topological restrictions imposed on a group by the
property of preserving a proper domain. By “topological restrictions”, we mean that these
restrictions are on the type of triples of the Θ-limit set, and are thus related to a question
of invariant connected components. Recall the notions introduced in Section 2.3.

Proposition 4.1.5. Let G be a noncompact real semisimple Lie group, and Θ be a self-
opposite subset of the simple restricted roots of G. Let H ≤ G. If one of the two following
conditions is satisfied, then there exists an sΘ-invariant element O ∈ EΘ, and for any
triple (a, b, c) ∈ ΛΘ(H)3,∗, we have type(a, b, c) = [O] ∈ EΘ/LΘ:

1. The Θ-limit set ΛΘ(H) contains at least four pairwise transverse points and H pre-
serves a (not necessarily proper) domain Ω ⊂ F (g,Θ) such that

Zp ∩ Ω = ∅ ∀p ∈ ΛΘ(H). (4.1.3)

2. The Θ-limit set ΛΘ(H) contains at least 3 pairwise transverse points and H preserves
a proper domain in F (g,Θ).

In particular, in this case, the set EΘ admits an sΘ-invariant connected component.

Proof. 1. Let us assume that (1) is satisfied. First note that a ∈ Ω for all a ∈ ΛΘ(H):
indeed, let a ∈ ΛΘ(H), and let (hn) ∈ HN and b ∈ F (g,Θ) such that (hn)
is Θ-contracting with respect to (a, b). Since Ω is open, there exists x ∈ Ω ∖ Zb.
Thus hn · x→ a. Since Ω is H-invariant, we have a ∈ Ω.

Since G acts transitively on pairs of transverse points of F (g,Θ)2, we
may assume that p+Θ, p

−
Θ ∈ ΛΘ(H) and that there exist two transverse

points x, y ∈ ΛΘ(H) ∖ (Zp+Θ
∪Zp−Θ

). By Equation (4.1.3) and connected-

ness of Ω, there exists O ∈ EΘ such that Ω ⊂ O. Since x, y ∈ Ω, we
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have x, y ∈ O. By transversality, we then have x, y ∈ O. Let X,Y ∈ u−Θ be such
that (x, y) = (φstd(X), φstd(Y )).

Let Z ∈ {X,Y }. Since φstd(Z) ∈ ΛΘ(H), by Equation (4.1.3) and connect-
edness of Ω, there exists an element O ′ ∈ EΘ such that Ω ⊂ exp(Z) · O ′.

Then p+Θ ∈ Ω ⊂ O
′
, and since p+Θ is transverse to φstd(Z), we have p+Θ ∈ exp(Z) ·O ′.

Thus sΘ(φstd(Z)) = exp(−Z) · p+Θ ∈ O ′, so φ(Z) ∈ sΘ(O ′). Since φstd(Z) ∈ O
and O, sΘ(O ′) are two connected components of F (g,Θ) ∖ (Zp+Θ

∪Zp−Θ
), we must

have O ′ = sΘ(O).

We have proven that Ω ⊂ exp(Z)sΘ(O). Since x ∈ Ω and x is transverse to y,
for Z = Y we have

x ∈ exp(Y )sΘ(O). (4.1.4)

Similarly, taking Z = X, one gets y ∈ exp(X)sΘ(O). Thus we have

exp(−Y ) exp(X) · p+Θ ∈ sΘ(O)

and
exp(−X) exp(Y ) · p+Θ = sΘ

(
exp(−Y ) exp(X) · p+Θ

)
∈ sΘ(O).

Thus sΘ(O) = sΘ(sΘ(O)) = O. Moreover (4.1.4) implies that [O] = type(x, y, p+Θ).
Now it is readily checked that for all z ∈ ΛΘ(Γ)∖(Zx ∪Zy), we have O ∈ type(x, y, z).

2. Let us assume that (2) is satisfied. Let us prove that Equation (4.1.3) is sat-
isfied. Let a ∈ ΛΘ(H). There exists a Θ-contracting sequence (gk) ∈ HN such
that (gk) has Θ-limit a. Since Ω∗ has nonempty interior, there exists z ∈ Ω∗ such
that gk · z → a. Since Ω∗ is H-invariant and closed, we have a ∈ Ω∗. Thus by
definition of Ω∗, one has Za ∩Ω = ∅. Thus Equation (4.1.3) is satisfied.

The rest of the proof is similar to that of point (1). Since G acts transitively on pairs
of transverse points of F (g,Θ)2, we may assume that Ω ⊂ Astd, that p+Θ ∈ ΛΘ(H),
and that there exist two transverse points x, y ∈ ΛΘ(H)∖Zp+Θ

. By Equation (4.1.3),

there is an element O ∈ EΘ such that Ω ⊂ O. Then x, y ∈ Ω ⊂ Astd ∩ O, and
since x, y are transverse to p+Θ, we have x, y ∈ O. As in point (1), we prove
that O = sΘ(O), and O ∈ type(x, y, p+Θ). Now if z ∈ ΛΘ(H) ∖ Zp+Θ

, then it is

readily checked that [O] = type(x, y, z). □

Remark 4.1.6. One must be cautious here. Proposition 4.1.5 states that there
exists an sΘ-invariant element in EΘ, which is significantly stronger than requiring the
existence of an sΘ-invariant element in EΘ/LΘ. Indeed, as mentioned in Remark 4.1.4,
if F (g,Θ) is a Nagano space in the sense of Chapter 5 that follows, then all elements
of EΘ/LΘ are sΘ-invariant. However, if we consider, for instance, the Nagano
space F (sl(2p,R), αp) = Grp(R2p), with p odd, Remark 4.1.1 tells us that there is no
element of EΘ that is sΘ-invariant. Proposition 4.1.5 then tells us that there is no
subgroup H ≤ PGL(2p,R) satisfying condition (1) or (2).

4.1.3 Maslov index

In the case where G is a HTT Lie group of rank r ≥ 1 and Θ = {αr}, the relative
positions of three transverse points of F (g,Θ) = Sb(g) are described by the classical
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Maslov index. In Corollary 4.1.7 below, we reformulate Proposition 4.1.5 in this particular
context.

We take Notation 2.4.2 and the one of Section 3.5.2.2; recall in particular the definition
of the domains Oi for 1 ≤ i ≤ r. By Lemma 3.5.12.(4), and since l contains an element H0

such that ad(H0)v = −v for all v ∈ u− by Section 2.4.4.2, the possible values of the type
of a triple of pairwise transverse points (x, y, z) ∈ Sb(g) are:

type(x, y, z) =
{
φstd(Oi), φstd(Or−i)

}
for some 0 ≤ i ≤ r

2
. (4.1.5)

The Maslov index of (x, y, z), denoted by idx(a, b, c), is then the well-defined integer |r−2i|,
where type(x, y, z) = {φstd(Oi), φstd(Or−i)}. With these notations, Proposition 4.1.5 gives:

Corollary 4.1.7. Let G be a HTT Lie group of rank r ≥ 1 and let H ≤ G be subgroup
preserving a domain Ω ⊂ Sb(g). If one of the following conditions in satisfied, then r is
even and idx(a, b, c) = 0 for any triple (a, b, c) ∈ Λ{αr}(H)3,∗:

1. If Λ{αr}(H) contains at least 4 transverse points and Zp+ ∩Ω = ∅ for
all p ∈ Λ{αr}(H);

2. If Λ{αr}(H) contains at least 3 transverse points and Ω is proper.

Proof. By Proposition 4.1.5, we know that Points (1) and (2) both imply that there exists
an s{αr}-invariant connected component O of Astd∖Zp+ such that O ∈ type(x, y, z) for any
triple of pairwise transverse points (x, y, z) ∈ Λ{αr}(H). But by Lemma 3.5.12.(4), the only
connected component of Astd ∖ Zp+ which is s{αr}-invariant is φstd(O r

2
), so O = φstd(O r

2
).

In particular r is even. Moreover, by Equation (4.1.5), the Maslov index of any triple of
distinct points (x, y, z) ∈ Λ{αr}(H) is equal to 0. □

Remark 4.1.8. Let Γ be the fundamental group of a closed surface, and let ρ : Γ→ G be
an {αr}-Anosov representation. By Proposition 1.4.2, if the group ρ(Γ) preserves a proper
domain, then the Maslov index of ρ is equal to 0, and in particular r is even. This implies
in particular that maximal representations of Γ into G, i.e. those of Maslov index r, never
preserve a proper domain in Sb(g). On the contrary, in the context of groups preserving
proper domains, we are interested in {αr}-Anosov representations ρ : Γ → G which are
“as far as possible” from being maximal.

4.2 Groups acting cocompactly on a closed subset

The definition of projective convex cocompactness involves convexity; but in general
flag manifolds, convexity loses many of the nice properties it had in real projective space
(see Chapter 3). Thus, one difficulty in defining a notion of convex cocompactness in a
general flag manifold F (g,Θ) is to determine which convexity assumptions to make on the
subsets of F (g,Θ) which will play the role of Ω and C as introduced in Definition 4.0.1. A
first step in studying groups that could be “convex cocompact” in a flag manifold F (g,Θ)
is to relax the convexity assumption and merely examine the properties of groups that
preserve a proper domain Ω ⊂ F (g,Θ) and act cocompactly on a closed (not necessarily
convex) subset of Ω. This is what we do in this section.
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4.2.1 Dynamics of groups preserving proper domains

In this section, we fix a real noncompact semisimple Lie group G and a subset of
the simple restricted roots Θ of G. We investigate basic dynamical properties of sub-
groups H ≤ G preserving a proper domain Ω ⊂ F (g,Θ) and acting cocompactly on a
closed subset C of Ω. The full orbital limit set of H in Ω is:

Λorb
Ω (H) =

⋃
x∈Ω

H · x∖ (H · x).

Since H acts properly on Ω (recall Fact 3.1.3), we have

Λorb
Ω (H) ⊂ ∂Ω. (4.2.1)

Remark 4.2.1. If G is HTT and Θ = {αr}, or if G = SO(p, q) and Θ = {α1}, then we
will prove in Theorems 8.3.1 and 8.4.1 that, whenever (4.2.1) is an equality, the domain Ω
is a diamond.

Given a subset C ⊂ Ω which is closed in Ω, the ideal boundary ∂iC of C is the
set C ∖ C = C ∩ ∂Ω.

Definition 4.2.2. A closed subset C of Ω is said to have strictly convex boundary if for
any two distinct points x, y ∈ ∂iC , one has x /∈ F d

Ω(y).

The next Lemma 4.2.3 investigates the dynamical properties of a group preserving a
proper domain and acting cocompactly on a closed subset with strictly convex boundary
containing all the information on its dynamics, i.e. whose ideal boundary contains its
full orbital limit set. Even not assuming any convexity assumption, we recover several
properties of strongly convex cocompact subgroups of real projective space.

Lemma 4.2.3. Let Ω ⊂ F (g,Θ) be a proper domain, and let us assume that there exist
a subgroup H ≤ AutG(Ω) and a closed subset C of Ω such that:

* the set C is H-invariant and has strictly convex boundary;

* the group H acts cocompactly on C ;

* One has Λorb
Ω (H) ⊂ ∂iC .

Then the following hold:

1. For any a ∈ ∂iC , there exist x0 ∈ C and (gk) ∈ HN such that gk · x0 → a.

2. For any a ∈ ∂iC and any sequence (gk) ∈ HN such that there exists x0 ∈ C
with gk · x0 → a, the sequence (gk) is Θ-contracting, with Θ-limit a.

3. The group H is Θ-divergent, and ΛΘ(H) = ∂iC = Λorb
Ω (H).

4. For any a ∈ ∂iC , there exists b ∈ Ω∗ such that id ∈ pos(Θ,i(Θ))(a, b). If Θ is self-
opposite, then this is equivalent to saying that Za ∩ Ω = ∅.

Proof. (1) Let K ⊂ C be a compact subset such that C = H · K. Let xk ∈ C N such
that xk → a. For all k ∈ N there exist gk ∈ Γ and zk ∈ C such that gk · zk = xk. Up
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to extracting we may assume that there exists x0 ∈ K such that zk → x0. By AutG(Ω)-
invariance of the Caratheodory metrics, in the notation of Fact 3.1.13, we have

CρΩ(gk · zk, gk · x0) = CρΩ(zk, x0) −→ 0. (4.2.2)

Thus by Fact 3.1.13.(1), we have gk · x0 → z∞ ∈ Λorb
Ω (H).

(2) Let y ∈ Ω and let a′ be a limit point of (gk · y), then a′ ∈ Λorb
Ω (H) ⊂ ∂iC . For

all k ∈ N one has CρΩ(gk · x, gk · y) = CρΩ(x, y) < +∞. By Fact 3.1.13.(2), this implies
that a′ ∈ F d

Ω(a). But ∂iC is strictly convex, so a′ = a.

We have proven that gk · y → a for all y ∈ Ω. Now let K′ ⊂ Ω be a compact subset
with nonempty interior. Then Fact 3.1.13.(1) implies that gk ·K′ → {a} for the Hausdorff
topology. Then by Fact 2.3.1.(1), the sequence (gk) is Θ-contracting with Θ-limit a. This
proves (2).

(3) Let (gk) ∈ HN be a sequence of distinct elements of H and let (δk) be a subsequence
of (gk). Let a be a limit point of (δk ·x). Then a ∈ ∂iC and there exists a subsequence (δ′k)
of δk such that δ′k · x → a. Thus by point (2), the sequence (δ′k) is Θ-contracting. By
Fact 2.3.1.(1), the sequence (gk) is thus Θ-divergent. This is true for every infinite sequence
of H. Thus H is Θ-divergent. One then has ΛΘ(H) ⊂ Λorb

Ω (H) ⊂ ∂iC , and the converse
inclusion follows from Points (1) and (2).

(4) Let a ∈ ∂iC . By Points (1) and (2), there exists a Θ-contracting sequence (gk) ∈ HN

with limit a. Thus there exists b ∈ F (g,Θ)− such that gk ·y → a for all y /∈ Zb. Let y ∈ Ω∗

be such that w0 ∈ pos(i(Θ),i(Θ))(b, y); such an element y exists because the set{
y ∈ F (g,Θ)− | w0 ∈ pos(i(Θ),i(Θ))(b, y)

}
is dense in F (g,Θ)−, and Ω∗ is open. Then there exists a′ ∈ F (g,Θ) ∖ Zb such
that id ∈ pos(i(Θ),Θ)(y, a′). Hence we have gk · a′ → a. On the other hand, up to
extracting we may assume that (gk · y) converges to some c ∈ Ω∗. For all k ∈ N we
have id ∈ pos(i(Θ),Θ)(gk · y, gk · a′), so taking the limit, one has pos(i(Θ),Θ)(c, a) (see
[KLP18, Lem. 3.15]). □

In the notation of Lemma 4.2.3, Point (3) implies that the ideal boundary of C contains
no more than the information about the dynamics of the elements of H.

Now, recall Definition 3.1.10.

Lemma 4.2.4. Let H ≤ G. Assume that there exist a proper H-invariant domain Ω
and a closed H-invariant subset C of Ω, such that H acts cocompactly on C .
Then ∂C ∩ ∂Ω∗∗

0 = ∂C ∩ ∂Ω. Moreover, if Λorb
Ω (H) ⊂ ∂C ∩ ∂Ω and C has strictly convex

boundary for Ω, then Λorb
Ω∗∗

0
(H) ⊂ ∂C ∩ ∂Ω∗∗

0 and C still has strictly convex boundary
for Ω∗∗

0 .

Proof. Note that Ω∗∗
0 is H-stable. This inclusion ∂C ∩ ∂Ω∗∗

0 ⊂ ∂C ∩ ∂Ω is due to the fact
that ∂Ω∗∗

0 ⊂ ∂Ω. Now let a ∈ ∂Ω∩∂C . Then there exists (xk) ∈ ΩN converging in Ω (and
thus in Ω∗∗

0 ), and (gk) ∈ HN such that gk ·xk → a. Since a /∈ Ω, the sequence (gk) diverges
in G. Since H acts properly on Ω∗∗

0 and (xk) converges in Ω∗∗
0 , the sequence (gk · xk)

diverges in Ω∗∗
0 . Thus p ∈ ∂Ω∗∗

0 . Hence ∂C ∩ ∂Ω = ∂C ∩ ∂Ω∗∗
0 .
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Now assume that C has strictly convex boundary for Ω. Note that for all a ∈ C ∩∂Ω∗∗
0 ,

we have F d
Ω∗∗

0
(a) ⊂ F d

Ω(a). Thus C still has strictly convex boundary for Ω∗∗
0 .

Now assume moreover that Λorb
Ω (H) ⊂ ∂C∩∂Ω. Let a ∈ Λorb

Ω∗∗
0

(H). There exists y ∈ Ω∗∗
0

and (gk) ∈ HN such that gk · y → a. Now let x ∈ C . Since H acts properly on Ω, up
to extracting we may assume that there exists b ∈ ∂iC such that gk · x → b. Then by
Lemma 4.2.3.(2), the sequence (gk) is Θ-contracting with limit point b. Let b′ ∈ F (g,Θ)−

be such that gk · z → b for all z ∈ F (g,Θ) ∖ Zb′ . Then b′ ∈ Ω∗ by the same argument as
in the proof of Lemma 4.2.3, so Ω∗∗

0 ∩ Zb′ = ∅, and in particular y /∈ Zb′ . Thus gk · y → b,
and a = b. We have proven that Λorb

Ω∗∗
0

(H) ⊂ ∂C ∩ ∂Ω∗∗
0 . The converse is clear by the

equality ∂C ∩ ∂Ω = ∂C ∩ ∂Ω∗∗
0 . □

4.2.2 Finite generation

In this section, we prove Proposition 4.2.5 below, whose main consequence will be the
implication “(2)⇒ Γ is finitely generated” of Proposition 1.4.4 (see also Proposition 4.3.2):

Proposition 4.2.5. Let G be a noncompact linear reductive Lie group and Θ ⊂ ∆ a subset
of the simple restricted roots. Let Γ ≤ G be a discrete subgroup preserving a proper domain
in F (g,Θ). Assume that there exists a closed Γ-invariant connected subset F of Ω, and a
compact subset K of F such that F = Γ · K. Then Γ is finitely generated.

The proof of Proposition 4.2.5 is contained in Sections 4.2.2.2 and 4.2.2.1 below.

4.2.2.1 Proof of Proposition 4.2.5 in the projective case. In this section, we take
the notation of Proposition 4.2.5 when G = PGL(n,R) for some n ∈ N≥2 and Θ is the
first simple restricted root of G, that is, F (g,Θ) = P(Rn).

Up to considering the convex hull of Ω instead of Ω, we may assume that Ω is properly
convex in P(Rn), and we denote by HΩ the classical Hilbert metric on Ω; recall Sec-
tion 2.1.1.3 for the terminology. Let us chose D ⊂ P(Rn) a properly convex domain, and
denote by D the set of G-translates of D. Note that D forms a basis of neighborhoods
of P(Rn).

Let K ⊂ F be a compact set such that F = Γ · K. Now let us cover K with a finite
number of elements D1, . . . , DN ∈ D intersecting K whose closure is contained in Ω, and
set K′ :=

⋃
1≤i≤N Di ⊂ Ω. Let F ′ := Γ · K′. Then, by construction, the group Γ acts

cocompactly on F ′. Moreover, since Γ acts properly discontinuously on Ω (Fact 3.1.3),
the set F ′ satisfies the following property:

Lemma 4.2.6. For all x ∈ F ′ and for any neighborhood V of x in Ω with closure
contained in Ω, there exist some integer m > 0 and elements A1, . . . , Am ∈ D such
that V ∩ F ′ ⊂ A1 ∪ · · · ∪Am.

Proof. Since Γ acts properly discontinuously on Ω, the set S′ := {g ∈ Γ | g−1 ·V ∩K′ ̸= ∅}
is finite. By definition of F ′, we have

V ∩ F ′ ⊂
⋃
g∈S′

g · K′,

so we may take {A1, . . . , AN} = {g ·Di | 1 ≤ i ≤ N, g ∈ S′}. □
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Given two points x, y ∈ F ′, we denote by C F ′
x,y(Ω) the set of continuous

paths β : [0, 1] → F ′ from x to y which are piecewise projective, that is, such that there
exists a subdivision t0 = 0 < t1 < · · · < tm < tm+1 = 1 of [0, 1] such that β([ti, ti+1]) is a
projective segment contained in F ′. The length of such a path for the Hilbert metric HΩ

on Ω is then:

lenΩ(β) =
∑

1≤i≤m
HΩ

(
β(ti), β(ti+1)

)
. (4.2.3)

We define the following map on F ′:

δ(x, y) = inf
β∈CF ′

x,y(Ω)
lenΩ(β). (4.2.4)

Lemma 4.2.7. The map δ is a proper geodesic Γ-invariant metric on F ′, generating the
standard topology.

Proof. The map δ obviously satisfies the triangle inequality and the symmetry property.
Moreover, by construction of F ′, for all x, y ∈ F ′, the set C F ′

x,y(Ω) is nonempty, so by
Equation (4.2.3), this implies that δ(x, y) < +∞. The Γ-invariance is straightforward. By
definition, we have δ(x, y) ≥ HΩ(x, y) for all x, y ∈ F ′. Since F ′ is closed in Ω and HΩ is
a proper metric, this implies that δ is a proper metric.

Now let C ′
x,y(F

′) be the set of all rectifiable curves joining x and y in F ′. By the
definition of the length of a curve, one has δ(x, y) ≤ inf

{
ℓδ(β) | β ∈ C ′

x,y(F
′)
}

(where ℓδ
is the length for the metric δ). Since the elements of C F ′

x,y(Ω) are rectifiable, this last
inequality is an equality. Hence δ is a length metric.

It remains to prove that δ generates the standard topology on F ′. By Equation (4.2.4)
and since HΩ generates the standard topology, it suffices to prove that δ is continuous with
respect to the standard topology. By the inequality

|δ(x0, y0)− δ(x, y)| ≤ δ(x0, x) + δ(y0, y) ∀x0, y0, x, y ∈ F ′,

one only needs to prove that for any x0 ∈ Ω the map x 7→ δ(x0, x) is continuous at x0.
But this is a consequence of the fact that, by Lemma 4.2.6, for any x0 ∈ F ′ and any
sequence (xk) ∈ (F ′)N such that xk → x0, up to extracting there exists a G-translate D′

of D such that x0 ∈ D
′

and xk ∈ D
′

for all k ∈ N, and thus δ(x, xk) = HΩ(xk, x).

We have proven that the metric space (F ′, δ) is proper length metric space, it is thus
geodesic. □

We have endowed F ′ with a Γ-invariant, proper, geodesic metric δ, generating the
standard topology (and thus locally compact). Hence by Svarc-Milnor’s Lemma, the
group Γ is finitely generated. This ends the proof of Proposition 4.2.5 in the case
where G = PGL(n,R) for some n ≥ 1 and Θ = {α1}.

4.2.2.2 Proof of Proposition 4.2.5 in the general case. We take the notation of
Proposition 4.2.5. We fix a representation (V, ρ) such that (G, ρ, V ) is a linear or projec-
tive Θ-proximal triple of g. Let ιρ, ι

−
ρ be the associate embeddings by Fact 2.3.4.
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One can consider the connected component O of ι−(Ω∗)∗ containing ιρ(Ω). It is open,
convex, and proper by Fact 2.3.5, and ρ(Γ)-invariant. Moreover, it contains the sub-
set ιρ(F ). We have:

Lemma 4.2.8. The set ιρ(F ) is closed in O.

Proof. Let (xk) ∈ FN be such that ιρ(xk)→ y ∈ O. Since Γ acts cocompactly on F , there
exists a converging sequence (zk) ∈ ΩN and (gk) ∈ ΓN such that gk · zk = xk for all k ∈ N.

Since F is closed in Ω, if (xk) does not converge in F , up to extracting it converges
to a point x ∈ ∂Ω. Thus the sequence (gk) diverges in G, so (ρ(gk)) diverges in PGL(V ).
Since O contains Ω, the sequence (ιρ(zk)) converges in O. Since AutPGL(V )(O) acts prop-
erly on O, the sequence ρ(gk) · ιρ(zk) cannot converge in O, which is a contradiction.
Thus (xk) converges in F , so y ∈ ιρ(F ). This proves that ιρ(F ) is closed in O. □

Thus the discrete subgroup ρ(Γ) of PGL(V ) preserves a proper domain O and acts
cocompactly on the closed (in O) connected subset ιρ(F ) of O. Then by Section 4.2.2.1,
the group ρ(Γ) is finitely generated. Now since G is simple, the representation ρ has finite
kernel, so Γ is finitely generated. This ends the proof of Proposition 4.2.5.

4.3 Transverse groups preserving proper domains in causal
flag manifolds

In this section, we fix a HTT Lie group G of rank r ≥ 1, and take Notation 2.4.2. We
investigate the properties of {αr}-transverse groups preserving a proper domain in Sb(g).
Proposition 4.3.2 may seem surprising at first, as it appears to state that all {αr}-
transverse groups are strongly convex cocompact, for a natural notion of strong convex
cocompactness analoguous to the one of Definition 4.0.1. Indeed, in the projective case,
as mentioned in the introduction of this chapter, any discrete subgroup of PGL(n,R) act-
ing strongly convex cocompactly on a proper domain of P(Rn) is P{α1}-Anosov, and not
merely P{α1}-transverse.

Proposition 4.3.2 actually highlights the orthogonality between the notion of causal
convexity (defined in Section 3.5.2.5), which is timelike (or, equivalently, of “maximal
Maslov index”) by definition, and the spacelike (or, equivalently, of “Maslov index 0”)
dynamical behavior of a group preserving a proper domain in Sb(g), already observed in
Corollary 4.1.7. See Remark 4.3.4 below for more details.

In analogy with the well-known convex cores in real hyperbolic geometry and in real
projective geometry, we define:

Definition 4.3.1. Let Γ ≤ G be a discrete subgroup and let Ω ⊂ Sb(g) be a proper Γ-
invariant domain. A convex core of (Ω,Γ) is a closed connected Γ-invariant causally convex
subset C of Ω such that ∂iC contains Λorb

Ω (Γ).

Contrary to the projective case, where one can consider the convex hull of Λorb
Ω (Γ) in Ω

[DGK24], there is in our case no preferred convex core. The aim of this section is to prove:

Proposition 4.3.2 (see Proposition 1.4.4). Let G be a HTT Lie group and Γ ≤ G a
discrete subgroup. The following are equivalent:
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1. The group Γ is finitely generated, {αr}-transverse, preserves a proper do-
main Ω ⊂ Sb(g), and Λ{αr}(Γ) contains at least 3 points;

2. There exists a proper Γ-invariant causally convex domain Ω ⊂ Sb(g) such that Γ
acts cocompactly on convex core C of (Ω,Γ) whose ideal boundary is transverse and
contains at least 3 points;

3. There exists a proper Γ-invariant dually convex domain Ω′ ⊂ Sb(g) such that Γ acts
cocompactly on a convex core C ′ of (Ω′,Γ) whose ideal boundary is transverse and
contains at least 3 points.

If these statements hold, then we have the equality

∂iC = Λ{αr}(Γ) = Λorb
Ω (Γ) = Λorb

Ω′ (Γ) = ∂iC
′.

Example 4.3.3. 1. Let Γ ≤ G be an infinite finitely generated discrete subgroup with
symmetric generating set S, and let x0 ∈ Hn−1. Let V ⊂ Hn−1 be a bounded
connected neighborhood of S · x0, and let C := Γ · V . The conformal identifica-
tion Dstd ≃ Hn−1 × (−R) gives an equivariant embedding Hn−1 ↪→ Dstd. Via this
embedding, the set C is a subset of Einn−1,1, causally convex (and even acausal)
subset in Dstd, on which Γ acts cocompactly, closed in the proper domain Dstd, and
such that C has strictly convex boundary. Thus Γ satisfies condition (2) of Propo-
sition 1.4.4. This example illustrates why this condition (2) is not a good candidate
for defining a notion of convex cocompactness in Einn−1,1 (and in Sb(g) for G a
general HTT Lie group): the notion of convexity involved does not imply enough
constraints of the spatial shape of C .

2. Note that the assumtpion that |Λ{αr}(Γ)| > 2 in (1)⇒ (2) is necessary. For instance,
take g ∈ L be an element with attracting fixed point p+ and repelling fixed point p−.
Then Γ := ⟨g⟩ preserves Dstd, and Λorb

Dstd
(Γ) = {p+, p−}. The only closed causally

convex subset of Dstd whose ideal boundary contains Λorb
Dstd

(Γ) is Dstd itself, and Γ
clearly does not acts cocompactly on it.

Remark 4.3.4. Corollary 4.1.7 gives an intuition of why implication (1)⇒ (2) in Propo-
sition 4.3.2 is true. If Γ ≤ G is an {αr}-transverse group preserving a proper do-
main Ω ⊂ Sb(g), then Proposition 1.4.2 suggests that its dynamics should be spacelike;
in other words, if D is a diamond containing Ω, and if an observer is positioned at one
extremity of D, then they have full access to all information regarding the geometric be-
havior of Γ. If Γ preserves and acts cocompactly on a closed subset C of Ω (which is
always the case if Γ is {αr}-transverse), then considering the causally convex hull of C
should not fundamentally alter what the observer perceives. Hence, requiring C to be
causally convex ought to be a vacuous condition.

To obtain, in analogy with Definition 4.0.1, a notion of convex cocompactness in Sb(g)
equivalent to the property of being {αr}-Anosov, it would be necessary to introduce a
notion of “spatial” convexity. In the case where G = SO(n, 2), Smäı [Sma22] gives a
geometric interpretation of {α1}-Anosov representations in G (using our notation, we
have P1 = P{α2}, see Section 2.4.4.4.2) that goes in this direction. However, it relies

on the existence of Cauchy hypersurfaces in Einn−1,1, which is deeply connected to the
product structure Sn−1 × S1 of the double cover of Einn−1,1, and, in particular, on the
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fact that Sn−1 is the boundary of a rank-one symmetric space. If G is a HTT Lie group
of real-rank r > 2, then Sb(g) admits a double cover by a product N × S1, where N
is the boundary of the higher-rank symmetric space of Ls. This property complicates
the understanding of transversality in the product N × S1 and the definition of Cauchy
hypersurfaces. We believe that the higher rank of Ls should prevent one from defining
a good notion of spatial convexity in this case, for reasons essentially similar to those of
[Qui05].

4.3.1 Proof of implication (2)⇒ (1) of Proposition 4.3.2

Note that Lemma 4.2.3 does not give the implication implication (2) ⇔ (1), as the
transversality assumption on ∂iC is a priori not equivalent to its strict convexity. Thus
we need to prove that Γ is {αr}-divergent. It is done in the next lemma, whose proof is
very similar to that of Lemma 4.2.3:

Lemma 4.3.5. In the setting of Proposition 4.3.2, assume that Point (2) is satisfied.
Then:

1. For any a ∈ ∂iC , there exist x0 ∈ C and (gk) ∈ ΓN such that gk · x0 → a.

2. For any a ∈ ∂iC and any sequence (gk) ∈ ΓN such that there exists x0 ∈ C
with gk · x0 → a, the sequence (gk) is {αr}-contracting, with {αr}-limit a.

3. The group Γ is {αr}-divergent, and Λ{αr}(Γ) = ∂iC = Λorb
Ω (Γ).

4. For any a ∈ ∂iC , one has Za ∩ Ω = ∅.

Proof. (1) Let K ⊂ C be a compact subset such that C = Γ · K. Let xk ∈ C N such
that xk → a. For all k ∈ N there exists gk ∈ Γ and zk ∈ C such that gk · zk = xk. Up
to extracting we may assume that there exists x0 ∈ K such that zk → x0. By AutG(Ω)-
invariance of the Caratheodory metrics, in the notation of Fact 3.1.13, we have

CρΩ(gk · zk, gk · x0) = CρΩ(zk, x0) −→ 0. (4.3.1)

Thus by Fact 3.1.13.(1), we have gk · x0 → z∞ ∈ Λorb
Ω (Γ).

(2) Let y ∈ Ω and let a′ be a limit point of (gk · y), then a′ ∈ Λorb
Ω (Γ) ⊂ ∂iC . Let

us now use the terminology of Chapter 6. By Observation 6.4.2, there exists a chain of
photons (as defined in Section 6.4.1) between y and the point x0 determined in Point (1),
contained in Ω. By induction, we may thus assume that y is on a photon through x0.
Hence for all k ∈ N, the points gk · y and gk · x0 are on a same photon. Thus a and a′ are
on a same photon, they are thus nontransverse by Lemma 6.3.9. Since ∂iC is transverse,
we have a = a′.

We have proven that gk · y → a for all y ∈ Ω. Now let K′ ⊂ Ω be a compact subset
with nonempty interior. Then Fact 3.1.13.(1) implies that gk ·K′ → {a} for the Hausdorff
topology. Then by Fact 2.3.1.(1), the sequence (gk) is {αr}-contracting with {αr}-limit a.
This proves (2).

(3) Let (gk) ∈ ΓN be a sequence of distinct elements of H and let (δk) be a subsequence
of (gk). Let a be a limit point of (δk ·x). Then a ∈ ∂iC and there exists a subsequence (δ′k)
of δk such that δ′k · x → a. Thus by point (2), the sequence (δ′k) is {αr}-contracting. By
Fact 2.3.1.(1), the sequence (gk) is thus {αr}-divergent. This is true for every infinite
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sequence of H. Thus H is {αr}-divergent. One then has Λ{αr}(Γ) ⊂ Λorb
Ω (Γ) ⊂ ∂iC , and

the converse inclusion follows from Points (1) and (2).
(4) Let a ∈ ∂iC . By Points (1) and (2), there exists a {αr}-contracting se-

quence (gk) ∈ ΓN with limit a. Thus there exists b ∈ Sb(g) such that gk · y → a for
all y /∈ Zb. Let y ∈ Ω∗ ∖ Zb; such an element y exists because the set Sb(g) ∖ Zb is dense
in Sb(g), and Ω∗ is open. Then (gk · y) converges to a. By Γ-invariance and closedness
of Ω∗, we have a ∈ Ω∗. □

Let Γ ≤ G be a discrete subgroup satisfying Condition (2) of Proposition 4.3.2.
Lemma 4.3.5.(3) and the transversality of ∂iC imply that Γ is {αr}-transverse
and Λ{αr}(Γ) = ∂iC . Moreover, since ∂iC contains at least 3 points, so does Λ{αr}(Γ).
Finally, Proposition 4.2.5 implies that Γ is finitely generated.

Remark 4.3.6. Note that the discreteness assumption on Γ can be removed in
Lemma 4.3.5. Moreover, in the setting of Chapter 5, we see that it generalizes to any
self-opposite Nagano space with the exact same proof (replacing photons with Helgason
spheres, see Section 6.5).

4.3.2 Proof of equivalence (2)⇔ (3) of Proposition 4.3.2

Let us take the notation of Proposition 4.3.2 above.
Assume (2). Then Ω∗∗

0 is a proper Γ-invariant dually convex domain of Sb(g) contain-
ing C , and the same proof as that of Lemma 4.2.4 gives us that we may replace Ω by Ω∗∗

0 ,
so we get (3). Conversely, (3) ⇒ (2) is just a consequence of the fact that any proper
dually convex domain of Sb(g) is causally convex (Proposition 1.4.1).

4.3.3 Proof of implication (1)⇒ (2) of Proposition 4.3.2

Let us take the notation of Proposition 4.3.2 above, and assume that (1) is satisfied.
We may assume that Ω ⊂ Astd and that Ω is causally convex, up to considering the causally
convex hull of Ω (in the sense of Definition 3.5.25) instead of Ω — note that this causally
convex hull is still Γ-invariant, by Corollary 3.5.25.

Let S := {g1, . . . , gN} be a symmetric family of generators of Γ, containing the identity
element. Let x ∈ Ω and let V be a connected neighborhood of S · x such that V 1 ⊂ Ω.
The open set A := Γ · V is thus connected, Γ-invariant, and closed in Ω.

Let C be the causally convex hull of A , in the sense of Definition 3.5.25.

Lemma 4.3.7. One has ∂iC = Λ{αr}(Γ).

Proof. By construction, the set ∂iC contains Λ{αr}(Γ). Let us prove the converse

inclusion. Let a ∈ ∂iC . There exists (zk) ∈ (C ∩ Ω)N such that zk → a. For
all k ∈ N, by definition of the convex hull, there exist xk, yk ∈ A such that yk ∈ J+(xk)
and zk ∈ Dc(xk, yk). Let b, b′ be the limits (up to extracting) of (xk) and (yk). For
all k ∈ N, we have yk ∈ J−(zk), so b′ ∈ J−(a). Similarly, one has q ∈ J+(a). Hence,
by transitivity, one has b′ ∈ J−(b). But b, b′ ∈ ∂iA = Λ{αr}(Γ), thus b and b′ are
either transverse or equal. If they are transverse, then b′ ∈ I−(b). Then Ω ⊂ I−(b).
Similarly, Ω ⊂ I+(b′). Hence Ω ⊂ D(q, q′). By causal convexity we must have D(b, b′) = Ω.
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But |Λ{αr}(Γ)| > 2, so there exists η ∈ Λ{αr}(Γ) ∖ {b, b′}. Since Λ{αr}(Γ) is transverse,
we must have η /∈ Zb ∪Zb′ . But η ∈ ∂Ω = ∂D(b, b′) ⊂ Zb ∪Zb′ , contradiction. Hence we
have b = b′, so p ∈ Dc(b, b′) = {b} is equal to b, and thus is in Λ{αr}(Γ). We have proven
that ∂iC = Λ{αr}(Γ). □

Implication (1)⇒ (2) of Proposition 4.3.2 is then a direct consequence of the following
lemma:

Lemma 4.3.8. The group Γ acts cocompactly on C .

Proof. Let S′ := {g ∈ Γ | V ∩ J+(V ) ̸= ∅ or V ∩ J−(V ) ̸= ∅}. Assume that S′ is
infinite. Then there exists a sequence (gk) of distinct elements of Γ, and xk, yk ∈ V such
that xk ∈ J+(gk ·yk) (for instance) for all k ∈ N. Up to extracting one has xk → x ∈ V , and
since Γ acts properly on Ω by Fact 3.1.3, we have gk ·yk → a ∈ Λ{αr}(Γ). Then x ∈ J+(a).
Since C+(a)∩Ω = ∅, we have x ∈ I+(a). Then by connectedness of Ω, one has Ω ⊂ I+(a).

Now let b ∈ Λ{αr}(Γ) ∖ {a}. By transversality, one has b /∈ Za. Since b ∈ Ω, by
the previous paragraph we have b ∈ I+(a). Since we have Ω ∩ Zb = ∅ and a ∈ I−(b),
one has Ω ⊂ I−(b). Thus Ω ⊂ D(a, b). In particular, we have C ⊂ D(a, b).
Since a, b ∈ Λαr(Γ) ⊂ ∂iC , by causal convexity of C one has C = D(a, b) = Ω. But
then ∂iC = Λ{αr}(Γ) is not transverse, which is a contradiction.

Thus S′ is finite. Let B :=
⋃
g∈S′ g ·V , and let K be the causal convex hull of B in A.

Then K is compact because B is. It is contained in Ω, as Ω is causally convex.
Thus it remains to prove that C ⊂ Γ·K. Let x ∈ C . There exist a, b ∈ V and g1, g2 ∈ Γ

such that x ∈ Dc(g1 · a, g2 · b). Set x′ := g−1
1 · x and g := g−1

1 g2. Then x′ ∈ Dc(a, g · b)
with a, b ∈ V and g ∈ S, so x′ ∈ K and x ∈ g1 ·K. Hence C ⊂ Γ ·K ⊂ Ω. Since C is closed
in Ω, the group Γ acts cocompactly on C . □

4.4 Zariski-dense Anosov subgroups preserving proper
domains

In this section, taking Notation 2.4.2 we construct examples of Zariski-dense {αr}-
Anosov subgroups of HTT Lie groups G of real rank r ≥ 1 preserving a proper domain
in Sb(g). We will use the structural stability of {αr}-Anosov subgroups of G and deform
well-chosen Anosov representations from Γ to L. However, the property for an {αr}-
Anosov representation into G to be the deformation of a representation of Γ into L turns
out to be restrictive, in particular when the real rank of G is greater than 2, as we will
see in Section 4.4.3.

4.4.1 Openness property

Lemma 2.3.6 implies a stability property for Θ-Anosov representations preserving a
proper domain in F (g,Θ):

Corollary 4.4.1. Let G be a real noncompact semisimple Lie group and Θ a subset of
the simple restricted roots of G. Let Γ be a word hyperbolic group and let ρ : Γ → G
be a Θ-Anosov representation. Assume that there exists a proper ρ(Γ)-invariant
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domain Ω ⊂ F (g,Θ). Then there exists a neighborhood U of ρ in HomΘ−An(Γ, G)
such that for every representation ρ′ ∈ U , there exists a proper ρ′(Γ)-invariant
domain Ω′ ⊂ F (g,Θ).

Proof. It suffices to prove that for any sequence (ρk) ∈ HomΘ−An(Γ, G)N such that ρk → ρ,
there exists k0 ∈ N such that for all k ≥ k0 there exists a proper ρk(Γ)-invariant do-
main Ωk ⊂ F (g,Θ).

Let z0 ∈ Ω∗ and x0 ∈ Ω. Let us fix some symmetric generating set S of Γ containing
the identity. By Lemma 2.3.6, the sets kk := ρk(Γ) · z0 converge to X := ρ(Γ) · z0 for the
Hausdorff topology as k → +∞.

Since X ⊂ Ω∗, we have Zx ∩Ω = ∅ for all x ∈ X. Thus for k large enough, there exists
a connected neighborhood Vk of {ρk(g) · x0 | g ∈ S} such that Zx ∩Vk = ∅ for all x ∈ xk;
Then Ωk := ρk(Γ) · Vk is a connected, ρk(Γ)-invariant domain, such that

Ωk =
⋃
g∈Γ

ρk(g) · Vk ∪ ξρk(∂∞Γ) ⊂ Az0 .

Thus Ωk is proper in Az0 . □

4.4.2 Deformations of Anosov representations into Ls

In this section, we take Notation 2.4.2. Using Corollary 4.4.1, we construct Zariski-
dense {αr}-Anosov subgroups of HTT Lie groups G preserving a proper domain in Sb(g).
More precisely, we prove:

Proposition 4.4.2 (see Proposition 1.4.5). Let r = 2p, with p ∈ N>0. If G is a HTT
Lie group of real rank r, then there exist Zariski-dense {αr}-Anosov surface groups in G
preserving a proper domain in Sb(g).

Recall from Corollary 4.1.7 that the assumption that r is even is necessary in Propo-
sition 4.4.2. Note that Example 4.4.6.(2) below allows, in the case where p is even, to
produce examples that are neither virtually free nor surface groups.

For the rest of this section, we fix once and for all a HTT Lie group G of real
rank r. Recall the strongly orthogonal roots 2ε1, . . . , 2εr introduced in Section 2.4.4.1.
We fix (v+0 , v

−
0 ) ∈ gε1+εr × g−ε1−εr ⊂ u+ × u− such that (v+0 , hε1+εr , v

−
0 ) is an sl2-triple,

where hε1+εr is defined in Section 2.2.3. We will need the following lemma:
From now on, we assume that r = 2p with p ∈ N. A fundamental system of simple

restricted roots of ls is
{α1, . . . , αr−1}, (4.4.1)

of type Ar−1. We denote by βi,j the positive root εi − εj , for i > j. Let (hi,j := hβi,j )
be the associated co-roots (see Section 2.2.3). For all i, j (i < j) there is a unique
pair (ei,j , fi,j) ∈ (ls)βi,j × (ls)−βi,j such that (ei,j , hi,j , fi,j) is an sl2-triple. Now let

h :=

p∑
k=1

hk,p+k; e :=

p∑
k=1

ek,k+p; f :=

p∑
k=1

fk,k+p.

Then (e, h, f) is an sl2-triple. Note that v+0 and v−0 both commute with h.
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The sl2-triple (e, h, f) induces a Lie algebras embedding sl2(R) ↪→ ls, which itself
induces a group homomorphism τp : SL(2,R)→ L0

s with kernel {±I2}. Let Γ be the fun-
damental group of a closed surface S of genus g ≥ 2. The natural inclusion Γ ↪→ SL(2,R)

induces a representation ρ : Γ ↪→ SL(2,R)
ρ−→ L0

s, which is {αp}-Anosov.

Now the representation τ0 : Γ ↪→ SL(2,R)
τp−→ L0

s ↪→ G, which is {αr}-Anosov
by [GW12, Prop. 4.4]. Note that τ0 preserves the two diamonds of Sb(g) with end-
points p+ and p− (see Fact 3.5.5). Thus, by Corollary 4.4.1, any small deformation of τ0
in Hom{αr}−An(Γ, G) still preserves a proper domain in Sb(g). Since {αr}-Anosov repre-
sentations are discrete and faithful, Corollary 4.4.1 and the following proposition imply in
particular Proposition 4.4.2:

Proposition 4.4.3. There exists g0 ≥ 2 such that for all g ≥ g0 and any neighborhood U
of τ0 in Hom{αr}−An(Γ, G), there exists a Zariski-dense representation ρ ∈ U .

Proposition 4.4.3 is just a consequence of a theorem of Kim–Pansu, saying that surface
groups of sufficiently large genus in classical real Lie groups G′ admit small Zariski-dense
deformations, unless G′ is Hermitian not of tube type [KP14, KP15]. Indeed, here the
condition that the real rank r is even implies that the HTT Lie group G we consider is
not locally isomorphic to E7(−25) (which is of real rank 3), so G a classical Lie group, see
Table 2.1.

Remark 4.4.4. It is possible, with the same method, to produce Θ-Anosov subgroups
of G, where F (g,Θ) is a Nagano space, preserving a proper domain in F (g,Θ) (see
Chapter 5 for the definition of Nagano spaces, and Section 5.1.3 for the description of the
embedding of a symmetric domain in a Nagano space).

4.4.3 Restrictions on Anosov representations induced from L

In Section 4.4.2, taking Notation 2.4.2, we have constructed Zariski-dense {αr}-Anosov
subgroups of HTT Lie groups G preserving a proper domain of Sb(g), by deformations
of P{αr/2}-Anosov representations of surface groups into Ls into G, where r is even. In the
present section, we investigate the topological restrictions on discrete subgroups of G built
from deformations of representations ρ0 : Γ→ Ls ↪→ G. Since our considerations are topo-
logical, it goes back to investigating the topological restrictions on representations Γ→ Ls
such that Γ→ Ls ↪→ G is {αr}-Anosov.

We know from Equation (4.4.1) that the Weyl chamber of Ls associated with its root
system {α1, . . . , αr−1} is:

a+Ls
:= {X ∈ a | εi(X) ≥ εi+1(X) ∀1 ≤ i ≤ r − 1}.

We denote by µLs : Ls → a+Ls
the Cartan projection of Ls. The following proposition is a

consequence of work of Kassel [Kas08]:

Proposition 4.4.5. Let Γ be a non-virtually cyclic Gromov-hyperbolic group, and
let ρ : Γ→ L0

s be a representation. We denote by ι : L0
s ↪→ G the natural inclusion.

If r is odd, then ι ◦ ρ cannot be {αr}-Anosov.
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If r is even, then ι ◦ ρ is {αr}-Anosov if and only if all but finitely many elements
of µLs(ρ(Γ)) are contained in

{X ∈ a+Ls
| ε r

2
(X) > 0 > ε r

2
+1(X)},

and in this case, the representation ρ is {αr/2}-Anosov.

Proof. Let S be a finite symmetric generating set of Γ containing the identity, and | · |S be
the associated word length. By [GGKW17], the condition that ρ is {αr}-Anosov implies
that there exist C,C ′ ∈ R such that

⟨αr, µ(ι ◦ ρ(g))⟩ ≥ C|g| − C ′ ∀g ∈ Γ. (4.4.2)

Let us fix g ∈ Γ. According to the description of the restricted root system of Ls in
Equation (4.4.1), and since the Weyl group of G acts by signed permutations on the (εi),
there exists a permutation σ ∈ Sr such that

|⟨εi, µLs(ρ(g))⟩| = ⟨εσ(i), µ(ι ◦ ρ(g))⟩ ≥ ⟨εr, µ(ι ◦ ρ(g))⟩ =
1

2
⟨αr, µ(ι ◦ ρ(g))⟩ (4.4.3)

for all 1 ≤ i ≤ r.
Equation (4.4.2) then gives that |⟨εi, µLs(ρ(g))⟩| → +∞ as |g|S →∞. Then by [Kas08],

there exists a connected component C of a+Ls
∖
(⋃r−1

i=1 ker(εi)
)

such that for all but finitely

many g ∈ Γ, we have µLs(ρ(g)) ∈ C, and moreover, since Γ is not virtually cyclic, this
connected component is invariant under the opposition involution of Ls. Since Ls is of
type Ar−1, we must have that r − 2 is even and

C = {X ∈ a+Ls
| ε r

2
(X) > 0 > ε r

2
+1(X)}.

Hence we have

|⟨εr/2 − εr/2+1, µLs(ρ(g))⟩| = |⟨εr/2, µLs(ρ(g))⟩|+ |⟨εr/2+1, µLs(ρ(g))⟩|

for all but finitely many g ∈ Γ. By Equations (4.4.3) and (4.4.2), this implies

|⟨εr/2 − εr/2+1, µLs(ρ(g))⟩| ≥ ⟨αr, µ(ι ◦ ρ(g))⟩ ≥ C|g| − C ′ ∀g ∈ Γ.

Hence, by [GGKW17], the representation ρ is P{αr/2}-Anosov. □

Example 4.4.6. Assume that r = 2p, where p ∈ N>0.

1. If G = Sp(2r,R) and p is odd, then Tsouvalas proved that if Γ is vitually either a
free group or a surface group [Tso20].

2. If p is even, then there exist Pp-Anosov subgroups Γ of SL(r,R) (and even in SL(r,K)
for a general K) which are not virtually free or surface groups, see e.g. [Tso20, Ex.
4.1]: an explicit example is the group Γ = Γ1∗F2, where Γ1 is the fundamental group
of a closed surface of genus g ≥ 2 and F2 is the free group on two generators. For g
large enough, one can reproduce the proof of Theorem 4.4.3 verbatim, to deform Γ1

into a Zariski-dense {αr}-Anosov subgroup Γ2 of G. For small enough deformations,
the group Γ2 ∗F2 still preserves a proper domain of Sb(g), and is still {αr}-Anosov.
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4.5 Anosov subgroups preserving proper domains in the
Einstein universe

In this section, we take G = PO(n, 2), and taking Notation 2.4.2, we investigate
examples of {α2}-Anosov subgroups of G preserving proper domains in Sb(g) = Einn−1,1,
beyond those of Section 4.4.2. Here we use the convention of Example 2.2.1 on the roots
of so(n, 2), meaning that our “{α2}-Anosov representations” coincide with the “{α1}

A subset F ⊂ Einn−1,1 is said to be negative 3 by 3 (in the sense of [DGK24]) if
for every triple of pairwise distinct points (a, b, c) ∈ F 3, one has idx(a, b, c) = 0; recall
from Section 4.1.3 that idx is the Maslov index. In the notation of Section 2.4.1, this is
equivalent to saying that there exists a lift F̃ of F in P(Rn,2) such that b(u, v) < 0 for
every pair of distinct points u, v ∈ F̃ .

Let Γ ≤ G be an {αr}-transverse subgroup, and let

ΩΓ :=
{
x ∈ Einn−1,1 | idx(ξ1, x, ξ2) = 0 ∀ξ1, ξ2 ∈ Λ{α1}(Γ), ξ1 ̸= ξ2

}
.

The set ΩΓ is open, but not necessarily proper or connected. Since Γ is Θ-divergent, it
acts properly discontinuously on ΩΓ. Moreover:

Lemma 4.5.1. Assume that Λ{α2}(Γ) is negative 3 by 3. Then the set ΩΓ is photon-

convex, that is, for every photon Λ ⊂ Einn−1,1, the intersection Λ ∩ ΩΓ is connected.
Moreover, we have Λ ∩ Ω = Λ ∩ Ω.

Proof. Let us take the notation of Section 2.4.1. By [DGK18], the set Λ{α1}(Γ) lifts to a
cone F of Rn,2 on which b is negative. The set

C := P({u ∈ Rn,2 | b(u, v) < 0 ∀v ∈ F})

is convex in an affine chart of P(Rn,2), and one has ΩΓ = Einn−1,1 ∩C (see [Sma22]). Since
every photon Λ of Einn−1,1 is a projective line which is contained in Einn−1,1, we conclude
that ΩΓ ∩ Λ = C ∩ Λ is connected, and that Λ ∩ Ω = Λ ∩ C = Λ ∩ C = Λ ∩ Ω. □

Lemma 4.5.2. If ΩΓ is nonempty and not connected, then every connected component
of ΩΓ is proper.

Proof. Write ΩΓ =
⊔
i∈I Ωi, where the Ωi are pairwise disjoint connected components

of ΩΓ. Let i ∈ I, and let us assume for a contradiction that there exist j ∈ I ∖ {i}
and (x, y) ∈ Ωi × Ωj such that x and y are not transverse. Note that this implies that x
and y are on a common photon Λ. By Lemma 4.5.1, the intersection Λ ∩ ΩΓ must be
connected, and gives a continuous path from x to y in ΩΓ. This contradicts the fact that x
and y belong to distinct connected components of ΩΓ.

We have proven that Ωj ⊂ Ω∗
i for all j ̸= i. Since Ωj is open, this implies that Ωi is

proper in Einn−1,1. □

Lemma 4.5.3. If Γ is an {α2}-Anosov subgroup of G and if ΩΓ is nonempty and con-
nected, then there exists a Γ-invariant proper domain Ω′ ⊂ ΩΓ.
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Proof. Let S be a finite symmetric generating set of Γ. Let S ⊂ ΩΓ be a Γ-invariant
acausal Cauchy hypersurface, that is, a closed subset of ΩΓ such that idx(x, y, z) = 0 for ev-
ery triple of pairwise distinct points (x, y, z) ∈ S 3 and such that every photon meeting ΩΓ

meets S in exactly one point. Note that, in particular, two distinct points of S are always
transverse. Then one has ∂S ∖ ΩΓ = Λ{α1}(Γ). By [Sma22], such a closed subset exists.
Let x0 ∈ S . By [Sma22], the action of Γ on S is properly discontinuous (and cocompact).
Thus there exists a neighborhood V of x such that V ∩Γ ·x = {x}. Let z ∈ (V ∖{x})∩S .
Since S is acausal, we have S ∩

⋃
g∈Γ Zg·x = Γ · x, so S ∖ (Γ · x) is connected. Thus

there exists a connected neighborhood V ′ of S · z in ΩΓ such that V
′ ∩
⋃
g∈Γ Zg·x = ∅.

Let Ω′ := Γ · V ′. Then Ω′ is connected, open, and

Ω
′
= Γ · V ′ ∪ Λ{α1}(Γ) ⊂ Ax.

The domain Ω′ is thus Γ-invariant and proper. □

In the notation of Section 2.4.1 we write the decomposition Rn,2 = V1 ⊕ V2,
where V1 = Span(e1, . . . , en) and V2 := Span(en+1, en+2). Let S := P(V1) ∩ Einn−1,1

and S := P(V2) ∩ Einn−1,1. Then S is a conformal (n− 1)-sphere, and S is a circle, with
respective Riemannian distance functions denoted by dS and dS. Moreover, one has a
double covering π : S × S1 → Einn−1,1.

Let Γ be a word-hyperbolic group and let ρ : Γ → PO(n, 2) be an {α1}-Anosov
representation. Let Λ̃ be a lift of ξρ(∂∞Γ) in S × S1. By [Sma22], one has

Ωρ(Γ) = π
(
{(s, t) ∈ S × S | dS (s, s′) > dS(t, t′) ∀(s′, t′) ∈ Λ̃}

)
.

By [DGK24, Lem. 11.9], the boundary map ξρ : ∂∞Γ → Einn−1,1 is homotopic to an
embedding f : ∂∞Γ → Einn−1,1 with image contained in π(S ) ≃ S . Thus we may
assume that ξρ = f . We then have:

Ωρ(Γ) = π
(
{(s, t) ∈ S × S | dS (s, s′) > dS(t, 0) ∀(s′, 0) ∈ Λ̃}

)
. (4.5.1)

If Γ has cohomological dimension ≤ n − 1, then ∂∞Γ has covering dimension ≤ n − 2,
so π(S )∖ ξρ(∂∞Γ) is nonempty. Then (4.5.1) implies that Ωρ(Γ) is nonempty. Now there
are two possibilities:

1. If Γ has cohomological dimension ≤ n−2, then ∂∞Γ has covering dimension ≤ n−3,
so π(S ) ∖ ξρ(∂∞Γ) is connected. Then Equation (4.5.1) implies that Ωρ(Γ) is con-
nected.

2. If ∂∞Γ is an (n − 2)-sphere, then by [Sma22], the domain Ωρ(Γ) is the union of a
diamond and its dual; thus an index-two subgroup of Γ preserves a diamond.

This analysis, together with Lemma 4.5.3, gives:

Corollary 4.5.4. Let n ≥ 2. Let Γ ≤ SO(n, 2) be a word-hyperbolic group and
let ρ : Γ→ SO(n, 2) be an {α2}-Anosov representation.

If Γ has cohomological dimension ≤ n − 2, then ρ(Γ) preserves a proper
domain Ω ⊂ Einn−1,1.

If ∂∞Γ is an (n−2)-sphere, then there is a subgroup of Γ, with index at most two, that
preserves a diamond.
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Example 4.5.5. Let n ≥ 3, and let 1 ≤ k ≤ n − 3. Let M be a closed negatively
curved Riemannian k-manifold, with k ≤ n − 3. Consider the natural embed-
ding PO(n, 1) ↪→ PO(n, 2). Then the induced representation π1(M) → PO(n, 2)
is {α2}-Anosov and negative 3 by 3 (see [DGK24, Ex. 11.12]). By Corollary 4.5.4, it
preserves a proper domain in Einn−1,1.

93





Chapter 5

Preliminaries on Nagano spaces

In this chapter, we introduce a family of flag manifolds known as Nagano spaces. This
family includes the families of key examples of Sections 2.4.1, 2.4.2, 2.4.3, and 2.4.4, along
with many others; see Table 8.1.

A Nagano space, also referred to as an extrinsic symmetric space or an R-symmetric
space (R for “root”), is a flag manifold F (g,Θ) that is also a symmetric space with
isometry group contained in a Lie group G ∈ GΘ(g). Nagano has classified such spaces
in [Nag65]. As mentioned in the introduction of this thesis, Nagano spaces have been the
subject of extensive research, starting with [KN64, KN65, Nag65, Tak65, TK68, Mak73,
Nag88, Tak88, Kan98, Kan06, Kan11]. We provide an overview of the main deep results
on these spaces in Section 5.1.

In a second Section 5.2, we establish a useful lemma concerning linear and projective Θ-
proximal triples for Nagano spaces (Lemma 5.2.1). This lemma will be useful in the study
of photons and the comparison of their Hilbert metric with the projective cross ratios in
Section 6.3.3 (see in particular Lemma 6.3.13). This, in turn, will allow us to compare the
Kobayashi metric (defined in Section 6.4) with the Caratheodory metrics in Section 6.4.5,
and to obtain Proposition 6.4.10.

In Section 5.3, we observe that the specific structure of Nagano spaces enables us to
provide a sufficient condition for the dual of a proper domain to be connected (and even
contractible), a property that is not guaranteed in general (see Remark 3.1.8).

Finally, in Section 5.4, we establish elementary characterizations of Nagano spaces
among flag manifolds.

5.1 Reminders on Nagano spaces

In this section, we define Nagano spaces and recall their well-known properties.

5.1.1 Graded Lie algebra structure

Let g be a real semisimple Lie algebra with no compact factors and Θ be a subset of
the simmple restricted roots of g. We say that the pair (g,Θ) is a Nagano pair, and the
flag manifold F (g,Θ) is a Nagano space, if u−Θ is abelian. When Θ is a singleton {α}, in
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order to simplify the notation, we will sometimes denote the Nagano pair (g,Θ) by (g, α)
instead of (g, {α}).

Since g is semisimple, there exist N > 0, simple Lie subalgebras g1, . . . , gN of g and
subsets Θi of the simple restricted roots of gi for 1 ≤ i ≤ N such that Θ = Θ1 ∪ · · · ∪ΘN

and g = g1 ⊕ · · · ⊕ gN . We then have a natural identification

F (g,Θ) ≃ F (g1,Θ1)× · · · ×F (gN ,ΘN ). (5.1.1)

The pair (g,Θ) is a Nagano pair if and only if all of the (gi,Θi) are, for 1 ≤ i ≤ N . It
motivates the definition of an irreducible Nagano pair :

If g is simple and (g,Θ) is a Nagano pair, then Θ is a singleton Θ = {α}, and the
longest root α∆ of Σ can be written

α∆ = α+
∑

β∈∆∖{α}

nββ, (5.1.2)

where nβ ∈ N (see for instance [Tak88]). We say in this case that (g, α) is an irreducible
Nagano pair and that F (g, α) is an irreducible Nagano space.

Any Nagano space is then a product of irreducible Nagano spaces.

The list of irreducible Nagano pairs, established by Nagano [Nag65], is given in Ta-
ble 8.1. Note that, by [Nag65], we will always be able to assume that a Nagano pair is
irreducible.

Remark 5.1.1. In the notation of Section 2.2.6, it is important to keep in mind that a
Nagano space is a flag manifold, and not just a coset space. For instance, the real projective
space P(R2n) (i.e. the flag manifold F (sl(2n,R), α1) by Section 2.5) is a Nagano space,
while the flag manifold F (sp(2n,R), α1) is not ; they are however Sp(2n,R)-equivariantly
diffeomorphic.

Let us now describe the structure of Nagano spaces. We will admit the following
results, which are well-known. First, let us set some notations, that we will use for the
rest of this memoir.

Notation 5.1.2. Given an irreducible Nagano pair (g, α) and G ∈ G{α}(g), we will use
the following simplified notations:

u± = u±{α}, l = l{α}, L = L{α}, U
± = U±

{α},

p+ = p+{α}, P = P+
{α}, p

− = p−{α}, P
− = P−

{α}.

It will be convenient to fix v+ ∈ gα, v
− ∈ g−α such that

tstd := (v+, hα, v
−) := (v+α , hα, v

−
α ) (5.1.3)

is an sl2-triple (where hα is defined in Section 2.2.1).

The main consequence of the fact that u− is abelian is the following consequence of a
more general result of Kostant:
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Fact 5.1.3. [Kos10] Let G ∈ G{α}(g). The identity component L0 of L acts irreducibly
on u− (resp. on u+).

If we set g1 = u+ and g−1 = u−, then g = g−1 ⊕ g0 ⊕ g1 satisfies [gk, gl] ⊂ gk+1

(setting gk = {0} for k /∈ {−1, 0, 1}). This decomposition endows g with the structure of a
graded Lie algebra. Thus there exists a Cartan involution σ0 of g (as defined in Section 2.2.2
for some maximal compact subalgebra of g) such that σ0gk = g−k for k ∈ {−1, 0, 1}, and
an element H0 ∈ Centr(g0) such that gk is the eigenspace of ad(H0) for the eigenvalue k
[KN64].

Note that, as in Section 2.4.4.2, the existence of H0 allows to define dilations in affine
charts. For all t ∈ R>0 we define ℓ0(t) = exp (− log (t)H0) ∈ L. The element Ad(ℓ0(t))
acts on u± by

Ad(ℓ0(t))X =

{
tX ∀X ∈ u−;
1
tX ∀X ∈ u+.

(5.1.4)

Hence any positive dilation of Astd at p+ = φstd(0) can be realized as the restriction to Astd

of a map of the form x 7→ ℓ0(t) · x of F (g, α) for some t ∈ R>0.
Finally, before concluding this section, let us prove the following auxiliary lemma,

which follows from the multiplicity of α in the highest root α∆ (Equation (5.1.2)):

Lemma 5.1.4. Let (g, α) be an irreducible Nagano pair. Let β ∈ Σ+
{α} ∖ {α},

and let Yβ ∈ gβ. Then there exists Z ∈ Lie (P ) such that [v−, Z] = 0
and Ad(exp (Yβ))v− = v− + Z.

Proof. One has

Ad(exp(Yβ))v− = exp(ad(Yβ))v− =
∞∑
k=0

ad(Yβ)kv−

k!
.

We compute the terms ad(Yβ)kv− for k ∈ N. For all k ∈ N, one has ad(Yβ)kv− ∈ gkβ−α.
Since the multiplicity of α in the longest root is 1 (Equation (5.1.2)), one has gkβ−α ⊂ l.
On the other hand, one has

[v−, ad(X)kv−] ∈ gkβ−2α = {0}

(because kβ − 2α is not a restricted root, again by Equation (5.1.2)). Thus one

has Ad(exp(X))v− = v− +Y , where Y ∈ l commutes with v−. Thus Z :=
∑∞

k=1
ad(Yβ)

kv−

k!
works. □

5.1.2 Symmetric structure

If g is a real semisimple Lie algebra of noncompact type and Θ is a subset of the simple
restricted roots of g, then for all G ∈ GΘ(g), any maximal compact subgroup K of G acts
transitively on F (g,Θ). By compactness of K, one can easily construct a Riemannian
metric on F (g,Θ), whose isometry group contains K. However, the Riemannian space
built this way is not necessarily symmetric. This last property actually characterizes
Nagano spaces among flag manifolds. As compact irreducible symmetric spaces, they

97



admit a noncompact dual and turn out to contain it as a proper symmetric divisible
domain. In this section, we describe the symmetric structure on Nagano spaces, and the
embedding of their noncompact dual.

5.1.2.1 Construction of the symmetric structure. In this section, we describe the
compact symmetric space structure on an irreducible Nagano space. By definition, the
compact symmetric structure on (not necessarily irreducible) Nagano spaces follows im-
mediately. We fix (g, α) an irreducible Nagano pair. Let g = k ⊕ h be the Cartan de-
composition associated with σ0. If we fix some G ∈ G{α}(g), by definition, there exists
a maximal compact subgroup K of G with Lie algebra k. The group K acts transitively
on F (g, α), and the stabilizer of p+ in K has Lie algebra k0. Thus, we have the natural
identification F (g, α) ≃ Kσ0/K0. Thus there exists a natural K-invariant metric gg,α
on F (g, α). The element exp(iπH0) ∈ K0 then acts as a symmetry on Tp+F (g, α), mak-
ing (F (g, α), gg,α) a compact Riemannian symmetric space.

Definition 5.1.5. The rank of an irreducible Nagano pair (resp. an irreducible Nagano
space) (g, α) (resp. F (g, α)) will be, by definition, the rank of the compact symmetric
space (F (g, α), gg,α). This integer does not depend on the choices above, and will be
denoted by rk(g, α). The irreducible Nagano pair (g, α) (resp. the Nagano space F (g, α))
will be said to be of higher rank if its rank is ≥ 2.

Remark 5.1.6. The rank of a (not necessarily irreducible) Nagano space is then simply
the sum of the ranks of its irreducible factors.

5.1.2.2 Nagano’s characterization. We just detailed in Section 5.1.2.1 above the con-
struction that equips an irreducible Nagano space with the structure of a compact Rie-
mannian symmetric space. The Riamannian symmetric structure on (not necessarily irre-
ducible) Nagano spaces follows by Equation (5.1.1).

Conversely, Nagano has characterized irreducible compact symmetric spaces that are
Nagano spaces. Let (M, g) be a compact symmetric space. A transformation group G
of (M, g) is a noncompact semisimple Lie group acting effectively on M , i.e. transitively
with finite kernel, containing the isometry group Isom(M, g) of (M, g) as a Lie subgroup.

Fact 5.1.7 ([Nag65]). Let (M, g) be a compact symmetric space admitting a noncompact
transformation group. Then M is a Nagano space. In particular, the stabilizer of a
basepoint x ∈ M is a parabolic subgroup P of G, so that G/P identifies G-equivariantly
with M .

Historically, this theorem is the starting point of the study of Nagano spaces.

5.1.3 Embedding the noncompact dual

Let (g, α) be an irreducible Nagano pair and s be the real rank of the symmetric
space (F (g, α), gg,α) constructed in Section 5.1.2.1. One can choose a maximal system of
strongly orthogonal roots of the same length β1, . . . , βs ∈ Σ+

Θ such that β1 = α∆ [Tak88]
(recall the longest root α∆ defined in (5.1.2)). By “same length,” we refer to the length
defined by the Killing form.
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We set s0 = id and sℓ := sβ1 · · · sβℓ ∈ W for 1 ≤ ℓ ≤ s. The following is proven in
[Tak88]:

Fact 5.1.8 ([Tak88]). The set of symmetries {s1, . . . , ss} is a complete set of representa-
tives of W∆∖{α}\W/W∆∖{α}, and for all 1 ≤ ℓ < ℓ′ ≤ s, one has [sℓ] ≤ [sℓ′ ].

We take the notations of Section 5.1.2.1. The map σ := Ad(exp(πiH0)) is an in-
volutive automorphism of g, which commutes with σ0 and is equal to id on l and − id
on m := u+ ⊕ u−. Since σ0 and σ commute, the Lie algebra g can be decomposed into
four spaces:

g = k0 ⊕mk ⊕ h0 ⊕mh,

where k0 = l ∩ k, h0 = l ∩ h, mk = m ∩ k and mh = m ∩ h.
For all 1 ≤ i ≤ s, let Ei ∈ gβi be such that (σ0(Ei), β

′
i, Ei) is an sl2-triple,

where β′i = 2
B(βi,βi)

βi. Now let mi := Ei + σ0(Ei) ∈ mh and

c :=
s∑
i=1

Rmi.

The following is well-known:

Fact 5.1.9. 1. [Kan87] The space c is a maximal abelian subspace in mh;

2. [Nag65, Tak65] Let g∗ := k0 ⊕ mh ⊂ g. Then g∗ is a subalgebra of g, and the
triple (g∗, k0, σ0) is the noncompact dual of the symmetric triple (k, k0, σg).

By Fact 5.1.9.(2), the symmetric space defined by the symmetric triple (g∗, k0, σ0) is
uniquely defined by the pair (g, α). We will denote it by X(g, α). Facts 5.1.8 and 5.1.9
lead to the following key observation:

Observation 5.1.10. We have

rk(g, α) = rkR
(
X(g, α)

)
= |W∆∖Θ\W/W∆∖Θ| − 1. (5.1.5)

The ranks of all irreducible Nagano pairs are given in Table 8.2.
In the setting of Fact 5.1.9, there exists G ∈ G{α}(g) such that the connected sub-

group G∗ of G with Lie algebra g∗ identifies with the identity component of the isometry
group of X(g, α). Nagano proved that X(g, α) embeds into F (g, α) as a symmetric domain,
proper in F (g, α) [Nag65]. Let us make this embedding explicit. Let Ω = G∗ · p+, and
let x0 ∈ X(g, α) ≃ G∗/K0 be the class of K0. There is a G∗-equivariant diffeomorphism

F(g,α) : X(g, α) −→ Ω; g · x0 −→ g · p. (5.1.6)

Note that this embedding depends on the basepoint p+ ∈ F (g, α).

Definition 5.1.11. We will say that a domain Ω ⊂ F (g, α) is a realization of X(g, α) if
there exists g ∈ G such that Ω = g · F(g,α)(X(g, α)).

The following fact follows by definition, and generalizes, to any Nagano space, Propo-
sition 3.3.2 and Facts 3.4.4 and 3.5.5:
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Fact 5.1.12. The automorphism group AutG(Ω) of a realization Ω of X(g, α) is conjugate
to G′ in G. Thus Ω is symmetric, divisible and homogeneous.

The divisibility comes from the fact that G∗ is reductive, so it admits cocompact
lattices by Borel’s Theorem, and it acts transitively on Ω.

The groups G∗ (up to finite index) associated with all irreducible Nagano pairs (g, α)
are given in Table 8.2.

Example 5.1.13. The main examples we are interested in are:

1. Let g be a HTT Lie algebra and α = αr. Then g∗ is isomorphic to l. The realizations
of X(g, α) ≃ XLs × R are the diamonds defined in Section 3.5.1.

2. If g = so(p+ 1, q + 1) and α = α1, then g∗ = so(p, 1)⊕ so(1, q), and the realizations
of X(g, α) ≃ Hp ×Hq in Einp,q are exactly the diamonds defined in Section 3.4.2.

3. If g = sl(p + q,R) and α = αp, then g∗ = so(p, q) and the realizations
of X(g, α) ≃ PO(p, q)/P(O(p) × O(q)) in Grp(Rp+q) are exactly the domains B(b),
for b a bilinear form of signature (p, q) on Rp+q (see Section 3.3.1).

Remark 5.1.14. The embedding of the noncompact dual generalizes the well-known
Harish-Chandra embedding of Hermitian symmetric space of noncompact type as bounded
domains of complex vector spaces.

5.2 Proximal representations of Nagano spaces

In this section, we prove the following lemma, concerning proximal representations of
some Lie groups inducing embeddings of Nagano spaces:

Lemma 5.2.1. Let (g, α) be an irreducible Nagano pair and assume that dim(gα) = 1.
Let (G, ρ, V ) be a linear or projective {α}-proximal triple of g, with highest
weight χ := Nωα for some N ∈ N. Let v0 ∈ V χ ∖ {0}. Then ρ∗(v

−)k · v0 ̸= 0 for
all k ≤ N , and ρ∗(v

−)k · v0 = 0 for all k ≥ N + 1.

Proof. By the definition of ωα, one has 0 ̸= ρ∗(v
−)k · v0 ∈ V Nωr−kαr for all 0 ≤ k ≤ N

(see e.g. [GW09, Lem. 3.2.9]). Let k ≥ N + 1. One has ρ∗(v
−)k · v0 ∈ V Nωα−kα, so

it suffices to prove that V Nωα−kα = {0}. Since dim(gα) = 1, this is satisfied when-
ever Nωα − kα /∈ Conv(W · (Nωα)) (see e.g. [GW09, Prop. 3.2.10])), where W is the
restricted Weyl group of g defined in Section 2.2.4. Let us check this property. In partic-
ular, it suffices to prove that ωα − λα /∈ Conv(W · ωα) for all λ > 1.

Recall that we denote by B the Killing form on g. Its restriction to a induces a W -
invariant inner product.

For any root β ∈ Σ, let h′β ∈ a be such that β = B(·, h′β). Then the element hβ defined

in Section 2.2.3 is just hβ =
2h′β

B(h′β ,h
′
β)

. By W -invariance of B, we have

w · hβ = hw−1·β (5.2.1)
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for all w ∈ W . By Equation (5.1.2), for all β ∈ Σ we have β =
∑

β′∈∆∖{α} nβ′β′ + δα,
with nβ′ ∈ N and δ ∈ {−1, 0, 1}. Thus a direct computation gives

hβ = X + δ
B(h′α, h

′
α)

B(h′β, h
′
β)
hα,

where X ∈
∑

β′∈∆∖{α}Rhβ′ . Thus by definition of ωα (see Section 2.2.3), we

have ωα(hβ) = δB(h′α,h
′
α)

B(h′β ,h
′
β)

. If moreover we have β = w−1 · α for some w ∈ W , by

Equation (5.2.1) and W -equivariance of B, we have ωα(hw−1·α) = δ. Thus

|ωα(hw−1·α)| ≤ 1. (5.2.2)

Let λ ∈ R>0 be such that ωα − λα ∈ Conv(W · ωα). Then there exist (λw) ∈ R|W |
>0 such

that
∑

w∈W λw = 1 and ωα − λα =
∑

w∈W λww · ωα. Evaluating in hα and taking the
absolute value, we get

2λ− 1 ≤ |1− 2λ| = |ωα(hα)− λα(hα)| =
∣∣∣ ∑
w∈W

λww · ωα(hα)
∣∣∣

by (5.2.1)
=

∣∣∣ ∑
w∈W

λwωα(hw−1·α)
∣∣∣ ≤ ∑

w∈W
λw|ωα(hw−1·α)|

by (5.2.2)

≤
∑
w∈W

λw = 1

(5.2.3)

Thus λ ≤ 1. This proves the lemma. □

Remark 5.2.2. In Lemma 5.2.1, the assumption that dim(gα) = 1 is necessary. Indeed,
if (g, α) = (so(n, 1), α1), where α1 is the unique simple restricted root of PO(n, 1), then
the triple (PO(n, 1), ρ1,Rn+1) defined in Equation (2.4.11) is a projective {α1}-proximal
triple of so(n, 1) with highest weight ωα1 . However, one has V ωα−kα ̸= 0 for all 1 ≤ k ≤ 2.

5.3 Convexity in Nagano spaces

In projective space, the dual of any properly convex domain Ω is also a properly convex
domain. Moreover, one has Ω = Ω∗∗. In general, in a flag manifold F (g,Θ), we only know
that if Ω is dually convex, then it is equal to a connected component of its bidual (see
the proof of Proposition 3.1.11). As seen in Sections 3.3.2 and 3.4, dual convexity neither
guarantees the simple connectedness of Ω nor the connectedness of Ω∗.

In the case where F (g,Θ) is a Nagano space, we have a sufficient condition for a proper
dually convex domain to be equal to its bidual:

Proposition 5.3.1. Let (g, α) be an irreducible Nagano pair and let S ⊂ F (g, α) be a
subset. For all (a, b) ∈ F × F ∗, if S is starshaped in Ab at a, then S∗ ⊂ Aa is starshaped
ath b.

In particular, if S is starshaped in an affine chart of F (g, α), then the set S∗ is
connected (and even contractible).
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Proof. We take Notation 5.1.2. Assume that there exists (a, b) ∈ F × F ∗ such that S is
starshaped in Ab at a. We may assume that b = p− and a = p+. Then S ⊂ Astd and
that S is starshaped in Astd at p+. This means

∀X ∈ φ−1
std(S), ∀t ∈ [0, 1], φstd(tX) ∈ S.

Recall the element ℓ0(t) ∈ L defined in Equation (5.1.4). The fact that S is starshaped
as P translates as:

∀x ∈ S, ∀t ∈]0, 1], ℓ0(t) · x ∈ S.
Since P ∈ S, we know that S∗ ⊂ Ap+ = exp(u+) · p−. Since S ⊂ Astd, one has p− ∈ S∗.
Let y = exp(Y ) · p− ∈ S∗, with Y ∈ u+. Then for all t ∈]0, 1] and for all x ∈ S:

ℓ0(t) · x ∈ S =⇒ (ℓ0(t) · x)−⋔ y =⇒ x−⋔ (ℓ0(t)
−1 · y).

This is true for all x ∈ S, so for all t ∈]0, 1], the set S∗ contains

ℓ0(
1

t
) · y = ℓ0(t)

−1 exp(Y )ℓ0(t) · p− = exp(Ad(ℓ0(t))
−1Y ) · p− = exp(tY ) · p−.

Since S∗ also contains p−, the element exp(tY ) · p− belongs to S∗ for all t ∈ [0, 1]. This is
true for all y ∈ S∗, so S∗ is starshaped in Ap+ at p−. □

Corollary 5.3.2. Let (g, α) be an irreducible Nagano pair and Ω ⊂ F (g, α) be a proper
dually convex domain, which is starshaped in an affine chart. Then Ω∗∗ = Ω.

Proof. By Proposition 5.3.1, the set Ω∗ is starshaped in an affine chart. Thus, again by
Proposition 5.3.1, the set Ω∗∗ is starshaped in an affine chart. It is thus connected. By
Lemma 8.5.15, we thus have Ω = Ω∗∗

0 = Ω∗∗. □

Remark 5.3.3. Although we do not have a proof that the condition of being starshaped
in an affine chart is necessary for Ω∗∗ = Ω (in fact, we believe it is not), we do know
that several examples of proper dually convex open sets that are not starshaped in an
affine chart differ from their bidual. Take for instance the domain Ω of Example 3.5.9.
Then Ω∗∗ = D ∖ Zz ̸= Ω. In particular Ω∗∗ is not connected.

5.4 Characterizations of Nagano spaces

In this section, we give additional elementary characterizations of Nagano spaces among
flag manifolds, and of real projective space among Nagano spaces, coming from the clas-
sification of Nagano spaces [Nag65] and of their symmetric domains [Mak73]. We will not
use these characterizations in the rest of this memoir, except in Section 8.9.

Nagano has proven that the noncompact dual X(g, α) of an irreducible Nagano space
embeds as a proper symmetric domain of F (g, α). However, the realizations of X(g, α)
into F (g, α) are not necessarily the only proper symmetric domains in F (g, α). Makarevic
[Mak73] has listed all possible symmetric domains of Nagano spaces F (g, α) that have a
reductive transitive automorphism group. Given an irreducible Nagano pair (g, α), any
realization of X(g, α) is part of this list. In general, there is at least one other domain in
the list (up to translation) strictly contained in F (g, α). However, they are not necessarily
proper, and if one asks for properness, one actually has:
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Lemma 5.4.1. Let (g, α) be an irreducible Nagano pair and assume that there exists
a proper symmetric domain Ω ⊂ F (g, α) with transitive and reductive automorphism
group, such that Ω is not a realization of X(g, α). Then there exists n ≥ 3 such
that (g, α) = (sl(n,R), α1) or (sl(n,R), αn−1), i.e. F (g, α) is either the real projective
space of dimension n− 1 or its dual.

Proof. Let G ∈ G{α}(g). By Fact 3.1.3, the stabilizer of a point x ∈ Ω is a compact Lie
subgroup of AutG(Ω). But in the list of [Mak73], whenever

(g, α) /∈
{

(sl(n,R), α1), (sl(n,R), αn−1) | n ∈ N≥3

}
,

the only cases where the stabilizer of a point is compact is when Ω is a realization
of X(g, α). □

Nagano’s theorem and Makarevic’s list tell us that Nagano spaces contain many sym-
metric domains. Reciprocally:

Lemma 5.4.2. Let g be a real semisimple Lie algebra of noncompact type and Θ be a
subset of the simple restricted roots of g. If F (g,Θ) contains a (not necessarily proper)
symmetric domain, then it is a Nagano space.

Proof. Let G := AutΘ(g) and K be a maximal compact subgroup of G. Then K acts
transitively on F (g,Θ) and there exists a K-invariant metric gF (g,Θ) on F (g,Θ). By
Fact 5.1.7, we just need to show that F (g,Θ) is a Riemannian symmetric space for
this metric. Since K acts transitively on F (g,Θ), it suffices to show that there ex-
ists x ∈ F (g,Θ) and k ∈ K such that k stabilizes x and dxk = − idTxF (g,Θ). But this is
just a consequence of the existence of a symmetric domain Ω in F (g,Θ). Indeed, let x ∈ Ω
and let sx ∈ AutG(Ω) be a symmetry. Since sx has finite order, up to translating Ω by
an element of G, we may assume that sx ∈ K. Since x is the only fixed point of sx in Ω,
we have dxsx = − idTxΩ, and since Ω is open in F (g,Θ), one has idTxΩ = idTxF (g,Θ),
so dxsx = − idTxF (g,Θ), and the lemma is proven. □

The proof of Lemma 5.4.2 is analytic and uses the characterization of Nagano spaces
of Fact 5.1.7. The following lemma is more general, and admits a more algebraic proof:

Lemma 5.4.3. Let g be a real semisimple Lie algebra of noncompact type and Θ be a
subset of the simple restricted roots of g. Let G ∈ GΘ(g), and assume that there ex-
ist λ ∈ R∖{0, 1}, g ∈ LΘ and x ∈ F (g,Θ) such that dxg = λ id. Then (g,Θ) is a Nagano
pair.

Proof. We may assume that x = p+Θ. The map φstd induces an identifica-
tion d0φstd : u−Θ ≃ TxAstd = TxF (g,Θ). Since g ∈ LΘ preserves u−Θ, this identification
gives dxg · ◦(d0φstd) = (d0φstd) ◦Ad(g). This gives, for all X,Y ∈ u−Θ:

λ[X,Y ] = Ad(g) · [X,Y ] = [Ad(g)·,Ad(g) · Y ] = [λX, λY ] = λ2[X,Y ].

Since λ /∈ {0, 1}, this implies that [X,Y ] = 0. Thus u−Θ is abelian, which implies by
definition (see Section 5.1) that (g,Θ) a Nagano pair. □
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Remark 5.4.4. A direct consequence of Lemma 5.4.2 is that the Nagano spaces are
exactly the flag manifolds F (g,Θ), where g is a real semisimple Lie algebra of noncompact
type and Θ a subset of the simple restricted roots of g, such that there exists ℓ ∈ LΘ

(where LΘ is associated with G := AutΘ(g)) whose restriction to u−Θ is equal to sΘ.
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Chapter 6

Photons and the Kobayashi metric
in Nagano spaces

The ultimate goal of this section is to develop a theory analogous to projective geometry
in Nagano spaces. We have already introduced tools to study proper domains in general
flag manifolds in Chapter 3. Since Nagano spaces have a richer structure, we can expect
new tools of study to emerge, which is the case whenever the Nagano space is of real type
(see Definition 6.1.1). For instance, we define the photons of Nagano spaces F (g, α) of
real type in Section 6.3, which serve as analogs of projective lines. These embeddings of
the real projective line into F (g, α) allow us to define a Kobayashi metric on any proper
domain Ω ⊂ F (g, α) in Section 6.4. This metric, generalizing the Hilbert metric in convex
projective geometry, enables the study of the boundary of Ω (for instance, an analogue of
Fact 1.1.1 will be proven in Section 7.2, more precisely in Lemma 7.2.10).

The general properties of the Kobayashi metric will be particularly useful in Chapter 8,
where we investigate proper almost-homogeneous domains in flag manifolds. Therefore,
in the present chapter, we conduct a detailed study of its properties (see e.g. Proposi-
tions 6.4.5 and 6.4.8). Comparing it with the Caratheodory metrics in Section 6.4.5 (see
Proposition 6.4.10) provides a proof that it is a proper geodesic metric whenever Ω is proper
and dually convex (see Corollary 6.4.12). This property, which generalizes the projective
case involving the Hilbert metric and classical convexity, will be crucial in Chapter 7 for
studying the boundary of proper domains in Nagano spaces of real type (Section 7.2.2).
Moreover, the fact that this metric is geodesic will allow us in Chapter 8 to apply the
Švarc–Milnor Lemma to discrete groups acting cocompactly on Ω, a key feature in the
classical theory of divisible convex sets in real projective space.

As an example, in Section 6.4.7, we conclude the chapter with a study of the geodesics
of realizations of the noncompact dual for the Kobayashi metric.

Notation 6.0.1. For all this chapter, whenever we consider an irreducible Nagano
pair (g, α), we will use Notation 5.1.2.
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6.1 Nagano spaces of real type

The Nagano spaces we consider in this chapter are those of real type, see Definition 6.1.1
below. It is only in this context that the photons (which we will define in Section 6.3)
truly behave similarly to projective lines of real projective space; see Remark 6.3.4. In
Section 6.5, we will investigate a possible generalization of our construction to any Nagano
space.

Definition 6.1.1. Let (g,Θ) be a Nagano pair. We say that it is of real type if dim(gα) = 1
for all α ∈ Θ. In this case, we say that F (g,Θ) is a Nagano space of real type.

If (g, α) is an irreducible Nagano pair, then it is of real type if and only if dim(gα) = 1.
Thus a Nagano space is of real type if and only if all of its irreducible factors are of real
type.

In Table 8.1, we give the dimensions of gα, for all irreducible Nagano pairs (g, α). We
can thus see that all our key examples (i.e. the Grassmannians, causal flag manifolds and
the Einstein universes of signature (p, q) with p, q ≥ 1) are of real type. There is also
another classical example, which is the Nagano space defined by (so(n, n), αn). It is the
space of totally isotropic subspaces of Rn,n. There are two exceptional examples.

Remark 6.1.2. 1. By Table 8.1, the Einstein universe Einp,q is always an irreducible
Nagano space, but it is of real type if, and only if, p, q ≥ 1.

2. Note that Nagano spaces of real type all satisfy the assumptions of Proposition 3.2.1
(see also Remark 3.2.2).

3. Since in our considerations we can always assume that a Nagano space is irreducible,
we will only consider irreducible Nagano spaces in this section, but everything can be
generalized to Nagano spaces.

Tables 8.1 and 8.2 tell us that the only irreducible Nagano pairs of real type which have
rank one (in the sense of Observation 5.1.10) are the pairs (sl(n,R), α1), n ∈ N>0, and their
duals F (sl(n,R), αn−1). They correspond to the real projective spaces of all dimensions
and their duals. All the other Nagano spaces of real type are of higher rank. We will
see in the rest of this memoir that, depending on if an irreducible Nagano space of real
type (g, α) is of higher rank or not, its geometry is slightly different (see e.g. Lemma 6.3.9
or Remark 6.4.16.(2)).

6.2 Embedding the projective line into F (g, α)

For this section, we fix an irreducible Nagano pair (g, α) andG ∈ G{α}(g). We construct
embeddings of the projective line into F (g, α). The images of these embeddings are what
we will call photons in Section 6.3. In Lemmas 6.2.2 and 6.2.2, we investigate the action
of the unipotent radical U+ on these images.

Let us consider the sl2-triple tstd defined in Notation 5.1.2. The map jtstd associated
with tstd (see Section 2.2.1) induces a group homomorphism τ : SL(2,R) ↪→ G with kernel
contained in {± id} and with differential τ∗ = jtstd at id.
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Lemma 6.2.1. The stabilizer of P in SL(2,R) is the standard Borel subgroup P1

of SL(2,R).

Proof. Let us denote by S this stabilizer. Note that eE, eH ∈ S, so the identity com-
ponent P 0

1 of P1 is contained in S. Since the orbit of P ∈ F (g, α) is nontrivial, we
have P 0

1 ⊂ S ⊂ P1. It remains to show that g := τ(− id) is in P . Noticing that g = k2,
where k = exp(π2 (v+−v−)) is a representative of sα in K, we get that Ad(g) acts as s2α = id
on Σ. Then, by Equation (2.2.1), the element g normalizes u+. Hence g ∈ P . This proves
that S = P1. □

By Lemma 6.2.1 above, the group homomorphism τ induces a τ -equivariant embedding
ζ : P(R2) ↪→ F (g, α). It will be convenient to write this map explicitly:

ζ([1 : t]) = exp(tv−) · p+ ∀t ∈ R. (6.2.1)

Lemma 6.2.2. Let (g, α) be an irreducible Nagano pair of real type. For any Y ∈ u+,
write Y = λv+ +

∑
β∈Σ+

{α}∖{α}Xβ, with Xβ ∈ gβ for all β ∈ Σ+
{α}∖{α}, and λ ∈ R. Then

exp(Y ) · ζ = ζ ◦ eλF.

In particular, for all t ∈ R∖ {−λ−1} (with −λ−1 =∞ if λ = 0), one has:

exp(Y ) · ζ([1 : t]) = ζ
([

1 :
t

1 + λt

])
.

Proof. Since dim(gα) = 1, we can write Y = λv+ +
∑

β∈Σ+
Θ∖{α} Yβ with Yβ ∈ gβ for

all β ∈ Σ+
Θ ∖ {α} and with λ ∈ R. Since u+ is abelian, one has:

exp(Y ) · ζ([1 : t]) = exp(λv+)

( ∏
β∈Σ+

α∖{α}

exp(Yβ)

)
· ζ([1 : t]). (6.2.2)

Let β ∈ Σ+
α ∖ {α}. Since Yβ ∈ p+, one has

exp(Yβ) · ζ([1 : t]) = exp(Yβ) exp(tv−) · p+ = exp(Yβ) exp(tv−) exp(−Yβ) · p+

= exp
(
tAd (exp (Yβ)) v−

)
· p.

By Lemma 5.1.4, there exists Z ∈ p+ such that [v−, Z] = 0 and

exp
(
tAd (exp (Yβ)) v−

)
· p+ = exp(t(v− + Z)) · p+

= exp(tv−) exp(tZ) · p+ = exp(tv−) · p+,

the second last equality holding because v− and Z commute, and the last one holding
because Z ∈ p+. Hence by induction, Equation (6.2.2) becomes:

exp(Y ) · ζ([1 : t]) = exp(λv+) · ζ([1 : t]) = τ(eλE) · ζ([1 : t])

= ζ(eλE · [1 : t]) = ζ
([

1 :
t

1 + λt

])
,

the last equality holding by an elementary computation and the second last
by τ -equivariance of ζ. □

107



6.3 Photons and cross ratio

In this section, we define photons in Nagano spaces and investigate their properties.
We do not need the Nagano space to be of real type to define photons. However, we
will need the Nagano space to be of real type to get suitable invariance properties of the
photons; see e.g. Remark 6.3.4 and Example 6.3.8.

6.3.1 Photons in Nagano spaces

Let (g, α) be an irreducible Nagano pair. Recall the map ζ of Equation (6.2.1). We
define the topological circle

Λstd := ζ(P(R2)),

called the standard photon of F (g, α). The map ζ is a parametrization of Λstd.

Definition 6.3.1. A photon of F (g, α) is an AutΘ(g)-translate of Λstd in F (g, α). We
denote by L the set of all photons of F (g, α).

See Section 6.3.4 for a description of photons in concrete examples. In particular,
for (g, α) = (sl(n,R), α1), photons are simply the projective lines of P(Rn).

Remark 6.3.2. Photons have been defined and investigated for general flag manifolds in
[BGL+24], to prove that the property of being Θ-positive (in the sense of [GLW21]) for
representations of a surface groups is closed.

Note that for all G ∈ G{α}(g), one has

L = {g · Λstd | g ∈ G}.

Lemma 6.3.3. Let (g, α) be an irreducible Nagano pair of real type. Then

1. U+ · Λstd = Λstd;

2. L acts transitively on the set of photons through p+.

Proof. 1. Let Y ∈ u+. By Lemma 6.2.2, there exists λ ∈ R such that for all t ∈ R∖{−λ−1},
one has exp(Y ) · ζ([1 : t]) ∈ Λstd. Thus

exp(Y ) · Λstd = {exp(Y ) · ζ([1 : t]) | t ̸= −λ−1} ⊂ Λstd.

The same argument applied to−Y gives that exp(−Y )·Λstd ⊂ Λstd. Thus exp(Y )·Λstd = Λstd.
2. Let Λ be a photon through p+. There exists g ∈ G such that Λ = g · Λstd.
If g · p+ ∈ Astd, then by Equation (2.4.6), one can write g = exp(X)ℓ exp(Y ) for

some X ∈ u−, ℓ ∈ L and Y ∈ u+. Since p+ ∈ Λ, one has

p+ = ℓ−1 · p+ ∈ ℓ−1g · Λstd
point (1)

= exp(Ad(ℓ−1) ·X) · Λstd.

Thus there exists (tk) ∈ RN such that p+ = limk→+∞ φstd(Ad(ℓ−1) ·X + tkv
−). In partic-

ular X ∈ g−α: there exists t ∈ R such that Ad(ℓ−1) ·X = tv−. Thus

Λ = exp(tAd(ℓ) · v−)ℓ exp(Y ) · Λstd = ℓ−1 exp(tv−) exp(Y ) · Λstd = ℓ−1 · Λstd.
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Now if g · p+ /∈ Astd, there exists Y ∈ u+ such that exp(Y )g · p+ ∈ Astd.
Since exp(Y ) · p+ ∈ exp(Y ) · Λ, according to the previous case, there exists ℓ ∈ L such
that exp(Y ) · Λ = ℓ · Λstd. Then

Λ = exp(−Y )ℓ · Λstd = ℓ exp(−Ad(Y )) · Λstd
point (1)

= ℓ · Λstd. □

Remark 6.3.4. Lemma 6.3.3 is not necessarily true when dim(gα) ≥ 2. For instance,
let n ≥ 3 and g = so(n, 1). Then dim(gα) = dim(u+) = n− 1. The standard photon Λstd

is a geodesic of the Riemannian symmetric space Sn−1 ≃ SO(n)/SO(n − 1) through p+

and p− (which can be chosen to be the south pole and the north pole). Since U+ acts
transitively on the affine chart Sn−1 ∖ {p+}, there exists u ∈ U+ such that u · p− /∈ Λstd.
Then u · Λstd ̸= Λstd.

Lemma 6.3.5. Let (g, α) be an irreducible Nagano pair of real type. For all x, y ∈ F (g, α)
there exists at most one photon through x and y.

Proof. We may assume that x = p+ and y ∈ Λstd ∩ Astd. Let us fix G ∈ G{α}(g). Up
to dilating (see Section 5.1.1), we may also assume that y = exp(v−) · p+. Assume that
there exists another photon Λ through p+ and exp(v−) · p+. By Lemma 6.3.3.(2), there
exists ℓ ∈ L such that Λ = ℓ · Λstd. Since exp(v−) · p+ ∈ ℓ · Λstd, we have:

ℓ−1φstd(v−) = φstd(Ad(ℓ)−1 · v−) = φstd(tv−) (6.3.1)

for some t ∈ R. By injectivity of φstd, we have Ad(ℓ)−1 · v− = tv−. Now by injec-
tivity of Ad(ℓ), we necessarily have t ̸= 0. Since Ad(ℓ)−1 is linear on u−, this implies
that Ad(ℓ)−1 · g−α = g−α; in other words, we have ℓ · (Λstd ∩ Astd) = Λstd ∩ Astd. Taking
the closure, we get ℓ · Λstd = Λstd. Thus Λ = Λstd. □

Given a photon Λ ∈ L , there exists g ∈ G such that Λ = g · Λstd. The map

ζg : P(R2) −→ F (g, α)
x 7−→ g · ζ(x)

(6.3.2)

is then a parametrization of Λ. A priori, this parametrization depends on the choice
of g ∈ G such that Λ = g ·Λstd (although its image does not). The next lemma shows that
two parametrizations given by different choices of g ∈ G such that Λ = g · Λstd only differ
by a projective reparametrization of P(R2).

Lemma 6.3.6. Let (g, α) be an irreducible Nagano pair of real type, and G ∈ G{α}(g).
One has

StabG(Λstd) = τ(SL(2,R))× CentG (τ (SL(2,R))) ,

where StabG(Λstd) is the stabilizer of Λstd in G and CentG (τ (SL(2,R))) is the centralizer
in G of the group τ(SL(2,R)).

By the definition of Λstd, the centralizer of τ(SL(2,R)) acts trivially on Λstd. There-
fore Lemma 6.3.6 implies that StabG(Λstd) acts on Λstd by projective transformations. By
equivariance, for any photon Λ, the group StabG(Λ) acts on Λ by projective transforma-
tions.
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Proof of Lemma 6.3.6. The inclusion τ(SL(2,R)) × CentG (τ (SL(2,R))) ⊂ StabG(Λstd)
follows from the definition of Λstd. Let us prove the converse inclusion.

Let g ∈ StabG(Λstd). First assume that g · p+ ∈ Astd. Then, by Equation (2.2.7), we
can write g = exp(X)ℓ exp(Y ) with Y ∈ u+, X ∈ u− and ℓ ∈ L. By Lemma 6.2.2, we
have exp(X)ℓ · Λstd = Λstd. For all t ∈ R, we have

exp(X)ℓ · ζ([1 : t]) = φstd(X + tAd(ℓ)(v−)) ∈ φstd(Rv−).

This implies that there exists δ ∈ R such that X = δv−. It also implies that Ad(ℓ)
preserves the line g−α = Rv−. Since Ad(ℓ) induces an endomorphism of u−, it induces an
endomorphism of g−α. Thus there exists µ ∈ R such that Ad(ℓ)|g−α

= µ id.

On the other hand, by Lemma 6.2.2, there exists λ ∈ R such that exp(Y ) · ζ = ζ ◦ eλF.
Thus we have, for all t ∈ R∖

{
−λ−1

}
:

ℓ exp(Y ) · ζ([1 : t]) = ℓ · ζ
([

1 :
t

1 + λt

])
= exp

( t

1 + λt
Ad(ℓ)(v−)

)
· p+

= exp
( µt

1 + λt
v−
)
· p+ = ζ

([
1 :

µt

1 + λt

])
= ζ(eµHeλE · [1 : t]).

Moreover, one has exp(X) = τ
(
eδE
)
. Then, by τ -equivariance of ζ, one

has g · ζ([1 : t]) = ζ (A · [1 : t]) with A = eδ FeµHeλE ∈ SL(2,R). By continuity,
this equality holds for all x ∈ P(R2). In particular, the element τ(A)−1g fixes every point
of Λstd. By the definition of Λstd, this implies that τ(A)−1g ∈ CentG (τ (SL(2,R))).

Now if g · p+ /∈ Astd, since g preserves Λstd one must have g · p+ = ζ([0 : 1]).
Since SL(2,R) acts transitively on P(R2), there exists B ∈ SL(2,R) such that

g · p+ = ζ([0 : 1]) = ζ(B · [1 : 0]) = τ(B) · ζ([1 : 0]),

so that τ(B)−1g ∈ StabG(Λstd) satisfies τ(B)−1g · p+ = p+ ∈ Astd. Then by the previous
case, one has τ(B)−1g ∈ τ(SL(2,R))× CentG (τ (SL(2,R))). Hence

g = τ(B)τ(B)−1g ∈ τ(SL(2,R))× CentG (τ (SL(2,R))) □

The following lemma states that if dim(gα) = 1, then photons intersecting Astd are
compactifications of certain affine lines of Astd:

Lemma 6.3.7. Let (g, α) be an irreducible Nagano pair of real type. Let Λ ∈ L . If Λ∩Astd

is nonempty, then it is an affine line in Astd, and Λ ∩ Zp− is a singleton.

Lemma 6.3.7 implies that for all ξ ∈ F (g, α)− such that Λstd ̸⊂ Zξ, the set Λstd ∩Zξ is
a singleton.

Proof of Lemma 6.3.7. Assume that Λ ∩ Astd ̸= ∅. Let g ∈ G be such that Λ = g · Λstd.
Since Λ is not contained in Zp− , there exists t ∈ R such that g exp(tv−) · p+ ∈ Astd.
Since exp(tv−) stabilizes Λstd, we have g exp(tv−) · Λstd = Λ. Hence, up to replacing g
with g exp(tv−), we may assume that g · p+ ∈ Astd.

By Equation (2.2.7), one can thus write g = exp(X)ℓ exp(Y ) with X ∈ u−, Y ∈ u+

and ℓ ∈ L. By Lemma 6.3.3, one then has g · Λstd = exp(X)ℓ · Λstd. Hence

φ−1
std (Λ ∩ Astd) = φ−1

std

(
(g · Λstd) ∩ Astd

)
= X + Ad(ℓ) · g−α ⊂ u− (6.3.3)

110



is an affine line of u−. Hence Λ ∩ Astd is an affine line of Astd for the canonical affine
structure.

Moreover, the map ζg′ , with g′ = exp(X)ℓ, is a parametrization of Λ. By Equa-
tion (6.3.3), one has ζg′([1 : t]) = exp(X + tAd(ℓ)v−) · p+ ∈ Astd for all t ∈ R. Hence the
only point of Λ ∩ Zp− is ζg′([0 : 1]), and Λ ∩ Zp− is a singleton. □

Example 6.3.8. Let us go back to the example of Remark 6.3.4. For g = so(n, 1) (and
necessarily α = α1 the unique restricted root of g), take for instance G = PO(n, 1).
Consider the canonical embedding ρ1 : G ↪→ PGL(n+ 1,R) defined in Equation (2.4.11).
Then a subset F ⊂ Sn−1 is a photon if and only if its image under ιρ1 is the nontrivial
intersection of a 2-plane in P(Rn+1) with Sn−1. Unlike the cases studied in the previous
sections, the nonempty intersection of a photon Λ with an affine chart is not always an
affine line. For instance, it can be a circle, in which case Λ is bounded in the affine chart.

To prove the following lemma, we rely only on the results established in this section.
In Section 6.5, deep results on Nagano spaces proven by Takeuchi [Tak88] will also imply
it (see Theorem 6.5.8).

Lemma 6.3.9. Let (g, α) be an irreducible Nagano pair of real type and of higher
rank (in the sense of Definition 5.1.5). Let ξ ∈ F (g, α)− and x ∈ F (g, α) be such
that id ∈ pos({α},{i(α)})(x, ξ). Let Λ be a photon through x. Then Λ ⊂ Zξ.

Proof. By Lemma 2.2.6, it suffices to prove that

Λ ⊂ (Zx)∗ :=
{
x′ ∈ F (g,Θ) | w0 /∈ pos({α},{α})(x, x′)

}
.

We may assume that x = p+ and Λ = Λstd. To simplify the notation, we
write pos := pos({α},{α}). Let k := exp(π2 (v+ − v−)) be a representative for sα in W . One
has:

k · p+ = τ(e
π
2
(E−F)) · p+ = ζ

(
e

π
2
(E−F) · [1 : 0]

)
∈ Λstd ∖ {p+}. (6.3.4)

Since k · p+ ∈ Λstd ∖ {p+}, one has Λstd ∖ {p+} = {ℓ0(t)k · p+ | t ∈ R} ∖ {p+}. But for
all t ∈ R, one has

sα ∈ pos(p+, k · p+) = pos
(
ℓ0(t) · p+, ℓ0(t)k · p+

)
= pos

(
p+, ℓ0(t)k · p+

)
.

Thus we have

sα ∈ pos(x′′, p+) ∀x′′ ∈ Λstd ∖ {p+}.

We thus have
(⋃

ℓ∈L ℓ · Λstd

)
∖ {p+} ⊂ Csα(p+).

Reciprocally, let x′′ ∈ F (g, α) and assume that sα ∈ pos(x′′, p+). Using the Bruhat
decomposition, write x′′ = pkw · p+, with p ∈ P+, w ∈ W and kw ∈ K a representative
of w. Then sα ∈ pos(x′′, p+) = pos(kw · p+, p+), so w = sα in |W∆∖{α}\W/W∆∖{α}|.
Thus there exist a, b ∈ W∆∖{α} such that w = asαb. Since W∆∖{α} stabilizes p+, we
have x′′ = pkak ·p+, with p = uℓ, u ∈ U+ and ℓ ∈ L, and ka ∈ K a representative of a. By
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Equation (6.3.4), one thus has x′′ ∈ pka ·(Λstd∖{p+}) = (p ·Λstd)∖{p+} = (ℓ ·Λstd)∖{p+}
(the last equality holding by Lemma 6.3.3). We have just proved:( ⋃

ℓ∈L
ℓ · Λstd

)
∖ {p+} = Csα(p+).

Thus sα is minimal in (W∆∖{α}\W/W∆∖{α}) ∖ {id}: if w ≤ sα is different from sα, then

by Fact 2.2.4, one has Cw(p+) ⊂ Csα(p+) ∖Csα(p+) = {p+}, so w = id.
Assume for a contradiction that w0 = sα in W∆∖{α}\W/W∆∖{α}. Then

since sα is minimal and w0 is a maximum, for all w ∈ W one has w = sα or id,
so W∆∖{α}\W/W∆∖{α} = {id, w0} has cardinal 2 and, by Observation 5.1.10, the
irreducible Nagano pair (g, α) has rank 1, contradiction. □

To end this section, note that Fact 5.1.3 directly gives the following fundamental fact:

Fact 6.3.10. The set Ad(L0) · v− = {Ad(ℓ) · v− | ℓ ∈ L0} generates u− as a vector space.

Lemma 6.3.3.(2) and Fact 6.3.10 imply that for all x ∈ F (g, α), there exist photons
through x in general position, i.e. if A is an affine chart containing x, considering A as a
vector space with basepoint x, then there exist N := dim(F (g, α)) photons Λ1, . . . ,ΛN
through x (whose intersections with A are vector lines of A by Lemma 6.3.7), such that
the vector lines Λ1 ∩ A, . . . ,ΛN ∩ A generate A as a vector space.

6.3.2 Intersection polynomials

In this section, we define the intersection polynomials, which algebraically describe
the intersection between the standard photon Λstd and the nontransverse set Zξ of a
point ξ ∈ F (g, α)− such that Λstd ̸⊂ Zξ.

We fix an irreducible Nagano pair (g, α) of real type and an {α}-proximal
triple (G, ρ, V ) of g with highest weight χ = Nωr for some N ∈ N>0. We
let ιρ : F (g, α) ↪→ P(V ) and ι−ρ : F (g, α)− ↪→ P(V ∗) be the two embeddings associated
with ρ by Fact 2.3.4, and we fix a vector v0 ∈ V χ ∖ {0}. By Lemma 5.2.1 and
Equation (6.2.1), we have, for t ∈ R,

ιρ ◦ ζ([1 : t]) = [etρ∗(v
−) · v0] =

[
v0 + tρ∗(v

−) · v0 + · · ·+ tN

N !
ρ∗(v

−)N · v0
]

(6.3.5)

Let us define the dense open subset

X :=
{
ξ ∈ F (g, α)− | Λstd ̸⊂ Zξ

}
=

⋃
x∈Λstd

(
F (g, α)− ∖ Zx

)
of F (g, α)−. Given ξ ∈ X , we choose any lift f ∈ V ∗ ∖ {0} of ι−ρ (ξ) ∈ P(V ∗).
Since Λstd ̸⊂ Zξ, by Fact 2.3.4, the polynomial defined by

f
(
etρ∗(v

−) · v0
)

= f(v0) + tf(ρ∗(v
−) · v0) + · · ·+ tN

N !
f(ρ∗(v

−)N · v0) ∀t ∈ R

is nonzero. Then there exists a maximal 0 ≤ n(ξ) ≤ N such that f(ρ∗(v
−)n(ξ) · v0) ̸= 0,

and n(ξ) does not depend on the choice of the lift f of ι−ρ (ξ). Hence we may choose f
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such that 1
n(ξ)!f(ρ∗(v

−)n(ξ) · v0) = 1. This defines a polynomial Qρξ with coefficients in R,

depending only on ξ and (V, ρ):

Qρξ(t) = f
(
etρ∗(v

−) · v0
)

= f(v0) + tf(ρ∗(v
−) · v0) + · · ·+ tn(ξ) ∀t ∈ R. (6.3.6)

Definition 6.3.11. Given a point ξ ∈X , the polynomial Qρξ defined in Equation (6.3.6)
is called the intersection polynomial of ξ associated with the representation (V, ρ).

Now let
Aρ :=

{
ξ ∈ F (g, α)− | [ρ∗(v−)N · v0] /∈ ι−ρ (ξ)

}
⊂X (6.3.7)

be the set of all elements ξ ∈X such that n(ξ) is maximal, i.e. such that n(ξ) = N .

Lemma 6.3.12. The set Aρ is open and dense in F (g, α)−.

Proof. By irreducibility of ρ, for any open set O ⊂ F (g, α)−, there exist ξ1, ..., ξD ∈ O
such that ι−ρ (ξ1)⊕ ...⊕ ι−ρ (ξD) = V ∗ (see e.g. [Zim18a, Lem. 4.7]). If the set

Aρ = {ξ ∈ F (g, α)− | [ρ∗(v−)N · v0] ∈ ι−ρ (ξ)}

had nonempty interior, then we would have f(ρ∗(v
−)N · v0) = 0 for all f ∈ V ∗. This is

absurd because ρ∗(v
−)N · v0 ̸= 0 by Lemma 5.2.1, so A c

ρ has empty interior and Aρ is a
dense open subset of F (g, α)−. □

Let ξ ∈X and t ∈ R. One has

Qρξ(t) = 0 ⇐⇒ f
(
etρ∗(v

−) · v0
)
⇐⇒ ιρ(exp(tv−) · p+) ∈ ι−ρ (ξ)

⇐⇒ exp(tv−) · p+ ∈ Zξ ⇐⇒ ζ([1 : t]) = exp(tv−) · p+ ∈ Λstd ∩ Zξ,

the last equivalence holding by Equation (6.2.1) and Fact 2.3.4. Hence the real roots of Qρξ
describe the intersection points of Λstd ∩ Astd with Zξ. By Lemma 6.3.7, the set Λstd ∩ Zξ
is a singleton, so the polynomial Qρξ has at most one real root t, satisfying ζ([1 : t]) ∈ Zξ.

We will see in Section 6.4.5 that the complex roots of Qρξ also describe the intersection of
two sets, corresponding to complexifications of Λstd ∩Astd and Zξ. This is why we call the
polynomial Qρξ the intersection polynomial of ξ.

6.3.3 Comparison of two crossratios

The aim of this section is to prove Lemma 6.3.13 below. We keep the notation of
Section 6.3.2.

Let us fix once and for all some notation for the rest of this section. Let (g, α) be
an irreducible Nagano pair of real type, and let (G, ρ, V ) be a linear {α}-proximal triple
of g with highest weight χ = Nωr for some N ∈ N>0. We let ιρ : F (g, α) ↪→ P(V )
and ι−ρ : F (g, α)− ↪→ P(V ∗) be the two embeddings associated with ρ by Fact 2.3.4, and
fix a vector v0 ∈ V χ ∖ {0}.

Recall that, by Lemma 6.3.7, given a point ξ ∈X , the set Zξ ∩Λstd is a singleton. We
can then define a projection prstd : X → Λstd by setting prstd(ξ) := a where {a} = Zξ ∩Λstd

if ξ ∈ X . Using Lemma 6.3.15 and Corollary 6.3.16, we now establish a comparison
between two cross ratios, involving the projection prstd:
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Lemma 6.3.13. Let ξ1, ξ2 ∈ X , and for i ∈ {1, 2}, let bi ∈ P(R2) be such
that prstd(ξi) = ζ(bi). Then for all a1, a2 ∈ P(R2), one has

log
∣∣[ξ1 : ζ(a1) : ζ(a2) : ξ2]ρ

∣∣ = N | log(b1 : a1 : a2 : b2)|.

Remark 6.3.14. 1. Lemma 6.3.13 is established in general flag manifolds defined by
roots of multiplicity 1 (not just Nagano spaces) in [BGL+24], in [Gal24] for causal
flag manifolds, in [Zim15, Lem. 10.4] for the Grassmannians Grp(Rn) when N = 1
and in [LZ17, Lem. 2.9] for the full flag manifold of SL(n,R).

2. Given two points x, y ∈ Λstd, Lemma 6.3.13 expresses that the cross ra-
tios [ξ1, x, y, ξ2]ρ, where ξ1, ξ2 ∈ X , depends only on the projections of ξ1 and ξ2
to Λstd.

The argument to prove Lemma 6.3.13 uses the intersection polynomials introduced in
Section 6.3.2. We have seen that the real roots of an intersection polynomial Qρξ for ξ ∈X

are geometrically described by the intersection points of ιρ(Λstd) with ι−ρ (ξ), so that there is
at most one, by Lemma 6.3.7. But our argument will rely on the fact that the intersection
polynomials have only one complex root, so that they are split (see Corollary 6.3.16).
The complex roots of Qρξ will be geometrically described as the intersection points of the

complexification of ι−ρ (ξ) and a set, denoted PN , that plays the role of the complexification
of ιρ(Λstd). We describe this intersection in Lemma 6.3.15 below and actually prove that it
is still a singleton. To this end, we work in a complexification of the representation (V, ρ),
and use the notation of Section 2.1.

Let V C := V ⊗ C be the complexification of V . For any ξ ∈ F (g, α)− and any
lift f ∈ V ∗ ∖ {0} of ι−ρ (ξ), the map f extends uniquely to a linear form fC : V C → C. We

denote by ι−ρ (ξ)C the class [fC]c of fC in Pc
(
(V C)∗

)
. This definition does not depend on

the choice of the lift f of ι−ρ (ξ) in V ∗ ∖ {0}. As for the real case, we identify Pc
(
(V C)∗

)
with the set of projective hyperplanes of Pc(V C).

Similarly, for any g ∈ G, the operator ρ(g) uniquely extends to an automorphism
of V C. We will still denote by ρ(g) this extension.

The map τ : SL(2,R) → G induces a group homomorphism SL(2,R) → G → GL(V )
with kernel included in {± id}, which extends uniquely to a homomor-
phism τC : SL(2,C)→ GL(V C) (with kernel {± id}), such that

τC
(
eE
)

= eρ∗(v
+), τC

(
eF
)

= eρ∗(v
−), τC

(
eH
)

= eρ∗(hr).

The stabilizer of v0 in SL(2,C) is the standard Borel subgroup PC
1 of SL(2,C) (the

proof of this fact is the same as the one of Lemma 6.2.1 — it is even easier since PC
1 is

connected). Hence the map τC induces a τC-equivariant embedding ζC : Pc(C2) ↪→ Pc(V C).
The image of ζC is denoted by PN . Explicitly, the set PN is the closure in Pc(V C) of{

ζC ([1 : z]c) = ezρ∗(v
−) · [v0]c

∣∣ z ∈ C
}
.

Lemma 6.3.15. 1. One has ρ(U+) ·PN = PN .

2. Let ξ ∈X . Then the set PN ∩ ι−ρ (ξ)C is a singleton.
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Proof. Let us first prove (1). As in the proof of Lemma 6.2.2, for all Y ∈ u+, using
Lemma 5.1.4, we can find λ ∈ R such that for all z ∈ C ∖ {−λ−1} (with −λ−1 = ∞
if λ = 0), one has

ρ (exp(Y )) · ζC ([1 : z]c) = ζC
([

1 :
z

1 + zλ

]
c

)
∈PN .

Hence ρ (exp(Y )) · ζC ([1 : z]c) ∈ PN for all z ∈ C ∖ {−λ−1}. Taking the closure, we
get ρ (exp(Y )) ·PN ⊂ PN . The converse inclusion also holds by the same argument
applied to −Y instead of Y . Therefore ρ (exp(Y )) ·PN = PN .

Now let us prove (2).
Step 1. Let us first prove (2) for ξ = p− ∈ X . Let f0 ∈ V ∗ ∖ {0} be any lift of ι−ρ (p−)

and let x ∈ ι−ρ (p−)C ∩PN .

There exists (zk) ∈ CN be such that ζC
(
ezk F · [1 : 0]c

)
→ x as k → +∞. The choice

of ξ gives

fC0
(
ezρ∗(v

−) · v0
)

= f0(v0) + zf0
(
ρ∗(v

−) · v0
)

+ · · ·+ zN

N !
f0
(
ρ∗(v

−)N · v0
)

= f0(v0) ̸= 0

for all z ∈ C. Thus we must have |zk| → +∞. Then ezk F · [1 : 0]c → [0 : 1]c. Hence x has
to be equal to ζC ([0 : 1]c).
Step 2. Now let ξ ∈ X be any point, and let g ∈ G be such that ξ = g−1 · p−.
Since Λstd ̸⊂ Zξ, there exists t ∈ R such that g−1 exp(tv−) · p+ ∈ Astd. Since exp(tv−)
preserves p−, one has g−1 exp(tv−) · p− = ξ. Hence, up to replacing g with exp(tv−)g, we
may assume that g · p+ ∈ Astd. Then, by Equation (2.2.7), we can write g = h exp(Y )
with Y ∈ u+ and h ∈ p−. Since ρ(h−1) preserves ι−ρ (p−), its C-extension preserves ι−ρ (p−)C.

Thus ρ(h−1) · ι−ρ (p−)C = ι−ρ (p−)C. This gives

PN ∩ ι−ρ (ξ)C = PN ∩
(
ρ (exp(−Y )) ρ

(
h−1

)
· ι−ρ (p−)C

)
= ρ (exp(−Y )) ·

(
ρ(exp(Y ))PN ∩ ι−ρ (p−)C

)
= ρ (exp(−Y )) ·

(
PN ∩ ι−ρ (p−)C

)
,

the last equality holding by point (1). Then, by Step 2, the set PN ∩ ι−ρ (ξ)C is a singleton.
□

Lemma 6.3.15.(2) above admits the following corollary:

Corollary 6.3.16. Let ξ ∈ X . Then the intersection polynomial Qρξ of ξ has only one

complex root. If moreover Λstd ∩ Zξ ⊂ Astd, then the unique complex root of Qρξ is equal to

the unique t ∈ R satisfying ζ([1 : t]) ∈ Zξ, and Qρξ is split over R.

Proof. With the notation of Section 6.3.2, let f ∈ V ∗ be the unique lift of ι−ρ (ξ) such

that f(ρ∗(v
−)n(ξ) · v0) = n(ξ)!. For all z ∈ C, one has:

Qρξ(z) = f(v0) + zf(ρ∗(v
−) · v0) + · · ·+ zn(ξ) = fC

(
ezρ∗(v

−) · v0
)
.
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Hence one has:

Qρξ(z) = 0 ⇐⇒ fC
(
ezρ∗(v

−) · v0
)

= 0 ⇐⇒ ζC ([1 : z]c) ∈PN ∩ ι−ρ (ξ)C. (6.3.8)

By Lemma 6.3.15.(2), the intersection PN ∩ ι−ρ (ξ)C is a singleton, so the injectivity of ζC

and the equivalence of Equation (6.3.8) above give that Qρξ has only one complex root.
If moreover Λstd ∩ Zξ ⊂ Astd, then there exists t ∈ R such that ζ([1 : t]) ∈ Zξ.

Then Qρξ(t) = 0, so t ∈ R is the unique complex root of Qρξ . □

Proof of Lemma 6.3.13. Let us set x := ζ(a1), y := ζ(a2), p1 := ζ(b1) and p2 := ζ(b2).
We may assume that x = p+, a1 = [1 : 0] and a2 = [1 : 1], and that there ex-
ist t1, t2 ∈ R such that bi = [1 : ti] for i ∈ {1, 2}, and that t1 < 0 < 1 < t2, the
case where there are equalities then following by a continuity argument. Then the four
distinct points p1, x, y, p2 are aligned on Λstd ∩ Astd in this order. Note that ιρ(x) = [v0].
Let v1 := v0 + ρ∗(v

−) · v0 + · · · + (1/N !)ρ∗(v
−)Nv0. Then, by Equation (6.3.5), one

has ιρ(y) = [v1].
Recall the open set Aρ of Equation (6.3.7). By Lemma 6.3.12, the set Aρ is a dense

open subset of F (g, α)−. Hence for i ∈ {1, 2}, we can find a sequence (ξi,k) ∈ A N
ρ such

that ξi,k → ξi. For all k ∈ N, let pi,k := prstd(ξi,k). Then, by continuity of prstd, one
has pi,k → pi ∈ Astd, so up to extracting we may assume that pi,k ∈ Astd for all k ∈ N.

Let fi ∈ V ∗ ∖ {0} (resp. fi,k ∈ V ∗ ∖ {0}) be a lift of ι−ρ (ξi) (resp. ι−ρ (ξi,k)). For

every k ∈ N we choose fi,k such that fi,k(ρ∗(v
−)N ·v0) = N !. For any k ∈ N and i ∈ {1, 2},

the intersection polynomial

Qi,k(z) := Qρξi,k(z) = (fi,k)
C(ezρ∗(v

−) · v0) = fi,k(v0) + zfi,k(ρ∗(v
−) · v0) + · · ·+ zN (6.3.9)

is nonzero, so there exists t ∈ R such that Qi,k(t) = fi,k(e
tρ∗v− · v0) ̸= 0. This implies

in particular that Λstd ̸⊂ Zξi,k , i.e. ξ ∈ X . By Corollary 6.3.16, the polynomial Qi,k is
thus split. But we also know that Λstd ∩ Zξi,k = {pi,k} is contained in Astd. Hence by
the “moreover” part of Corollary 6.3.16, and since n(ξi,k) = N , the polynomial Qi,k can
be written Qi,k(z) = (z − ti,k)N , with ti,k ∈ R satisfying ζ([1 : ti,k]) = pi,k. Since (pi,k)
converges to pi, the sequence (ti,k) converges to ti. One then has:

log(t1 : [1 : 0] : [1 : 1] : t2) = log

∣∣∣∣ t1 · (t2 − 1)

t2 · (t1 − 1)

∣∣∣∣
= lim

k→+∞
log

∣∣∣∣ t1,k · (t2,k − 1)

t2,k · (t1,k − 1)

∣∣∣∣
=

1

N
lim

k→+∞
log

∣∣∣∣Q1,k(0)Q2,k(1)

Q2,k(0)Q1,k(1)

∣∣∣∣
=

1

N
lim

k→+∞
log

∣∣∣∣f1,k(v0)f2,k(v1)f2,k(v0)f2,k(v1)

∣∣∣∣
=

1

N
log

∣∣∣∣f1(v0)f2(v1)f2(v0)f2(v1)

∣∣∣∣ =
1

N
log
∣∣ [ξ1 : x : y : ξ2]ρ

∣∣. □

6.3.4 Examples

Let us describe the photons in the explicit examples of Sections 2.4.1 up to 2.4.4.
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6.3.4.1 Photons in Grassmannians. Limbeek–Zimmer have introduced a notion of
“rank-one lines” in Grassmannians.

Recall the representation ρ0 : PGL(p + q,R) → PGL(
∧pRp+q) and the embed-

ding ιρ0 : Grp(Rp+q) → P(
∧pRp+q) defined in Equation (2.4.2.2) and Equation (2.4.5).

More generally, recall the notations of Section 2.4.2.
A projective line Λ ⊂ P(

∧pRp+q) is said to be of rank one if Λ ⊂ ιρ0(Grp(Rp+q)). We
then identify Λ with its pre-image by ιρ0 . More intrinsically, a photon is uniquely defined
by an element y ∈ Grp+1(Rp+q): it is the set of p-planes contained in y. This gives a
natural one-to-one correspondance, for all x ∈ Grp(Rp+q):

{photons through x} ←→ P(Rp+q/x).

There exists a characterization of the intersection of rank-one lines with affine charts (recall
the map φp of Equation (2.4.7)):

Lemma 6.3.17. [LZ19]

1. If Λ is a rank-one line satisfying Λ ∩ Astd ̸= ∅, then there exist X,S ∈ Matq,p(R)
with rk(S) = 1, such that

Λ ∩ Astd = φp({X + tS | t ∈ R}).

2. Conversely, if X,S ∈ Astd with rk(S) = 1, then the closure of ιρ0◦φp({X+tS | t ∈ R})
in P(

∧pRp+q) is a rank-one line.

Lemma 6.3.18. Rank-one lines are exactly the images in P(
∧pRp+q) of the photons we

have defined in Section 6.3, in the case where (g, α) = (sl(p+ q,R), αp).

Proof. This Lemma will be a consequence of the more general Proposition 7.1.4, see Re-
mark 7.1.5. It would also follow from an explicit computation of g−αp and Lemma 6.3.17. □

Remark 6.3.19. In particular, if (g, α) is the pair (sl(n,R), α1), then the photons
of F (g, α) = P(Rn) are exactly the projective lines of P(Rn).

6.3.4.2 Photons in Shilov boundaries. We use the notation from Section 2.4.4. Let G
be an HTT Lie group of rank r ≥ 2. Let A be an affine chart of Sb(g). By the definition
of c0, any photon Λ through x ∈ A satisfies Λ ∩ A ⊂ CA(x).

Now, let us look at what photons look like with specific examples. We take the notation

of Sections 2.4.4.4.1 and 3.5.2.2. One has v− = vr =

(
0r 0r
Er,r 0r

)
. By Equation (2.4.18),

one has

Ad(L) · v− =
{(0r 0r

X 0r

)
| X ∈ Matr(K), tX = X, rk(X) = 1

}
.

By Lemma 6.3.3.(2), a photon intersecting Astd is thus a subset of Lagr(K2r) of the form

{[ Ir
tX

]
| t ∈ R

}
,

where X ∈ Matr(K) is a rank-one matrix such that tX = X. Note that, for the natural
embedding Lagr(R2r) ⊂ Grr(R2r), by Lemmas 6.3.17 and 6.3.18, the photons of Lagr(R2r)
are exactly the photons of Grr(R2r) that are contained in Lagr(R2r).
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6.3.4.3 Photons in the Einstein universes. Let p, q ≥ 1. In the case
where (g, α) = (so(p+1, q+1), α1), recall from Section 2.4.3 that we have F (g, α) = Einp,q.
Photons as defined in this Chapter coincide with the classical photons already mentioned
in Section 2.4.3.1. To see this, a direct computation gives a parametrization of photons
in affine charts. Another way to see it is to use Proposition 7.1.4 and the fact that the
photons defined in Section 2.4.3.1 are exactly the projective lines of P(Rp+q+2) that are
contained in Einp,q, for the natural embedding ιρ1 defined in Equation (2.4.12); now one
just needs to apply Proposition 7.1.4.

As mentioned in Section 2.4.3.1.2, for all x ∈ Einp,q we have

Zx =
⋃

Λ photon through x

Λ.

This property is specific to the Einstein case. Algebraically, it follows from Lemma 6.3.9
and the fact that |W∆∖{α1}\W/W∆∖{α1}| = 3, see Section 2.4.3.1.

6.4 The Kobayashi metric

In this section, we define the Kobayashi metric on a proper domain Ω contained in
an irreducible Nagano space F (g, α) of real type. Constructions of Kobayashi metrics
are classical and were initiated by S. Kobayashi [Kob67, Sho84]. The properties of the
Kobayashi metric (in particular, its properness, see Corollary 6.4.12) in the dually convex
case will allow us to relate the geometry of the boundary of a proper almost-homogeneous
domain to the dynamics of its automorphism group in Section 7.2.2.

Notation 6.4.1. We fix in this section an irreducible Nagano pair (g, α) of real type, an
arbitrary group G ∈ G{α}(g), and adopt Notation 5.1.2.

6.4.1 Chains

Let Ω ⊂ F (g, α) be a domain, not necessarily proper. We say that two
points x1, x2 ∈ Ω are photon-related (in Ω), denoted by x1 ↭ x2, if they belong to the
same photon Λ and are in the same connected component of Λ ∩ Ω. Note that this
relation is not an equivalence relation, as it is not transitive (in general).

Now let x, y ∈ Ω be any two points. An N -chain from x to y (N ∈ N) is a sequence
of (N + 1) elements (x0 = x, . . . , xN = y) of Ω such that xi ↭ xi+1 for all 0 ≤ i ≤ N − 1.
We denote by Cx,y(Ω) (resp. CN

x,y(Ω)) the set of all chains (resp. N -chains) from x to y
in Ω.

By Fact 6.3.10, there exist ℓ1, . . . , ℓn ∈ L (where n = dim(F (g, α))) such
that e := (Ad(ℓ1) · v−, . . . ,Ad(ℓn) · v−) is a basis of u−. Let ⟨·, ·⟩ be a scalar product
on u− for which e is an orthonormal basis. Let B be the associate euclidean ball.

Let Y ∈ B and y := exp(Y ). There exist n ∈ N>0 and λ1, . . . , λn ∈ R such
that Y =

∑n
k=1 λk Ad(ℓk) · v−. For 1 ≤ i ≤ n, we set

xi := φstd

( i∑
k=1

λk Ad(ℓk) · v−
)
.
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Then (x0 = p+, x1, . . . , xn = y) ∈ C n
p+,y(φstd(B)). Now by concatenation, for

all y, z ∈ φstd(B), one has C
n(G)
y,z (φstd(B)) ̸= ∅, with n(G) := 2n.

Note that {g ·φstd(B) | g ∈ G} forms a basis of neighborhoods of F (g,Θ). This implies:

Observation 6.4.2. There exists an integer n(G) only depending on G and a basis V of
the topology of F (g,Θ) such that for all x ∈ F (g, α) and for any V ∈ V and x, y ∈ V ,

one has C
n(G)
x,y (V ) ̸= ∅.

Remark 6.4.3. It would actually follow from the definitions of Section 5.1 that for
all x, y ∈ X(g, α), there exists an s-chain from x to y in X(g, α), where s is the rank
of (g, α) in the sense of Definition 5.1.5. Thus we may replace our family of neighbor-
hoods {g · φstd(B) | g ∈ G} by {g · φstd(X(g, α)) | g ∈ G} and get n(G) = s.

6.4.2 The pseudo-metric

In this section, we define the Kobayashi pseudo-metric on domains of F (g, α).

Let Ω ⊂ F (g, α) be a (not necessarily proper) domain. We assume moreover that
there exists no photon Λ ⊂ Ω. Let x, y ∈ Ω be two photon-related points. Let Λx,y ∈ L
be a photon containing x and y (which is unique if x ̸= y, see Lemma 6.3.5), and g ∈ G
be such that Λx,y = g · Λstd. We denote by Ix,y the connected component of Ω ∩ Λx,y
containing x and y. Recall the parametrization ζg : P(R2)→ Λx,y of Equation (6.3.2). Let

kΩ(x, y) := Hζ−1
g (Ix,y)

(
ζ−1
g (x), ζ−1

g (y)
)
.

Recall that we denote by HI the Hilbert pseudo-metric of an interval I of P(R2) (see
Section 2.1). Due to the SL(2,R)-invariance of the cross ratio on P(R2) and Lemma 6.3.6,
the quantity kΩ(x, y) does not depend on the choice of g ∈ G such that Λx,y = g · Λstd.

Definition 6.4.4. Given a domain Ω ⊂ F (g, α), we define KΩ : Ω×Ω→ R+∪{+∞} by:

∀x, y ∈ Ω, KΩ(x, y) = inf
{ N∑
i=0

kΩ(xi, xi+1) | N ∈ N∗, (x0, . . . , xN ) ∈ Cx,y(Ω)
}
.

For x, y sufficiently close to each other, there exists g ∈ G such that x, y ∈ g ·B ⊂ Ω; see

Section 6.4.1. In that case Cx,y(Ω) (and even C
n(G)
x,y (Ω)) is nonempty by Observation 6.4.2.

Hence the relation “x and y can be joined by a chain” is locally trivial. Since it is an
equivalence relation and Ω is connected, it is the trivial relation. Hence the set Cx,y(Ω)
is never empty for two points x, y ∈ Ω. Since KΩ(a, b) is always finite whenever a, b are
photon-related, we know by Observation 6.4.2 that the quantity KΩ(x, y) is thus always
finite as well. Thus KΩ is actually a map Ω× Ω→ R+. We moreover have:

Proposition 6.4.5. Let Ω1 and Ω2 be two domains of F (g, α), and G ∈ G{α}(g). Then:

1. If Ω1 ⊂ Ω2, then for any x, y ∈ Ω1 one has KΩ2(x, y) ≤ KΩ1(x, y).

2. For any g ∈ G, for any x, y ∈ Ω1, one has Kg·Ω1(g · x, g · y) = KΩ1(x, y). In
particular, the metric KΩ1 is AutG(Ω1)-invariant.
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Proof. This is a consequence of the definition of KΩ and of the fact that an element g of G
induces a natural bijection between CN

x,y(Ω) andCN
g·x,g·y(g · Ω), for all N ∈ N. □

Note that KΩ2 and KΩ1 do not need to be metrics in Proposition 6.4.5.

As one can concatenate and reverse the orientation of a chain, the map KΩ is symmetric
and satisfies the triangle inequality. It is thus a pseudo-metric, and we call it the Kobayashi
pseudo-metric. In the next section, we investigate when KΩ is a metric.

Remark 6.4.6. In the case where F (g, α) = Einn−1,1, our Kobayashi pseudo-metric
coincides with the Markowitz pseudo-metric introduced in [Mar81]. In the case
where F (g, α) = Grp(Rp+q), it is the Kobayashi pseudo-metric defined in [LZ19]. In
the case where F (g, α) = P(Rn), then it is the classical Kobayashi pseudo-metric on Ω
[Sho84], and if Ω ⊂ P(Rn) is properly convex, then it is the Hilbert metric.

6.4.3 Kobayashi-hyperbolicity

In this section, we define the Kobayashi-hyperbolicity of a domain and prove that any
proper domain is Kobayashi-hyperbolic.

Definition 6.4.7. We say that a domain Ω ⊂ F (g, α) is Kobayashi-hyperbolic if KΩ is a
metric, that is, if KΩ separates points. The map KΩ defined in Definition 6.4.4 is then
called the Kobayashi metric of Ω.

Proposition 6.4.8. Proper domains of F (g, α) are Kobayashi-hyperbolic. Moreover, for
any proper domain Ω ⊂ F (g, α), the metric KΩ generates the standard topology.

Proof. Let us first show that any properly convex domain C of Astd is Kobayashi-
hyperbolic, where Astd is endowed with its standard affine structure (given in
Equation (2.2.7)). Since C is a properly convex domain of the affine space Astd, it has
a classical Hilbert metric HC (see Remark 2.1.1). By the definition of HC and the fact
that the trace of a photon in Astd is either empty or an affine line of Astd (Lemma 6.3.7),
if a, b ∈ C are photon-related then one has

HC(a, b) = kC(a, b). (6.4.1)

Now let x, y ∈ C and γ = (x0, . . . , xN ) ∈ Cx,y(Ω) be a chain from x to y. Since HC satisfies
the triangle inequality, one has:

N−1∑
i=0

kC(xi, xi+1) =

N−1∑
i=0

HC(xi, xi+1) ≥ HC(x, y).

This is true for all γ ∈ Cx,y(Ω), so by taking the infinimum we get

KC(x, y) ≥ HC(x, y) > 0. (6.4.2)

Therefore KC separates the points and C is Kobayashi-hyperbolic.
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Now let Ω be any domain. We may assume that Ω is proper in Astd (Remark 3.1.2).
Let C be any domain, properly convex in Astd, containing Ω (for instance the convex hull
of Ω in Astd). Then, by Proposition 6.4.5:

KC(x, y) ≤ KΩ(x, y) ∀x, y ∈ Ω. (6.4.3)

Since KC separates the points, so does KΩ.
Let Tstd be the standard topology on Ω, and let T be the one induced by KΩ. We

will prove that Tstd = T . By Equations (6.4.2) and (6.4.3) and the fact that the Hilbert
metric generates the standard topology on properly convex domains, one has Tstd ⊂ T .
To prove the reverse inclusion, one need to show that KΩ is continuous with respect to
the standard topology. By the inequality

|KΩ(x0, y0)−KΩ(x, y)| ≤ KΩ(x0, x) +KΩ(y0, y) ∀x0, y0, x, y ∈ Ω,

one only needs to show that for any x0 ∈ Ω the map x 7→ KΩ(x0, x) is continuous at x0.
For this we see Astd we see Astd as a Euclidean space and fix any euclidean norm ||.||
on Astd. Up to dilating at x0, we may assume that the Euclidean ball B of center x0 and
of radius 1 is contained in Ω. For any 0 < δ < 1, let Bδ be the Euclidean ball of center x0
and of radius δ. Let N := n(G) given by Observation 6.4.2. For any 0 < δ < 1, tere
exists an N -chain (x0, x1, . . . , xN = x) contained in Bδ. Then, by Proposition 6.4.5 and
Equation (6.4.1), one has

KΩ(x, x0) ≤ KB(x0, x) ≤
N−1∑
k=0

KB(xi, xi+1) =
N−1∑
k=0

HB(xi, xi+1)

≤
N−1∑
k=0

HB(x0, xi) + HB(x0, xi+1)

=
N−1∑
k=1

log
1 + ||xi − x0||
1− ||xi − x0||

+ log
1 + ||xi+1 − x0||
1− ||xi+1 − x0||

≤
N−1∑
k=1

2 log
1 + δ

1− δ
−→
δ→0

0

This proves that KΩ(x0, x)→ 0 as x→ x0. □

Remark 6.4.9. 1. The proof of Proposition 6.4.8 gives that for any two se-
quences (xk), (yk) ∈ ΩN such that xk → a ∈ ∂Ω and yk → b ∈ Ω, if KΩ(xk, yk) → 0
then one has a = b.

2. Proposition 6.4.8 is a generalization, to any irreducible Nagano space of real type,
of the results we obtained in [Gal24, CG24] for causal flag manifolds and Einstein
universes respectively (the latter with A. Chalumeau).

6.4.4 Kobayashi length

In this section, we recall some definitions and fix some notation. Let Ω be a proper
domain. For a continuous path γ : [0, 1]→ Ω, we define the Kobayashi length or KΩ-length
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of γ in the the usual way, as

lenΩ(γ) = sup
N∑
i=0

KΩ(γ(ti), γ(ti+1)),

where the supremum is taken over all finite subdivisions of [0, 1].

Let x, y ∈ Ω be two distinct photon-related points, and let Λx,y be the unique photon
containing x and y. We denote by [x, y] the closure of the only connected component
of Λx,y ∖ {x, y} that is contained in Ω (both components cannot be contained in Ω by
properness of Ω). By 6.2.1, it can be parametrized by

[t1, t2] −→ [x, y]; t 7−→ ζg([1 : t]),

where g ∈ G is such that Λx,y = g · Λstd and x = ζg([1 : t1]) and y = ζg([1 : t2]). This
parametrization depends on the choice of g ∈ G.

Now, let x, y ∈ Ω be any two points. Any element of u = (x0, . . . , xN ) ∈ Cx,y(Ω)
gives rise to a continuous path γ from x to y, defined as the concatenation of all seg-
ments [x0, x1], . . . , [xN−1, xN ] in this order, endowed with a parametrization as described
above. This path is uniquely defined by u up to reparametrization. The KΩ-length lenΩ(γ)
of γ does not depend on the choice of parametrization of the [xi, xi+1] for 0 ≤ i ≤ N . This
defines a unique KΩ-length for the chain (x0, . . . , xN ).

In the rest of the memoir, we will identify a chain with the unique (up to parametriza-
tion) path it defines by the process described above. In particular, this will allow us to
consider the KΩ-length of a chain.

6.4.5 Comparison with the Caratheodory metrics

The goal of this section is to prove Proposition 6.4.10 below, where we compare the
Kobayashi metric with the Caratheodory metrics defined in Section 3.1.2. Together with
Corollary 6.4.12 in the next section, it will imply Proposition 1.4.7.

Proposition 6.4.10. Let (g, α) be an irreducible Nagano pair of real type, G ∈ G{α}(g)
and let (G, ρ, V ) a linear {α}-proximal triple of g with highest weight χ := Nωα for
some N ∈ N>0. Let Ω ⊂ F (g,Θ) be a proper dually convex domain, and let CρΩ
be the Caratheodory metric on Ω induced by (V, ρ). Then for any two photon-related
points x, y ∈ Ω, one has

kΩ(x, y) =
1

N
CρΩ(x, y). (6.4.4)

In particular,

1. one has KΩ ≥ N−1CρΩ;

2. the metric KΩ is a length metric, and given two photon-related points x, y ∈ Ω,
the KΩ-length of the 1-chain (x, y) is equal to kΩ(x, y) = KΩ(x, y).

Remark 6.4.11. We will see in Propositions 6.4.13 and 6.4.15 that the inequality of
Proposition 6.4.10.(1) is an equality for the realizations of the noncompact duals of the
Naganon spaces Einp,q and Grp(Rp+q), with p, q ≥ 1. The proof of these propositions
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outline a method to compute the Kobayashi mertic on a realization of the noncompact
dual of an irreducible Nagano space of real type, which we generalize to any Nagano space
of real type in [Gal25]. We think that, in higher rank, the equality case characterizes
realizations of the noncompact dual, see Conjecture 1.4.8.

Proof of Proposition 6.4.10. Up to translating Ω by an element of G, one may assume
that x, y ∈ Λstd. Then there exist a1, a2 ∈ P(R2) such that x = ζ(a1) and y = ζ(a2).

Recall that we denote by Ix,y the connected component of Λstd∩Ω containing x and y.
Let p1, p2 ∈ ∂Ω be the endpoints of Ix,y, such that p1, x, y, p2 are aligned on Λstd in this
order. Then there exist b1, b2 ∈ P(R2) such that b1, a1, a2, b2 are aligned in this order
and p1 = ζ(b1), and p2 = ζ(b2).

By dual convexity, for i ∈ {1, 2} there exists ξi ∈ Ω∗ such that pi ∈ Zξi . Then, by
Lemma 6.3.13, one has

kΩ(x, y) = log |(b1 : a1 : a2 : b2)| =
1

N
log
∣∣ [ξ1 : x : y : ξ2]ρ

∣∣.
By the definition of CρΩ, this implies that kΩ(x, y) ≤ N−1CρΩ(x, y).

For the converse inequality, let η1, η2 ∈ Ω∗ be such that

CρΩ(x, y) = log |[η1 : x : y : η2]ρ| .

For i ∈ {1, 2}, let b′i ∈ P(R2) be such that ζ(b′i) = prstd(ηi). Then, again by Lemma 6.3.13:

∣∣ log
∣∣(b′1 : a1 : a2 : b′2)

∣∣ ∣∣ =
1

N
log |[η1 : x : y : η2]ρ| .

Since η1, η2 ∈ Ω∗, the two points ζ(b′1), ζ(b′2) are not contained in Ix,y. Thus one has∣∣ log
∣∣(b′1 : a1 : a2 : b′2)

∣∣ ∣∣ ≤ log |(b1 : a1 : a2 : b2)| = kΩ(x, y).

Hence one has N−1CρΩ(x, y) ≤ kΩ(x, y). We have proven that N−1CρΩ(x, y) = kΩ(x, y).

Now let us prove that KΩ ≥ N−1CρΩ. Let x, y ∈ Ω be any two points, and
let (x0, . . . , xM ) ∈ Cx,y(Ω). Then one has∑

i

kΩ(xi, xi+1) =
1

N

∑
i

CρΩ(xi, xi+1) ≥
∑
i

1

N
sup

ξi1,ξ
i
2∈Ω∗

log[ξi1 : xi : xi+1 : ξi2]ρ

≥ 1

N
sup

ξ1,ξ2∈Ω∗

∑
i

log[ξ1 : xi : xi+1 : ξ2]ρ

≥ 1

N
sup

ξ1,ξ2∈Ω∗
log[ξ1 : x : y : ξ2]ρ

=
1

N
CρΩ(x, y).

(6.4.5)

Since this is true for all (x0, . . . , xM ) ∈ Cx,y(Ω), by taking the infimum we get the
inequality KΩ(x, y) ≥ N−1CρΩ(x, y).

Now let us show that KΩ is a length metric. In Equation (6.4.5), take x and y

123



to be two photon-related points. The fact that CρΩ(x, y) = NkΩ(x, y) and Equa-
tion (6.4.5) imply that the segment [x, y] has KΩ-length kΩ(x, y). Hence the KΩ-length
of γ = (x0, . . . , xM ) ∈ Cx,y(Ω) is

lenΩ(γ) =
∑
i

KΩ(xi, xi+1). (6.4.6)

Then one has KΩ(x, y) = inf {lenΩ(γ) | γ ∈ Cx,y(Ω)}.
Now let C ′

x,y(Ω) the set of all rectifiable curves joining x and y in Ω. By the definition
of the KΩ-length of a curve, one has KΩ(x, y) ≤ inf

{
lenΩ(γ) | γ ∈ C ′

x,y(Ω)
}

. Since chains
are rectifiable (for the identification with continuous paths, see Section 6.4.4), this last
inequality is an equality. Hence KΩ is a length metric. □

6.4.6 Properness

In this section, we state a corollary of Proposition 6.4.10, which is the properness of
the Kobayashi metric on a proper dually convex domain of F (g, α).

Let us fix (G, ρ, V ) a linear {α}-proximal triple of g with highest weight χ := Nωα.
Let Ω be a proper domain of F (g, α), and let CρΩ be the Caratheodory metric on Ω induced
by (V, ρ). In [Zim18a, Thm 9.1], A. Zimmer proves that the following three assertions are
equivalent:

1. The domain Ω is dually convex.

2. The metric CρΩ is a proper metric.

3. The metric CρΩ is a complete metric.

The equivalence (1)⇔ (3) is stated in [Zim18a, Thm 9.1], and the equivalence (1)⇔ (2)
is a consequence of its proof.

If Ω is dually convex, then CρΩ is proper, and on the other hand, by Proposition 6.4.10,
one has KΩ ≥ N−1CρΩ. Thus the Kobayashi metric KΩ is also proper:

Corollary 6.4.12. Let (g, α) be an irreducible Nagano pair of real type. If Ω ⊂ F (g, α) is
a proper dually convex domain, then KΩ is a proper metric. In particular, if Ω ⊂ F (g, α)
is a proper almost-homogeneous domain, then KΩ is a proper metric.

Proposition 6.4.10.(2) and Corollary 6.4.12 imply in particular that KΩ is geodesic as
soon as Ω is a proper almost-homogeneous (and even just dually convex) domain.

6.4.7 Example: the Kobayashi metric on symmetric domains

In this section, we compute some geodesics for the Kobayashi metric on realizations Ω
of the noncompact dual of two families of Nagano spaces of real type: the Einstein universes
and the Grassmannians. We also exhibit some geodesics that are also chains. In particular,
the Kobayashi metric is not uniquely geodesic, whenever the considered Nagano space is
of higher rank.

As we will see in Propositions 6.4.13 and 6.4.15 below, in this case, the inequality 6.4.4
is an equality. Our proof relies on the existence of chains contained in a flat of Ω (for its
symmetric space structure); these sequences give two points ξ, ξ′ of the boundary in which
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the Caratheodory metrics and the Kobayashi metric are achieved simultaneously, and
this is why their KΩ-length is equal to both the Kobayashi metric and the Caratheodory
metrics.

6.4.7.1 Geodesics of the diamonds. In this Section, we consider the irreducible
Nagano pair of real type (g, α) = (so(p+ 1, q + 1), α1) for p, q ≥ 1. The aim is to prove:

Proposition 6.4.13. Let p, q ≥ 1. Let D ⊂ Einp,q be a diamond. Then for all x, y ∈ D
there exists a 2-chain between x and y in D, which is geodesic for KD. Moreover, for
any linear or projective {α1}-proximal triple (G, ρ, V ) of so(p + 1, q + 1) with highest
weight Nωα1, one has KD = 1

NC
ρ
D.

Moreover, let φ : Hp×Hq ≃ D be a conformal identification, as given in Section 3.4.2.
Then for all x = (xp,xq), y = (yp,yq) ∈ Hp ×Hq, one has

KΩ(φ(x), φ(y)) = max
{
dp(yp,xp), dq(yq,xq)

}
, (6.4.7)

where dp and dq are the hyperbolic metrics on Hp and Hq respectively.

Proof. We take the notation of Construction 3.4.5. In particular, recall that we
write Astd = Hp ⊕ Hq, where Hp is a positive-definite p-plane in Astd, and Hq is a
negative-definite q-plane orthogonal to Hp. We write an element y ∈ Astd by y = yp + yq
in this decomposition. Recall the diamond D defined in Construction 3.4.5. Recall that
it is defined by D = {x ∈ Astd | |x|p,q < 1}, where the norm | · |p,q is defined in (3.4.1).

Note that it suffices to prove Proposition 6.4.13 on a dense subset of D×D, since the
property stated is a closed property.

Let x, y ∈ D. If x, y are on the same photon, we know from Proposition 6.4.10
that KΩ = 1

NC
ρ
D. Thus we may assume that x and y are transverse. Thus we may assume

that x = 0, and that bp,q(y, y) ̸= 0. Up to exchanging p and q, we may also assume
that bp,q(y, y) > 0, i.e.

bp,q(yp, yp) > −bp,q(yq, yq). (6.4.8)

Since {y ∈ D | bp,q(yp, yp),bp,q(yq, yq) ̸= 0} is dense in D, we may also assume
that bp,q(yp, yp),bp,q(yq, yq) ̸= 0.

We are searching for a point z = zp + zq ∈ Hp ⊕ Hq, such that (x, z, y) is a 2-chain.
We moreover search such a point z in Ryp ⊕ Ryq, i.e. zp = λyp with λ ∈ R and zq = µyq
with µ ∈ R. The condition that (x, y, z) is a 2-chain is then equivalent to

bp,q(z, z) = bp,q(z − y, z − y) = 0 and |z|p,q < 1. (6.4.9)

If we set tp :=
√

b(yp, yp), tq :=
√
−b(yq, yq), then the two solutions of this system are

the two pairs (λ+, µ+) and (λ−, µ−) such that

λ± =
1

2tp

t2p + t2q
tp ± tq

; µ± =
1

2tq

t2p + t2q
±tp + tq

,

which indeed satisfy |λ|tp + |µ|tq < 1, i.e. z ∈ D. Note that there are thus two possible
points z working, and we choose the one defined by (λ+, µ+). Note that Equation (6.4.8)
implies that λ+, µ+ > 0.
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Now let a :=
−yp√
b(yp,yp)

, b :=
yp√

b(yp,yp)
∈ Sp−1 (see Figure 6.2). Then by Construc-

tion 3.4.5, the intersection (Ryp ⊕Ryq)∩ Za is a union of two photons through a, and the
same holds replacing a with b.

Let Λ1 be the photon through x and z, and Λ2 be the photon through z and y.
Let a1, b1, resp. a2, b2 be the endpoints of Λ1 ∩D, resp. Λ2 ∩D, such that a1, x, z, b1, resp.
a2, z, y, b2, are aligned in this order. According to the previous paragraph and by choice
of z, we have a1, a2 ∈ Za and b1, b2 ∈ Zb. Thus we have

a1 = prΛx,z
(a), a2 = prΛz,y

(a), b1 = prΛx,z
(b), b2 = prΛz,y

(b).

a2

a1

b1

b2

x y

z

a b

Sq−1

Sp−1

Figure 6.1 – Proof of Prop. 6.4.13
when (p, q) = (1, 2)

a2

a1

b1

b2

x y

z

a b

Sq−1

Sp−1

Figure 6.2 – Proof of Prop. 6.4.13
when (p, q) = (2, 1)

We have:

CρD(x, y) ≥ | log[a : x : y : b]ρ| = | log[a : x : z : b]ρ + | log[a : z : y : b]ρ|
Lem. 6.3.13

= N | log(prΛx,z
(a) : x : z : prΛx,z

(b)) + log(prΛz,y
(a) : z : y : prΛz,y

(b))|
(∗)
= N | log(prΛx,z

(a) : x : z : prΛx,z
(b))|+N | log(prΛz,y

(a) : z : y : prΛz,y
(b))|

= NKD(x, z) +NKD(z, y)

= N lenD(x, z, y) ≥ NKD(x, y).

(6.4.10)

To simplify the notation, we have denoted by (c : x : y : d) the cross ratio of four points
on the same photon, which does not depend on the projective parametrization given in
(6.3.2).

The equality (∗) holds because all the considered cross ratios are positive, due to the
choices of a and b.

Since we also have NKD ≥ Cρ1D by Proposition 6.4.10, all inequalities in (6.4.10) are
equalities. In particular, we have KD(x, y) = lenΩ(x, z, y), so (x, z, y) is a geodesic for KD.
It follows that

KD(x, y) =
1

N
Cρ1D (x, y).
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It remains now to prove (6.4.7). The first line of (6.4.10) gives:

KD(x, y) =
∣∣∣ log

b(ã, ỹ)b(̃b, x̃)

b(̃b, ỹ)b(ã, x̃)

∣∣∣, (6.4.11)

where z̃ is any lift of z ∈ Einp,q in Rp+q+2 and b is the chosen bilinear form on Rp+q+2 of
signature (p+ 1, q + 1) defining Einp,q.

Note that Equality (6.4.7) does not depend on the conformal identification φ, by
Fact 2.4.1 and the (PO(p, 1) × PO(1, q))-invariance of the two terms of the equality. Let
us consider the natural identifications

Hp ≃ {zp ∈ Hp | |zp|p,q < 1}; Hq ≃ {zq ∈ Hq | −|zq|p,q < 1}.

They naturally induce a conformal identification Hp × (−Hq) ≃ D. write y = (yp,yq) for
this identification. In this identification, Equation (6.4.11) gives KD(x, y) = dp(yp,xp),
where dp is the hyperbolic metric on Hp.

Note that we have made the choice that bp,q(y, y) > 0 (i.e. dp(yp,xp) > dq(yq,xq)).
If we had chosen bp,q(y, y) < 0, then we would have bp,q(yp, yp) < −bp,q(yq, yq) (i.e.
dp(yp,xp) < dq(yq,xq)) instead, then we would have found KD(x, y) = dq(yq,xq).
Thus (6.4.7) holds. □

Remark 6.4.14. 1. In the proof of Proposition 6.4.13, the construction of a 2-chain
between x and y is simlilar to that of the proof of Lemma 3.4.7, but it uses Construc-
tion 3.4.5 instead of the conformal identification D ≃ Hp×(−Hq). The benefit of this
point of view is that it is extrinsic: we see D ≃ Hp × (−Hq) inside Einp,q, and thus
are able to argue with points of ∂D (in particular, we can find points a, b ∈ Einp,q

in which the suprema defining the Caratheodory metrics are achieved).

2. Equality (6.4.7) is also proven in [CG24, Ex. 4.2] and [Cha24] with other techniques.

Note that Equality 6.4.7 is also proven in [CG24, Ex. 4.2] and [Cha24] with other
techniques.

Note that, in the resolution of Equation (6.4.9), we have made the choice of a point z
between two solutions. Choosing the other one would have given another 2-chain between x
and y being a geodesic. We think that this gives the only two geodesic between x and y
that are 2-chains. We see that the metric KD is not uniquely geodesic on a diamond D.

6.4.7.2 Geodesics of the symmetric domains of Grp(Rp+q). In this section, we
take the notations in the Grassmannians defined in Sections 2.4.2 and 3.3.1, assuming
that q ≥ p. Let us add some notation : given s1, . . . , sp ∈ R, the matrix atdiag(s1, . . . , sp)
is the matrix (dij), where dij = si if p−j+1 = i and 0 otherwise. We consider the bilinear
form b on Rp+q whose matrix in the canonical basis is

S =

 0 0 Jp
0 Iq−p 0
Jp 0 0

 ,
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where Jp = atdiag(1, . . . , 1) (as in Example 2.2.1, but replacing p + 1 with p and q + 1

with q). If K ⊂ PO(b) is the stabilizer of φp

((0q,p
Jp

))
∈ B(b), then by Proposition 3.3.2,

the group K is a maximal compact subgroup of PO(b), and we have a PO(b)-equivariant
diffeomorphism

ψb : X(sl(p+ q,R), αp) ≃ PO(b)/K −→ B(b),

such that ψb([id]) = φp

((0q,p
Jp

))
. By Example 2.2.1, the space

F :=
{[

diag(s1, . . . , sp, Iq−p, s
−1
p , . . . , s−1

1 )
]
·K | si ∈ R>0 ∀1 ≤ i ≤ p

}
is a flat of PO(b)/K. The image of F by ψb is

{
φp

(( 0q,p
atdiag(t1, . . . , tp)

))
| t1, . . . , tp ∈ R>0

}
. (6.4.12)

This setting allows us to prove:

Proposition 6.4.15. Let p, q ∈ N>0 and let Ω be a realization of X(sl(p + q,R), αp)
in Grp(Rp+q). Then for all x, y ∈ Ω, there exists an s-chain between x and y which is
a geodesic for KΩ, where s ≤ min(p, q) = rk(sl(p + q,R), αp). Moreover, if N ∈ N>0

and (G, ρ, V ) is an {αp}-proximal triple of sl(p+q,R) with highest weight Nωαp, then one
has KΩ = (1/N)CρΩ.

Moreover, the metric KΩ is Finsler, and the restriction of its infinitesimal form to a
flat of Ω (for its identification with X(sl(p+q,R), αp)) is 2||·||1, where ||·||1 is the L1-norm.

Proof. Assume p ≤ q for instance. By Proposition 3.3.2, we may assume that Ω = B(b).
In this proof, we give an explicit formula for a chain between two points x, y ∈ B(b) which
is a geodesic for the metric KB(b).

Now let x, y ∈ B(b). Then ψ−1
b (x), ψ−1

b (y) are in a common maximal flat
of X(sl(p + q,R), αp). Since K acts transitively on the set of maximal flats
of X(sl(p + q,R), αp) and KB(b) is K-invariant, we may assume that they are both in F ,
and even that

x = φp

((0q,p
Ip

))
= ψb([id]) and y = φp

(( 0q,p
atdiag(t1, . . . , tp)

))
,

where t1, . . . , tp ∈ R>0. By density, we may assume that ti ̸= 1 for all 0 ≤ i ≤ p. For
all 1 ≤ i ≤ p, we set

xi := φp

(( 0q,p
atdiag(t1, . . . , ti, 1, . . . , 1)

))
(in particular, we have x0 = x and xp = y). For all 0 ≤ i ≤ p − 1, let Λi be the unique
photon through xi, xi+1, and let ai, bi be the endpoints of Λi∩B(b) such that ai, xi, xi+1, bi
are aligned in this order.

128



Let us write ai, bi explicitly. To this end, let J := {1 ≤ i ≤ p | ti > 1}. For
all 0 ≤ i ≤ p− 1, let

vi =

 Ip
0q−p,p

atdiag(t1, . . . , ti−1, 0, 1, . . . , 1)

 ;

wi =


Ii−1 0i−1,p−i+1

01,p
0p−i,i Ip−i
0q−p,p

atdiag(t1, . . . , ti−1, 1, 1, . . . , 1)

 .

We then have

ai =

{
vi if i ∈J ,

wi if i /∈J .
and bi =

{
wi if i ∈J ,

vi if i /∈J .

Recall that we denote by (e1, . . . , ep+q) the canonical basis of Rp+q. Given a
set I ⊂ {1, . . . , p}, we define MI ∈ Matp+q,q(R) as the matrix whose i-th column is ei
if i ∈ I , and eq+i otherwise.

Let us moreover set ξ1 := [MJ ] and ξ2 := [McJ ]. Note that ξ1, ξ2 ∈ B(b)−, and for
all 0 ≤ i ≤ p − 1, we have ai ∈ Zξ1 and bi ∈ Zξ2 . In particular, we have ai = prΛi

(ξ1)
and bi = prΛi

(ξ2).

Now let N ∈ N>0 and (G, ρ, V ) be an {αp}-proximal triple of sl(p+ q,R) with highest
weight Nωαp . We have:

CρB(b)(x, y) ≥ | log[ξ1 : x : y : ξ2]ρ| =
∣∣∣ p−1∑
i=0

log[ξ1 : xi : xi+1 : ξ2]ρ

∣∣∣
Lem. 6.3.13

= N

p−1∑
i=0

| log(prΛi
(ξ1) : xi : xi+1 : prΛi

(ξ2))|

(∗)
= N

p−1∑
i=0

| log(ai : xi : xi+1 : bi))|

= N

p−1∑
i=0

KB(b)(xi, xi+1)

= N lenB(b)(x0, . . . , xp) ≥ NKB(b)(x, y),

(6.4.13)

where Equality (∗) follows from the fact that all the considered cross ratios are
positive, due to the choices of ξ1 and ξ2. Since we also have NKB(b)(x, y) ≥ CρB(b)(x, y)

by Proposition 6.4.10, all inequalities in Equation (6.4.13) are equalities. We thus
have NKB(b)(x, y) = CρB(b)(x, y). Moreover, by density and continuity of the Kobayashi
and Caratheodory metrics, this equality extends to the case where there exists 1 ≤ i ≤ p
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such that ti = 1. Finally, if we had assumed that q ≤ p instead of p ≤ q, we would have
found the same equality, but with a q-chain instead of a p-chain.

Let us now compute KB(b). Recall the Cartan subspace a of so(p, q), defined in Ex-
ample 2.2.1.(2) (replacing p+ 1 by p and q + 1 by q). Let || · ||1 be the L1-norm on a:

∥∥diag(λ1, . . . , λp, 0q−p,−λp, . . . ,−λ1)
∥∥
1

=

p∑
i=1

|λi|.

Let x, y ∈ B(b), and first assume that x = φp([id]). Let

pa(y) = diag(λ1, . . . , λp, 0q−p,−λp, . . . ,−λ1)

be the projection of ψ−1
b (y) on a, i.e. the unique element of a such that there exists k ∈ K

such that ψ−1
b (y) = k exp(pa(y)) ·K. By K-equivariance of KB(b) and Equation (6.4.13),

we have

KB(b)(x, y) = KB(b)
(
x, ψb([pa(y)] ·K)

)
=

p∑
i=0

2|λi| = 2∥pa(y)∥1.

Now if x is not necessarily equal to φp([id]), let ℓ ∈ PO(b) be such that x = φp([ℓ]). Then
by PO(b)-equivariance of KB(b), we have:

KB(b)(x, y) = 2
∥∥pa(ℓ

−1 · y)
∥∥
1
. □

Remark 6.4.16. 1. In the proof of Proposition 6.4.15, we have made the choice of a
chain (x0, . . . , xp) between x and y (in the notation of the proof). Permuting the ti,
we could have chosen 2p−1 such chains. We think that these 2p−1 choices for the ti
describe all possible chains between x and y being geodesics.

2. The Kobayashi metrics computed in this section and in Section 6.4.7.1 on realizations
of the noncompact dual are not induced by Riemannian metrics on X(g, α), except
in the case where min(p, q) = 1. In this latter case, we recover X(g, α) ≃ Hmax(p,q),
and classically, the metric KΩ = HΩ of a realization Ω of X(g, α) is a multiple of the
pushforward of the hyperbolic metric on Hmax(p,q), and Ω is an ellipsöıd.

Thus, except in the real projective case, the Kobayashi metric on a realization
of X(g, α) is not a multiple of the Riemannian metric of X(g, α) (however, we see that
it is Finsler). This property distinguishes the higher-rank case from the rank-one
(i.e. the real-projective) case.

6.5 An introduction to Helgason spheres

Let us end this chapter with a discussion of possible generalizations of photons and of
the Kobayashi pseudo-metric to Nagano spaces which are not of real type.

In the construction of the Kobayashi pseudo-metric in Section 6.4, we re-
quired that dim(gα) = 1. On the contrary, if we consider the irreducible Nagano
pair (so(3, 1), α1), the associated Nagano space is S2, and we have dim(gα1) = 2. Let
us consider Ω := H2 ⊂ S2. If we naively define the Kobayashi pseudo-metric as in
Section 6.4, then it is not a metric on Ω. The reason is that photons are no longer the
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appropriate objects for defining a metric. Based on the work of Peterson, Nagano, and
Takeuchi [Pet87, Nag88, Tak88], it appears that the correct notion should be that of
Helgason spheres.

In this section, we recall fundamental results on Helgason spheres, discuss their con-
nections with our photons, and propose a construction of a Kobayashi pseudo-metric using
Helgason spheres instead of photons.

6.5.1 Definition

In this section, we consider a compact symmetric space M .

Definition 6.5.1. [Tak88] A submanifold S of M is said to be a Helgason sphere if it is a
totally geodesic sphere of M with minimal radius, and if it has maximal dimension among
all submanifolds of M satisfying this property.

Let g′α := g−α⊕gα⊕ [gα, g−α] ≃ o(n, 1) (where n = dim(g′α)−1). The inclusion g′α ⊂ g
gives a Lie group homomorphism τH : SO(n, 1) → G with kernel {±1}. The stabilizer
of P in SO(n, 1) is then the standard minimal parabolic subgroup P1 of O(n, 1) [Tak88].
This defines a τH -equivariant embedding ζH : Sn−1 = SO(n, 1)/P1 → G/P = F (g, α).

An explicit construction of such Helgason spheres for Nagano spaces is given in [Tak88].

Theorem 6.5.2. [Tak88, Lem. 5.7, Thm 5.10] Every Helgason sphere of F (g, α) is a G-
translate of the manifold

Sα := exp(g′α) · p+ = ζH(Sn−1) = exp(g−α) · p+.

We can prove a lemma similar to Lemma 6.3.3:

Lemma 6.5.3. One has

1. U+ · Sα = Sα.
2. For all x, y ∈ F (g, α) such that x ̸= y, there is at most one Helgason sphere through x

and y.

Proof. 1. Since u+ is abelian and generated by the gβ for β ∈ Σ+
Θ, it suffices to prove

that exp(gβ) · Sα = Sα for all β ∈ Σ+
Θ.

Let us first consider β ∈ Σ+
Θ ∖ {α} and X ∈ gβ. Then for all Xα ∈ g−α, one has

exp(X) exp(Xα) · p+ = exp(Ad(exp(X))Xα) · p+. (6.5.1)

Thus one should compute Ad(exp(X))Xα =
∑∞

k=0
ad(X)k

k! Xα. For all k ∈ N,
one has ad(X)kXα ∈ gkβ−α. Since the multiplicity of α in the longest root
is 1 (see Equation (5.1.2)), one has gkβ−α ⊂ l. On the other hand, one
has [Xα, ad(X)kXα] ∈ gkβ−2α = {0} (because kβ − 2α is not a restricted root,
again because of the multiplicity of α). Thus one has Ad(exp(X))Xα = Xα + Y ,
where Y ∈ l commutes with Xα. Thus Equation (6.5.1) becomes:

exp(X) exp(Xα) · p+ = exp(Xα + Y ) · p+ = exp(Xα) exp(Y ) · p+ = exp(Xα) · p+
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because L ⊂ P+. Thus exp(X) fixes every point of Sα.

Now it remains to prove that exp(gα) · Sα = Sα. But this is by definition:

exp(gα) · Sα ∈ τH
(

exp(o(n, 1))
)
· ζH(Sn−1) = ζH(Sn−1) = Sα. □

2. The proof is similar to the one of Lemma 6.3.3.(2). □

The following lemma admits the exact same proof as Lemma 6.3.6:

Lemma 6.5.4. One has

StabG(Sα) = τH(SO(n, 1)× CentG
(
τH(SO(n, 1))

)
,

where StabG(Sα) is the stabilizer of Sα in G and CentG
(
τH(SO(n, 1))

)
is the centralizer

in G of the group τH(SO(n, 1)).

The following lemma admits the same proof as Lemma 6.3.7:

Lemma 6.5.5. Let S be a Helgason sphere. If S ∩ Astd is nonempty, then it is an affine
vector subspace of Astd of dimension dim(gα), and S ∩ Zp− is a singleton.

In particular, for any ξ ∈ F (g, α)− and any Helgason sphere S, if S ̸⊂ Zξ, then S ∩ Zξ
is a singleton.

Theorem 6.5.2 directly gives:

Lemma 6.5.6. Let x ∈ F (g, α) and Λ be a photon through x. Let Sx be a Helgason sphere
through x. Then Λ ⊂ Sx. In particular, if dim(gα) = 1, then the photons of F (g, α) as
defined in Section 6.3.1 are exactly the Helgason spheres of F (g, α).

6.5.2 Arithmetic distance

The arithmetic distance between two distinct points x, y ∈ F (g, α) is the integer

dH(x, y) = min
{
k ∈ N | ∃x0 := x, x1, . . . , xk := y ∈ F (g, α),

xi and xi+1 are on a common Helgason sphere
}
.

(6.5.2)

If x = y, we set dH(x, y) = 0.

Example 6.5.7. In the following examples, we have dim(gα) = 1, so Helgason spheres
are exactly the photons as defined in Section 6.3.

1. Let (g, α) = (sl(p + q,R), αp). According to the description of photons in Sec-
tion 6.3.4.1, the arithmetic distance between two points x, y ∈ Grp(Rp+q) is given
by dH(x, y) = dim(x+ y)− p ∈ {0, . . . , p}.

2. Let (g, α) = (so(p + 1, q + 1), α1), p, q ≥ 1. Then dH(x, y) ∈ {0, 1, 2} for
all x, y ∈ Einp,q. It is 0 if x = y, it is 1 if x, y are on the same photon but not equal,
and it is 2 if x, y are transverse; see also Equation (2.4.10).
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3. Let g be a HTT Lie algebra of real rank r and α = αr, with r ≥ 4.
In the notation of Section 2.4.4.4.1, we then have g = gK for K ∈ {R,C,H},
and Sb(g) = Lagr(K2r). According to Section 6.3.4.2, given two points x, y ∈ Sb(g),
one has dH(x, y) = dimK(x+ y)− r ∈ {0, . . . , r}.

Now if we consider the Nagano pair (g, α) = (sl(p + q,C), αp), which is not of
real type, then the Helgason spheres are 2-dimensional (see Table 8.1). As for
the real case, we have an identification F (g, αp) ≃ Grp(Cp+q), for which we
have dH(x, y) = dimC(x+ y)− p ∈ {0, . . . , p}.

Finally, if (g, α) = (so(n, 1), α), where α is the unique simple restricted root of so(n, 1),
then we have dH(x, y) ∈ {0, 1}; see also Equation (2.4.9).

A direct consequence of [Tak88, Thm 6.4] is the following:

Theorem 6.5.8. Let x0 ∈ F (g, α). One has

{x ∈ F (g, α) | d(x0, x) ≤ |W∆∖{α}\W/W∆∖{α}| − 2} ⊂ (Zx0)∗ := F (g, α) ∖ Cw0(x0).

In particular, if (g, α) has higher rank — in the sense of Definition 5.1.5 — then any
Helgason sphere through x0 is contained in (Zx0)∗.

Theorem 6.5.8 and Lemma 6.5.6 imply in particular that if (g, α) has higher rank,
then any photon through x0 ∈ F (g, α) is contained in (Zx0)∗. It implies in particular
Lemma 6.3.9.

To finish this section, let us give a result of Takeuchi that states that the arithmetic
metric allows to characterize the group G among the diffeomorphisms of F (g, α):

Theorem 6.5.9. [Tak88] If (g, α) is an irreducible Nagano pair of rank ≥ 2, then the
transformation group G of the Nagano space F (g, α) is exactly the group of diffeomor-
phisms of F (g, α) which preserves the arithmetic distance on M .

6.5.3 The pseudo-metric

In this section, we discuss a possible generalization of the Kobayashi pseudo-metric
defined for Nagano spaces of real type, to the non-real-type case. The idea is to replace
chains of photons with chains of Helgason spheres (in the real-type case, we recover the
Kobayashi pseudo-metric defined in Section 6.4) and by replacing the Hilbert pseudo-
metric on intervals of photons with a pseudo-metric on domains of the sphere. For instance,
one could consider the following construction:

1. We start with the definition of a geodesic metric on proper domains of the Nagano
space Sn−1 = F (so(n, 1), α), where α is the unique simple restricted root of so(n, 1).
We will use the well-known metric introduced by Kulkarni–Pinkall [KP94] and
Apanasov [Apa91]. To this end, fix a basepoint o ∈ Hn−1. We endow Hn−1 with
its natural Riemannian metric gHn−1 . Recall that the conformal sphere Sn−1 ad-
mits a Riemannian conformal structure, in the sense of Section 2.4.3.3. Let g be
any metric in the conformal class defining this conformal structure. If Ω ⊂ Sn−1

is a domain, then the restriction of g to Ω is a Riemannian metric. For x ∈ Ω,
we denote by Confo,x(Hn−1,Ω) the space of all conformal maps f from Hn−1 to Ω
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such that f(o) = x. For all f ∈ Confo,x(Hn−1,Ω), there exists a unique λ(f) ∈ R>0

such that Tof
λ(f) is an isometry between (ToHn−1, (gHn−1)o) and (TxSn−1, gx). The

conformal distortion at x is then:

νΩ(x) := sup{λ(f) | f ∈ Confo,x(Hn−1,Ω)}.

A theorem of Kulkarni–Pinkall [KP94] and Apanasov [Apa91] implies that the
pseudo-metric 1

ν2Ω
g is a complete AutG(Ω)-invariant Riemannian metric (for

all G ∈ G{α1}(so(n, 1))) whenever Ω is proper in Sn−1. By integration, it defines

a complete Riemannian metric on Ω, which we denote by dKPΩ . This metric is in
particular geodesic.

2. Now let (g, α) be an irreducible Nagano space, and Ω ⊂ F (g, α) be a domain.
Two points x1, x2 ∈ Ω are H-related, denoted by x1 ∼H x2, if they belong to a
common Helgason sphere S and are in the same connected component of S ∩ Ω.
For N ∈ N>0, an N -Helgason chain from x to y is a sequence of (N + 1) ele-
ments (x0 = x, . . . , xN = y) of Ω such that xi ∼H xi+1 for all 0 ≤ i ≤ N − 1.
We denote by Cx,y(Ω)H (resp. CN

x,y(Ω)H) the set of all Helgason chains (resp. N -
Helgason chains) from x to y in Ω. Since photons are contained in Helgason spheres
(Lemma 6.5.6), Observation 6.4.2 gives that there exists an integer n(G) only de-
pending on G and a basis of neighborhoods V of F (g,Θ) such that for any V ∈ V

and any x, y ∈ V , one has C
n(G)
x,y (V )H ̸= ∅.

3. Given two H-related points x, y ∈ Ω, let Sx,y ∈ L be the unique Helgason sphere
containing x and y, and let g ∈ G be such that Sx,y = g · Sα. We denote by Ox,y

the connected component of Ω ∩ Sx,y containing x and y. The map g · ζH is a
parametrization of Sx,y. Let

kSΩ(x, y) := dKP
ζ−1
H (g−1·Ox,y)

(
ζ−1
H (g−1 · x), ζ−1

H (g−1 · y)
)
.

By Lemma 6.5.4, the quantity kSΩ(x, y) does not depend on the choice of g ∈ G such
that Sx,y = g · Sα.

4. The definition of the Kobayashi pseudo-metric is then the same as in Section 6.4.2,
replacing chains by Helgason chains. Given a domain Ω ⊂ F (g, α) and x, y ∈ Ω, we
define:

KS
Ω(x, y) = inf

{ N∑
i=0

kΩ(xi, xi+1) | N ∈ N∗, (x0, . . . , xN ) ∈ Cx,y(Ω)H

}
.

As in Section 6.4.2, it is easy to check that this defines a pseudo-metric, and we
call it the Kobayashi–Helgason pseudo-metric. A domain Ω ⊂ F (g, α) is said to be
Kobayashi–Helgason hyperbolic if KS

Ω is a metric, that is, if KS
Ω separates points, in

which case it is called the Kobayashi–Helgason metric of Ω.

Further investigation on the Gromov-hyperbolicity or properness of this Kobayashi–
Helgason pseudo-metric appears to be more challenging. It is work in progress.
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In the case where dim(gα) = 2, the Nagano space F (g, α) carries a complex structure.
In this setting, there already exists an AutG(Ω)-invariant (and even biholomorphism-
invariant) Kobayashi pseudo-metric on proper domains of F (g, α) (and even of Cn), shar-
ing similarities with our Kobayashi–Helgason pseudo-metric. Conditions for the Gromov-
hyperbolicity of this metric have been studied (see, e.g., [Zim16, NTT16, Zim17, GS18]).

Remark 6.5.10. There are several metrics we could have chosen on proper domains
of Sn−1 in the first step of the construction of the Kobayashi–Helgason metric. For in-
stance, we could have chosen the Caratheodory metrics of proper domains of the sphere,
instead of dKPΩ . This construction would also lead to a Kobayashi–Helgason pseudo-metric
generalizing the Kobayashi pseudo-metric introduced in Section 6.4.2. However, there ex-
ist proper domains of the sphere for which the Caratheodory metric is not geodesic. Since
we want, in the end, a Kobayashi–Helgason metric which will be geodesic, it seems more
reasonable to start the construction with a metric which is geodesic.
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Chapter 7

Geometry of proper domains in
Nagano spaces of real type

Nagano spaces of real type admit photons in generic position, as seen in Chapter 6 (in
particular in Fact 6.3.10 and Observation 6.4.2). This additional structure provides new
tools to deepen the study of proper dually convex domains in Nagano spaces of real type,
initiated in Chapter 3 for general flag manifolds.

Let (g, α) be an irreducible Nagano pair of real type. In this chapter, building on work
of Limbeek–Zimmer [LZ19] in Grassmannian case, we define subsets of the boundary of a
proper domain Ω ⊂ F (g, α), referred to as R-faces, generalizing faces in the real projective
setting. The Kobayashi metric and R-faces are intrinsically related, as both are defined
from of photons. Just as in the projective case, where the Hilbert metric and faces interact
(see Section 1.1.1.2), the interplay between these the Kobayashi metric and R-faces allows
us to study the dynamics of the automorphism group of a proper almost-homogeneous
domain in an irreducible Nagano space of real type; see Sections 7.2.2 and 7.2.3.

Points whose R-face is trivial are called R-extremal points. We establish a general-
ization of Fact 1.1.1 to any Nagano space of real type, see Lemma 7.2.10. The geometric
consequences of this Lemma for R-extremal points (Theorem 7.2.6) are related to the
structure of maximal proper Schubert subvarieties Zz (see Equation (2.2.5)) of F (g, α).
In particular, these consequences are empty in the projective case but become increas-
ingly significant as |W∆∖{α}\W/W{∆∖i(α)}| grows; see Remark 7.2.7.(1). They reach their
maximal strength when F (g, α) is self-opposite, impacting the rigidity of proper almost-
homogeneous domains, as we will see in Chapter 8.

The existence of R-extremal points in generic position is proven in Lemma 7.2.5.
Several properties of R-faces (see e.g. Proposition 7.2.3 and Lemma 7.2.5) come from
the existence of Plücker triples for Nagano spaces of real type, defined in the following
Section 7.1.

Notation 7.0.1. For all this chapter, whenever we consider an irreducible Nagano
pair (g, α), we will use Notation 5.1.2.
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7.1 Plücker triples of Nagano spaces of real type

If (g, α) is an irreducible Nagano pair of real type, then there exists a projective {α}-
proximal triple (G, ρ, V ) of g with highest weight ωα. Such a triple is called a Plücker
triple of (g, α). Recall that the associate embeddings by Fact 2.3.4 are denoted by ιρ, ι

−
ρ .

In this section, we investigate the consequences on the structure of Nagano spaces of real
type of the existence of Plücker triples.

The following examples are fundamental, as we will use them directly in the proofs of
Theorems 8.4.1 and 8.5.1 in Sections 8.4 and 8.5.

Example 7.1.1. 1. If (g, α) = (sl(p+ q,R), αp) defines the Grassmannian Grp(Rp+q),
then the triple (PGL(p+q,R), ρ0,

∧pRp+q) defined in Equation (2.4.2.2) is a Plücker
triple of (g, α).

2. If (g, α) = (so(p + 1, q + 1), α1) with p, q ≥ 1, defines the Einstein universe Einp,q,
then the triple (PO(p+1, q+1), ρ1,Rp+q+2) defined in Equation (2.4.11) is a Plücker
triple of (g, α).

3. If (g, α) = (so(n, n), αn) for some even n ≥ 2, then

7.1.1 Images of photons

Plücker triples will be of fundamental importance in our study of proper domains in
Nagano spaces of real type. The structural result from which all their main properties will
follow is:

Lemma 7.1.2. Let (g, α) be an irreducible Nagano pair of real type and (G, ρ, V ) a Plücker
triple of (g, α). Let Λ ⊂ F (g, α) be a photon. Then ιρ(Λ) is a projective line in P(V ).

Proof. Let v0 ∈ V ωα ∖ {0}. By the ρ-equivariance of ιρ, we may assume that Λ = Λstd.
For all t ∈ R, we have:

ρ(exp(tv−)) · v0 = exp(tρ∗(v
−)) · v0 =

∞∑
k=0

tkρ∗(v
−)k

k!
· v0 = v0 + tρ∗(v

−) · v0, (7.1.1)

the last equality holding by Lemma 5.2.1. Thus ιρ(Λstd) = {[v0 + tρ∗(v−) · v0] | t ∈ R} is
a projective line. □

Remark 7.1.3. 1. When (g, α) = (so(n, 1), α1) for n ≥ 3, the natural inclu-
sion of PO(n, 1) into PGL(n + 1,R) is irreducible, proximal, and of highest
weight ωα1 = α1, but Lemma 5.2.1 does not hold. The reason is that (g, α) is not
a Nagano pair of real type, see Remark 6.1.2. More particularly, Lemma 5.2.1,
which we use in the proof of Lemma 7.1.2, does not hold for the irreducible Nagano
pair (so(n, 1), α1); see Remark 5.2.2.

2. Let (g, α) be an irreducible Nagano pair of real type. If, instead of considering
a Plücker triple of (g, α), we take a projective {α}-proximal triple (G, ρ′, V ′) of g
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with highest weight 2ωα, then Lemma 7.1.2 fails. Indeed, by Lemma 5.2.1, Equa-
tion (7.1.1) becomes

ρ(exp(tv−)) · v0 = v0 + tρ∗(v
−) · v0 +

t2

2
ρ∗(v

−)2 · v0, (7.1.2)

which implies that the images of photons are conics.

Such representations ρ are particular cases of what are called spherical representa-
tions, which are characterized by the fact that the maximal compact subgroup K
of G admits a fixed point P(V ). For such representations, the image ιρ(F (g, α)) is
then a proper sphere for some Riemannian metric on P(V ). This explains why the
photons, which are contained in this sphere, are of the form of Equation (7.1.2); in
particular, they are contained in affine charts of P(V ).

The property of photons stated in Lemma 7.1.2 actually characterizes them among
projective lines:

Proposition 7.1.4. In the notation of Lemma 7.1.2, the images of photons in P(V )
under ιρ are exactly the projective lines of P(V ) that are contained in ιρ(F (g, α)).

Proof. The fact that images of photons are projective lines is a consequence of
Lemma 7.1.2. For the converse implication, let Λ ⊂ P(V ) be a projective line contained
in ιρ(F (g, α)). Up to translating Λ by an element of G, we may assume that ιρ(p

+) ∈ Λ.

Let {α1, . . . , αdim(V )−1} be a system of simple restricted roots of sl(V ) such
that V ωα = V α1 and V <ωα = V <α1 (for the natural action of SL(V ) on V ). Recall
that we denote by u−{α1} the unipotent radical for this system of simple restricted roots

defined by α1. This radical parametrizes the affine chart AP(V )
std := P(V ) ∖ ι−ρ (p−), as in

Equation (2.2.6): the map

φ
P(V )
std : u−{α1} −→ AP(V )

std

X 7−→ [exp(X) · v0]

is a diffeomorphism. By definition of a projective line through ι(p+) = [v0], there ex-
ists X ∈ uα1)− such that

Λ = {[exp(tX) · v0] | t ∈ R}.

Since Λ ⊂ ι(F (g, α)), we have in particular

d0φ
P(V )
std (X) =

d

dt
|t=0[exp(tX) · v0] ∈ T[v0]ιρ(F (g, α)) = (ιρ)∗(Tp+F (g, α)).

We thus have

(ιρ)∗ ◦ d0φstd(Y ) = d0φ
P(V )
std ◦ ρ∗(Y )

for some Y ∈ u−. Thus X = ρ∗(Y ).

By Fact 6.3.10, there exist N ∈ N and ℓ1, . . . , ℓN ∈ L such that the fam-
ily (Ad(ℓi) · v−)1≤i≤N is free and such that Y =

∑N
i=1 Ad(ℓi) · v− for some N ∈ N. Then
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for all t ∈ R, one has

[exp(tX) · v0] =
[

exp
(
tρ∗(

N∑
i=1

Ad(ℓi) · v−)
)
· v0
]

= ρ
(

exp
(
t(

N∑
i=1

Ad(ℓi) · v−
))
· [v0]

= ρ
( N∏
i=1

exp
(
tAd(ℓi) · v−

))
· [v0] =

N∏
i=1

exp(tρ∗(Ad(ℓi) · v−)) · [v0],

the third equality holding because u− is abelian. This describes a projective line if, and
only if, N = 1. Thus there exists ℓ ∈ L such that Y = Ad(ℓ) · v−. Then Λ is the image
in P(V ) of the photon ℓ · Λstd. □

Remark 7.1.5. By Example 7.1.1.(1) and the definition of rank-one lines in Grp(Rp+q)
(see Section 6.3.4.1), Proposition 7.1.4 implies in particular Lemma 6.3.18.

7.1.2 The convex hull of Ω

Let F (g, α) be an irreducible Nagano space of real type, and let Ω ⊂ F (g, α) be a
proper domain. In general, given a projective {α}-proximal triple (G, ρ, V ) of g, one can
define the convex hull of ιρ(Ω) in P(V ). However, this convex hull is not necessarily open
in P(V ). Nevertheless, as we will see in this section, if (G, ρ, V ) is a Plücker triple of (g, α),
then thanks to Lemma 7.1.2, this property holds. This will allow for a deeper study of
the properties of Ω.

Let (g, α) be an irreducible Nagano pair of real type, and let (G, ρ, V ) be a Plücker
triple of F (g, α). Let Ω ⊂ F (g, α) be a proper domain. There exists ξ0 ∈ F (g, α)− such
that Zξ0 ∩Ω = ∅. Then ιρ(Ω) ∩ ι−ρ (ξ0) = ∅, which means that ιρ(Ω) is proper in P(V ).

Since it is connected, one can lift it to a proper connected cone ι̃ρ(Ω) ⊂ V ∖ {0}. Then

we define Õρ
Ω := Conv(ι̃ρ(Ω)) its convex hull in V , which is a properly convex cone of V ,

a priori not necessarily open. We define

Oρ
Ω := P(Õρ

Ω).

It is a properly convex subset of P(V ), and it does not depend on the choice of affine chart
containing Ω. In particular, the domain Oρ

Ω is ρ(AutG(Ω))-invariant.

Definition 7.1.6. Let (g, α) be an irreducible Nagano pair of real type. Given a proper
domain Ω ⊂ F (g, α) and a Plücker triple (G, ρ, V ) of (g, α), the properly convex do-
main Oρ

Ω is unique and called the convex hull of Ω in P(V ).

For the rest of this section, we fix an irreducible Nagano pair (g, α) of real type, a
Plücker triple (G, ρ, V ) of F (g, α), and v0 ∈ V ωα ∖ {0}.

Proposition 7.1.7. Let Ω ⊂ F (g, α) be a proper domain. The set Oρ
Ω is open. More-

over, if Ω is dually convex, then ιρ(∂Ω) ⊂ ∂Oρ
Ω and ιρ(Ω) is a connected component

of Oρ
Ω ∩ ιρ(F (g, α)).
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Proof. For the openness, by definition of Oρ
Ω, it suffices to prove that for all x ∈ ιρ(Ω),

there exists a neighborhood V of x contained in Oρ
Ω.

Now let x, y ∈ Ω, and (x0 = x, . . . , xN = y) ∈ Cx,y(Ω). For all i, by Lemma 7.1.2,
the points xi and xi+1 lie on the interior of a common projective segment contained
in ιρ(Ω) ⊂ Oρ

Ω. Thus x, y are on the same open face of Oρ
Ω. This proves that ιρ(Ω) is

contained in a face of OΩ. By Fact 2.3.5, this face must be the interior int(Oρ
Ω) of Oρ

Ω

(because otherwise we would have that ιρ(Ω) is contained in a the proper projective sub-
space of P(V ) generated by the face containing it). But then, the set int(Oρ

Ω) is a convex
set containing ιρ(Ω) and contained in the convex hull Oρ

Ω of ιρ(Ω). By definition of the
convex hull, we must have Oρ

Ω = int(Oρ
Ω). Thus Oρ

Ω is open.
Now let us prove the second assertion. Assume that Ω is dually convex. Then for

all a ∈ ∂ιρ(Ω) = ιρ(∂Ω), there exists ξ ∈ Ω∗ such that a ∈ ι−ρ (ξ). Let f ∈ V ∗ ∖ {0}
be a lift of ι−ρ (ξ); Since ιρ(Ω) ∩ ι−ρ (ξ) = ∅, one has f(x) ̸= 0 for all x ∈ ι̃ρ(Ω) ∖ {0}.
By connectedness of Ω, we may assume that f(x) > 0 for all x ∈ ι̃ρ(Ω) ∖ {0}. Then

taking the convex envelope one has f(x) > 0 for all x ∈ Õρ
Ω. Thus Oρ

Ω ∩ ι−ρ (ξ) = ∅. In

particular, since a ∈ ι−ρ (ξ), one has a /∈ Oρ
Ω. On the other hand, one has a ∈ ιρ(Ω) ⊂ Oρ

Ω.
Thus a ∈ ∂Oρ

Ω.
We have just proven that ∂ιρ(Ω) ⊂ ∂Oρ

Ω ∩ ιρ(F (g, α)). Thus ιρ(Ω) is closed
in Oρ

Ω∩ ιρ(F (g, α)). It is also open, so it is a connected component of Oρ
Ω∩ ιρ(F (g, α)). □

Another consequence of Proposition 7.1.7 is the following:

Corollary 7.1.8. Let Ω ⊂ F (g, α) be a proper dually convex domain. Let Λ be a photon
such that Λ ∩ Ω ̸= ∅. Then Λ ∩ Ω is connected and Λ ∩ Ω = Λ ∩ Ω.

Proof. Since Oρ
Ω is convex and ιρ(Λ) is a projective line (Lemma 7.1.2), the

intersection ιρ(Λ) ∩ Oρ
Ω is connected. Since Λ ⊂ F (g, α), it is equal to the

intersection ιρ(Λ) ∩ Oρ
Ω ∩ ιρ(F (g, α)).

Now since ιρ(Ω) is both open and closed in Oρ
Ω ∩ ιρ(F (g, α)) (Proposition 7.1.7), the

set ιρ(Λ)∩ ιρ(Ω) is both open closed in ιρ(Λ)∩Oρ
Ω ∩ ιρ(F (g, α)) = ιρ(Λ)∩Oρ

Ω. It is thus a
union of connected components of ιρ(Λ) ∩Oρ

Ω. But by convexity of Oρ
Ω and Lemma 7.1.2,

the set ιρ(Λ) ∩ Oρ
Ω is connected. Hence we have

ιρ(Λ ∩ Ω) = ιρ(Λ) ∩ ιρ(Ω) = ιρ(Λ) ∩ Oρ
Ω, (7.1.3)

and in particular, the set ιρ(Λ ∩ Ω) is connected. Thus so is Λ ∩ Ω.
To prove that Λ ∩ Ω = Λ ∩ Ω, we just need to prove the inclusion Λ ∩ Ω ⊂ Λ ∩ Ω, the

other one being straightforward. By (7.1.3), one has

ιρ(Λ) ∩ Oρ
Ω = ιρ(Λ) ∩ ιρ(Ω) = ιρ(Λ ∩ Ω),

the first equality holding again by convexity of Oρ
Ω. On the other hand, we have

ιρ(Λ ∩ Ω) = ιρ(Λ) ∩ ιρ(Ω) ⊂ ιρ(Λ) ∩ Oρ
Ω.

Hence, by injectivity of ιρ, we have Λ ∩ Ω ⊂ Λ ∩ Ω. This proves the second assertion. □
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Let us finish this section by stating a natural property of proper dually convex domains
in Nagano spaces of real type, which they share with domains that are properly convex in
an affine chart, as announced in Remark 3.3.3:

Proposition 7.1.9. Let Ω ⊂ F (g, α) be a proper dually convex domain. We
have Ω = int(Ω).

Proof. Since Ω is an open set contained in Ω, it is contained in int(Ω). Let us prove the
converse inclusion. We may assume that Ω is a proper domain in Astd.

Let us assume for a contradiction that there exists a ∈ int(Ω) ∩ ∂Ω. By Proposi-
tion 7.1.7, we have ιρ(a) ∈ ∂Oρ

Ω.

On the other hand, since ιρ(Ω) ⊂ Oρ
Ω, we have

int(Ω) ⊂ int(ι−1
ρ (Oρ

Ω)).

But since ι is a homeomorphism onto its image, we have int(ι−1
ρ (Oρ

Ω)) = ι−1
ρ (Oρ

Ω)). Hence:

int(Ω) ⊂ ι−1
ρ (int(Oρ

Ω)).

Now one has int(Oρ
Ω) = Oρ

Ω by openness (again by Proposition 7.1.7) and convexity of Oρ
Ω.

Hence we have:

int(Ω) ⊂ ι−1
ρ (Oρ

Ω),

in other words ι(int(Ω)) ⊂ Oρ
Ω. Thus we have ι(a) ∈ Oρ

Ω ∩ ∂Oρ
Ω, contradiction.

Thus ∈ int(Ω) ⊂ Ω. □

Remark 7.1.10. Proposition 7.1.9 does not hold anymore in the conformal
sphere F (so(n, 1), α1) = Sn−1. Indeed, take for instance x ∈ F(g,α)(X(so(n, 1), α1))
(recall the map F(g,α) from Equation (5.1.6)) and let Ω := F(g,α)(X(so(n, 1), α1)) ∖ {a}.
Then by Example 3.1.12, the domain Ω is proper and dually convex in Sn−1,
but int(Ω) = F(g,α)

(
X(so(n, 1), α1)

)
̸= Ω.

7.2 R-extremality

In this section, generalizing notions from projective geometry, we define the R-faces
and the R-extremal points of a proper domain Ω in an irreducible Nagano space of real
type; see Section 7.2.1. In Section 7.2.2, we investigate the connection between R-faces
and the Kobayashi metric. This allows us to relate the structure of the boundary of a
proper domain to the dynamics of its automorphism group and to establish a generalization
of Fact 1.1.1 in Lemma 7.2.10. In particular, Theorem 7.2.6 will play a key role in the
rigidity proofs of Chapter 8. This theorem distinguishes the geometric properties of proper
almost-homogeneous domains in higher-rank Nagano spaces from those of real projective
space; see Remark 7.2.7.
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7.2.1 R-faces

In [LZ19], a notion of R-face and R-extremal point is defined using rank-one lines (i.e.
photons, in the setting of this memoir) in Grassmannians. In [Gal24, ?], inspired by the
definition of Limbeek–Zimmer, we introduce analogous notions, using the classical photons
of Einstein universe in the first case, and the photons in Shilov boundaries associated
with HTT Lie groups in the second (see Section 6.3.4.2). Here we generalize these three
notions of faces to the context of Nagano spaces of real type.

We fix an irreducible Nagano pair of real type (g, α). The following definition extends
to all of Ω the relation ↭, introduced on a proper domain Ω ⊂ F (g, α) in Section 6.4.1:

Definition 7.2.1. Let Ω ⊂ F (g, α) be a proper domain, and let a, b ∈ Ω. We say
that a↭R b (or simply a↭ b if the context is clear) if there exists a photon Λ through a
and b, such that a and b belong to the same connected component of the relative interior
of Λ ∩ Ω in Λ.

The R-face of a, denoted by FR
Ω (a), is the set of points c ∈ ∂Ω for which there

exist N ∈ N and a sequence a0 = a, a1, . . . , aN = c ∈ ∂Ω such that for all 0 ≤ i < N , we
have ai ↭ ai+1.

A point a ∈ ∂Ω is said to be R-extremal if FR
Ω (a) = {a}.

Example 7.2.2. In all the following examples (except Point(3)), the closures of R-faces
of the domain coincide with its dual faces defined in Section 3.1.1.3:

1. Let x, y ∈ Einn−1,1 be two transverse points contained in Astd such that y ∈ I+(x),
and let D := D(x, y). Then

ExtrR(D) = {x, y} ∪ (C+(x) ∩C−(y)).

The nontrivial R-faces of D are the intervals of photons having either x or y as an
extremity. See Figure 7.1.

y

x

Figure 7.1 – R-faces of the diamond : in blue, the R-extremal points; in red, a nontriv-
ial R-face.

2. In the notation of Section 3.3.1, let Ω := B ⊂ Grp(Rp+q). In the notation of Propo-
sition 3.3.1, one has

B =

{[
Ip
X

]
| ||X||2 < 1

}
.
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One has ∂B =
⊔p−1
i=0 Bi, where

Bi := {V ∈ Grp(Rp+q) | sgn(b|V×V ) = (i, 0, p− i)}
= PO(p, q) · Span(e1 + ep+1, . . . , ei + ep+i, ei+1, . . . , ep)

= PO(bstd) ·

 Ip
Ii 0
0 0

 .
Since PO(bstd) = AutPGL(p+q,R)(Ω), it suffices to determine the R-faces of the

points xi :=

 Ip
Ii 0
0 0

, with 0 ≤ i ≤ p− 1. An explicit computation gives

FR
Ω (xi) =

{ Ip
Ii 0
0 M

 |M ∈ Matq−i,p−i(R), ||M ||2 < 1
}
.

Thus the R-extremal points of B are the elements of the orbit PO(p, q) · x0, i.e. the
totally isotropic p-planes of (Rp,q,bstd).

3. If Ω ⊂ F (g, α) is a proper dually convex domain, then Ω is an R-face of Ω.

4. If (g, α) = (sl(n,R), α1), then by Remark 6.3.19 the R-faces of a properly convex
domain of F (g, α) = P(Rn) coincide with its classical projective faces.

The following proposition generalizes a well-known fact of convex projective geometry:

Proposition 7.2.3. Let Ω ⊂ F (g, α) be a proper domain. Let a ∈ ∂Ω and let b ∈ Ω∗ be
such that a ∈ Zb. One has FR

Ω (a) ⊂ Zb.

Proof. Let Λ be a photon through x such that x ∈ intrelΛ(∂Ω ∩ Λ). We may assume
that Ω ⊂ Astd, x = p+ and Λ = Λstd.

Let (G, ρ, V ) be a Plücker triple of F (g, α). Let v0 ∈ V ωα ∖ {0}, and let f ∈ V ∗ ∖ {0}
be a lift of ι−ρ (b). By Lemma 5.2.1, we have, for all t ∈ R:

f(exp(tv−) · p+) = f(v0 + tρ∗(v
−) · v0) = tf(ρ∗(v

−) · v0). (7.2.1)

Note that v0 is a lift of ιρ(x) ∖ {0}. Since Ω is connected and b ∈ Ω∗, we may lift ιρ(Ω)
to a proper connected cone C of V containing v0 such that f(v) ̸= 0 for all v ∈ C. By
connectedness of C, we may assume that f(v) > 0 for all v ∈ C.

Note that there exists ϵ > 0 such that [v0 + tv−] ∈ ιρ(∂Ω) for all t ∈]− ϵ, ϵ[ . Thus we
have tf(ρ∗(v

−) · v0) = f(v−) ≥ 0 for all t ∈] − ϵ, ϵ[. This implies that f(v−) = 0. Hence
by Equation (7.2.1), we have f(exp(tv−) · v0) = 0 for all t ∈ R. This implies that Λ ⊂ Zb.

By definition of FR
Ω (x), we have FR

Ω (x) ⊂ Zb. □

Remark 7.2.4. Proposition 7.2.3 implies in particular that the R-face of a boundary
point of a proper dually convex domain of F (g, α) is included in its dual face.
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In projective space P(Rn), the extremal points of a properly convex open subset gen-
erate Rn, by Krein–Milman’s Theorem. In Nagano spaces of real type, the existence of
Plücker triples allows to recover this property for R-extremal points of proper domains:

Lemma 7.2.5. Let (g, α) be n irreducible Nagano pair of real type and (G, ρ, V ) a Plücker
triple of (g, α). Let Ω ⊂ F (g, α) be a proper domain. Then (projective) extremal points
of OΩ are images of R-extremal points of Ω. In particular, the set ExtrR(Ω) is nonempty
and generates V , in the sense that there exist x1, . . . , xD ∈ ExtrR(Ω) such that

V = ιρ(x1)⊕ · · · ⊕ ιρ(xD).

Proof. Let O := Oρ
Ω be the convex hull of ιρ(Ω) in P(V ) defined in Section 7.1.2. Given two

distinct points x, y ∈ O, we denote by (x, y) the unique connected component of ℓ∖{x, y}
intersecting O, where ℓ is the unique projective line containing x and y.

Let x be an extremal point of O. Then by definition of O, there exists z ∈ Ω such
that x = ιρ(z). Moreover, z /∈ Ω because ιρ(Ω) ⊂ O. Then z ∈ ∂Ω. If z is not R-extremal,
then there exists a rank-one line ℓ and a, b ∈ ℓ∩∂Ω such that a, z, b are distinct and aligned
in this order. Then z is included in the nontrivial projective interval (ιρ(a), ιρ(b)) of O,
which contradicts the fact that x is R-extremal.

Hence every R-extremal point of O is the image of an R-extremal point of ∂Ω. Thus
by Krein–Milman’s theorem, the convex set O is the open convex hull (in a suitable affine
chart) of ιρ(ExtrR(Ω)). Hence the result by openness of O. □

7.2.2 Geometric and dynamical properties of extremal points

In [LZ19], Limbeek–Zimmer investigate the geometric properties of R-extremal points
of proper divisible domains of Grp(R2p). In this section, following their strategy, we inves-
tigate the relation between the structure of the boundary of a proper almost-homogeneous
domain in a Nagano spacce of real type and the dynamics of its automorphism group.
Whenever Ω is almost-homogeneous, R-extremal points satisfy the following geometric
property:

Theorem 7.2.6. Let (g, α) be an irreducible Nagano pair of real type. Assume that Ω is a
proper almost-homogeneous domain of F (g, α). Let a ∈ ∂Ω be an R-extremal point. Then
there exists b ∈ Ω∗ such that id ∈ pos(α,i(α))(p, q). In particular, if F (g, α) is self-opposite,
then a ∈ Ω∗.

Remark 7.2.7. 1. If (g, α) = (sl(n,R), α1), then Theorem 7.2.6 simply states that ev-
ery extremal point of a proper almost-homogeneous domain Ω of F (g, α) = P(Rn) is
contained in a projective hyperplane tangent to Ω. But this directly follows from the
convexity of Ω (since almost-homogeneity implies convexity by Proposition 3.1.11)
and does not distinguish extremal points from other points of ∂Ω. This phenomenon
arises because, in this case, we have |W∆∖{α}\W/W∆∖{i(α)}| = 2, meaning that
for any pair (x,H) ∈ P(Rn) × P((Rn)∗), the only possible transversality degrees
between x and H are: either x ∈ H or x /∈ H. This example illustrates that
the smaller the cardinality of the set W{α}\W/W{i(α)} is, the weaker the geometric
property of R-extremal points stated in Theorem 7.2.6 becomes.
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2. Theorem 7.2.6 tells us that proper almost-homogeneous domains in higher-rank
Nagano spaces of real type F (g, α) cannot be strictly convex, in the sense that
not all points of ∂Ω can be R-extremal. Indeed, let x ∈ Ω, and let Λ be a photon
through x. Then by properness there exists a ∈ Λ ∩ ∂Ω. If a ∈ ExtrR(Ω), then
by Theorem 7.2.6, there exists b ∈ Ω∗ such that id ∈ pos({α},{i(α)})(a, b). Then, by
Lemma 6.3.9 and the higher-rank assumption, we must have x ∈ Zb, contradicting
the assumption that b ∈ Ω∗. This shows that there exist points in ∂Ω that are
not R-extremal.

This observation thus distinguishes proper almost-homogeneous domains in real pro-
jective space (which can be strictly convex, as we will discuss in Section 8.2) from
those in higher-rank Nagano spaces of real type. We will further explore this dis-
tinction in Section 8.2.

For the proof of Theorem 7.2.6, we fix an irreducible Nagano pair (g, α) of real type
and G ∈ G{α}(g), and follow the strategy of [LZ19, Thm 7.4]. We will need the following
definition:

Definition 7.2.8. Let Ω be a proper domain of F (g,Θ) and x, y ∈ Ω, and N ∈ N∗. Let
us define

KN
Ω (x, y) := inf

{
lenΩ(γ)

∣∣ γ ∈ CN
x,y(Ω)

}
.

Recall that lenΩ(γ) is the KΩ-length of the path γ (see Section 6.4.4). The
quantity KN

Ω (x, y) is finite if and only if the set CN
x,y(Ω) is nonempty.

The map KN
Ω : Ω×Ω→ R ∪ {∞} is AutG(Ω)-invariant. The sequence (KN

Ω (x, y))N∈N
is nonincreasing, eventually finite, and one has

KΩ(x, y) = lim
N→+∞

KN
Ω (x, y).

In classical convex projective geometry, two sequences of points of a properly convex
domain Ω of real projective space remaining at bounded Hilbert distance converge to
points lying on a common projective face of Ω. The following lemma is a generalization
of this fact.

Lemma 7.2.9. Let Ω ⊂ F (g,Θ) be a proper dually convex domain. Let a, b ∈ ∂Ω.
Assume that there exist (xk), (yk) ∈ ΩN such that xk → a and yk → b, and such that there
exist N ∈ N and M > 0 such that KN

Ω (xk, yk) ≤M for all k ∈ N. Then FR
Ω (a) = FR

Ω (b).
In particular, if a ∈ ExtrR(Ω), then a = b.

Proof. Note that we just need to prove that b ∈ FR
Ω (a). For any k ∈ N,

let γk = (x0k := xk, . . . , x
N
k := yk) ∈ CN

xk,yk
(Ω) be such that

N−1∑
i=0

KΩ(xki , x
k
i+1) = lenΩ(γk) ≤ KN

Ω (xk, yk) + 1 ≤M + 1,

the first equality holding because of Equation (6.4.6). Then, one has KΩ(xik, x
i+1
k ) ≤M+1

for all 0 ≤ i ≤ N − 1. Hence one can assume that N = 1, and the lemma follows by
induction.

146



Let us then assume that N = 1. For all k, the two points xk and yk lie in the same
connected component of the intersection Ik := Λk ∩ Ω of a photon Λk with Ω. Let ck, dk
be the endpoints of Ik such that ck, xk, yk, dk are aligned in this order. If gk ∈ G is
such that Λk = gk · Λstd and if we define ζk := ζg−1

k
(recall Equation (6.3.2)), then there

exist rk, sk, tk, uk ∈ P(R2), aligned in this order, such that

ζk(rk) = ck; ζk(sk) = xk; ζk(tk) = yk; ζk(uk) = dk.

Then Proposition 6.4.10 implies that

log(rk : sk : tk : uk) = kΩ(xk, yk) = KΩ(xk, yk) ≤M + 1.

Up to extracting, we may assume that there exist c, d ∈ ∂Ω such that ck → c and dk → d
as k → +∞, and also that there exist r, s, t, u ∈ P(R2) such that (rk, sk, tk, uk)→ (r, s, t, u).
For all k ∈ N, the points ck, xk, yk, dk lie on the same photon in this order, so c, a, b, d lie
on the same photon, in this order. Moreover, since for all k ∈ N we have (ck, dk) ⊂ Ω, we
have (c, d) ⊂ Ω. We have

log(r : s : t : u) ≤M + 1.

Thus either s, t ∈ (r, u) or s = t. Thus either a, b ∈ (c, d) or a = b. We have just proven
that b ∈ FR

Ω (a). □

We can now prove a generalization of Fact 1.1.1:

Lemma 7.2.10. Let Ω be a proper dually convex domain of F (g, α), and let a ∈ ExtrR(Ω).
If there exist (gk) ∈ AutG(Ω)N and x ∈ Ω such that gk · x → a, then for every compact
subset K ⊂ Ω, one has gk · K → {a} for the Hausdorff topology. In particular, this
sequence (gk) is {α}-contracting.

Proof. Let y ∈ Ω and N ∈ N such that KN
Ω (x, y) < +∞. Then, by AutG(Ω)-invariance

of KN
Ω , one has

KN
Ω (gk · x, gk · y) = KN

Ω (x, y) ∀k ∈ N.

Thus by Lemma 7.2.9, we have gk · y → a. This holds for all y ∈ Ω.

Let K ⊂ Ω be a compact subset. If the sequence gk · K does not converge to {a}
for the Hausdorff topology, then there is a neighborhood V of a in F (g,Θ) and a se-
quence (yk) ∈ KN such that gk · yk /∈ V for all k ∈ N. Since K is a compact subset
of Ω by Corollary 6.4.12, up to extracting we may assume that there exists y ∈ K such
that yk → y. Then (gk · y) converges to a. But KΩ(gk · yk, gk · y)→ 0, so gk · yk → a. But
this is impossible, since we assumed that yk /∈ V for all k.

Hence gk · K→ {a} for the Hausdorff topology. □

The proof of Theorem 7.2.6 will now follow from the next lemma:

Lemma 7.2.11. Let Ω is a proper domain of F (g, α). Let a ∈ Λ{α}(AutG(Ω)). Then there

exists b ∈ Ω∗ such that pos({α},{i(α)})(a, b) = id In particular, if F (g, α) is self-opposite,
then a ∈ Ω∗.
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Proof of Lemma 7.2.11. By definition of Λ{α}(AutG(Ω)), there exist a se-

quence (gk) ∈ AutG(Ω)N and a point b ∈ F (g, α)− such that gk · x → a
uniformly on compact subsets of F (g, α) ∖ Zb. Since Ω has nonempty interior, there
exists x ∈ Ω ∖ Zb. Hence gk · x→ a. Since the set{

y ∈ F (g,Θ)− | w0 ∈ pos({i(α)},{i(α)})(b, y)
}

is dense in F (g,Θ)− and Ω∗ has nonempty interior (see Section 3.1.1.2), we
can fix y ∈ Ω∗ such that w0 ∈ pos({i(α)},{i(α)})(b, y). Now let a′ ∈ F (g,Θ)
such that pos({α},{i(α)})(a′, y) = id. Then necessarily by Lemma 2.2.6 one
has pos({α},{i(α)})(a′, b) = w0. Hence we have gk · a′ → a. On the other hand, up to
extracing we may assume that (gk · y) converges to some c ∈ Ω∗. For all k ∈ N, we
have pos({α},{i(α)})(gk · a′, gk · y) = id, so by [KLP18, Lem. 3.15], we can take the limit
and get pos({α},{i(α)})(a, c) = id. □

We can now prove Theorem 7.2.6:

Proof of Theorem 7.2.6. Since Ω is almost-homogeneous, we can find x ∈ Ω
and (gk) ∈ AutG(Ω)N such that gk ·x→ a. Since Ω is dually convex By Proposition 3.1.11,
we know that Ω is dually convex. We can thus apply Lemma 7.2.10, and there
exists b ∈ F (g, α)− such that (gk) is {α}-contracting with respect to (a, b), in the sense
of Section 2.3.1. Thus a ∈ Λ{α}(AutG(Ω)). The theorem then follows by Lemma 7.2.11. □

7.2.3 The proximal limit set

In this section, using the results from Section 7.2.2, we prove Proposition 7.2.12 below,
which generalizes a well-known fact in convex projective geometry.

Let G be a noncompact semisimple Lie group and Θ be a subset of the simple re-
stricted roots of G. An element g ∈ G is Θ-proximal if it has two transverse fixed
points x ∈ F (g,Θ) and y ∈ F (g,Θ)− such that gn · z → x for all z ∈ F (g,Θ) ∖ Zy.
The points x and y are then uniquely defined by g. A subgroup H ≤ G is Θ-proximal if
it contains at least one proximal element. In this case, we define

Λprox
Θ (H) = {x ∈ F (g, α) | ∃g ∈ H, g proximal with attracting fixed point x}.

By definition, we have Λprox
Θ (H) ⊂ ΛΘ(H). We then have:

Proposition 7.2.12. Let (g, α) be an irreducible Nagano pair of real type,
and G ∈ G{α}(g). Let Ω ⊂ F (g, α) be a proper domain. If H ≤ AutG(Ω) acts
almost-homogeneously on Ω, i.e. if

{a ∈ ∂Ω | ∃(hn) ∈ HN, ∃x ∈ Ω, hn · x→ a} = ∂Ω,

then H is {α}-proximal and

Λprox
{α} (H) = ExtrR(Ω) = Λ{α}(H).

In the notation of Proposition 7.2.12, if H acts cocompactly on Ω, then it acts almost-
homogeneously. If Ω is almost-homogeneous, then the conditions of Proposition 7.2.12 are
satisfied for H = AutG(Ω).
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Proof of Proposition 7.2.12. Let us first prove that ExtrR(Ω) ⊂ Λprox
Θ (H). To this end

we use the strategy of the proof of [Bla21, Prop. 2.3.15]. Let a ∈ ExtrR(Ω), and
let (gk) ∈ HN, x ∈ Ω such that gk · x → a. By Lemma 7.2.10, there exists b ∈ F (g, α)−

such that gk · x→ a uniformly on compact subsets of F (g, α) ∖ Zb.
Let (G, ρ, V ) be a Plücker triple of (g, α). Then the sequence (ρ(gk)) is {α1}-

contracting in SL(V ). Thus there exists a rank-one endomorphism π1 ∈ End(V ) such

that ρ(gk)
||ρ(gk)|| → π1. Then Im(π1) = ιρ(a) and ker(π1) = ι−ρ (b). By Lemma 7.2.5, we do not

have ιρ(ExtrR(Ω)) ⊂ ι−ρ (b). Thus there exists a2 ∈ ExtrR(Ω) such that ιρ(a2) /∈ ker(π1).
Denoting a1 := a, by induction there exist dim(V ) points a1, a2, . . . , adim(V ) ∈ ExtrR(Ω)
and rank-one endomorphisms

π1, . . . , πdim(V ) ∈ End(V)∩ ρ(H)
End(V )

such that

ιρ(ai) = Im(πi) ∀ ≤ i ≤ dim(V );

ιρ(ai+1) /∈ ker(πi) ∀1 ≤ i ≤ dim(V )− 1.
(7.2.2)

Thus ιρ(ai) = πi(ai+1) ∈ ρ(H) · ιρ(ai+1) and

ai ∈ H · ai+1 ∀1 ≤ i ≤ dim(V )− 1. (7.2.3)

By induction, we thus have a ∈ H · ai+1.
Assume for a contradiction that a /∈ Λprox

{α} (H). Since Λprox
{α} (H) is closed and H-

invariant, by Equation (7.2.3) for all 1 ≤ i ≤ dim(V ) we have ai /∈ Λprox
{α} (H). By Equa-

tion (7.2.2), for all 1 ≤ i ≤ j ≤ dim(V ), we have ιρ(ai) = Im(πi ◦ πi+1 ◦ · · · ◦ πj).
Thus πi ◦ πi+1 ◦ · · · ◦ πj is not proximal. Thus ιρ(ai) ∈ ker(πi ◦ πi+1 ◦ · · · ◦ πj) = ker(πj).

We have just proved that for all 1 ≤ i ≤ j ≤ dim(V ), we have ιρ(ai) ∈ ker(πj). In
paricular, for all 1 ≤ i ≤ dim(V )− 1, we have

ιρ(ai+1) ∈ (ker(πi+1) ∩ · · · ∩ ker(πdim(V ))) ∖ ker(πi).

Thus the sequence (ker(πi) ∩ · · · ∩ ker(πdim(V )))1≤i≤dim(V ) is an increasing sequence of
nonempty vector subspaces of V . Thus dim(ker(πdim(V ))) ≥ dim(V ). This is in contradic-
tion with the fact that πdim(V ) ̸= 0. Thus a ∈ Λprox

{α} (H).

By closedness of Λprox
{α} (H), we have ExtrR(Ω) ⊂ Λprox

{α} (H).

Now let us prove that Λ{α}(H) ⊂ ExtrR(Ω). Let x ∈ Λ{α}(H). Let (gk) ∈ HN

and y ∈ F (g, α)− such that (gk) is {α}-contracting with respect to (x, y). By Lemma 7.2.5,
there exists z ∈ ExtrR(Ω) such that ιρ(z) /∈ ι−ρ (y). Thus z /∈ Zy, and gk · z → x.

By AutG(Ω)-invariance of ExtrR(Ω), we then have x ∈ ExtrR(Ω). We have proven
that Λ{α}(H) ⊂ ExtrR(Ω). We thus have

Λ{α}(H) ⊂ ExtrR(Ω) ⊂ Λprox
{α} (H) ⊂ Λ{α}(H).

Hence these inclusions are equalities. □
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Chapter 8

Divisible convex sets and rigidity

In this chapter, we study Question 1.2.1. First, we examine the general case in Sec-
tion 8.1, where we strengthen Facts 1.2.2 and 1.2.3, stated for quasi-homogeneous domains,
to the case of proper almost-homogeneous domains. Then, in Section 8.2, we focus on the
case of Nagano spaces of real type and prove Theorem 8.2.2 and its Corollary 8.2.3. In Sec-
tions 8.3, 8.4, 8.5 and 8.6, we conduct an in-depth study of proper almost-homogeneous
domains in the three key families of examples from Sections 2.4.2 to 2.4.4. The main
theorems are 8.3.1, 8.4.1, and 8.5.1. In Section 8.7, we investigate the rigidity of proper
divisible domains in a flag manifold that is not an irreducible Nagano space, see Proposi-
tion 8.7.1.Finally, in the last Section 8.8, we study closed proper manifolds locally modeled
on flag manifolds. Theorems 8.3.1 and 8.4.1 allow us to classify these manifolds when the
flag manifold is either a causal flag manifold or Einstein universe.

The results of this chapter will be interpreted and explained in Section 8.9, where we
will be able refine Question 1.2.1, see Conjecture 8.9.1.

Notation 8.0.1. For all this chapter, whenever we consider an irreducible Nagano
pair (g, α), we will use Notation 5.1.2.

8.1 The general case

Let us first note that we can strengthen Facts 1.2.2 and 1.2.3, using the formalism of
Section 3.1.1.1:

Lemma 8.1.1. Let g be a semisimple Lie algebra with no compact factors, and
write g = g1 ⊕ · · · ⊕ gk, where gi is a simple Lie algebra of noncompact type for
all 1 ≤ i ≤ k. For any subset Θ of the simple restricted roots of g, there exist subsets Θi

of the simple restricted roots of gi for all 1 ≤ i ≤ k such that Θ = Θ1 ∪ · · · ∪Θk. We then
have an AutΘ(g)-equivariant identification

F (g,Θ) ≃ F (g1,Θ1)× · · · ×F (gk,Θk). (8.1.1)

Now let Ω ⊂ F (g,Θ) be a proper almost-homogeneous domain. Then there exist proper
almost-homogeneous domains Ωi ⊂ F (gi,Θi) such that Ω = Ω1 × · · · × Ωk.
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Proof. Equation (8.1.1) is just a general fact on flag manifolds. For all 1 ≤ i ≤ k,
let Gi ∈ GΘi(gi). Then G := G1 × · · · ×Gk ∈ GΘ(g).

Let us denote by Ωi ⊂ F (gi,Θi) the image of Ω by the canonical Gi-equivariant
projection Πi : F (g,Θ)→ F (gi,Θi) for 1 ≤ i ≤ k, and let Ω′ := Ω1 × · · · × Ωk. Then Ω′

is a proper AutG(Ω)-invariant domain of F (g,Θ) containing Ω. Then by Lemma 3.1.7, we
have Ω = Ω′.

Moreover, note that for all 1 ≤ i ≤ k, the domain Ωi is almost-homogeneous,
since ∂Ωi ⊂ Πi(∂Ω) and Πi is Gi-equivariant. □

Lemma 8.1.2. Let g be a real simple Lie algebra of noncompact type and Θ a subset of the
simple restricted roots of g, with |Θ| ≥ 2. Then there are no proper almost-homogeneous
domains in F (g,Θ).

We do not give the proof of Lemma 8.1.1, as it is exactly the same as in [Zim18a],
replacing “quasi-homogeneous” by “almost-homogeneous”

8.2 Rigidity in Nagano spaces of real type

In this section, we analyze two properties of proper almost-homogeneous domains in
Nagano spaces of real type and of rank ≥ 2 (i.e. those different from real projective space).

As already mentioned in the introduction, in convex projective geometry, a famous
result by Benoist states the following:

Fact 8.2.1. [Ben01] Let Γ ≤ PGL(n,R) be a discrete subgroup acting cocompactly on a
proper strictly convex domain Ω ⊂ P(Rn). Then the following assertions are equivalent:

1. The group Γ is Gromov-hyperbolic.

2. The geodesic metric space (Ω,HΩ) is Gromov-hyperbolic, where HΩ is the Hilbert
metric on Ω (see Section 2.1.1.3).

3. The domain Ω is strictly convex.

In the case where F (g, α) is a Nagano space of real type of rank ≥ 2, if Ω ⊂ F (g, α)
is a proper domain, divisible (and even just almost-homogeneous) by a discrete sub-
group Γ ≤ G (where G ∈ G{α}(g)), it cannot be “strictly convex”, in the sense that
not all points of ∂Ω can be R-extremal (see Remark 7.2.7.(2)). However, a similar phe-
nomenon to that of Fact 8.2.1 occurs: Theorem 8.2.2 and Corollary 8.2.3, stated and
proven in Section 8.2.1 below, express that the geodesic metric space (Ω,KΩ) (geodesic by
Corollary 6.4.12 since Ω is divisible and hence dually convex by Proposition 3.1.11) can-
not be Gromov-hyperbolic, and nor can Γ. This is therefore a higher-rank phenomenon:
the divisible convex sets of F (g, α) obey the same principle as those of P(Rn) stated in
Fact 8.2.1, but excluding the hyperbolic behavior (which is a rank-one behavior).

In fact, strict convexity of Ω and the hyperbolicity of its Hilbert metric are not the
correct interpretations of the rank-one behavior in convex projective geometry: more gen-
erally, a divisible convex set Ω ⊂ P(Rn) is said to be rank-one if there exists a ∈ ∂Ω
such that [a, b] ∩ Ω ̸= ∅ for all b ∈ ∂Ω. Such divisible convex sets were introduced
by Islam [Isl25] and have properties analogous to real hyperbolic space [Ben03, Ben06,
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Cra09, CLT15, Zim23], although they are in general not strictly convex and hence not
Gromov-hyperbolic (equipped with their Hilbert metric). A. Zimmer [Zim23] proved that
all irreducible non-symmetric divisible convex sets are rank-one. Thus, all non-symmetric
divisible convex sets exhibit this “rank-one behavior”. We think this phenomenon is re-
lated to Question 1.2.1, and discuss it further in Section 8.9.2. We will see in Section 8.2.2,
in particular in Proposition 8.2.7, that one of the main properties of rank-one divisible
convex sets in P(Rn), proven by Blayac [Bla24], is not shared with proper divisible domains
of Nagano spaces of real type and of higher rank (in the sense of Definition 5.1.5).

8.2.1 Non-hyperbolicity of the Kobayashi metric

The analysis conducted in Chapter 7 on the boundary of proper almost-homogeneous
domains allows us to prove Theorem 1.4.9 below. Recall that if Ω is a proper almost-
homogeneous domain in an irreducible Nagano space of real type, then by Proposi-
tion 3.1.11 it is dually convex, and thus the metric space (Ω,KΩ) is proper and geodesic
by Corollary 6.4.12.

Theorem 8.2.2. Let (g, α) be an irreducible Nagano pair of real type and of higher rank
(in the sense of Definition 5.1.5). Let Ω ⊂ F (g, α) be a proper almost-homogeneous
domain. Then (Ω,KΩ) is not Gromov-hyperbolic.

An immediate corollary of Theorem 8.2.2 is the following:

Corollary 8.2.3 (see Corollary 1.4.10). Let (g, α) be an irreducible Nagano pair of real
type and of rank ≥ 2, and G ∈ G{α}(g). Let Ω ⊂ F (g, α) be a proper domain. If there
exists Γ ≤ AutG(Ω) dividing Ω, then Γ is not Gromov hyperbolic.

Proof of Corollary 8.2.3. Since Ω is divisible, it is almost-homogeneous. Now since Γ
acts cocompactly and properly discontinuously (Fact 3.1.3) on the proper geodesic metric
space (Ω,KΩ), by Svark–Milnor’s Lemma, by Theorem 8.2.2 the group Γ is not Gromov
hyperbolic. □

The aim of this section is to prove Theorem 8.2.2. This theorem and its Corollary 8.2.3
are proven in [Zim15] for (g, α) = (sl(p+ q,R), αp), with p, q ≥ 2. With the formalism on
Nagano spaces of real type that we have introduced, the proof given in [Zim15] generalizes
verbatim to any Nagano pair of real type and of higher rank. We give this proof for
convenience.

Remark 8.2.4. For the Nagano pairs (g, α) of the form (g, αr), where g is a HTT Lie
algebra of rank r ≥ 2 and αr the unique long root of g, and (so(p+1, q+1), α1) with p, q ≥ 1,
Theorems 8.3.1 and 8.4.1 will imply that proper almost-homogeneous domains of F (g, α)
are realizations of the higher-rank symmetric space X(g, α). Hence Corollary 8.2.3 is just
a consequence of the fact that the rank of X(g, α) is ≥ 2. Since Corollary 8.2.3 is already
proven in [Zim15], the cases at issue here are are the remaining higher-rank Nagano pairs
of real type, see Tables 8.1 and 8.2: (so(n, n), αn) for n ≥ 2, (e6(−4), α2) and (e7(−5), α2).
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We fix a higher-rank Nagano pair (g, α) of real type, a Plücker triple (G, ρ, V ) of (g, α),
and v0 ∈ V ωα ∖ {0}. We moreover take Notation 5.1.2. Let Ω ⊂ F (g, α) be a proper
almost-homogeneous domain. We may assume that Ω is contained in the standard affine
chart Astd and that P ∈ Ω. Then Λstd ∩ Ω ̸= ∅, so by properness of Ω there exists
some t ∈ R∖ {0} such that exp(tv−) · p+ ∈ ∂Ω. Up to dilating in Astd (see Section 5.1.1),
we may assume that a := exp(v−) · p+ ∈ ∂Ω.

If a was R-extremal, then by Theorem 7.2.6 there would exist ξ ∈ Ω∗ such
that id ∈ pos({α},{i(α)})(a, ξ). Then by Lemma 6.3.9 and the fact that (g, α) has higher
rank, we would have P ∈ Λstd ⊂ Zξ, contradicting the fact that ξ ∈ Ω∗. Thus a
is not R-extremal, i.e. its R-face is nontrivial. Thus by Lemma 6.3.3.(2), there ex-
ists w := Ad(ℓ)·v−, with ℓ ∈ L and δ > 0, such that {exp(v−+sw)·p+ | −δ ≤ s ≤ δ} ⊂ ∂Ω.
Up to considering Ad(ℓ0(

1
δ )) · w instead of w, we may assume that δ = 1, and

{exp(v− + sw) · p+ | −δ ≤ s ≤ δ} ⊂ ∂Ω.

By Corollary 7.1.8, there exists ε > 0 such that

{exp(tv− + sw) · p+ | 1− ε ≤ t < 1, −ε < s < ε} ⊂ Ω.

Since Ω is dually convex, there exists ξ ∈ Ω∗ such that a ∈ Zξ. But then, since FR
Ω (a) ⊂ Zξ

by Corollary 7.2.3, we also have

exp(v− + sw) · p+ ∈ Zξ ∀s ∈ (−1, 1). (8.2.1)

Let f ∈ V ∗∖ {0} be the unique lift of ι−ρ (ξ) such that f(v0) = 1. By Equation (8.2.1) and
Fact 2.3.4, we have

f(ρ(exp(v− + sw)) · v0) = 0 ∀s ∈ (−1, 1), (8.2.2)

and since this is a polynomial, we have f(ρ(exp(v− + sw) · v0) ·x0) = 0 for all s ∈ R. Note
that for all s, t ∈ R, we have

f(ρ(exp(tv− + sw) · v0) · x0) = 1 + sf(ρ∗(w) · v0) + tf(ρ∗(v
−) · v0) + tsf(ρ∗(v

−)ρ∗(w) · v0).
(8.2.3)

for t = 1, by Equation (8.2.2), this gives:

0 = 1 + sf(ρ∗(w) · v0) + f(ρ∗(v
−) · v0) + sf(ρ∗(v

−)ρ∗(w) · v0) ∀s ∈ R.

This implies: {
1 + f(ρ∗(v

−) · v0) = 0

f(ρ∗(w) · v0) + f(ρ∗(v
−)ρ∗(w) · v0) = 0.

This system allows us to simplify Equation (8.2.3):

f(ρ(exp(tv− + sw) · v0) · x0) = (1− t)(1 + sλ),

with λ := f(ρ∗(w) · v0).
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For s, t ∈ R, we write xt,s := exp(tv− + sw) · p+. By Proposition 6.4.10,
if xt1,s1 , xt2,s2 ∈ Ω, then:

KΩ(xt1,s1 , xt2,s2) ≥ CρΩ(xt1,s1 , xt2,s2)

≥
∣∣∣ log

∣∣∣[ξ : xt1,s1 : xt2,s2 : p−]ρ

∣∣∣∣∣∣
=
∣∣∣ log

∣∣∣ f(ρ(exp(t1v
− + s1w)) · v0)

f (ρ (exp(t2v− + s2w)) · v0)

∣∣∣∣∣∣
=
∣∣∣ log

∣∣∣(1− t1)(1 + s1λ)

(1− t2)(1 + s2λ)

∣∣∣∣∣∣.
(8.2.4)

By Corollary 7.1.8, for all 0 ≤ t < 1 there exist mt < 0 < Mt such that

Ω ∩ {exp(tv− + sw) · p+ | s ∈ R} = {exp(tv− + sw) · p+ | mt < s < Mt}.

Now let m := lim infs→1ms. Then {exp(v− + sw) · p+ | m ≤ s ≤ 0} ⊂ ∂Ω. By Corol-
lary 7.1.8, for any ε > 0 there exists δ > 0 such that

{exp(tv− + sw) · p+ | m+ ε ≤ s ≤ 0, 1− δ ≤ t < 1} ⊂ Ω.

Hence m + ε ≥ lim sups→1ms. This is true for all ε > 0, so m = lim sups→1ms.
Hence mt → m as t→ 1. Similarly, there exists M ∈ R≥0 such that Mt →M as t→ 1.

Up to replacing w with−w, we may assume thatM ≤ −1
λ . Hence λ < 0 and 1+mλ > 1.

The following lemma ends the proof of Theorem 8.2.2. Lemma 8.2.5 below is proven in
[Zim15] for (g, α) = (sl(p+ q,R), αp) with p, q ≥ 2, and the proof generalizes verbatim to
any higher-rank Nagano space of real type. We reproduce the proof for convenience.

Lemma 8.2.5. [Zim15] For any A > 0, there exists a geodesic rectangle in (Ω,KΩ) which
is not A-thin.

Proof. Let R > 2A + log(1 + mλ) + 2, s0 ∈ (m, 0) so that (m : s0 : 0 : M) > R + 1,
and t0 ∈ [e−1, 1) such that s0 ∈ (mt, 0) and (mt : s0 : 0 : Mt) > R for every t > t0. Note
that | log(t0)| ≤ 1.

Now for t1 ∈ (t0, 1), consider the (closed) segments of photon

γ1 = [xt0,s0 , xt0,0], γ2 = [xt0,0, xt1,0], γ3 = [xt1,s0 , xt1,0], γ4 = [xt0,s0 , xt1,s0 ].

By Proposition 6.4.10, each of the γi is a geodesic for KΩ. The concatenation of these
segments forms thus a geodesic rectangle in (Ω,KΩ).

Let us determine t1 ∈ (t0, 1) such that γ is not A-thin. By properness of KΩ, there
exists u0 ∈ (t0, 1) so that KΩ(xu0,s0 , γ1) ≥ A.

Let t ∈ (t0, t1).

1. Let us first assume that log 1−u0
1−t ≤ R−A− | log(t0)|.
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Then since | log(t/u0)| ≤ | log(t0)|, one has (0 : u0 : t : 1) = log (1−u0)t
(1−t)u0 ≤ R − A.

Thus one has

KΩ(xu0,s0 , xt,0) ≥ KΩ(xu0,s0 , xu0,0)

−KΩ(xu0,0, xt,0)

≥ (mu0 : s0 : 0 : Mu0)− (0 : u0 : t : 1)

≥ R− (R−A) = A.

Thus the geodesic rectangle γ is not A-thin.

2. Now let us assume that log 1−u0
1−t ≥ R − A − | log(t0)|. By Equation (8.2.4) and

definition of R one has

KΩ(xu0,s0 , xt,0) ≥ log
1− u0
1− t

+ log(1 + s0λ)

≥ log
1− u0
1− t

− | log(t0)| − | log(1 + s0λ)|

≥ R−A− 2| log(t0)| − log(1 +mλ) ≥ A

since | log(t0)| ≤ 1. Thus the geodesic rectangle γ is not A-thin.

In any case, the rectangle γ is not A-thin. □

8.2.2 Almost-homogeneous domains are not of rank one

In [Bla24], Blayac proved the following: if Ω ⊂ P(Rn) (n ≥ 2) is an irreducible convex
domain of rank one, divisible by some discrete subgroup Γ ≤ PGL(n,R), then one has

Λprox
{α1}(Γ) = ∂Ω.

On the other hand, A. Zimmer proved [Zim23] that any nonsymmetric irreducible divisible
convex domain is of rank one. This gives:

Theorem 8.2.6. [Bla24, Zim23] Let n ≥ 2. If Ω ⊂ P(Rn) is a nonsymmetric irreducible
convex domain, divisible by some discrete subgroup Γ ≤ PGL(n,R), then one has

Λprox
{α1}(Γ) = ∂Ω.

Given Lemmas 7.2.11 and 6.3.9, as well as Proposition 7.2.12, we observe that the sit-
uation is different whenever F (g, α) is of higer rank, in the sens of Definition 5.1.5. In this
case, if Ω ⊂ F (g, α) is a proper almost-homogeneous domain, then by Proposition 7.2.12,
we have

Λprox
{α} (AutG(Ω)) = Λ{α}(AutG(Ω)).

Let x ∈ Ω, and Λ be a photon through x. Then there exists a ∈ Λ ∩ ∂Ω.
If a ∈ Λ{α}(AutG(Ω)), then by Lemma 7.2.11, there exists b ∈ Ω∗ such that

pos({α},{i(α)})(a, b) = id

Then, by Lemma 6.3.9 and since

|W∆∖{α}\W/W∆∖{α}| ≥ 3,

we must have x ∈ Zb, which contradicts the fact that b ∈ Ω∗. Thus, we have just proved:
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Proposition 8.2.7. Let (g, α) be an irreducible Nagano pair of real type and of higher
rank. Then, for any proper almost-homogeneous domain Ω ⊂ F (g, α), we have

∂Ω ∖ Λ{α}(AutG(Ω)) ̸= ∅.

In particular, if Ω is divisible by some Γ ≤ G, then it is almost-homogeneous, and we
have ∂Ω∖Λ{α}(Γ) ̸= ∅. We see that this situation is very different than the real projective
case described in Theorem 8.2.6.

8.3 Rigidity in causal flag manifolds

If g is a HTT Lie algebra of real rank r ≥ 1, then recall that diamonds in Sb(g) have
been defined in Section 3.5.1 and are the realizations of the noncompact dual X(g, αr) of
the Nagano space Sb(g). In this section, we prove:

Theorem 8.3.1 (see Theorem 1.4.14). Let g be a HTT Lie algebra. Any almost-
homogeneous domain of Sb(g) is a diamond.

Since diamonds of Sb(g) are symmetric domains (see Fact 3.5.5), Theorem 8.3.1
implies that any proper almost-homogeneous domain in Sb(g) is a diamond, providing
a positive answer to Question 1.2.1 for any HTT Lie group G of rank r ≥ 1
and G/P = G/P{αr} = Sb(g).

Corollary 1.4.15 then directly follows from Theorem 8.3.1, and Lemmas 8.1.1.

Let us give an outline of the proof of Theorem 8.3.1. Let g be a HTT Lie algebra of real
rank r ≥ 1 and G ∈ G{αr}(g). Let Ω ⊂ Sb(g) be a proper almost-homogeneous domain.
By almost-homogeneity, the domain Ω is dually convex (see Proposition 3.1.11), that is,
for any a ∈ ∂Ω there is a supporting hypersurface to Ω at a of the form Zz. However,
we know by Theorem 7.2.6 that if a is R-extremal, then this supporting hypersurface Zz
can actually be taken to be Za itself. This Theorem, applied to two strongly R-extremal
points a0, b0 ∈ ∂Ω (see Section 8.3.2), which are the candidates for the extremities of Ω
(since we want to prove that Ω is a diamond), implies that Ω is contained in the dia-
mond D(a0, b0) (Section 8.3.3). In Section 8.3.3, we prove that Ω = D(a0, b0). The key
point is the inclusion AutG(Ω) ≤ AutG(D(a0, b0)), which implies, by almost-homogeneity,
that Ω is closed in (and hence equal to) the diamond D(a0, b0). This inclusion holds
because any automorphism of Ω preserves the pair {a0, b0}; this fact is proven in Propo-
sition 8.3.8, and essentially characterizes D(a0, b0) (Fact 3.5.5).

Remark 8.3.2. Let us recall that in our joint work with Chalumeau [CG24], we prove
Theorem 1.4.17, i.e. we establish the rigidity of proper almost-homogeneous domains in
Einp,q (p, q ≥ 1). In the case where q = 1, we give in [CG24, Sect. 6.3] a different proof
from the general case, relying on causality arguments; a key argument is [CG24, Lem.
6.4]. In Section 8.3.2 below, we extend this argument to arbitrary causal flag manifolds,
see Lemma 8.3.5, in order to prove Theorem 8.3.1.
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8.3.1 Proper domains in Θ-positive flag manifolds

Before starting the proof of Theorem 8.3.1, let us develop on its main corollary, namely
Corollary 8.3.4 below. To this end, in this section, we recall the notion of Θ-positivity
of Guichard–Wienhard, and state their classification of Θ-positive flag manifolds (see
Fact 8.3.3).

Let g be a real simple Lie algebra of noncompact type, and let Θ be a subset of the
simple restricted roots of g. For all α ∈ Θ, let

Σ+
α := {β ∈ Σ+

{α} | β − α ∈ Span(∆∖{α})}.

By [Kos10], the Levi subgroup LΘ acts irreducibly on u−α :=
⊕

β∈Σ+
α
g−β.

As defined in [GW25], the flag manifold F (g,Θ) admits a positive structure (resp. the
Lie algebra g admits a Θ-positive structure) if for all α ∈ Θ, there exists a properly con-
vex L0

Θ-invariant open cone cα ⊂ u−α . More generally, a real semisimple Lie algebra g with
no compact factors admits a Θ-positive structure, where Θ is a subset of the simple re-
stricted roots of g, if there exist two decompositions g = g1⊕· · ·⊕gN and Θ = Θ1⊔· · ·⊔ΘN ,
where the gi are real simple Lie algebras of noncompact type, Θi a subset of the simple
restricted roots of gi such that gi admits a Θi-positive structure. Thus, the study of posi-
tivity reduces to the case where g is simple. Guichard–Wienhard have established the flag
manifolds admitting a positive structure:

Fact 8.3.3. [GW25] Let g be a real simple Lie aglebra of noncompact type, and let Θ be
a subset of the simple restricted roots of g. The flag manifold F (g,Θ) admits a positive
structure if and only if the pair (g, α) satisfies one of the following conditions:

1. The Lie algebra g is split, and Θ = ∆.

2. The Lie algebra g is HTT of real rank r ≥ 1, and Θ = αr.

3. One has g = so(p+ 1, p+ k) with p, k > 1, and Θ = {α1, . . . , αp} (in the notation of
Example 2.2.1.(2)).

4. The Lie algebra g is the real form of e4,C, e6,C, e7,C or e8,C whose root system is F4,
and Θ = {α1, α2}, where α1 and α2 are the unique long simple restricted roots.

Theorem 8.3.1, Lemma 8.1.1 and Fact 8.3.3 give us a complete classification of proper
almost-homogeneous domains in positive flag manifolds:

Corollary 8.3.4 (see Corollary 1.4.16). Let g be a real semisimple Lie algebra with no
compact factors, and Θ be a subset of the simple restricted roots of g such that g ad-
mits a Θ-positive structure. Then all proper almost-homogeneous domains of F (g,Θ)
are symmetric. More precisely, we have the following description of the proper almost-
homogeneous domains in F (g,Θ): write g = g1 ⊕ · · · ⊕ gN and Θ = Θ1 ⊔ · · · ⊔ΘN , where
the gi are real simple Lie algebras of noncompact type, Θi a subset of the simple restricted
roots of gi such that gi admits a Θi-positive structure. Then:

1. If for all 1 ≤ i ≤ N , one has |Θi| = 1, then for all i the Lie algebra gi is HTT
and F (gi,Θi) = Sb(gi). The proper almost-homogeneous domains of F (g,Θ) are
the products of diamonds of the F (gi,Θi) for all 1 ≤ i ≤ N .
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2. If there exists 1 ≤ i ≤ N such that |Θi| ≥ 2, then there are no proper almost-
homogeneous domains in F (g,Θ).

Proof. Let us prove point (1). By Lemma 8.1.1, it reduces to the case where g is simple.
Fact 8.3.3 tells us that the only case where |Θ| = 1 and g admits a Θ-positive structure is
when g is HTT and F (g,Θ) = Sb(g). Point (1) then follows from Theorem 8.3.1.

To prove point (2), it suffices to notice that if F (g,Θ) contained a proper almost-
homogeneous domain, then by Lemma 8.1.1, the flag manifold F (gi,Θi) would also con-
tained one, which is impossible by Lemma 8.1.2. □

8.3.2 Strongly R-extremal points

Let g be a HTT Lie algebra. In this section, we define a specific type of R-extremal
points of a proper domain Ω ⊂ Sb(g). In the case where Ω is almost-homogeneous, we
will want to prove that it is a diamond, and these points will be the candidates for the
extremities of Ω.

We say that a point a ∈ ∂Ω is strongly R-extremal if either C−(a) ∩ Ω = {a}
or C+(a) ∩ Ω = {a}.

In general, there are less strongly R-extremal points than R-extremal points. How-
ever, the next lemma shows that strongly R-extremal points always exist.

Lemma 8.3.5. For any x ∈ Ω there exist at least two strongly R-extremal
points a ∈ J−(x) and b ∈ J+(x).

Proof. Up to translating Ω in Astd, we may assume that x = p+. Since c0 is a properly
convex cone of u−, there is a nonzero linear form f of u− such that c0 ∖ {0} is contained

in {f > 0}. Let X ∈ u− be the element of φ−1
std(Ω)∩ (−c0) such that f(X) ∈ R is minimal.

Then a := exp(X) · p+ lies in ∂Ω.

Let us show that a is strongly R-extremal. Let y ∈ C−(a). Write y = exp(Y ) · p+
with Y ∈ X − ∂c0. Then one has

f(X − Y ) ≥ 0, with equality if and only if y = a. (8.3.1)

If moreover y ∈ ∂Ω, then y ∈ J−(x)∩Ω, so f(Y ) ≥ f(X). Then, by Equation (8.3.1), one
has y = a. Hence a is strongly R-extremal. □

Remark 8.3.6. 1. In Lemma 8.3.5, we do not need Ω to be almost-homogeneous.

2. By Lemma 6.3.7, the fact that the trace in Astd of any photon through a
point x ∈ Astd is contained in C(x) (see Section 6.3.4.2) and the fact that c0 is a
properly convex cone in u−, strongly R-extremal points are always R-extremal,
but the converse is false in general. For instance, for G = SO(n, 2), take x, y ∈ Astd

with y ∈ I+(x). Then D(x, y) has exactly two strongly R-extremal points, namely x
and y. The points of C+(x) ∩C−(y) are R-extremal but not strongly R-extremal.
See also Figure 8.1.
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3. Contrary to the notion of R-extremality, that of strong R-extremality is here only
defined for a domain Ω which is proper in Astd. It is not clear at first that this
second notion is invariant under AutG(Ω). We will only need this invariance in the
almost-homogeneous case; see Lemma 8.3.8.

(−c0) ∩ φ−1
std(Ω)

0

X
{f = f(X)}

{f = 0}

Figure 8.1 – Existence of strongly R-extremal points (see the proof of Lemma 8.3.5).
In blue is the intersection of φstd(Ω) with −c0. Note that the point X of the proof of
Lemma 8.3.5 is not necessarily unique if Ω is any proper domain of Astd.

8.3.3 End of the proof of Theorem 8.3.1

In this section, we finish the proof of Theorem 8.3.1. We fix a HTT Lie aglebra g
and G ∈ G{αr}(g). We fix Ω ⊂ Sb(g) a proper almost-homogeneous domain. By Sec-

tion 2.2.6.1, for all a ∈ ∂Ω there exist (gk) ∈ AutG(Ω)N and x ∈ Ω such that gk · x→ a.
We may assume that Ω is proper in Astd. Let x ∈ Ω and let a0 ∈ ∂Ω ∩ J−(x)

and b0 ∈ ∂Ω ∩ J+(x) be two strongly R-extremal points of ∂Ω given by Lemma 8.3.5.
Then in particular a0, b0 ∈ ExtrR(Ω) (Remark 8.3.6.(2)), so by Theorem 7.2.6, one has

Ω ∩ Za0 = Ω ∩ Zb0 = ∅. (8.3.2)

By reflexivity, one has x ∈ J+(a0). By Equation (8.3.2), we also know that x /∈ Za0 . Then,
by Fact 2.4.5.(1), one has x /∈ C(a0), and hence x ∈ I+(a0). Similarly, one has x ∈ I−(b0).
Hence x ∈ D(a0, b0). By connectedness of Ω, we then have the inclusion

Ω ⊂ D(a0, b0). (8.3.3)

The goal of the rest of this section is to prove the converse inclusion. First observe that a0
and b0 are characterized among R-extremal points of ∂Ω by a geometric property:

Lemma 8.3.7. Let a ∈ ExtrR(Ω) be such that I+(a) ∩ Ω ̸= ∅ (resp. I−(a) ∩ Ω ̸= ∅).
Then a = a0 (resp. a = b0).

Proof. Let us prove the Lemma for I+(a) ∩ Ω ̸= ∅, the proof being similar for the case
where I−(a) ∩ Ω ̸= ∅. Since a is R-extremal, by Theorem 7.2.6, one has Za ∩Ω = ∅, so
by connectedness, the set Ω is included in one of the connected components of Astd ∖ Za.
Since I+(a) ∩ Ω ̸= ∅, one has Ω ⊂ I+(a). But then one has a0 ∈ Ω ⊂ J+(a). By
Equation (8.3.3), we also have a ∈ Ω ⊂ J+(a0). By antisymmetry this implies a = a0. □
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Using Lemma 2.4.6, we can now prove:

Proposition 8.3.8. Let g ∈ AutG(Ω). Then g · a0, g · b0 ∈ {a0, b0}.

Proof. Let us prove the proposition only for a0, the case of b0 being similar. Up to
translating Ω in Astd, one can assume that a0 = p+. Since g · p+ = g · a0 ∈ Ω ⊂ Astd,
by Lemma 2.4.6 there is a neighborhood U of P such that g · (U ∩ I+(p+)) ⊂ Iδ(g · p+)
for some δ ∈ {−,+}. Since P ∈ ∂Ω, there exists z ∈ U ∩ Ω. Since g ∈ AutG(Ω), one
has g·z ∈ Ω. Hence g·z ∈ Ω∩Iδ(g·p+) ̸= ∅. Then, by Lemma 8.3.7, we must have g·a0 = b0
if δ = +, and g · a0 = b0 if δ = −. □

We have shown in Proposition 8.3.8 that for any g ∈ AutG(Ω), the element g stabilizes
the pair {p0, q0}. Then AutG(Ω) preserves the set Sb(g)∖ (Za0 ∪Zb0), and hence permutes
its connected component. Since Ω ⊂ D(a0, b0) is AutG(Ω)-invariant, the group AutG(Ω)
preserves the connected component D(a0, b0) of Sb(g) ∖ (Za0 ∪Zb0). Then:

AutG(Ω) ≤ AutG(D(a0, b0)).

Since D(a0, b0) is proper, Lemma 3.1.7 implies that Ω = D(a0, b0). This concludes the
proof of Theorem 8.3.1.

8.4 Rigidity in Einstein universe

Let p, q ≥ 1. Recall that diamonds of Einp,q have been defined in Secyion 3.4.2, and
are realizations of the X(so(p+1, q+1), α1) in Einp,q. In this section, we provide the proof
of Theorem 8.4.1 below, coming from a collaboration with Adam Chalumeau [CG24]:

Theorem 8.4.1 (with Chalumeau, see Theorem 1.4.17). Let p, q ≥ 1. Every almost-
homogeneous domain of F (so(p+ 1, q + 1), α1) = Einp,q is a diamond.

Since diamonds of Einp,q are symmetric domains (see Section 3.4.2 — so also
Fact 5.1.12), Theorem 8.4.1 implies that any proper almost-homogeneous domain
in Einp,q is symmetric, providing a positive answer to Question 1.2.1 for any Lie group G
locally isomorphic to SO(p+ 1, q + 1) and G/P = G/P{α1} = Einp,q.

8.4.1 Notation and outline of the proof

Let us fix some notation for the proof of Theorem 8.4.1. We fix once and for all a
proper almost-homogeneous domain Ω ⊂ Einp,q. Identifying G := PO(p + 1, q + 1) with
its image under Ad, we have G ∈ G{α1}(so(p + 1, q + 1)) to be G := PO(p + 1, q + 1).

According to Section 3.1.1.1, for all a ∈ ∂Ω there exists (gk) ∈ AutG(Ω)N and x ∈ Ω such
that gk · x→ a.

We consider the Plücker triple (PO(p + 1, q + 1), ρ1,Rp+q+2) of (so(p + 1, q + 1), α1)
defined in Equation (2.4.11). Recall that ιρ1 , ι

−
ρ1 are described in Equation (2.4.12) and

that ιρ1 is just the inclusion map Einp,q ⊂ P(Rp+q+2) here.
Let Ω ⊂ Einp,q be a proper almost-homogeneous domain. We will consider its convex

hull
OΩ := Oρ1

Ω ⊂ P(Rp+q+2)
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in P(Rp+q+2) as in Definition 7.1.6, and ÕΩ ⊂ Rp+q+2 any properly convex open cone

lifting Oρ1
Ω . For all x ∈ OΩ, we will denote by ã any lift of a in ÕΩ. For any g ∈ AutG(Ω),

we will denote by g̃ the unique lift of g in O(p+ 1, q + 1) preserving ÕΩ.

By Theorem 7.2.6, for any extremal point a ∈ ∂Ω, one has Za ∩Ω = ∅. In
this case, the pseudo-Riemannian conformal structure allows us to split R-extremal
points into two AutG(Ω)-invariant subsets: spacelike-extremal and timelike-extremal
points (Section 8.4.2). This will impose that the group AutG(Ω) preserves a split-
ting Rp+1,q+1 = V+ ⊕ V−. The study of the signature of V+ and V− will show
that AutG(Ω) = PO(p, 1)× PO(1, q) and that Ω is a diamond, see Section 8.4.3.

8.4.2 Spacelike and timelike-extremal points

We will see in the present section that almost-homogeneity makes it possible to separate
the set of R-extremal points into two AutG(Ω)-invariant families: namely, the one of
spacelike-extremal points and the one of timelike-extremal points.

Given some point z ∈ ExtrR(Ω), we know by Theorem 7.2.6 that z ∈ Ω∗.
Thus ι−ρ0(z) = P(z⊥) does not intersect ιρ0(Ω). By definition of OΩ we thus

have OΩ ∩ P(z⊥) = ∅ and ÕΩ ∩ z⊥ = ∅. Hence we either have

b(v, z̃) > 0 ∀v ∈ ÕΩ,

in which case we say that z is timelike extremal, or

b(v, z̃) < 0 ∀v ∈ ÕΩ,

in which case we say that z is spacelike extremal. We denote by E+(Ω) (resp. E−(Ω)) the
set of timelike (resp. spacelike) extremal points of Ω.

Lemma 8.4.2. The sets E+(Ω) and E−(Ω) satisfy the following properties:

1. They are AutG(Ω)-invariant.

2. They are both nonempty.

3. If a ∈ E+(Ω) and b ∈ E−(Ω), then a ∈ Zb.

Proof. (1) Let us prove for instance the invariance of E+(Ω). Let a ∈ E+(Ω).

Since ExtrR(Ω) is AutG(Ω)-invariant, it suffices to notice that b(v, g̃ · ã) > 0 for all v ∈ ÕΩ

and g ∈ AutG(Ω). By O(p + 1, q + 1)-invariance of b, this is just a consequence of
the AutG(Ω)-invariance of OΩ.

(2) Assume for example that E+(Ω) = ∅. Then for any two points a, b ∈ ExtrR(Ω),
one has b(ã, b̃) ≤ 0, by definition of E−(Ω). By bilinearity of b and the fact that OΩ

is contained in the convex hull of ExtrR(Ω) (by Lemma 7.2.5), one has b(v, w) ≤ 0

for all v, w ∈ ÕΩ. This is impossible by openness of ÕΩ . Hence E+(Ω) ̸= ∅, and
similarly E−(Ω) ̸= ∅.

(3) Assume a ∈ E+(Ω) and b ∈ E−(Ω). Then we get both b(ã, b̃) ≥ 0 and b(ã, b̃) ≤ 0.
Thus b(ã, b̃) = 0. Therefore a ∈ Zb. □
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8.4.3 End of the proof of Theorem 8.4.1

In this section, we end the proof of Theorem 8.4.1. We will make use of the following
lemma, which is already proven in [DGK24, Lem. 3.3] (and stated with a discreteness
assumption which is not necessary) and will also be used in Section 8.5.5.2. We give its
proof for the reader’s convenience.

Lemma 8.4.3. Let V be a finite-dimensional real vector space. We fix |.| any norm on V .
Let U ⊂ V be a properly convex open cone, and let H ≤ SL±(V ) be a subgroup preserv-
ing U . Let v ∈ U and (hk) ∈ HN such that there exists a ∈ ∂P(U) satisfying P(hk ·v)→ a.
Then |hk · v| → +∞.

Proof. We still denote by |.| the operator norm associated with the norm |.| on V . Let
us first show that |hk| → +∞. Assume by contradiction that (hk) admits a subsequence
with bounded norm. We still denote this subsequence by (hk). Then, up to extracting,
we may assume that (hk) converges in End(V ) to some h ∈ SL±(V ) and preserving U .
Thus [hk]→ [h] in PGL(V ). Since [hk ·v]→ [h·v], one has a = [h·v] ∈ P(U), contradiction.
Hence |hk| → +∞.

Let φ be a linear form on V such that U ∖ {0} ⊂ {φ > 0}. We may assume
that φ(v) = 1. The set U ∩ {φ = 1} is bounded; let K be its boundary. Since K is
compact, there exists some 0 < ε < 1 such that for all w ∈ K, the line through v and w
intersects K in a w′ ̸= w such that v = tw + (1− t)w′ for some t ≥ ε. Then for all k ∈ N
one has

φ(hk · v) ≥ εmax
K

(φ ◦ hk).

Thus it is sufficient to see that the maximum of φ ◦ hk over K tends to infinity with k.
Since U ∩ {φ = 1} is the convex hull of K, it suffices to show that the maximum of φ ◦ hk
over U ∩ {φ = 1} tends to infinity with k. Now since U is a cone, it suffices to show that
the supremum of φ ◦ hk over U ∩ {φ < 1} tends to infinity with k. Since U ⊂ {φ > 0},
there exists some α > 0 such that φ(u) ≥ α|u| for all u ∈ U . By openness, there exists
some β > 0, such that for all k ∈ N there exists uk ∈ U∩{φ < 1} such that |hk ·uk| > β|hk| .
Then one has:

max
U∩{φ<1}

(φ ◦ hk) ≥ φ(hk · uk) ≥ α|hk · uk| ≥ αβ|hk| → +∞.

□

Let V+ := Span(E+(Ω)) ⊂ Rp+1,q+1 and V− := Span(E−(Ω)) ⊂ Rp+1,q+1.
By Lemma 7.2.5, one has Rp+1,q+1 = V+ + V−. Moreover, by Lemma 8.4.2.(3),
the two spaces V+ and V− are orthogonal. It follows easily that V+ ∩ V− = {0},
so Rp+1,q+1 = V+ ⊕ V−. For the same reason, the spaces V+, V− are nondegenerate,
meaning that the restriction of b to Vi for i ∈ {+,−} has no kernel and is of
signature (pi, qi), with p+ + p− = p+ 1 and q+ + q− = q + 1.

By Lemma 8.4.2.(1), each Vi is AutG(Ω)-invariant. Therefore we get a AutG(Ω)-
invariant orthogonal decomposition

Rp+1,q+1 = V+ ⊕ V−.
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Let us recall the notation of Section 3.4.2 and of the proof of Proposition 3.4.3; we
write

J = P {v+ + v− ∈ V+ ⊕ V− |b(vi, vi) = 0 for i ∈ {+,−}}

and
Ui = P {v+ + v− ∈ V+ ⊕ V− | − b(v+, v+) = b(v−, v−) = i} ,

for i ∈ {−,+}. Recall that Einp,q = U− ⊔ J ⊔ U+.
Let Ω+ := Ω∩U+, Ω− := Ω∩U−, and ΩJ := Ω∩J . These sets are AutG(Ω)-invariant.

One has either Ω+ ̸= ∅ or Ω− ̸= ∅, because ΩJ has empty interior in Einp,q. Let us assume
for example that Ω+ ̸= ∅. Let a ∈ ∂Ω+ ⊂ J ∪ ∂Ω. If a ∈ J , then a ∈ ∂U+. If a ∈ ∂Ω,
then by almost-homogeneity there exist (gk) ∈ AutG(Ω)N and x ∈ Ω such that gk · x→ a.

Since x ∈ Ω ⊂ OΩ, there exists (v+, v−) ∈ V+ × V− such that v+ + v− ∈ ÕΩ

and x = P(v+ + v−). Since for all k ∈ N the operator g̃k ∈ O(p + 1, q + 1) preserves ÕΩ,
by Lemma 8.4.3, one has

|g̃k · (v+ + v−)| → +∞,

for any fixed norm |.| on V .
On the other hand, up to extracting, there exist w+ ∈ V+ and w− ∈ V− such

that |w+ + w−| = 1 and g̃k·(v++v−)
|g̃k·(v++v−)| → w+ + w−. This implies a = [w+ + w−]. But

b(w+, w+) = lim
k→+∞

b
( g̃k · v+
|g̃k · (v+ + v−)|

,
g̃k · v+

|g̃k · (v+ + v−)|

)
= lim

k→+∞

b(v+, v+)

|g̃k · (v+ + v−)|2
= 0,

and the same computation holds for w−, meaning that a ∈ J . Since J ⊂ ∂U+, we
have a ∈ ∂U+.

We have proven that ∂Ω+ ⊂ ∂U+. Hence Ω+ is closed in U+. Since it is also open, it
is a union of connected components of U+. But as soon as p+ ≥ 2 or q− ≥ 2, by Proposi-
tion 3.4.3, the open set U+ has no proper connected components. Since Ω+ ⊂ Ω is proper,
this implies that (p+, q+) = (1, q) and (p−, q−) = (p, 1). Hence again by Proposition 3.4.3,
the set Ω+ is a diamond.

If Ω− ̸= ∅, then by Proposition 3.4.3, it has to be the diamond dual to Ω+. But
then Ω+ ∪ Ω− ⊂ Ω is not proper. Hence necessarily Ω− = ∅. By openness of Ω, one thus
have ΩJ = ∅, hence Ω = Ω+ is a diamond. This concludes the proof of Theorem 8.4.1.

8.4.4 Exceptional isomorphisms in low dimensions

This section comes from a collaboration with Adam Chalumeau [CG24]. We use ex-
ceptional isomorphisms in low dimensions with so(p, p), p ∈ {3, 4}, to deduce, from The-
orem 8.4.1, more information on proper almost-homogeneous domains in certain Grass-
mannians and other flag manifolds of so(p, p); see Corollary 8.5.2 below.

In [LZ19], Limbeek–Zimmer prove that any proper divisible domain of Grassman-
nian Grp(R2p) of p-planes of R2p which is convex in some affine chart is a realization
of X(sl(2p,R), αp) (see Fact 1.4.11). The exceptional isomorphism PGL(4,R)0 ≃ PO(3, 3)0

allows us to strengthen this rigidity result in the case where p = 2, not making any con-
vexity assumption and only asking for almost-homogeneity, see Corollary 8.4.4 below.
Another exceptionnal isomorphism, called triality, allows us to study new flag manifolds
of so(4, 4). In this section, we provide the proof of the following corollary of Theorem 8.4.1:
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Corollary 8.4.4 (with Chalumeau, see Corollary 1.4.18). (1) Let Ω ⊂ Gr2(R4) be a proper
almost-homogeneous domain. Then Ω is a realization of X(sl(4,R), α2). In other words,
there exists g ∈ PGL(4,R) such that Ω = g · B2,2.

(2) Let Fi, i ∈ {3, 4}, be one of the two connected components of the space of maximal
isotropic subspaces of R4,4. Let Ω ⊂ Fi be a proper almost-homogeneous domain. Then Ω
is a realization of X(so(4, 4), αi).

8.4.4.1 The Lie algebra isomorphism so(3, 3) ≃ sl(4,R). Let us recall the Plücker

triple (PGL(4,R), ρ0,
∧2R4) defined in Section 2.4.2.2 (see also Example 7.1.1). The

bilinear form ω defined on
∧2R4 by

ω(x, y) = x ∧ y ∀x, y ∈
2∧
R4

is nondegenerate, symmetric, of signature (3, 3). Since ρ0(PGL(4,R)) preserves this bilin-
ear form, one has ρ0(PGL(4,R)) ⊂ PO(ω) ≃ PO(3, 3),so sl(4,R) ↪→ so(3, 3). For a reason
of dimension, this embedding is an isomorphism of Lie algebras, which gives an equality
between the identity components of ρ0(PGL(4,R)) and PO(ω). Then

ιρ0(Gr2(R4)) = {[x] ∈
2∧
R4 | ω(x, x) = 0} ≃ Ein2,2 .

Thus there is a ρ0-equivariant diffeomorphism

Gr2(R4) = F (sl(4,R), α2) ≃ F (so(3, 3), α1) = Ein2,2 .

8.4.4.2 Triality and so(4, 4). Another exceptional isomorphism arising in low dimension
appears for Ein3,3. The set of maximal totally isotropic subspaces of R4,4 has two connected
components, denoted by F3 and F4. They are both flag manifolds, corresponding to two
extremal roots of the Dynkin diagram of so(4, 4). The root system of so(4, 4) is D4 (see
Figure 8.2). It is a tripod and has automorphism group the symmetric group S3. The
extremal roots correspond to the flag manifolds Ein3,3, F3 and F4, and are permuted
by the automorphism group of D4. In particular, there exists an automorphism σ of
order 3, sending the root corresponding to Ein3,3 to the one corresponding to F3, called
triality (see Figure 8.2). The automorphism σ induces an outer automorphism φ of order 3
of so(4, 4). Then φ induces a φ-equivariant diffeomorphism Ein3,3 ≃ F3. The notion of
transversality, and hence of properness, is preserved by this diffeomorphism, as all flag
manifolds of so(4, 4) are self-opposite (the opposition involution of D4 is trivial). The
same construction holds for F4, considering φ2 instead of φ.

8.4.4.3 Proof of Corollary 8.4.4. We can now prove Corollary 8.4.4. Let us first
prove (1). Let Ω ⊂ Gr2(R4) be a proper almost-homogeneous domain. By properness,
there exists y ∈ Gr2(R4) such that y∩x = {0} for all x ∈ Ω. But this is equivalent to saying
that ιρ0(x) /∈ ιρ0(y)⊥ω for all x ∈ Ω. Hence Zιρ0 (y) ∩ιρ0(Ω) = ∅, so ιρ0(Ω) is a proper domain

of Ein2,2. Moreover, by ρ0-equivariance of ιρ0 , the domain ιρ0(Ω) is almost-homogeneous.
Then by Theorem 8.4.1, it is a diamond. By the equality ρ0(PGL(4,R)0) = PO(3, 3)0,
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Figure 8.2 – Dynkin diagram of D4. The triality is the automorphism σ of D4 that
stabilizes 2, and maps 3 to 1, 1 to 4, and 4 to 3. The existence of triality implies that each
of the extremal vertices (1, 3, and 4) corresponds to a restricted root defining the Einstein
universe Ein2,2.

we thus know that all proper almost-homogeneous domains of Gr2(R4) are PGL(4,R)-
translates of each other. Since the domain B2,2(bstd) (in the notation of Equation (3.3.1))
is part of them, they are all PGL(4,R)-translates of it. Point (1) then follows by Propo-
sition 3.3.1(see also Example 5.1.13.(2)).

Point (2) of Corollary 8.4.4 is a straightforward consequence of the φ-equivariance
(resp. φ2-equivariance) of the diffeomorphism Ein3,3 ≃ F1 (resp. Ein3,3 ≃ F2) preserving
the notions of transversality and properness. □

8.5 The centralizer of a group dividing a proper domain in
Grassmannians

In this section, we investigate Question 1.2.1 for the Nagano pair (sl(p + q,R), αp),
with p, q ∈ N≥2.

Given a proper domain Ω ⊂ Grp(Rp+q), the boundary ∂Ω of Ω is a C0-subanifold
of Grp(Rp+q) if for all x ∈ ∂Ω there exists a neighborhood V of x in Grp(Rp+q),
an open subset U of Rpq containing 0 and a homeomorphism f : V → U such
that ∂Ω ∩ V = f−1(U ∩ (Rpq−1 × {0})) (recall that the manifold Grp(Rp+q) has
dimension pq). This is the case for instance if Ω is properly convex in some affine chart
of Grp(Rp+q), but not guaranteed by dual convexity. In this section, we prove:

Theorem 8.5.1 (see Theorem 1.4.12). Let 2 ≤ p ≤ q. Let Ω ⊂ Grp(Rp+q) be a proper
domain whose boundary is a C0-subanifold of Grp(Rp+q). Assume that there exists a
discrete subgroup Γ ≤ PGL(p + q,R) acting cocompactly on Ω. Then any Γ-invariant
decomposition of Rp+q is trivial.

Theorem 8.5.1 is proved in [LZ19] under the additional assumptions that p = q and Ω
is properly convex in an affine chart.

The main consequence of Theorem 8.5.1 is:

Corollary 8.5.2 (see Corollary 1.4.13). Let 2 ≤ p ≤ q. Let Ω ⊂ Grp(Rp+q) be a proper
domain whose boundary is a C0-subanifold of Grp(Rp+q). Assume that there exists a
discrete subgroup Γ ≤ PGL(p + q,R) acting cocompactly on Ω. Then the centralizer of Γ
in PGL(p+ q,R) is finite.
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Proof of Corollary 8.5.2. Let

H := {h ∈ GL(p+ q,R) | [g] ∈ Γ};
CΓ := {g ∈ Matp+q(R) | gh = hg ∀h ∈ H}

By [LZ19, Thm 9.3] (which is stated for domains that are properly convex in an affine
chart but whose proof only uses the properness assumption), there exist Γ-invariant sub-
spaces V1, . . . , VN of Rp+q such that

CΓ =
N∑
i=1

R idVi .

By Theorem 8.5.1, one has N = 1 and CΓ = R id. Since the centralizer C is of Γ
in PGL(p + q,R) is an algebraic group, its identity component C0 has finite index in C.
Thus it suffices to prove that C0 is trivial.

Let gH. Now let h ∈ C0 and h ∈ GL(p+ q,R) such that h = [h].

Then [ghg−1h−1] = [id]. Thus there exists λh ∈ R such that ghg−1h−1 = λh id.
Since ghg−1h−1 has determinant 1, we have λh = 1 or −1. Since h 7→ λh is continu-
ous, it is constant on C0. Since λid = 1, this map is constant equal to 1. Hence we
have ghg−1h−1 = id for all h ∈ GL(p+ q,R) such that [h] ∈ C0. This is true for all g ∈ H.
Hence h ∈ CΓ for all h ∈ C0. Since CΓ = R id, it implies that C0 = {id}. □

As explained in Section 1.4.4.2, Theorem 8.5.1 and its Corollary 8.5.2 point towards
a form of rigidity for proper divisible domains in the Grassmannians Grp(Rp+q): when-
ever p, q ≥ 2, one cannot produce proper divisible domains in Grp(Rp+q) by joining two
proper divisible domains of smaller Grassmannians.

8.5.1 Notation and reminders on cohomological dimension

Let us fix some notation for the proof of Theorem 8.5.1 : in this section, we consider the
Plücker triple (PGL(p+q,R), ρ0,

∧pRp+q) of (sl(p+q,R), αp) defined in Equation (2.4.2.2).
Recall that the associate embeddings by Fact 2.3.4 are the classical Plücker embeddings,
given in Equation (2.4.5).

8.5.1.1 Special subvarieties of Grassmannians. For any vector subspace L of Rp+q
of dimension ℓ, we will consider the algebraic subvarieties

ZL := {x ∈ Grp(Rp+q) | dim(x ∩ L) > max(0, ℓ− q)};
Z−
L := {ξ ∈ Grq(Rp+q) | dim(ξ ∩ L) > max(0, ℓ− p)}.

We say that L is a proper subspace of Rp+q if L /∈ {{0},Rp+q}. If L is proper, then ZL
(resp. Z−

L ) is a nonempty proper subvariety of Grp(Rp+q) (resp. Grq(Rp+q)).
If ξ ∈ Grq(Rp+q), then we recover the set Zξ ⊂ Grp(Rp+q) defined in Section 2.2.6, see

Example 2.2.1.(1).
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8.5.1.2 Reminders on the virtual cohomological dimension. The cohomological
dimension of a group Γ is defined as

cd(Γ) := sup{k ∈ N | Hk(Γ,M) ̸= 0 for M a Γ-module},

where Hk(Γ,M) is the k-th cohomology group of Γ, see [Hat02] for more details. If Γ′ ≤ Γ,
then cd(Γ′) ≤ cd(Γ). The virtual cohomological dimension vcd(Γ) of Γ is then the infimum
of cd(Γ′) as Γ′ ranges over finite-index subgroups of Γ.

We shall not develop further on the definition of cohomological dimension and virtual
cohomological dimension. What we are interested in is their property of “encoding the
dimension of a space” when Γ is finitely generated:

1. vcd(Γ) > 0 as soon as Γ is infinite.

2. If Γ acts properly discontinuously on a contractible manifold X, then one
has vcd(Γ) ≤ dim(X), with equality if and only if the action is cocompact.

3. If Γ = Γ1 × Γ2, then vcd(Γ) ≤ vcd(Γ1) + vcd(Γ2).

8.5.2 Outline of the proof

In this section, we briefly outline the key steps of the proof of Theorem 8.5.1.
Let Ω ⊂ Grp(Rp+q) be a proper domain whose boundary is a C0-subanifold of Grp(Rp+q),
divisible by a discrete subgroup Γ ≤ PGL(p + q,R). We assume, for contradiction, that
there exists a non-trivial Γ-invariant decomposition Rp+q = V1 ⊕ V2. We may assume
that dim(V1) ≥ dim(V2). By the assumption on p ≤ q, we necessarily have p ≤ dim(V1).
Thus there are three cases to consider:

1. If dim(V1), dim(V2) > p. The idea is then to construct two Γ-equivariant pro-
jections P1 : Grp(Rp+q) ∖ F1 → Grp(V1) and P2 : Grp(Rp+q) ∖ F1 → Grp(V2) (see Sec-
tion 8.5.5.3), where F1 and F2 are subsets of Grp(Rp+q) with empty interior that do not
intersect Ω, such that Pi(Ω) ⊂ Grp(Vi) is a proper (proved in Section 8.5.5.3.2), quasi-
homogeneous (proved in Section 8.5.5.3.1) domain, invariant under the action of Γ. Note
that Γ does not necessarily act properly discontinuously on Pi(Ω); however, it does have a
properly discontinuous action on the product P1(Ω)×P2(Ω)×R (considered as a “join”),
as we prove in Proposition 8.5.16.

The fact that the open set Pi(Ω) is proper follows from the fact that it is equal to
the intersection of ∂Ω with a submanifold of Grp(Rp+q) identified with Grp(Vi), as proven
in Lemma 8.5.12. This is a consequence of the divisibility of Ω and a lemma of Vey and
Limbeek–Zimmer (see Lemma 8.5.11).

If our open sets satisfy the appropriate contractibility conditions, then we have (see
Section 8.5.5.4)

pq = dim(Grp(Rp+q)) = dim(Ω)

= vcd(Γ) ≤ dim(P1(Ω)× P2(Ω)× R)

= dim(P1(Ω)) + dim(P2(Ω)) + 1 = dim(Grp(V1)) + dim(Grp(V2)) + 1 < pq,

which is a contradiction. By “appropriate contractibility conditions,” we mean
that Ω, P1(Ω), and P2(Ω) are all contractible, see Section 8.5.1.2. We show in
Proposition 8.5.14 that this holds as soon as ∂Ω is a C0-subanifold of Grp(Rp+q).
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Here, contractibility is mainly used to reduce the argument to considerations on the
virtual cohomological dimension of Γ. We believe that this assumption can be removed
with a finer understanding of the structure of the domains P1(Ω) and P2(Ω). This case is
treated in Section 8.5.5.4.2.

2. dim(V1) > p and dim(V2) ≤ p. The space Grp(V2) is either empty or a single-
ton. Thus, we can no longer construct a well-behaved proper domain P2(Ω). Instead of
considering the action of Γ on a space of the form P1(Ω)× P2(Ω)× R, we consider a new
space of the form P1(Ω) × SL(V2)/ SO(V2) × R, which again leads to a contradiction on
the virtual cohomological dimensions. This case is trated in Section 8.5.5.4.1.

3. If p = q = dim(V1) = dim(V2). In this case, a completely different argument, using
Lemma 8.4.3, allows us to conclude. This case is treated in Section 8.5.5.2.

8.5.3 Preliminary lemmas and notations

Before starting the proof of Theorem 8.5.1, we first establish in this section several
lemmas that, while directly useful for the proof, are slightly more general.

8.5.3.1 Proper domains in subgrassmannians. Given a vector subspace L of Rp+q
of dimension ℓ, let we define

AL := {x ∈ Grp(Rp+q) | dim(x ∩ L) = min(p, ℓ)}
A −
L := {ξ ∈ Grq(Rp+q) | dim(ξ ∩ L) = min(q, ℓ)}.

If ℓ ≥ p, then AL is exactly the set of p-planes that are contained in L. If ℓ ≤ p, these
are the p-planes that contain L. The same analysis holds for ℓ ≥ q and ℓ ≤ q.

Remark 8.5.3. In the notation of Section 2.2.6.3, one has AL = C
({αp},{αℓ})
id

(L).

If ℓ ≥ p, we identify Grp(L) with AL via the canonical homeomorphism

δL : Grp(L) −→ AL

x 7−→ x.
(8.5.1)

Lemma 8.5.4. Let Ω ⊂ Grp(Rp+q) be a proper open subset, and let L ≤ Rp+q be a vector
subspace of dimension larger than p. Then Ω ∩AL is a proper subset of Grp(L).

Proof. By openness of Ω, recall that its dual Ω∗ has nonempty interior. Then, by density
of Grq(Rp+q) ∖ Z−

L in Grq(Rp+q), there exists ξ ∈ Ω∗ ∖ Z−
L . Then by definition of Z−

L :

dim(ξ ∩ L) ≤ ℓ− p.

On the other hand, one always has:

dim(ξ ∩ L) = dim(ξ) + dim(L)− dim(ξ + L) = q + ℓ− dim(ξ + L) ≥ ℓ− p.

Thus dim(ξ ∩L) = ℓ− p. Then ξ ∩L defines an element of Grℓ−p(L). By definition of Ω∗,
one has x ∩ (ξ ∩ L) = {0} for all x ∈ Ω ∩ AL. Hence Ω ∩ AL is contained in the affine
chart Grp(L) ∖ Zξ∩L of Grp(L). □
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8.5.3.2 Contractibility. Lemma 7.2.10, proven in Chapter 7, allows us to deduce the
topology of a properly homogeneous domain from the topology near its boundary:

Proposition 8.5.5. Let Ω ⊂ Grp(Rp+q) be a proper almost-homogeneous domain, such
that any element x ∈ ∂Ω admits a neighborhood Vx such that Vx∩Ω is contractible. Then Ω
is contractible.

Proof. By Lemma 7.2.5, there exists an R-extremal point x ∈ ∂Ω. Let Vx be defined as
in the Proposition.

Let x0 ∈ Ω. Let k ≥ 1 and let γ : Sk → Ω be a continuous map such that γ(s0) = x0
(s0 being the south of Sk). Then γ(Sk) is compact so by divisibility and Lemma 7.2.10
there exists g ∈ Γ such that g ·γ(Sk) ⊂ Vx. Then s 7→ g ·γ(s) is a continuous map from Sk
to Vx ∩ Ω such that g · γ(s0) = g · x0. Since the k-th homotopy group πk(Vx ∩ Ω, g · x0)
of Vx∩Ω pointed at g ·x0 is trivial (by contractibility), the path g ·γ is homotopic to g ·x0,
and hence γ is homotopic to x0. Thus πk(Ω, x0) is trivial.

Since Ω is connected, all its homotopy groups are trivial. Since Ω is a differentiable
manifold, it is contractible. □

8.5.3.3 Continuous boundary. The goal of this section is to prove Corollary 8.5.7
below. It will follow from Proposition 8.5.6 below and Proposition 8.5.5 from the previous
section. We first prove:

Proposition 8.5.6. Let Ω ⊂ Grp(Rp+q) be a proper dually convex domain whose boundary
is a C0-subanifold of Grp(Rp+q). Then for all x ∈ ∂Ω there exist a neighborhood V of x,
an open subset U of Rpq containing 0 and a homeomorphism f : V → U such that

Ω ∩ V = f−1
(
(Rpq−1 × R>0) ∩U

)
.

Proof. By assumtion on the boundary of Ω, we know that there exist a neighbor-
hood V of x, an open subset U of Rpq and a homeomorphism f : V → U such
that ∂Ω ∩ V = f−1(U ∩ (Rpq−1 × {0})). Up to shrinking, we may assume that U is
convex.

Since x ∈ ∂Ω, there exists y0 ∈ U ∩ f(Ω). Up to post composing by the symme-
try (x1, . . . , xpq) 7→ (x1, . . . ,−xpq), we may assume that y ∈ U ∩ (Rpq−1 × R>0).

Assume for a contradiction that there exists z ∈ U ∩(Rpq−1×R>0)∖f(Ω∩V ). Then the
segment [z, y] must hit the boundary of f(V ∩Ω) in a point w. But the condition w ∈ [z, y]
and the convexity of U imply that w ∈ U ∩ (Rpq−1 ×R>0). This is in contradiction with
the fact that ∂f(Ω∩V ) = f(∂Ω∩V ) ⊂ Rpq−1×{0}. Then U ∩(Rpq−1×R>0) ⊂ f(Ω∩V ).

Now let us assume that the exists z ∈ f(Ω ∩ V ) ∖ U ∩ (Rpq−1 × R>0).
Then we have z ∈ U ∩ (Rpq−1 × R≤0), so as in the previous paragraph, one
has U ∩ (Rpq−1 × R<0) ⊂ f(Ω ∩ V ). But then,

f(Ω ∩ V ) = U ∖Rpq−1 × {0}. (8.5.2)

Since Ω is proper and divisible, and thus almost-homogeneous, it has to be dually convex
by Proposition 3.1.11. Then by Proposition 7.1.9 (since the Grassmannian is an irreducible
Nagano space of real type), it is equal to the interior of its closure. Equation (8.5.2) gives:

f(Ω ∩ V ) = f(Ω ∩ V ) = U .
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Taking the interior gives:

f(Ω ∩ V ) = f(int(Ω) ∩ V ) = int(f(Ω ∩ V )) = U ,

contradicting Equation (8.5.2). Hence f(Ω ∩ V ) ⊂ U ∩ (Rpq−1 × R>0).

We have proven that Ω ∩ V = f−1(U ∩ (Rpq−1 × R>0)). □

Propositions 8.5.5 and 8.5.6 imply directly:

Corollary 8.5.7. Let Ω ⊂ Grp(Rp+q) be a proper almost-homogeneous domain whose
boundary is a C0-subanifold of Grp(Rp+q). Then for all x ∈ ∂Ω there exists a neighbor-
hood Vx of x such that Vx ∩Ω is contractible. In particular, the domain Ω is contractible.

8.5.4 Invariant subspaces

Let L ⊂ Rp+q be a vector subspace. Note that we have

ZL =
⋂

ξ∈A −
L

Zξ .

Thus ιρ0(ZL) ⊂
⋂
ξ∈A −

L
ιρ0(Zξ) ⊂

⋂
ξ∈A −

L
ι−ρ0(ξ). Thus, if L is a proper subspace of Rp+q,

then ιρ0(ZL) is contained in a projective hyperplane of P(
∧pRp+q). This implies the

following lemma:

Lemma 8.5.8. Let Ω ⊂ Grp(Rp+q) be a proper domain, disible by some discrete sub-
group Γ ≤ PGL(p + q,R). If L is a proper Γ-invariant subspace of Rp+q, then ZL ∩ Ω is
empty.

Proof. Assume for a contradiction that there exists y ∈ ZL ∩ Ω. Let a ∈ ExtrR(Ω). By
almost-homogeneity and Lemma 7.2.10, there exists a sequence (gk) such that gk · y → a.
Since L is Γ-invariant, for any k ∈ N, we have gk ·y ∈ ZL. Since ZL is closed in Grp(Rp+q),
we have a ∈ ZL. This is true for any R-extremal point, so ExtrR(Ω) ⊂ ZL. Thus
the image ιρ0(ExtrR(Ω)) is contained in the proper projective subspace

⋂
ξ∈A −

L
ι−ρ0(ξ)

of P(
∧pRp+q), which contradicts Lemma 7.2.5. Thus ZL ∩ Ω has to be empty. □

8.5.5 Proof of Theorem 8.5.1

In this section, we end the proof of Theorem 8.5.1.

8.5.5.1 Notation. Let us first introduce some additional notation. We fix once and for
all a proper domain Ω ⊂ Grp(Rp+q) whose boundary is a C0-subanifold of Grp(Rp+q), and
assume that there exists a discrete subgroup Γ ≤ PGL(p + q,R) dividing Ω. Note that,
by Proposition 3.1.11, the domain Ω is dually convex, and thus, by Corollary 6.4.12 and
Svarc–Milnor’s Lemma, we have:

Fact 8.5.9. The group Γ is finitely generated.
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Until the end of the section, we assume for a contradiction that there exist two non-
trival Γ-invariant subspaces V1, V2 of Rp+q such that

Rp+q = V1 ⊕ V2.

We denote by di the dimension of Vi for i ∈ {1, 2}. By assumption, we have d1, d2 ≥ 1.
Up to translating Ω by an element of PGL(p+ q,R), we may assume that

V1 = Span(e1, . . . , ed1); V2 = Span(ed1+1, . . . , ep+q),

where (e1, . . . , ep+q) is the canonical basis of Rp+q (recall Section 2.4.2). Then

Γ ≤
{[A 0

0 B

]
| A ∈ GL(d1,R), B ∈ GL(d2,R)

}
.

We define the group homomorphism

F : Γ −→ PGL(d1,R)× PGL(d2,R)× R>0[
A 0
0 B

]
7−→

(
[A], [B], | det(A)|d2 |det(B)|−d1

)
.

(8.5.3)

The map F has finite kernel, and the image F (Γ) is a discrete subgroup
of PGL(d1,R) × PGL(d2,R) × R>0. We denote by pi, i ∈ {1, 2}, the canonical
projection from PGL(d1,R)× PGL(d2,R)× R>0 to PGL(di,R), and

Γi := {pi(F (g)) | g ∈ Γ} ≤ PGL(di,R).

The group Γi identifies with {[g|Vi ] | [g] ∈ Γ} ≤ PGL(Vi).

From now on, we will make a disjonction of cases, depending on the relative values
of p, q, d1, d2.

8.5.5.2 Proof of Theorem 8.5.1 when p = q = d1 = d2. In this case, the two vector
spaces V1, V2 are in Grp(R2p).

Let OΩ := Oρ0
Ω be the convex hull of Ω in P(

∧pR2p) of Definition 7.1.6, associated with
the Plücker triple (PGL(2p,R), ρ0,

∧pR2p) of (sl(2p,R), αp) defined in Equation (2.4.2.2).

Let ÕΩ be any properly convex open cone of
∧pR2p lifting OΩ.

Let i ∈ {1, 2}. By Lemma 7.2.5, there exists ai ∈ ExtrR(Ω)∖ZVi . By divisibility, there
exist (gk) ∈ ΓN and x0 ∈ Ω such that gk ·x0 → ai. Then by Lemma 7.2.10, up to extracting,
we may assume that there exists bi ∈ Grp(R2p) such that gk · x → ai whenever x /∈ Zbi .
Thus by Fact 2.3.1.(2), we have g−1

k · x → bi whenever x /∈ Zai . Thus Vi = g−1
k · Vi → bi.

Thus Vi ∈ ∂Ω. Hence by Lemma 7.1.7, we have ιρ0(Vi) ∈ ∂OΩ. Let

vi ∈ ÕΩ ∖ {0}

be a lift of ιρ0(Vi). For all g ∈ Γ, let g̃ ∈ SL±(2p,R) be a lift of g, and

let ρ̃0(g) ∈ SL±(
∧pR2p) be the unique lift of ρ0(g) preserving OΩ. Since Vi is invariant,

there exists λi(g) ∈ R∖ {0} such that ρ̃0(g) · vi = λi(g)vi. Since

172



(ρ̃0(g) · v1 ∧ ρ̃0(g) · v2) = det(g̃)(v1 ∧ v2),

one has λ1(g)λ2(g) = ±1.

Now let x∞ ∈ ∂Ω. By divisibility, there exists x ∈ Ω and (gk) ∈ ΓN such

that gk · x→ x∞. Let v ∈ ÕΩ ∖ {0} be any lift of ιρ0(x). Then the sequence

( ρ̃0(gk) · v
|ρ̃0(gk) · v|

)
k∈N

converges to a point v∞ ∈ ιρ0(x∞) ∖ {0}. For all k ∈ N we have λ1(g−1
k )λ2(g−1

k ) = ±1, so
up to extracting, we may assume that one of the two sequences (λ1(g−1

k )) and (λ2(g−1
k ))

is bounded in R, for instance assume that (λ1(g−1
k )) is bounded.

On the other hand, since x ∈ ιρ0(Ω) ⊂ OΩ (by Proposition 7.1.7) and x∞ ∈ ∂OΩ,

applying Lemma 8.4.3 we get that |ρ̃0(gk) · v| → +∞. Hence we have

v1 ∧
ρ̃0(gk) · v

|ρ̃0(gk) · v|
= det(g̃k)

(
˜ρ0(g−1

k ) · v1
)
∧ v

|ρ̃0(gk) · v|
= ±

λ1(g−1
k )

|ρ̃0(gk) · v|
(v1 ∧ v) −→ 0.

But one also has

v1 ∧
ρ̃0(gk) · v

|ρ̃0(gk) · v|
−→ v1 ∧ v∞.

Hence v1 ∧ v∞ = 0. Recall from Equation (2.4.5) and Fact 2.3.4 that this is equiva-
lent to x∞ ∈ ZV1 . If we had chosen that (λ2(g−1

k )) was bounded in R, we would have
found x∞ ∈ ZV2 .

Hence for all x∞ ∈ ∂Ω, we find x∞ ∈ ZV1 ∪ZV2 , so ∂Ω ⊂ ZV1 ∪ZV2 . Then Ω is
equal to a connected component of Grp(R2p) ∖ (ZV1 ∪ZV2). This is not possible because
none of these connected components are proper. This concludes the proof in the case
where p = q = d1 = d2.

Remark 8.5.10. In this section, we did not use the assumption that ∂Ω is
a C0-submanifold of Grp(R2p).

8.5.5.3 Construction of a projection when p, q, d1, d2 are not all equal. In this
section, we assume p, q, d1, d2 are not all equal. Up to exchanging d1 and d2, we may thus
assume that d1 > p. Then d2 = p+ q − d1 < q. For i ∈ {1, 2}, let

Proji : V −→ Vi (8.5.4)

be the projection on Vi parallel to V3−i.

For any x ∈ Grp(Rp+q), the set Proji(x) := {Proji(v) | v ∈ x} is a vector subspace
of Vi, not necessarily of dimension p. However, for a “generic” x, the set Proj1(x)
is p-dimensional: indeed, if x ∈ Grp(Rp+q) ∖ ZV2 , since d2 < q, by the definition
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of ZV2 , we have dim(x ∩ V2) = 0. Since ker(Proj|x) = x ∩ V2, we have rk(p1|x) = p,
so Proj1(x) ∈ Grp(V1). Hence the map

P1 : Grp(Rp+q) ∖ ZV2 −→ Grp(V1)
x 7−→ Proj1(x)

is well defined. By Lemma 8.5.8, one has Ω ⊂ Grp(Rp+q) ∖ ZV2 . Hence the set

P1(Ω) := {P1(x) | x ∈ Ω} ⊂ Grp(V1)

is a well-defined subset of Grp(V1). It is moreover Γ1-stable. We will prove in this section
that P1(Ω) is proper, connected, open in Grp(V1), contractible, and quasi-homogeneous
under Γ1.

8.5.5.3.1 Openness and connectedness. In this section, we prove that the set P1(Ω) is a
domain of Grp(V1). For any M ∈ Mp+q,p(R) and i ∈ {1, . . . , p + q}, we denote Li(M)
the i-th line of M . Let us define the continuous and open map

ϕ : Mp+q,p(R) −→ Md1,p(R)

M 7−→

L1(M)
...

Ld1(M)

 .

Let U := {M ∈Mp+q,p(R) | rk(ϕ(M)) = p}. The set U is an open subset of Mp+q,p(R),
hence the restriction of ϕ to U is still open and continuous. Its image is the open sub-
set U ′ := {N ∈Md1,p(R) | rk(N) = p} of Md1,p. Note that the two sets U and U ′ are
invariant under the action of GL(p,R) by right multiplication defined in Section 2.4.2.1.
The map ϕ|U ′

U is equivariant under these actions. Then by factorization one gets an open
and continuous map Ψ : U /GL(p,R)→ U ′/GL(p,R) = Grp(V1).

Recall the open set Ũ = {M ∈ Matp+q,p(R) | rk(M) = p} defined in Section 2.4.2.1.

With the identification Grp(Rp+q) ≃ Ũ /GL(p,R) of Section 2.4.2.1, the set U /GL(p,R)
corresponds to Grp(Rp+q)∖ZV2 . Moreover, the image Ψ(x) of a point x ∈ Grp(Rp+q)∖ZV2
is the p-plane Proj1(x) of Grp(V1). Hence Ψ and P1 coincide on Grp(Rp+q) ∖ ZV2 , which
proves that P1 is open and continuous.

Since Ω is an open subset of Grp(Rp+q) ∖ ZV2 , its image P1(Ω) is an open subset
of Grp(V1). Since Ω is connected and P1 is continuous, the set P1(Ω) is moreover connected.

8.5.5.3.2 Properness. In this section, we prove that P1(Ω) is proper. Let

CΓ := {h ∈ End(Rp+q) | hg = gh ∀g ∈ Γ},

and let C0
Γ be the identity component of the intersection CΓ ∩ GL(p + q,R). Since V1

and V2 are Γ-invariant, the two projections Proj1 and Proj2 defined in Equation (8.5.4)
belong to CΓ. We will use the following lemma:

Lemma 8.5.11. ([Vey70, LZ19]) The projection [C0
Γ] of C0

Γ in PGL(p+q,R) is contained
in the identity component AutPGL(p+q,R)(Ω)0 of AutPGL(p+q,R)(Ω).
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In [LZ19], Lemma 8.5.11 is stated for domains which are convex in an affine chart, but
the proof does not use the convexity assumption.

Recall the map δV1 introduced in Equation (8.5.1).

Lemma 8.5.12. One has P1(Ω) = δV1(Ω ∩AV1) = δV1(∂Ω ∩AV1).

Proof. Note that [Proj1+Proj2] = [id]. Thus for all t ∈ R, we have [Proj1+e
tProj2] ∈ C0

Γ.
By Lemma 8.5.11, we then have [Proj1 + etProj2] ∈ AutPGL(p+q,R)(Ω). For x ∈ Ω, we
then have:

Proj1(x) = lim
t→−∞

(Proj1 + etProj2)(x) ∈ Ω.

Thus P1(Ω) ⊂ δV1(Ω ∩AV1). Since every element of P1(Ω) is contained in V1, by Lemma
8.5.8, we have P1(Ω) ⊂ δV1(∂Ω∩AV1). Hence P1(Ω) ⊂ ∂Ω in Grp(Rp+q). Since the map δV1
is closed, taking the closure, we have P1(Ω) ⊂ ∂Ω ∩AV1 .

For the converse inclusion, let x ∈ Ω ∩ AV1 . Then x ∈ AV1 ⊂ Grp(Rp+q) ∖ ZV2 .
Let (xk) ∈ ΩN such that xk → x. By continuity of the map P1, we
have P1(xk)→ P1(x) = δV1(x) in Grp(V1). Hence δV1(x) ∈ P1(Ω).

We have proved

δV1(Ω ∩AV1) ⊂ P1(Ω) ⊂ δV1(∂Ω ∩AV1).

Since the right-hand term is trivially included in the left-hand term, all these inclusions
are equalities. This proves the lemma. □

Lemma 8.5.13. The set P1(Ω) is a proper domain of Grp(V1).

Proof. We already know from Section 8.5.5.3.1 that P1(Ω) is a domain of Grp(V1). For the

properness, one has P1(Ω) ⊂ P1(Ω) = δV1(Ω ∩ AV1) by Lemma 8.5.12. By Lemma 8.5.4,
and since the map δV1 sends transversse points to transverse points, the domain P1(Ω) is
proper in Grp(V1). □

8.5.5.3.3 Contractibility. Note that, until now, we have not used the continuous-
boundary assumption. In this section, we use it to prove:

Proposition 8.5.14. The domain P1(Ω) is contractible.

We will use the following Lemma:

Lemma 8.5.15. The group Γ1 acts cocompactly on P1(Ω). In particular the domain P1(Ω)
is quasi-homogeneous.

Note that Γ1 is not necessarily discrete, so we cannot deduce that P1(Ω) is divisible.

Proof of Lemma 8.5.15. Let K ⊂ Ω be a compact subset such that Ω = Γ·K. By continuity
of P1 on Grp(Rp+q) ∖ ZV2 , the set P1(K) is a compact subset of Grp(V1). By p1 ◦ F -
equivariance of the map P1, we have P1(Ω) = Γ1 · P1(K). Thus Γ1 acts cocompactly
on P1(Ω), and P1(Ω) ⊂ Grp(V1) is quasi-homogeneous. □
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Proof of Proposition 8.5.14. We fix a point x0 ∈ AV1 such that δ−1
V1

(x0) ∈ P1(Ω) for
this proof. We will prove that all homotpy groups πk(P1(Ω), δV1(x0)) of P1(Ω) pointed
at δV1(x0) are trivial, for all k ∈ N. Since P1(Ω) is a manifold, this will imply that P1(Ω)
is contractible.

For k = 0, we know from Section 8.5.5.3.1 that the open set P1(Ω) is connected
and π0(P1(Ω), δV1(x0)) is trivial.

Let k ≥ 1. We will now prove that πk(δV1(P1(Ω)), x0) is trivial (which is equivalent
to proving that πk(P1(Ω), δ−1

V1
(x0)) is). To this end, let us take a ∈ AV1 such

that δV1(a) ∈ ExtrR(P1(Ω)). Recall that such a point always exists by Lemma 7.2.5,
since Grp(V1) is an irreducible Nagano space of real type. By Lemma 8.5.12, we
know that a ∈ ∂Ω. Then by Proposition 8.5.6 there exist a neighborhood V of a
in Grp(Rp+q), an open subset U of Rpq and a homeomorphism f : V → U such
that V ∩ Ω = f−1(Rpq−1 × R>0 ∩ U ). Since a ∈ AV1 and AV1 ∩ ZV2 = ∅, we can also
assume that V ∩ ZV2 = ∅, so P1 is well-defined on V . Up to further shrinking, and
post-composing f by a dilation and a translation, we may assume that

U =]− 3, 3[pq,

so f(Ω ∩ V ) =]− 3, 3[pq−1×]0, 3[. We denote U + the contractible set ]− 2, 2[pq−1×]0, 2[.
One has f−1(U +) ⊂ Ω.

We see the sphere Sk as the set Sk = {(s0, . . . , sk) ∈ Rk+1 | s20 + · · · + s2k = 1} and
set s = (0, . . . , 0,−1). For x ∈ Sk, write s = (s0, . . . , sk).

Let γ0 : Sk → δV1(P1(Ω)) be a continuous map such that γ0(s) = x0. Since γ0(Sk) is
compact and since Γ1 acts cocompactly on P1(Ω) (by Lemma 8.5.15), by Lemma 7.2.10,
there exists g ∈ Γ1 such that g · γ0(Sk) ⊂ V . Let us set

p0 := g · x0 and γ := g · γ0.

Then γ : Sk → V ∩ δV1(P1(Ω)) is a continuous map such that γ(s) = p0.
For the simplicity of the proof, we assume that f(p0) = 0. Then f◦γ : Sk → U ∩Rpq−1×{0}

is continuous, and satisfies f ◦ γ(s) = 0.
Note that for all t ∈ [0, 12 ] and x ∈ Sk ∖ {s} one has

f ◦ γ(x) +
(
0, . . . , 0, 2t(1 + xk)

)
∈ U +,

i.e. we have f−1(f ◦ γ(x) + (0, . . . , 0, t(1 + xk))) ∈ Ω. Since U + is convex, for all t ∈ [12 , 1]
one has

2(1− t)f ◦ γ(x) +
(
0, . . . , 0, 2(1− t)(1 + xk)

)
∈ U +,

so that f−1
(
(2t − 1)f ◦ γ(x) + (0, . . . , 0, (2t − 1)(1 + xk))

)
∈ Ω. On the other hand, for

all t ∈ [0, 1] one has δV1 ◦ P1(f
−1(f ◦ γ(s))) = δV1 ◦ P1(γ(s)) = p0. Hence the map

H : [0, 1]× Sk −→ δV1(P1(Ω))

(t, x) 7−→


δV1 ◦ P1 ◦ f−1

(
f ◦ γ(x) + (0, . . . , 0, 2t(1 + xk))

)
if t ∈ [0, 12 ]

δV1 ◦ P1 ◦ f−1
(
2(1− t)f ◦ γ(x) + (0, . . . , 0, 2(1− t)(1 + xk))

)
if t ∈ [12 , 1]
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is well defined, continuous, and satisfies
H(0, ·) = γ

H(1, ·) = p0

H(t, s) = p0 ∀t ∈ [0, 1]

.

Hence γ = g · γ0 is homotopic to the point p0 = g · x0 in δV1(P1(Ω)). Since g ∈ Γ1

preserves δV1(P1(Ω)), the map γ0 is homotopic to x0 in δV1(P1(Ω)).

This is true for all continuous map γ0 : Sk → δV1(P1(Ω)) such that γ0(s) = p0. Hence
the group πk(δV1(P1(Ω)), x0) is trivial. This is true for all k ≥ 1. Since δV1(P1(Ω)) is open
in Grp(V1) (recall Section 8.5.5.3.1), it is contractible. □

8.5.5.4 The proof of Theorem 8.5.1 when p, q, d1, d2 are not all equal. In this
section, we prove Theorem 8.5.1 assuming that p, q, d1, d2 are not all equal. Together with
Section 8.5.5.2, this section ends the proof of Theorem 8.5.1. As in Section 8.5.5.3, we
may assume that d1 > p. We make a disjonction of cases, depending on the relative values
of p and d2.

8.5.5.4.1 Case 1: d2 ≤ p. In this section, we consider the case where d2 ≤ p. Let

M := Grp(V1)× (PGL(d2,R)/PO(d2))× R>0.

The group PGL(d1,R)×PGL(d2,R)×R>0 acts on M via the diagonal action. This induces
an action of Γ on M via the group homomorphism F defined in Equation (8.5.3):

∀g ∈ Γ, ∀x ∈ X, g · x = F (g) · x.

The set X := P1(Ω)× (PGL(d2,R)/PO(d2))× R>0 is stable under this action.

Proposition 8.5.16. The group Γ acts properly discontinuously on X.

Proof. Let K ⊂ X be a compact subset. We may assume that K is of the form K1×K2×K3,
where each Ki is a compact subset of the corresponding factor of X. Let us assume
that there exists a sequence (gk = [diag(Ak, Bk)]) ∈ ΓN and (xk, yk, λk) ∈ K such
that F (gk) · (xk, yk, λk) ∈ K for all k ∈ N. We may assume that | det(Ak)| = 1 for
all k ∈ N.

Since K3 is a compact subset of R>0, up to extracting we may assume that there
exists λ ∈ R>0 such that λk → λ. Since |det(Bk)|−d1λk ∈ K3 for all k ∈ N, we may also
assume that there exists t ∈ R>0 such that | det(Bk)|−d1λk → t. Then

|det(Bk)|−d1 −→ µ :=
t

λ
∈ R>0 (8.5.5)

The set K1 is a compact subset of P1(Ω) and for all k ∈ N, we have

[Ak] · xk = [p1(F (gk))] · xk ∈ [p1(F (gk))] · K1.
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Since the action of Γ1 ≤ AutPGL(V1)(δV1(P1(Ω))) on P1(Ω) is proper by Lemma 8.5.13
and Fact 3.1.3, up to extracting, we may assume that there exists A ∈ SL±(d1,R) such
that Ak → A.

By the same argument with the action of Γ2 on PGL(d2,R)/PO(d2), which is proper,
we may assume that there exists B ∈ SL±(d2,R) such that Bk

|det(Bk)|1/d2
−→ B.

Moreover, we have |det(Bk)|−d1 → µ, so Bk → ±µ
1

d2d1B.

Then gk →

[
A 0

0 ±µ
1

d2d1B

]
. By discreteness of Γ, the sequence (gk) is stationnary.

This proves that Γ acts properly discontinuously on X. □

Since Γ is finitely generated (Fact 8.5.9) and acts properly discontinuously on the
contractible manifold X (Proposition 8.5.16), by Section 8.5.1.2 we have vcd(Γ) ≤ dim(X).
On the other hand, the group Γ acts properly discontinuously and cocompactly on Ω,
so vcd(Γ) = dim(Ω) = dim(Grp(Rp+q)) = pq by Section 8.5.1.2. This gives:

pq = vcd(Γ) ≤ dim(X)

= dim(P1(Ω)) + dim PGL(d2,R)/PO(d2) + dimR>0

= p(d1 − p) +
d2(d2 + 1)

2
− 1 + 1

= pq − pd2 +
d2(d2 + 1)

2
,

Then we must have pd2 = d2(d2 + 1)/2. This is only possible when d2 = p = 1. Since
we have assumed that p ≥ 2, we get a contradiction.

8.5.5.4.2 Case 2: d2 > p. In this section, we consider the case where d2 > p. In this
case, one can construct the contractible domain

P2(Ω) := {Proj2(x) | x ∈ Ω}

of Grp(V2), proceeding the same way as in Section 8.5.5.3 but exchanging the roles of V1
and V2. The same analysis as for P1(Ω) gives that P2(Ω) is a proper contractible domain
of Grp(V2), on which Γ2 acts properly and cocompactly.

As in Section 8.5.5.3, we define a contractible manifold X on which Γ acts
properly discontinuously and freely: here X := P1(Ω) × P2(Ω) × R>0. The
group PGL(d1,R) × PGL(d2,R) × R>0 acts on X the natural way, which induces an
action of Γ on X via F :

∀g ∈ Γ, ∀x ∈ X, g · x = F (g) · x.

By the same proof as in Proposition 8.5.16, this action is properly discontinuous, so
by Section 8.5.1.2 we have vcd(Γ) ≤ dim(X). On the other hand, as in the previous
Section 8.5.5.4.1, we have vcd(Γ) = pq. This gives:

pq = vcd(Γ) ≤ dim(X) = dim(P1(Ω)) + dim(P2(Ω)) + dimR>0

= p(d1 − p) + p(d2 − p) + 1

= pq − p2 + 1.
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This is possible only if p = 1. Since we have assumed that p ≥ 2, we get a contradiction.

This ends the proof of Theorem 8.5.1.

8.6 Extremal points of proper almost-homogeneous
domains in Grassmannians

In this section, we establish Proposition 8.6.1 below, which is an elementary conse-
quence of Propositions 4.1.5 and 7.2.12. Proposition 8.6.1 goes in the direction of a rigidity
phenomenon in self-opposite Grassmannians, as it tells us that, if p is odd, then proper
almost-homogeneous domain of Grp(R2p) share a restrictive property with the realizations
of the noncompact dual of Grp(R2p).

Let p ∈ N>0. We know from Example 7.2.2.(2) that ExtrR(Bp,p) is the set of totally
isotropic subspaces of Rp,p. This set has two connected components F1 and F2, both
being naturally identified with flag manifolds of so(p, p). If x ∈ F1, then x ∩ y ̸= {0}, for
all y ∈ F2. Thus, if we chose (x, y) ∈ F1 ×F2, we have ExtrR(Bp,p) ⊂ Zx ∪Zy. This is
a quite restrictive property for the domain Ω := Bp,p. Propositions 4.1.5 and 7.2.12 allow
us to extend this property to any proper almost-homogeneous domain Ω ⊂ Grp(R2p), in
the case where p is odd.

Proposition 8.6.1. Let p be an odd integer, and let Ω ⊂ Grp(R2p) be a proper almost-
homogeneous domain. Then there exist ξ1, ξ2 ∈ ExtrR(Ω) such that

ExtrR(Ω) ⊂ Zξ1 ∪Zξ2 .

Proof. By Lemma 7.2.5 applied to the Nagano pair (sl(2p,R), αp) of real type,
there exist two transverse points ξ1, ξ2 ∈ ExtrR(Ω). Assume for a contra-
diction that there exists z ∈ ExtrR(Ω) ∖ (Zξ1 ∪Zξ2). By Proposition 7.2.12,
we have z, ξ1, ξ2 ∈ Λ{αp}(AutPGL(2p,R)(Ω)). Applying Proposition 4.1.5 to the
group H := (AutPGL(2p,R)(Ω) preserving the proper domain Ω, in the notations of
Section 4.1.1, we get that the set E{αp} of connected components of Grp(R2p)∖(Zp+ ∪Zp−)
should contain an element fixed by s{αp}, where s{αp} is defined in Equation (4.1.1). But
we know from Remark 4.1.1 that this is not the case. Thus, we have ExtrR(Ω) ⊂ Zξ1 ∪Zξ2 ,
and the proposition holds taking the closure. □

8.7 An example in a flag manifold which is not a Nagano
space

In Sections from 8.2 to 8.5, we focused on Question 1.2.1 for Nagano pairs of real type.
So far, we have not considered flag manifolds F (g,Θ) defined by a single root (i.e. such
that |Θ| = 1) but which are not Nagano spaces. This is the purpose of this section; see
Proposition 8.7.1 below.

Recall from Section 2.5 that we have a PSp(2n,R)-equivariant identification, denoted
by I :

F (sp(2n,R), α1)
I≃ P(R2n) = F (sl(2n,R), α1). (8.7.1)
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Recall from Remark 5.1.1 that the pair (sp(2n,R), α1) is not an irreducible Nagano pair,
even though P(R2n) is a Nagano space (associated with the pair (sl(2n,R), α1)). This is
due to the fact that PSp(2n,R) is not a transformation group of the compact symmetric
space (P(R2n), gsl(2n,R),α1

) (in the sense of Section 5.1.3). By Lemma 5.4.2, the flag mani-
fold F (sp(2n,R), α1) does not contain any symmetric domain. By the positive answers to
Question 1.2.1, we can expect that it does not contain any proper divisible domain. This
is established in Proposition 8.7.1 below.

The flag manifold F (sp(2n,R), α1) is self-opposite, and a domain Ω of the flag
manifold F (sp(2n,R), α1) is proper if and only if there exists x ∈ F (sp(2n,R), α1)
such that Ω ∩ P(x⊥) = ∅. Thus, if a domain Ω ⊂ F (sp(2n,R), α1) is proper,
then the domain I (Ω) is a fortiori proper in P(R2n) = F (sl(2n,R), α1) via the
identification I . Moreover, since sp(2n,R) ⊂ sl(2n,R), if the domain Ω is divisible
(resp. quasi-homogeneous, resp. almost-homogeneous) in F (sp(2n,R), α1), then I () is
also in P(R2n) = F (sl(2n,R), α1). The identification I is only PSp(2n,R)-equivariant,
and not PGL(2n,R)-equivariant. This is why the automorphism group AutPSp(2n,R)(Ω)
of Ω (as a subset of F (sp(2n,R), α1)) is in general strictly contained in its group of
automorphisms AutPGL(2n,R)(I (Ω)) as a subset of F (sl(2n,R), α1). Using the classical
theory of divisible convex sets in projective space, we obtain:

Proposition 8.7.1. For n ≥ 2, the flag manifold F (sp(2n,R), α1) does not contain any
proper divisible domains.

Proof. Suppose, for contradiction, that there exists a proper domain Ω of the flag mani-
fold F (sp(2n,R), α1) that is divisible by a discrete subgroup Γ ≤ PSp(2n,R).

The proper divisible domain I (Ω) is thus convex, by Proposition 3.1.11. If it is
irreducible, then by [Vey70, Ben03], either it is symmetric (in F (sl(2n,R), α1)), or Γ is
Zariski-dense in PGL(2n,R). Since Γ ≤ PSp(2n,R), we must necessarily be in the first

case. It is then known from [Koe99, Ben00] that the Zariski closure Γ
Z ⊂ PSp(2n,R) of Γ

in PGL(2n,R) preserves I (Ω) and is a connected real semisimple projective-linear Lie

group. However, the representation induced by the natural inclusion Γ
Z
↪→ PSp(2n,R)

is irreducible and proximal, so by [Ben00, Thm 1.5], the group Γ
Z

cannot preserve any
proper domain in P(R2n), contradiction.

From now on, we no longer assume I (Ω) to be necessarily irreducible. Let ω be
a non-degenerate antisymmetric bilinear form on R2n such that PSp(2n,R) identifies
with PSp(ω). By [Vey70, Ben01], to reduce to the irreducible case, it suffices to prove
that ω|Vi×Vi is non-degenerate for any Γ-invariant decomposition R2n = V1 ⊕ V2. Sup-
pose such a decomposition exists. Then, there exist properly convex open cones Ωi ⊂ Vi
(i = 1, 2) such that

I (Ω) = P(v1 + v2 | [vi] ∈ Ωi ∀i = 1, 2).

Up to finite index, we have Γ = Γ1 × Γ2, where Γi is a discrete subgroup
of PSp(2n,R) ∩ PGL(Vi) acting cocompactly on Ωi. Since Γi acts cocompactly on Ωi,
by Theorem 7.2.6, we have

P(x⊥) ∩I (Ω) = ∅ (8.7.2)

for every extremal point x of I (Ω).
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By Lemma 7.2.10, since the decomposition R2n = V1 ⊕ V2 is Γ-stable, we
have Extr(I (Ω)) ⊂ (V1 ∪ V2) ∩ ∂Ω = Ω2 ∪ Ω2.

Let a ∈ Extr(I (Ω)) ∩ Ω1. Then a is extremal in Ω1. Since Γ1 acts cocompactly
on Ω1, by Lemma 7.2.10, there exist (gk) ∈ ΓN

1 and a′ ∈ ∂Ω ∩ V1 such that (gk)
is P1-contracting with respect to (a, a′). Now let b ∈ Extr(I (Ω))∩Ω2. If b /∈ P(a⊥),
then b = g−1

k · b → a′ ∈ V1, absurd. Hence (Extr(I (Ω)) ∩ Ω2) ⊂ P(a⊥). We have just
proven that for all a, b ∈ Extr(I (Ω)), we have

a ∈ Ω1, b ∈ Ω2 =⇒ b ∈ P(a⊥).

Since Extr(I (Ω)) ∩ Ωi generates Vi for i = 1, 2, this implies that P(V2) ⊂ P(x⊥) for
all x ∈ P(V1). Since ω is non-degeneratee, this imposes that ω|Vi×Vi is non-degenerate
for i = 1, 2, and concludes the proof. □

A corollary of Proposition 8.7.1, coming from low-dimensional Lie groups isomor-
phisms, is the following. It answers Question 1.2.1 for any flag manifold of so(3, 2) :

Corollary 8.7.2. Let Θ be a nonempty subset of the simple restricted roots of so(2, 3).
Then any proper divisible domain of F (so(2, 3),Θ) is symmetric. In particular, we have
the following case dichotomy:

1. If Θ = {α1}, then any proper divisible domains of F (so(2, 3),Θ) is a diamond.

2. If Θ = {α2} or {α1, α2} = ∆, then there are no proper divisible domains
in F (so(2, 3),Θ).

Proof. Recall that the restricted root system of so(2, 3) is given in Example 2.2.1. There
exists an exceptional isomorphism so(2, 3) ≃ sp(4,R), mapping the root α2 of so(2, 3) to
the root α1 of sp(4,R). The case where Θ = {α2} thus follows from Proposition 8.7.1. The
case where Θ = ∆ is a direct consequence of Fact 1.2.3. Finally, the case where Θ = {α1}
follows from Theorem 8.4.1. □

8.8 Application: closed proper manifolds locally modelled
on flag manifolds

In this section, we discuss the consequences of the various results of this chapter on
the classification of proper (G,X)-manifolds; see Corollaries 8.8.4, 8.8.5 and 8.8.6 below.

Let G be a real semisimple Lie group of noncompact type and X be a manifold on
which G acts smoothly and transitively. A manifold M is a (G,X)-manifold, if there exists
a (maximal) atlas of charts (Ui, ψi)i∈A on M with values in X, such that for any i, j ∈ A
with Ui∩Uj ̸= ∅, the map ψj◦ψ−1

i is locally the restriction of an element of G to φi(Ui∩Uj).
In this case there exists a map dev : M̃ → X, called the developing map (unique up to

postcomposition by elements of G), where M̃ is the universal cover of M . The map dev is
a local diffeomorphism, but it is in general not injective.

Given a (G,X)-manifold M , any representative loop γ of on element of π1(M) can be

lifted to a curve γ̃ : [0, 1]→ M̃ . Since γ(0) = γ(1), there exists an element g := hol([γ]) ∈ G
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such that dev(γ̃(0)) = g ·dev(γ̃(1)). The map hol : π1(M)→ G is then a well-defined homo-
morphism, called the holonomy, making dev a hol-equivariant map. It is uniquely defined
by the choice of developing map dev, but in general only well defined up to conjugation.

A manifold M is Kleinian if dev is a diffeomorphism onto its image. In
this case, the holonomy hol is discrete and the manifold M identifies with the
quotient dev(M̃)/hol(π1(M)).

We say that M is proper if dev(M̃) is a proper open subset of X. This property is
independent on the choice of the developing map for M .

In this section, we will use the following elementary lemmas:

Lemma 8.8.1. Let G be a real semisimple Lie group and Θ a subset of the simple restricted
roots of G. Let M be a closed proper (G,F (g,Θ))-manifold. Then dev(M̃) is a proper
almost-homogeneous (and even quasi-homogeneous) domain.

Proof. Since M is closed, there is a compact fundamental domain K ⊂ M̃ for the action
of π1(M). Since the developing map is hol-equivariant, the compact set dev(K) ⊂ dev(M̃)

intersects any hol(π1(M))-orbit, that is, dev(M̃) is quasi-homogeneous. Since dev(M̃) is
proper, it is also almost-homogeneous. □

Lemma 8.8.2. Let (g, α) be an irreducible Nagano pair andM be a closed proper manifold

such that dev(M̃) is a realization of X(g, α). Then M is Kleinian. In particular, there
exists a cocompact lattice Γ ≤ Isom(X(g, α)) such that M = Ω/F(g,α)(Γ), and M is F(g,α)-
equivariantly identified with a compact quotient of X(g, α).

Proof. Let Ω := dev(M̃). Let g be a Riemannian metric on Ω, induced by the one

on X(g, α). It is hol(π1(M))-invariant. Then dev∗g is a π1(M)-invariant metric on M̃ .
It induces a Riemannian metric on M , which has to be complete because M is closed.
Thus, the metric g is complete. Hence, the map dev is a local isometry between two
complete Riemannian manifolds, and thus a covering map. Since Ω is simply connected
(because it is diffeomorphic to X(g, α)), the map dev is a diffeomorphism onto its image
and M is a compact quotient of Ω. □

Remark 8.8.3. To prove that dev is a covering map in the proof of Lemma 8.8.2, one
could also directly apply the following result due to A. Zimmer [Zim18a]: Let G be a
connected semisimple Lie group with trivial center and no compact factors, and let Θ ⊂ ∆
be a subset of the simple restricted roots of G. Let M be a closed proper (G,F (g,Θ))-
manifold. Then any developing map dev of M is a covering map.

8.8.1 Closed proper conformally flat manifolds

This section is devoted to the proof of Corollary 1.4.20. Recall the notation and notions
introduced in Section 2.4.3.3. We say that a conformal manifold (M, [g]) is conformally
flat if it is locally conformally equivalent to an open subset of the Minkowski space. A
consequence of Fact 2.4.1 is that any conformally flat pseudo-Riemannian manifold inherits
a canonical (PO(p+ 1, q+ 1),Einp,q)-structure. Theorem 8.4.1 then implies the following.
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Corollary 8.8.4 (with Chalumeau, see Corollary 1.4.20). Let p, q ≥ 1 be two integers,
and let M be a closed proper connected pseudo-Riemannian conformally flat manifold of
signature (p, q). Then M is conformally equivalent to a quotient D/Γ, where D is a
diamond of Einp,q and Γ ≤ AutPO(p+1,q+1)(D) is a cocompact lattice. Moreover, if p ̸= q
and {p, q} ≠ {2, 3}, then up to a finite cover, the manifold M is conformally equivalent
to

Σp × (−Σq),

where Σp and Σq are closed hyperbolic Riemannian manifolds. In Lorentzian signature,
i.e. for q = 1, the manifold M is (up to a finite cover) conformally equivalent to the
product Σ× (−S1), where Σ is a closed hyperbolic Riemannian manifold.

Proof. Let Ω := dev(M̃). By Lemma 8.8.1, the domain Ω is almost-homogeneous. Since
it is also proper, by Theorem 8.4.1, the domain Ω is a diamond. It is thus a realization
of X(so(p+1, q+1), α1). By Lemma 8.8.2, the manifold M is the quotient of Ω ≃ Hp×Hq

by a cocompact lattice of AutPO(p+1,q+1)(Γ) ≃ PO(p, 1)× PO(1, q).

When p ̸= q and ̸= p, q} ≠ {2, 3}, the group SO(p, 1)× SO(1, q) is non-isotypic and it
is a general fact that its cocompact lattices are virtually products (see e.g. [Mor15, Thm.
5.6.2] for a proof using Margulis Arithmeticity when p, q ≥ 2). This fact completes the
proof of the theorem. □

When p = q, the group PO(p, 1) × PO(1, p) is isotypic, hence it admits irreducible
cocompact lattices (see [Mor15, Cor. 18.7.4]). The case (p, q) = (2, 3) is also special,
as PO(1, 2) × PO(1, 3) admits cocompact lattices which are not virtually products of
cocompact lattices of PO(1, 2) and PO(1, 3), since so(3,C) is an irreducible factor of
both so(1, 2)C = so(3,C) and so(1, 3)C ≃ so(4,C) ≃ so(3,C)⊕ so(3,C).

8.8.2 Closed proper manifolds locally modelled on causal flag manifolds

In this section, we prove the following corollary of Theorem 8.3.1. We use Nota-
tion 2.4.2.

Corollary 8.8.5 (see Corollary 1.4.19). Let G be a HTT Lie group, and let M be a closed
proper connected (G,Sb(g))-manifold. Then the manifold M identifies, as a (G,Sb(g))-
manifold, to a quotient D/Γ, where D is a diamond of Sb(g) and Γ is a cocompact lattice
of AutG(D). Thus, the manifold M is, up to finite cover, a quotient

(XLs/Γ
′)× S1,

where XLs is the symmetric space of the semisimple part Ls of the Levi subgroup L, and Γ′

is a cocompact lattice of Ls.

Proof. The corollary is straightforward if G is of real rank 1, because then we
have g = sl(2,R), hence we may assume that the real rank of G is r ≥ 2.

By Lemma 8.8.1, the domain dev(M̃) is almost-homogeneous. Since it is also
proper, by Theorem 8.3.1 , it is a diamond. It is thus a realization of X(g, αr). By
Lemma 8.8.2, the manifold M is then a quotient of a diamond by a cocompact lattice
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of Isom(X(g, αr)). Recall that diamonds are F(g,α)-equivariantly diffeomorphic to the
symmetric space XLs × R. Thus M is thus a quotient of XLs × R by a cocompact lattice
of Ls × Isom(R) = Ls × (R⋊ (Z/2Z)). It is a classical fact that the cocompact lattices of
a product G × R, where G is a simple Lie group, are virtually products of a cocompact
lattice of R by a cocompact lattice of G. This fact applied to Ls ×R completes the proof
of the corollary. □

8.8.3 Nonexistence of some closed proper manifolds

In this section, we prove a corollary of Proposition 8.7.1:

Corollary 8.8.6. Let M be a closed (Sp(2n,R),F (sp(2n,R), α1))-manifold. Then M is
not proper.

Proof. Since M is compact, up to considering a connected component of M , we may
assume that M is connected. Assume for a contradiction that dev(M̃) is proper. Then by
[Zim18a] (see also Remark 2.4.3), the map dev is a covering map. Since M is compact, the

group hol(π1(M)) acts cocompactly on dev(M̃). Thus Ω := I (dev(M̃)) is a proper quasi-
homogeneous domain of P(R2n), where I is defined in Equation (8.7.1). It is thus properly
convex in P(R2n), by Proposition 3.1.11. In particular, it is simply connected. Thus dev is

a diffeomorphism, and hol is discrete. Then dev(M̃) is a proper divisible (by hol(π1(M)))
domain of F (sp(2n,R), α1). This is in contradiction with Proposition 8.7.1. □

8.9 Perspectives on the rigidity of proper
almost-homogeneous domains in flag manifolds

We conclude this chapter with a discussion of the rigidity results for proper divisible
and almost-homogeneous domains obtained in this memoir.

8.9.1 Higher-rank rigidity of almost-homogeneous domains

In view of Lemma 5.4.2, Question 1.2.1, and Proposition 8.7.1, we can conjecture that
if G is a simple Lie group and α ∈ ∆ is a simple restricted root root such that F (g, α)
admits proper almost-homogeneous domains, then (g, α) is an irreducible Nagano pair.

Now, as seen in Observation 5.1.10, if (g, α) is an irreducible Nagano pair, then the
rank of X(g, α) is determined by the number of incidence degrees between two points
of F (g, α), i.e. the cardinality of W∆∖{α}\W/W∆∖{α} (see Remark 2.2.7). If (g, α) is
an irreducible Nagano pair of real type, then the rank of X(g, α) is 1 if and only if the
Nagano space F (g, α) is either a real projective space or its dual. In this case, there exist
proper non-symmetric almost-homogeneous domains in F (g, α), as already mentioned in
the introduction. In other cases, as highlighted in Theorems 8.3.1 and 8.4.1 and Corol-
lary 8.2.3, a certain rigidity appears. As seen in the proofs, this rigidity is related to the
stratified structure of Schubert cells, in other words, to the number of incidence degrees
(again, the integer |W∆∖{α}\W/W∆∖{α}|, see Observation 5.1.10) being strictly greater
than 2. This structure implies, for instance, that all photons passing through a given
point are contained in the maximal proper Schubert cell defined by a point in the dual
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flag manifold (see Lemma 6.3.9), which is not the case in projective space. Since this
number of degrees is intrinsically related to the rank of (g, α) (see Observation 5.1.10), we
interpret this rigidity as a higher-rank rigidity phenomenon.

According to the classification given in Table 8.1, if (g, α) is an irreducible Nagano pair
of complex or quaternionic type (i.e. dim(gα) = 2 or 4), then F (g, α) has a complex, resp.
quaternionic, structure. In this case, a certain form of rigidity has already been observed
in [Zim18b, Fra89]; for instance, as highlighted in [LZ19], the argument of Frankel [Fra89,
Sect. 6] implies that AutG(Ω) is non-discrete (with G ∈ G{α}(g)). We thus believe that
the rigidity of proper almost-homogeneous domains should hold in this case as well, this
time due to complex and quaternionic structural reasons. The Kobayashi pseudo-metric
discussed in Section 6.5.3 might be an interesting tool to study proper almost-homogeneous
domains in these Nagano spaces.

In summary, we can formulate the conjecture that if (g, α) is an irreducible Nagano pair
such that (g, α) is neither (so(n, 1), α1) for some n ≥ 3, nor (sl(n,R), α1) or (sl(n,R), αn−1)
for some n ≥ 3, then any proper almost-homogeneous domain of F (g, α) is symmetric.

Considering Fact 1.2.3, stated in the introduction and strengthened to the almost-
homogeneous case in Lemma 8.1.2, together with the positive answers to Question 1.2.1
and the discussion of this paragraph, we can reformulate Question 1.2.1 more precisely, in
the following conjecture:

Conjecture 8.9.1. Let g be a simple Lie algebra and let Θ be a subset of the simple
restricted roots of g. If (g, α) is neither (so(n, 1), α1) for some n ≥ 3, nor (sl(n,R), α1)
or (sl(n,R), αn−1) for some n ≥ 3, then any proper almost-homogeneous domain
of F (g,Θ) is symmetric. More precisely:

1. If F (g,Θ) admits proper almost-homogeneous domains, then Θ is a singleton {α},
and (g, α) is an irreducible Nagano pair.

2. If (g, α) is an irreducible Nagano pair such that (g, α) ̸= (so(n, 1), α1) for
some n ≥ 3, or (sl(n,R), α1), (sl(n,R), αn−1) for some n ≥ 3, then any proper
almost-homogeneous domain of F (g, α) is a realization of X(g, α).

Note that with Lemma 1.2.2, Conjecture 8.9.1 gives a complete picture of the situation
when g is semisimple instead of being simple.

8.9.2 Symmetric behavior

By Lemma 5.4.1, one can expect that the real projective spaces P(Rn), for n ≥ 3, and
their duals, are the only Nagano spaces that contain symmetric divisible convex sets other
than their non-compact dual. These proper symmetric domains are exactly the symmetric
spaces of SL(k,K), where

K = R, if n =
k(k + 1)

2
,

K = C, if n = k2,

K = H, if n = 2k2 − k,
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and the one of E6(−26). As mentioned in the introduction of this memoir, irreducible
divisible convex sets in the real projective space P(Rn) that are nonsymmetric have geo-
metric and dynamical properties analogous to those of the real hyperbolic space, see for
instance [Ben01, Ben03, Ben06, Cra09, CLT15]. As mentioned in Section 8.2, A. Zimmer
even proved that all such divisible convex sets are of rank one [Zim23]. The conclusion of
this discussion is that divisible convex sets in P(Rn) mimic the real hyperbolic space, with
a certain flexibility that can likely be attributed to the fact that this symmetric space has
real rank 1.

Thus, conjecturally (see Conjecture 8.9.1), all divisible convex sets in Nagano spaces
(different from the conformal sphere) exhibit a symmetric-like behavior, including those in
real projective space. This “symmetric” nature of divisible convex sets, in real projective
space and in Nagano spaces in general, remains mysterious. As already mentioned in
Section 8.9.1, the results of this memoir provide further insights into this phenomenon.
We believe that developing further the general theory of proper divisible domains (or even
just proper almost-homogeneous domains) in flag manifolds — particularly in Nagano
spaces admitting a complex structure (i.e. those where dim(gα) = 2) — could deepen our
understanding of the projective case and the mechanisms driving the hyperbolic behavior
of divisible convex sets in P(Rn).

The case of the conformal sphere F (so(n, 1), α1) also remains mysterious, as it is
the only case where we have no idea of the possible dynamical or geometric constraints
divisible convex sets could be subject to.
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Tables

In this section, we provide two tables with informations on Nagano spaces. These
informations come from [Nag65, Mak73, Tak88, OV12].
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Table 8.1 – Nagano spaces. The numbering of restricted roots is the one of [OV12]. The
numbers n, p, q are positive integers.
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(g, α) Isom(F (g, α), gg,α) Isom(X(g, α)) rk(g, α)

(so(n, n), αi), i ∈ {n− 1, n} SO(n)× SO(n) SO(n,C) ⌊n2 ⌋
(sp(n, n), αn) Sp(n)× Sp(n) Sp(2n,C) n

(su(n, n), αn) S(U(n)×U(n)) SL(n,C)× R n

(sl(p+ q,R), αp) SO(p+ q) SO(p, q) min(p, q)

(sl(p+ q,C), αp) SU(p+ q) SU(p, q) min(p, q)

(sl(p+ q,H), αp) Sp(p+ q) Sp(p, q) min(p, q)

(e6(6), αi), i ∈ {1, 5} Sp(4) Sp(2, 2) 2

(so(p+ 1, q + 1), α1) SO(p+ 1)× SO(q + 1) SO(p, 1)× SO(1, q) 2

(so(n, 1), α1) SO(n+ 1) SO(n− 1, 1) 1

(so∗(4n), αn) U(2n) SL(n,H)× R n

(sp(2n,R), αn) U(n) SL(n,R)× R n

(e7(−25), α3) E6 × S1 E6(−26) × R 3

(so(n+ 2,C), α1) SO(n+ 2) SO(n, 2) min(n, 2)

(sp(2n,C), αn) Sp(n) Sp(2n,R) n

(so(2n,C), αi), i ∈ {n− 1, n} SO(2n) SO∗(2n) ⌊n2 ⌋
(e6,C, αi), i ∈ {1, 5} E6 E6(−14) 2

(e7,C, α7) E7 E7(−25) 3

(e6(−26), αi), i ∈ {1, 2} F4 F4(−20) 1

(e7(7), α7) SU(8) SL(4,H) 3

Table 8.2 – The isometry groups of Nagano spaces and of their noncompact dual.
The groups are given up to finite index and finite cover. The numbers n, p, q are
positive integers. Recall that rk(g, α) is introduced in Definition 5.1.5 and is equal
to |W∆∖{α}\W/W∆∖{α}| − 1.

189





Principaux résultats du mémoire

Dans cette partie, nous listons les principaux résultats de ce mémoire, énoncés en
introduction. Les notations utilisées sont celles de l’introduction.

Différentes notions de convexité

Proposition 1.4.1 (voir la proposition 3.5.24). Soit G un groupe de Lie hermitien de
type tube et soit Ω ⊂ Sb(g) un domaine dualement convexe. Si Ω ̸= Sb(g), alors Ω est
causalement convexe (en particulier Ω est contenu dans au moins une carte affine).

Groupes préservant des domaines propres

Proposition 1.4.2 (voir la proposition 4.1.5 et le corollaire 4.1.7). Soient G un groupe
de Lie semi-simple réel et P ≤ G un sous-groupe parabolique auto-opposé. Soit H ≤ G
un sous-groupe préservant un domaine propre Ω ⊂ G/P tel que l’ensemble limite ΛP (H)
contienne au moins trois points deux à deux transverses. Alors il existe une composante
connexe s-invariante O de (G/P ) ∖ (ZP ∪ZP−) telle que le type type(a, b, c) d’un tri-
plet (a, b, c) ∈ ΛP (H)3 de points deux à deux transverses soit égal à la (P ∩ P−)-orbite
de O.

Dans le cas où G est un groupe de Lie HTT de rang réel r ≥ 2 et G/P = Sb(g),
alors r est pair et idx(x, y, z) = 0 pour tout triplet de points deux à deux trans-
verses (x, y, z) ∈ ΛP (H)3.

Proposition 1.4.4 (voir la proposition 4.3.2). Soient G un groupe de Lie HTT et Γ ≤ G
un sous-groupe discret. Soit P ≤ G un sous-groupe parabolique tel que G/P = Sb(g). Les
assertions suivantes sont équivalentes :

1. Le groupe Γ est de type fini, P -transverse, préserve un domaine propre Ω ⊂ Sb(g),
et ΛP (Γ) contient au moins 3 points.

2. Il existe un domaine propre causalement convexe Γ-invariant Ω ⊂ Sb(g) tel que Γ
agisse de manière cocompacte sur un cœur convexe C de (Ω,Γ) dont le bord idéal
est transverse, et contient au moins trois points.

3. Il existe un domaine propre dualement convexe Γ-invariant Ω′ ⊂ Sb(g) tel que Γ
agisse de manière cocompacte sur un cœur convexe C ′ de (Ω′,Γ) dont le bord idéal
est transverse, et contient au moins trois points.

Si ces assertions sont vérifiées, on a ∂iC = ΛP (Γ) = Λorb
Ω (Γ) = Λorb

Ω′ (Γ) = ∂iC ′.
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Proposition 1.4.5 (voir la proposition 4.4.2 et l’exemple 4.4.6). Soit r = 2p, avec p ∈ N∗.
Si G est un groupe de Lie HTT de rang réel r et si P ≤ G est un sous-groupe parabolique
tel que G/P = Sb(g), alors il existe des groupes de surfaces P -anosoviens Zariski-denses
dans G préservant un domaine propre dans Sb(g). Si p est pair, alors il existe aussi de
tels exemples qui ne sont ni virtuellement libres, ni des groupes de surface.

Distance de Kobayashi

Théorème 1.4.6 (voir la proposition 6.4.8 et le corollaire 6.4.12). Soit G/P un espace
de Nagano irréductible de type réel et soit Ω ⊂ G/P un domaine propre. Alors KΩ est
une distance Aut(Ω)-invariante qui induit la topologie standard sur Ω. Si Ω est en outre
dualement convexe, alors KΩ est une distance propre et géodésique.

Proposition 1.4.7. [voir la proposition 6.4.10] Soit G/P un espace de Nagano
irréductible de type réel et soit (V, ρ) une représentation linéaire réelle irréductible,
proximale, de dimension finie de G de plus haut poids χ = Nωα, où N ∈ N∗ et ωα est
le poids fondamental associé à α. Soit Ω ⊂ G/P un domaine propre dualement convexe
et soit CρΩ la distance de Carathéodory sur Ω induite par (V, ρ) (voir l’équation (1.1.2)).
Alors on a :

KΩ ≥
1

N
CρΩ.

En particulier, la distance KΩ est propre.

Domaines propres divisibles dans les variétés de drapeaux

Non-hyperbolicté de la distance de Kobayashi en rang supérieur

Théorème 1.4.9 (voir le théorème 8.2.2). Soit G/P un espace de Nagano irréductible
de type réel de rang supérieur. Si Ω ⊂ G/P un domaine propre presque-homogène muni
de sa distance de Kobayashi KΩ, alors l’espace métrique géodésique (Ω,KΩ) n’est pas
Gromov-hyperbolique.

Corollaire 1.4.10 (voir le corollaire 8.2.3). Soient G/P un espace de Nagano irréductible
de type réel de rang supérieur et Γ ≤ G un sous-groupe discret. Supposons que Γ divise
un domaine propre de G/P . Alors Γ n’est pas Gromov-hyperbolique.

Domaines propres divisibles dans les grassmanniennes

Théorème 1.4.12 (voir le théorème 8.5.1). Soit 2 ≤ p ≤ q. Soit Γ ≤ PGL(p + q,R)
un sous-groupe discret, agissant cocompactement sur un domaine propre Ω ⊂ Grp(Rp+q)
dont le bord est une hypersurface topologique de Grp(Rp+q). Alors toute décomposition Γ-
invariante de Rp+q est triviale.

Corollaire 1.4.13 (voir le corollaire 8.5.2). Soit 2 ≤ p ≤ q. Soit Ω ⊂ Grp(Rp+q) un
domaine propre dont le bord est une hypersurface topologique de Grp(Rp+q). Supposons
qu’il existe un sous-groupe discret Γ ≤ PGL(p + q,R) agissant cocompactement sur Ω.
Alors le centralisateur de Γ dans PGL(p+ q,R) est fini.
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Domaines propres presque-homogènes dans les variétés de drapeaux
causales

Théorème 1.4.14 (voir le théorème 8.3.1). Soit G un groupe de Lie simple de hermitien
de type tube. Alors tout domaine propre presque-homogène de Sb(g) est un diamant.

Corollaire 1.4.15. Soit G un groupe de Lie semi-simple de type Hermitien de type
tube, avec centre trivial et sans facteur compact. Écrivons G = G1 × · · · × Gk, où
chaque Gi est un groupe de Lie simple non compact de type Hermitien de type tube pour
tout 1 ≤ i ≤ k. Alors, pour tout domaine propre presque homogène Ω ⊂ Sb(g), il existe des
diamants Di ⊂ Sb(gi) pour 1 ≤ i ≤ k tels que Ω = D1×· · ·×Dk ⊂ Sb(G1)×· · ·×Sb(Gk).

Corollaire 1.4.16 (voir le corollaire 8.3.4). Soit G un groupe de Lie simple réel non
compact et soit Θ un sous-ensemble des racines simples restreintes de G tel que G admette
une structure Θ-positive. Alors on a la dichotomie suivante :

1. Si |Θ| = 1, alors G est hermitien de type tube et G/PΘ = Sb(g) admet exactement
un domaine propre presque-homogène à conjugaison par G près, qui est un diamant.

2. Si |Θ| ≥ 2, alors il n’existe aucun domaine propre presque-homogène dans G/PΘ.

Domaines propres presque-homogènes dans les univers d’Einstein

Théorème 1.4.17 (avec Chalumeau, voir le théorème 8.4.1). Tout domaine propre
presque-homogène de Einp,q est un diamant.

Corollaire 1.4.18 (avec Chalumeau, voir le corollaire 8.4.4). (1) Soit Ω ⊂ Gr2(R4) un
domaine propre presque-homogène. Alors Ω est une réalisation de X(Gr2(R4)). Autrement
dit, il existe g ∈ PGL(4,R) tel que Ω = g · B2,2.

(2) Soit F l’une des deux composantes connexes de l’espace des sous-espaces totalement
isotropes maximaux de R4,4. Soit Ω ⊂ F un domaine propre presque homogène. Alors Ω
est une réalisation de X(F (g, α)). En particulier, Aut(Ω) est conjugué à SO(3, 1)×SO(1, 3)
dans SO(4, 4).

Corollaire 1.4.20 (avec Chalumeau, voir le corollaire 8.8.4). Soient p, q ≥ 2 deux entiers
et M une variété pseudo-riemannienne conformément plate de signature (p, q) (où p est le
nombre de + et q le nombre de −), propre, compacte et connexe. AlorsM est conformément
équivalente à un quotient D/Γ, où D est un diamant de Einp,q et Γ ≤ Aut(D) est un
réseau cocompact. Si de plus 1 ≤ p < q avec (p, q) ̸= (2, 3), alors à revêtement fini près,
la variété M est conformément équivalente à

Σp × (−Σq),

où Σp et Σq sont des variétés hyperboliques compactes de dimensions respectives p et q.
En signature lorentzienne, c’est-à-dire pour q = 1, la variété M est (à un revêtement fini
près) conformément équivalente au produit Σ × (−S1), où Σ est une variété hyperbolique
compacte.
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