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Abstract. We prove that any non-Fuchsian representation ρ of a sur-
face group into PSL(2,R) is the holonomy of a folded hyperbolic struc-
ture on the surface, unless the image of ρ is virtually abelian. Using
similar ideas, we establish that any non-Fuchsian representation ρ is
strictly dominated by some Fuchsian representation j, in the sense that
the hyperbolic translation lengths for j are uniformly larger than for ρ.
Conversely, any Fuchsian representation j strictly dominates some non-
Fuchsian representation ρ, whose Euler class can be prescribed. This
has applications to the theory of compact anti-de Sitter 3-manifolds.

1. Introduction

Let Σg be a closed, connected, oriented surface of genus g, with fundamen-
tal group Γg = π1(Σg), and let Repfd

g (resp. Repnfd
g ) be the set of conjugacy

classes of Fuchsian (resp. non-Fuchsian) representations of Γg into PSL(2,R).
The letters “fd” stand for “faithful, discrete”. By work of Goldman [Go2], the
space Hom(Γg,PSL(2,R)) of representations of Γg into PSL(2,R) has 4g−3
connected components, indexed by the values of the Euler class

eu : Hom(Γg,PSL(2,R)) −→ {2− 2g, . . . ,−1, 0, 1, . . . , 2g − 2}.

In the quotient, Repfd
g consists of the two connected components of

Hom(Γg,PSL(2,R))/PSL(2,R) of extremal Euler class, and Repnfd
g of all the

other components.

1.1. Strictly dominating representations. For any g ∈ PSL(2,R), let

(1.1) λ(g) := inf
p∈H2

d(p, g · p) ≥ 0

be the translation length of g in the hyperbolic plane H2. The function
λ : PSL(2,R)→ R+ is invariant under conjugation. We say that an element
[j] ∈ Repfd

g strictly dominates an element [ρ] ∈ Repnfd
g if

(1.2) sup
γ∈Γgr{1}

λ(ρ(γ))

λ(j(γ))
< 1.

Note that (1.2) can never hold when j and ρ are both Fuchsian [T2]. In this
paper we prove the following.

The authors are partially supported by the Agence Nationale de la Recherche under
the grants DiscGroup (ANR-11-BS01-013), ETTT (ANR-09-BLAN-0116-01), ModGroup
(ANR-11-BS01-0020), SGT (ANR-11-BS01-0018), and through the Labex CEMPI (ANR-
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Theorem 1.1. Any [ρ] ∈ Repnfd
g is strictly dominated by some [j] ∈ Repfd

g .
Any [j] ∈ Repfd

g strictly dominates some [ρ] ∈ Repnfd
g , whose Euler class can

be prescribed.

The first statement of Theorem 1.1 has been simultaneously and indepen-
dently obtained by Deroin–Tholozan [DT], using more analytical methods.
Their paper deals, more generally, with representations of Γg into the isome-
try group of any complete, simply connected Riemannian manifold with sec-
tional curvature ≤ −1. They also announce a version for general CAT(−1)
spaces. The present methods, relying as they do on the Toponogov theorem
(see Lemma 2.2 below), could likely extend to this general setting as well.

Our approach is constructive, using folded (or pleated) hyperbolic sur-
faces, as we now explain.

1.2. Folded hyperbolic surfaces. Pleated hyperbolic surfaces were intro-
duced by Thurston [T1] and play an important role in the theory of hy-
perbolic 3-manifolds. A folded hyperbolic surface is a pleated surface with
all angles equal to 0 or π, whose holonomy takes values in PSL(2,R) (see
Section 2.2). It is easy to check (see [T2, Prop. 2.1]) that the holonomy of a
(nontrivially) folded hyperbolic structure on Σg belongs to Repnfd

g . In order
to establish Theorem 1.1, we prove that the converse holds for representa-
tions whose image is not virtually abelian.

Theorem 1.2. An element of Repnfd
g is the holonomy of a folded hyperbolic

structure on Σg if and only if its image is not virtually abelian.

As usual, virtually abelian means that there is an abelian subgroup of
finite index. Besides abelian representations, Theorem 1.2 rules out dihedral
representations, which preserve a geodesic line of H2 and contain order-two
symmetries of that line.

This result seems to have been known to experts since the work of Thurston
[T1], but to our knowledge it is not stated nor proved in the literature.

We construct the folded hyperbolic structures of Theorem 1.2 explicitly,
folding along geodesic laminations that are the union of simple closed curves
and of maximal laminations of some pairs of pants (Proposition 3.1). More
precisely, given a non-Fuchsian representation ρ whose image is not virtually
abelian, we use a result of Gallo–Kapovich–Marden [GKM] to find a pants
decomposition of Σg such that the restriction of ρ to any pair of pants P
is nonabelian and maps any cuff to a hyperbolic element. (The term cuff,
always specific to a pair of pants, will in the sequel denote indifferently the
homotopy class of a boundary component, or the geodesic in that class, or
its length.) Folding along a certain maximal lamination in P then gives a
simple dictionary between the representations of the fundamental group of P
that have Euler class 0 and those that have Euler class ±1 (Lemma 3.6). The
converse direction in Theorem 1.2 is elementary (Observation 2.7).

1.3. Idea of the proof of Theorem 1.1. If [ρ] ∈ Repnfd
g is the holonomy

of a folded hyperbolic structure on Σg, then the holonomy [j0] ∈ Repfd
g of

the corresponding unfolded hyperbolic structure clearly dominates [ρ] in the
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sense that λ(ρ(γ)) ≤ λ(j0(γ)) for all γ ∈ Γg. In fact,

sup
γ∈Γgr{1}

λ(ρ(γ))

λ(j0(γ))
= 1

since any minimal component of the folding lamination can be approximated
by simple closed curves. In order to prove Theorem 1.1 we need to make the
domination strict.

To establish the first statement, the idea is, for [ρ] ∈ Repnfd
g , to consider

the holonomy [j0] ∈ Repfd
g of the unfolded hyperbolic structure given by The-

orem 1.2, and to lengthen the closed curves (close to being) contained in the
folding lamination while simultaneously not shortening too much the other
curves. To do this, we work independently in each “folded subsurface” of Σg,
which is a compact surface with boundary, endowed with a hyperbolic struc-
ture induced by j0. In each such subsurface we use a strip deformation con-
struction due to Thurston [T2], which consists in adding hyperbolic strips to
obtain a new hyperbolic metric with longer boundary components. We then
glue back along the boundaries, after making sure that the lengths agree.

The second statement is easier in that it does not rely on Theorem 1.2.
Starting with an element [j] ∈ Repfd

g , we choose a pants decomposition of Σg

along which to fold. To make sure that the cuffs of the pairs of pants will
get contracted, we first deform j slightly by negative strip deformations into
another element [j0] ∈ Repfd

g with shorter cuffs, in such a way that the other
curves do not get much longer. Folding j0 then gives an element [ρ] ∈ Repnfd

g

which is strictly dominated by [j].

1.4. An application to compact anti-de Sitter 3-manifolds. Theo-
rem 1.1 has consequences on the theory of compact anti-de Sitter 3-manifolds.
These are the compact Lorentzian 3-manifolds of constant negative curva-
ture, i.e. the Lorentzian analogues of the compact hyperbolic 3-manifolds.
They are locally modeled on the 3-dimensional anti-de Sitter space

AdS3 = PO(2, 2)/PO(2, 1),

which identifies with PSL(2,R) endowed with the natural Lorentzian struc-
ture induced by the Killing form of its Lie algebra. The identity compo-
nent of the isometry group of AdS3 is PSL(2,R) × PSL(2,R), acting on
PSL(2,R) ' AdS3 by right and left multiplication: (g1, g2) · g = g2gg

−1
1 . By

[Kl], all compact anti-de Sitter 3-manifolds are geodesically complete. By
[KR] and the Selberg lemma [Se, Lem. 8], they are quotients of PSL(2,R) by
torsion-free discrete subgroups Γ of PSL(2,R) × PSL(2,R) acting properly
discontinuously, up to a finite covering; moreover, the groups Γ are graphs
of the form

Γ = (Γg)
j,ρ := {(j(γ), ρ(γ)) | γ ∈ Γg},

for some g ≥ 2, where j, ρ ∈ Hom(Γg,PSL(2,R)) are representations and j is
Fuchsian, up to switching the two factors of PSL(2,R)× PSL(2,R). In par-
ticular, Γ\AdS3 is Seifert fibered over a hyperbolic base (see [Sa1, § 3.4.2]).

Following [Sa2], we shall say that a pair (j, ρ) ∈ Hom(Γg,PSL(2,R))2

with j Fuchsian is admissible if the action of (Γg)
j,ρ on AdS3 is properly

discontinuous. Clearly, (j, ρ) is admissible if and only if its conjugates under
PSL(2,R) × PSL(2,R) are. Therefore, in order to understand the moduli
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space of compact anti-de Sitter 3-manifolds, we need to understand, for any
g ≥ 2, the space

Admg ⊂ Repfd
g ×Hom(Γg,PSL(2,R))/PSL(2,R)

of conjugacy classes of admissible pairs (j, ρ) with j Fuchsian.
Examples of admissible pairs are readily obtained by taking ρ to be con-

stant, or more generally with bounded image. The corresponding quotients of
AdS3 are called standard. The first nonstandard examples were constructed
by Goldman [Go1] by deformation of standard ones — a technique later
generalized by Kobayashi [Ko]. Salein [Sa2] constructed the first examples
of admissible pairs (j, ρ) with eu(ρ) 6= 0. He actually constructed examples
where eu(ρ) can take any nonextremal value. A necessary and sufficient con-
dition for admissibility was given in [Ka2]: a pair (j, ρ) with j Fuchsian is
admissible if and only if ρ is strictly dominated by j in the sense of (1.2). In
particular, by [T2],

Admg ⊂ Repfd
g × Repnfd

g .

This properness criterion was extended in [GK] to quotients of PO(n, 1) =
Isom(Hn) by discrete subgroups of PO(n, 1) × PO(n, 1) acting by left and
right multiplication, for arbitrary n ≥ 2 (recall that PSL(2,R) ' PO(2, 1)0),
and in [GGKW] to quotients of any simple Lie group G of real rank 1.

By completeness [Kl] of compact anti-de Sitter manifolds, the Ehresmann–
Thurston principle (see [T1]) implies that Admg is open in Repfd

g × Repnfd
g .

Moreover, Admg has at least 4g − 5 connected components, as Salein’s ex-
amples show. Using the fact that the two connected components of Repfd

g

are conjugate under PGL(2,R), we can reformulate Theorem 1.1 as follows.

Corollary 1.3. The projections of Admg to Repfd
g and to Repnfd

g are both
surjective. Moreover, for any connected components C1 of Repfd

g and C2 of
Repnfd

g , the projections of Admg∩(C1×C2) to C1 and to C2 are both surjective.

The topology of Admg is still unknown, but we believe that Corollary 1.3
(and the ideas behind its proof) could be used to prove that Admg is homeo-
morphic to Repfd

g ×Repnfd
g . Using the work of Hitchin [H, Th. 10.8 & Eq. 10.6],

this would give the homeomorphism type of the connected components of
Admg corresponding to eu(ρ) 6= 0.

Furthermore, it would be interesting to obtain a geometric and combinato-
rial description of the fibers of the second projection Admg → Repnfd

g . Such
a description is given in [DGK], in terms of the arc complex, in the different
case that j and ρ are the holonomies of two convex cocompact hyperbolic
structures on a given noncompact surface.

1.5. Organization of the paper. In Section 2 we recall some facts about
Lipschitz maps, folded hyperbolic structures, and the Euler class. Section 3
is devoted to the proof of Theorem 1.2, and Section 4 to that of Theorem 1.1.

Acknowledgements. We would like to thank Bertrand Deroin and Nicolas
Tholozan for sharing their thoughts on the subject with us. The third author
is grateful to Antonin Guilloux, Julien Marché, and Richard Wentworth for
their support and for helpful conversations.



COMPACT ADS 3-MANIFOLDS AND FOLDED HYPERBOLIC STRUCTURES 5

2. Reminders and useful facts

2.1. Lipschitz maps and their stretch locus. In the whole paper, we
denote by d the metric on the real hyperbolic plane H2. For a Lipschitz map
f : H2 → H2 and a point p ∈ H2, we set

• Lip(f) := supq 6=q′ d(f(q), f(q′))/d(q, q′) ≥ 0 (Lipschitz constant);
• Lipp(f) := infU Lip(f |U ) ≥ 0, where U ranges over all neighborhoods
of p in H2 (local Lipschitz constant).

The function p 7→ Lipp(f) is upper semicontinuous:

Lipp(f) ≥ lim sup
n→+∞

Lippn(f)

for any sequence (pn)n∈N converging to p. The following is straightforward.

Remark 2.1. For any rectifiable path L ⊂ H2,

length(f(L)) ≤ sup
p∈L

Lipp(f) · length(L).

In particular, if Lipp(f) ≤ C for all p in a convex set K, then Lip(f |K) ≤ C.

2.1.1. The stretch locus. The following result is contained in [GK, Th. 5.1].
It relies on the Toponogov theorem, a comparison theorem relating the cur-
vature to the divergence rate of geodesics (see [BH, Lem. II.1.13]).

Lemma 2.2 [GK]. Let Γ be a torsion-free, finitely generated, discrete group
and (j, ρ) ∈ Hom(Γ,PSL(2,R))2 a pair of representations with j convex co-
compact. Suppose the infimum of Lipschitz constants for all (j, ρ)-equivariant
maps f : H2 → H2 is 1, and the space F of maps achieving this infimum is
nonempty. Then there exists a nonempty, j(Γ)-invariant geodesic lamination
Λ̃ of H2 such that

• any leaf of Λ̃ is isometrically preserved by all maps f ∈ F ;
• any connected component of H2 r Λ̃ is either isometrically preserved
by all f ∈ F , or consists entirely of points p at which Lipp(f) < 1
for some f ∈ F (independent of p).

Definition 2.3. The union of Λ̃ and of the connected components of H2r Λ̃
that are isometrically preserved by all f ∈ F is called the stretch locus of
(j, ρ).

By convex cocompact we mean that j is injective and discrete and that
the group j(Γ) does not contain any parabolic element. By (j, ρ)-equivariant
we mean that f(j(γ) · p) = ρ(γ) · f(p) for all γ ∈ Γ and p ∈ H2. The space
F is always nonempty, except possibly if ρ(Γ) admits a unique fixed point
in the boundary at infinity ∂∞H2 of H2 [GK, Lem. 4.11]. If j and ρ are
conjugate under PGL(2,R), then the stretch locus of (j, ρ) is the preimage
of the convex core of j(Γ)\H2. (This preimage is by definition the smallest
nonempty j(Γ)-invariant convex subset of H2.)

2.1.2. Averaging Lipschitz maps. We now describe a technical tool for un-
derstanding the stretch locus. It is a procedure for averaging Lipschitz maps
(see [GK, § 2.5]), under which Lipp behaves as it would for the barycenter
of maps between affine Euclidean spaces. In Section 3.4, we shall use this
procedure with a partition of unity, as follows.
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Let ψ0, . . . , ψn : H2 → [0, 1] be Lipschitz functions inducing a partition of
unity on a subsetX ofH2, subordinated to an open coveringB0∪. . .∪Bn ⊃ X.
For 0 ≤ i ≤ n, let ϕi : Bi → H2 be a Lipschitz map. For p ∈ X, let I(p) be
the collection of indices i such that p ∈ Bi. Let

∑n
i=0 ψi ϕi : X → H2 be the

map sending any p ∈ X to the minimizer in H2 of∑
i∈I(p)

ψi(p) d( · , ϕi(p))2.

Then the following holds.

Lemma 2.4 [GK, Lem. 2.13]. The averaged map ϕ :=
∑n

i=0 ψi ϕi satisfies
the “Leibniz rule”

Lipp(ϕ) ≤
∑
i∈I(p)

(
Lipp(ψi)R(p) + ψi(p) Lipp(ϕi)

)
for all p ∈ X, where R(p) is the diameter of the set {ϕi(p) | i ∈ I(p)}.

2.1.3. Admissibility. For any discrete group Γ (not necessarily of the form Γg),
we say that a pair of representations (j, ρ) ∈ Hom(Γ,PSL(2,R))2 is admis-
sible if the group Γj,ρ = {(j(γ), ρ(γ)) | γ ∈ Γ} acts properly discontinuously
on AdS3. In this case, at least one of j or ρ is injective and discrete [Ka1].

Understanding the stretch locus has led to the following necessary and
sufficient conditions for admissibility. We denote by Γs the set of nontrivial
elements of Γ corresponding to simple closed curves on the surface j(Γ)\H2.

Theorem 2.5 [Ka2, GK]. Let Γ be a torsion-free, finitely generated, discrete
group. For (j, ρ) ∈ Hom(Γ,PSL(2,R))2 with j injective and discrete, the
following conditions are equivalent:

(i) There exists a (j, ρ)-equivariant map f : H2 → H2 with Lip(f) < 1;
(ii) The representation ρ is strictly dominated by j:

sup
γ∈Γ with λ(j(γ))>0

λ(ρ(γ))

λ(j(γ))
< 1.

If j is convex cocompact, then (i) and (ii) are also equivalent to:
(iii) The representation ρ is strictly dominated by j in restriction to simple

closed curves:
sup
γ∈Γs

λ(ρ(γ))

λ(j(γ))
< 1.

In general, the pair (j, ρ) is admissible if and only if (i) and (ii) hold up to
switching j and ρ.

The implication (iii) ⇒ (i) is nontrivial and relies on Lemma 2.2. The
implications (i) ⇒ (ii) ⇒ (iii) are immediate modulo the following easy
remark (see [GK, Lem. 4.5]).

Remark 2.6. Let Γ be a discrete group and (j, ρ) ∈ Hom(Γ,PSL(2,R))2 a
pair of representations. For any γ ∈ Γ and any (j, ρ)-equivariant Lipschitz
map f : H2 → H2,

λ(ρ(γ)) ≤ Lip(f)λ(j(γ)).

2.2. Pleated and folded hyperbolic structures. Let Σ be a connected,
oriented surface of negative Euler characteristic, possibly with boundary, and
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let Γ = π1(Σ) be its fundamental group. Recall from [B, § 7] that a pleated
hyperbolic structure on Σ is a quadruple (j, ρ,Υ, f) where

• j ∈ Hom(Γ,PSL(2,R)) is the holonomy of a hyperbolic structure
on Σ;
• ρ ∈ Hom(Γ,PSL(2,C)) is a representation;
• Υ is a geodesic lamination on Σ;
• f : H2 → H3 is a (j, ρ)-equivariant, continuous map whose restriction
to any connected component of H2 r Υ̃ is an isometric embedding.
(Here we denote by Υ̃ ⊂ H2 the preimage of Υ ⊂ Σ ' j(Γ)\H2.)

The representation ρ is called the holonomy of the pleated hyperbolic struc-
ture. The closures of the connected components of H2 r Υ̃ are called the
plates. Note that f is 1-Lipschitz. For any g, h ∈ PGL(2,R),(

gj(·)g−1, hρ(·)h−1,Υ, h ◦ f ◦ g−1
)

is still a pleated hyperbolic structure on Σ.

Observation 2.7. Suppose that Σ is compact. If (j, ρ,Υ, f) is a pleated
hyperbolic structure on Σ, then the group ρ(Γ) is not virtually abelian.

Proof. We see Σ as the convex core of the hyperbolic surface j(Γ)\H2. Con-
sider a nondegenerate ideal triangle T of H2 which is entirely contained in
the intersection of one plate with the preimage of Σ in H2. Let (pn)n∈N be
a sequence of points of T going to infinity. Since Σ is compact, there exist
R > 0 and a sequence (γn)n∈N of elements of Γ such that d(j(γn)·p0, pn) ≤ R
for all n ∈ N. Since f is (j, ρ)-equivariant and 1-Lipschitz,

d(ρ(γn) · f(p0), f(pn)) ≤ d(j(γn) · p0, pn) ≤ R
for all n ∈ N. Applying this to sequences (pn) converging to the three ideal
vertices of T , and using the fact that the restriction of f to T is an isometry,
we see that the limit set of ρ(Γ) contains at least three points. In particular,
ρ(Γ) is not virtually abelian. �

We shall also use the following elementary remark.

Remark 2.8. Let (j, ρ,Υ, f) be a pleated hyperbolic structure on Σ. If
some leaf of Υ spirals to a boundary component of Σ corresponding to an
element γ ∈ Γ, then λ(j(γ)) = λ(ρ(γ)), where λ : PSL(2,C) → R+ is the
translation length function in H3 extending (1.1).

Any pleated hyperbolic structure (j, ρ,Υ, f) on Σ defines a bending cocycle,
i.e. a map β from the set of pairs of plates to R/2πZ which is symmetric and
additive:

β(P,Q) = β(Q,P ) and β(P,Q) + β(Q,R) = β(P,R)

for all plates P,Q,R. Intuitively, β(P,Q) is the total angle of pleating en-
countered when traveling from f(P ) to f(Q) along f(H2) in H3. Conversely,
to any bending cocycle, Bonahon associates a pleated surface (see [B, § 8]).

In this paper we consider a special case of pleated surfaces (j, ρ,Υ, f),
namely those for which f takes values in a copy of H2 inside H3 (i.e. a
totally geodesic plane) and ρ takes values in Isom+(H2) = PSL(2,R). In
this case, we speak of a folded hyperbolic structure on Σ, and say that ρ is
a folding of j. The map f defines a coloring of Σ r Υ, i.e. a j(Γ)-invariant
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function c̃ from the set of plates to {−1, 1}. Namely, we set c̃(P ) = −1 if
the restriction of f to P is orientation-preserving, and c̃(P ) = 1 otherwise.
Note that the bending cocycle of a folded hyperbolic structure is valued in
{0, π}: for all plates P and Q,

(2.1) β(P,Q) =
1− c̃(P ) c̃(Q)

2
π ∈ {0, π}.

The coloring c̃ descends to a continuous, locally constant function c from
Σ r Υ to {−1, 1}. Conversely, any such function, after lifting to a coloring
c̃ from the set of connected components of H2 r Υ̃ to {−1, 1}, defines a
bending cocycle on H2 r Υ̃ by the formula (2.1). This bending cocycle, in
turn, defines a folded hyperbolic structure on Σ by the work of Bonahon [B].

2.3. The Euler class. We now give a brief introduction to the Euler class,
along the lines of [W, § 2.3.3]. For details and complements we refer to [Gh]
or [C, § 2].

As in the introduction, let Σg be a closed, connected, oriented surface of
genus g ≥ 2, with fundamental group Γg. The Euler class of a representation
ρ ∈ Hom(Γg,PSL(2,R)) measures the obstruction to lifting ρ to the universal
cover P̃SL(2,R) of PSL(2,R), and its parity measures the obstruction to
lifting ρ to SL(2,R). To define the Euler class, choose a set-theoretic section
s of the covering map P̃SL(2,R) → PSL(2,R). Consider a triangulation
of Σg with a vertex at the basepoint x0 defining Γg = π1(Σg, x0), and choose
an orientation on every edge of the triangulation. Choose a maximal tree
in the 1-skeleton of the triangulation, and for every oriented edge σ in this
tree, set ρ(σ) := 1 ∈ PSL(2,R). Any other oriented edge σ′ corresponds (by
closing up in the unique possible way along the rooted tree) to an element
γ ∈ Γg, and we set ρ(σ′) := ρ(γ) ∈ PSL(2,R). The boundary of any oriented
triangle τ of the triangulation can be written as σε11 σ

ε2
2 σ

ε3
3 where σ1, σ2, σ3

are edges with the chosen orientation, and εi ∈ {±1}. We set

eu(ρ)(τ) := s(ρ(σ1))ε1 s(ρ(σ2))ε2 s(ρ(σ3))ε3 .

Summing over triangles τ , this defines an element of H2(Σg, π1(PSL(2,R))),
hence an element of H2(Σg,Z) under the identification π1(PSL(2,R)) ' Z.
This element eu(ρ) ∈ H2(Σg,Z) is called the Euler class of ρ. Its evaluation
on the fundamental class in H2(Σg,Z) is an integer, which we still call the
Euler class of ρ. It is invariant under conjugation by PSL(2,R), and changes
sign under conjugation by PGL(2,R) r PSL(2,R).

We can also define the Euler class for representations of the fundamen-
tal group of a compact, connected, oriented surface Σ with boundary, of
negative Euler characteristic, provided that the boundary curves are sent
to hyperbolic elements. Indeed, any hyperbolic element g ∈ PSL(2,R) has
a canonical lift to P̃SL(2,R), because it belongs to a unique one-parameter
subgroup of PSL(2,R), which defines a path from the identity to g. Choose a
section s of the projection P̃SL(2,R)→ PSL(2,R) that maps any hyperbolic
element to its canonical lift. Then the construction above, using triangu-
lations of Σ containing exactly one vertex on each boundary component,
defines an Euler class, independent of all choices.
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For instance, let Σ be an oriented pair of pants with fundamental group
Γ = 〈α, β, γ |αβγ = 1〉, where α, β, γ correspond to the three boundary
curves, endowed with the orientation induced by the surface. For any repre-
sentation ρ ∈ Hom(Γ,PSL(2,R)) with ρ(α), ρ(β), ρ(γ) hyperbolic,

(2.2) eu(ρ) = s(ρ(α)) s(ρ(β)) s(ρ(γ)) ∈ Z(P̃SL(2,R)) ' Z.
In particular, eu(ρ) ∈ {−1, 0, 1}, and |eu(ρ)| = 1 if and only if ρ is the
holonomy of a hyperbolic structure on Σ, after possibly reversing the orien-
tation. If s′ is a section of the projection SL(2,R) → PSL(2,R) that maps
any hyperbolic element to its lift of positive trace, then (2.2) implies

(2.3) s′(ρ(α)) s′(ρ(β)) s′(ρ(γ)) = (−Id)eu(ρ).

By construction, the Euler class is additive: if Σ is the union of two sub-
surfaces Σ′ and Σ′′ glued along curves γi, and if ρ ∈ Hom(π1(Σ),PSL(2,R))
is a representation sending all the curves γi (and the boundary curves of Σ,
if any) to hyperbolic elements of PSL(2,R), then eu(ρ) is the sum of the
Euler classes of the restrictions of ρ to the fundamental groups of Σ′ and Σ′′.
This implies that a folded hyperbolic structure defined by a coloring c from
the set P of connected components of Σ r Υ to {−1, 1} has Euler class
1

2π

∑
P∈P c(P )A(P ) where A(P ) is the area of P .

We shall use the following terminology.

Definition 2.9. A representation ρ ∈ Hom(π1(Σ),PSL(2,R)) is geometric
if it maps the boundary curves of Σ to hyperbolic elements of PSL(2,R) and
has extremal Euler class or, equivalently, if it is the holonomy of a hyperbolic
structure on Σ, after possibly reversing the orientation.

2.4. Laminations in a pair of pants. A hyperbolic pair of pants Σ carries
only finitely many geodesic laminations, because only 21 geodesics are simple
— namely 3 closed geodesics (the boundary components), 6 geodesics spiral-
ing from a boundary component to itself, and 12 geodesics spiraling from a
boundary component to another. It admits 32 ideal triangulations, of which
24 contain a geodesic spiraling from a boundary component to itself, and
the other 8 do not (see Figure 1). We shall call the laminations correspond-
ing to these 8 triangulations the triskelion laminations of Σ. They differ
by the spiraling directions of the spikes of the triangles at each boundary
component.

Figure 1. A pair of pants carries 24 maximal geodesic lami-
nations containing a geodesic spiraling from a boundary com-
ponent to itself (left), and 8 triskelion laminations (right).
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3. Holonomies of folded hyperbolic structures

Let λ : PSL(2,R)→ R+ be the translation length function (1.1). For any
representation ρ ∈ Hom(Γg,PSL(2,R)), we set

λρ := λ ◦ ρ : Γg −→ R+.

The function λρ is identically zero if and only if the group ρ(Γg) is unipotent
or bounded. The goal of this section is to prove the following.

Proposition 3.1. For any [ρ] ∈ Repnfd
g with λρ 6≡ 0, there exist elements

[j0], [j′0] ∈ Repfd
g and a decomposition of Σg into pairs of pants, each labeled

−1, 0, or 1, with the following properties:
(1) for any representations j0, ρ in the respective classes [j0], [ρ], there

is a 1-Lipschitz, (j0, ρ)-equivariant map f : H2 → H2 that is an
orientation-preserving (resp. orientation-reversing) isometry in re-
striction to any connected subset of H2 projecting to a union of
pants labeled −1 (resp. 1) in j0(Γg)\H2 ' Σg, and that satisfies
Lipp(f) < 1 for any p ∈ H2 projecting to the interior of a pair
of pants labeled 0;

(2) for any representations j′0, ρ in the respective classes [j′0], [ρ], if the
group ρ(Γg) is not virtually abelian, then ρ is a folding of j′0 along a
lamination Υ of Σg consisting of all the cuffs together with a triske-
lion lamination inside each pair of pants labeled 0, with the coloring
c : ΣgrΥ→ {−1, 1} taking the value −1 (resp. 1) on each pair of pants
labeled −1 (resp. 1), and both values on each pair of pants labeled 0;

(3) [j0] and [j′0] only differ by earthquakes along the cuffs of the pairs of
pants of the decomposition.

Property (1) is used to prove Theorem 1.1 in Section 4, while (2) is a
more precise statement of Theorem 1.2. We refer to Section 2.1 for the nota-
tion Lipp(f) and to Section 2.4 for triskelion laminations. By additivity (see
Section 2.3), the Euler class of ρ is the sum of the labels of the pairs of pants.

Proposition 3.1 is proved by choosing an appropriate pants decomposi-
tion (Section 3.1) and understanding the representations of the fundamental
group of a pair of pants (Section 3.2). These ingredients are brought together
in Section 3.3. In Section 3.4 we present a variation on Proposition 3.1.(1),
which is later used to prove the second statement of Theorem 1.1.

3.1. Pants decompositions. Our first ingredient is the following.

Lemma 3.2. For any [ρ] ∈ Repnfd
g with λρ 6≡ 0, there is a pants decompo-

sition of Σg such that ρ maps any cuff to a hyperbolic element. If ρ(Γg) is
not virtually abelian, then we may assume that the restriction of ρ to the
fundamental group of any pair of pants of the decomposition is nonabelian.

Recall that [ρ] ∈ Repnfd
g is said to be elementary if the group ρ(Γg) admits

a finite orbit in H2 or in ∂∞H2. In the case that [ρ] is not elementary,
Lemma 3.2 is contained in the following result of Gallo–Kapovich–Marden.

Lemma 3.3 [GKM, part A]. For any nonelementary [ρ] ∈ Repnfd
g , there is

a pants decomposition of Σg such that the fundamental group of any pair of
pants maps injectively to a 2-generator Schottky group under ρ.
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We now treat the case that ρ is elementary.

Proof of Lemma 3.2 when ρ is elementary. By induction, Lemma 3.2 is a
consequence of the following two claims.

Claim 3.4. Let Σ be a connected compact surface of genus g ≥ 1 with
k ≥ 0 boundary components, such that χ(Σ) = 2 − 2g − k < 0, and let
ρ : π1(Σ)→ PSL(2,R) be an elementary representation with λρ 6≡ 0, sending
each boundary curve of Σ (if any) to a hyperbolic element. Then we can cut
Σ open along some nonseparating simple closed curve whose image by ρ is a
hyperbolic element, yielding a new surface Σ′ of genus g − 1 and an induced
representation ρ′ : π1(Σ′) → PSL(2,R) sending all k + 2 boundary curves
of Σ′ to hyperbolic elements. If the image of ρ is not virtually abelian, then
the image of ρ′ is not virtually abelian.

Claim 3.5. Let Σ be a connected compact surface of genus g = 0 with k ≥ 4
boundary components, and let ρ : π1(Σ)→ PSL(2,R) be an elementary rep-
resentation sending each boundary curve of Σ to a hyperbolic element. Then
we can cut Σ along some simple closed curve of Σ, not freely homotopic to a
boundary component, whose image by ρ is a hyperbolic element, yielding two
new surfaces Σ1 and Σ2 with lower complexity and two induced representa-
tions ρi : π1(Σi) → PSL(2,R) sending each boundary curve to a hyperbolic
element. If the image of ρ is nonabelian, then we can do this in such a way
that the images of the ρi are nonabelian.

Proof of Claim 3.4. We first observe that π1(Σ) is generated by elements
representing nonseparating simple closed curves on Σ. Indeed, consider a
standard presentation

(3.1) π1(Σ) =
〈
a1, b1, . . . , ag, bg, c1, . . . , ck | [a1, b1] · · · [ag, bg] c1 · · · ck = 1

〉
of π1(Σ) by generators and relations, where ai, bi represent nonseparating
simple closed curves and ci a curve freely homotopic to a boundary compo-
nent. Either a1ci represents a nonseparating simple closed curve for all i, or
a−1

1 ci represents a nonseparating simple closed curve for all i. Thus we may
take the generating set {a1, b1, . . . , ag, bg, a

ε
1c1, . . . , a

ε
1ck} for some ε ∈ {−1, 1}.

Let us show that ρ sends some nonseparating simple closed curve of Σ to
a hyperbolic element. Since λρ 6≡ 0, two mutually exclusive situations are
possible:

(T) the group ρ(π1(Σ)) has a fixed point ξ in ∂∞H2; it is then conjugate
to a group of triangular (possibly diagonal) matrices in PSL(2,R);

(VA) the group ρ(π1(Σ)) preserves a geodesic line ` of H2, and contains
both translations along ` and order-two symmetries of ` reversing its
orientation; it is then virtually abelian but not abelian.

Consider a system F of generators of π1(Σ) representing nonseparating sim-
ple closed curves. In case (T), some element of F is necessarily sent by ρ
to a hyperbolic element: otherwise the group ρ(π1(Σ)) would contain only
parabolic elements and the identity, which would contradict the fact that
λρ 6≡ 0. Suppose we are in case (VA) and ρ does not send any element of F
to a hyperbolic element; it then sends some element γ ∈ F to an order-two
symmetry of ` (because it is not the constant homomorphism). We may
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complete γ into a new standard presentation of the form (3.1) with γ = a1.
Consider the generating set

F ′ = {b1, a1b1, a
−1
2 b1, b2b1, . . . , a

−1
g b1, bgb1, c

ε
1b1, . . . , c

ε
kb1},

where ε ∈ {−1, 1}. If ε is suitably chosen, then every γ′ ∈ F ′ represents a
nonseparating simple closed curve, and γ′ and γ = a1 are standard generators
of a one-holed torus embedded in Σ; it follows that γγ′ is a nonseparating
simple closed curve as well. Necessarily, there exists γ′ ∈ F ′ such that ρ(γ′)
does not commute with ρ(γ): otherwise the group ρ(π1(Σ)) would be con-
tained in the centralizer of ρ(γ), which is compact, and this would contradict
the fact that λρ 6≡ 0. Either this ρ(γ′) is hyperbolic, or it is an order-two
symmetry whose center is different from that of ρ(γ), in which case ρ(γγ′)
is hyperbolic. In either case we have found a nonseparating simple closed
curve mapped by ρ to a hyperbolic element.

Let Σ′ be obtained by cutting Σ open along such a simple closed curve. If
the image of the induced representation ρ′ : π1(Σ′)→ PSL(2,R) is virtually
abelian, then so is the image of ρ. Indeed, π1(Σ) is generated by π1(Σ′)
together with an element γ′ that conjugates two elements of π1(Σ′) with
hyperbolic images under ρ′. If the image of ρ′ is virtually abelian, preserving
some geodesic line ` of H2, then ρ(γ′) has to preserve `, and so does the
whole image of ρ. Thus the image of ρ is virtually abelian. �

Proof of Claim 3.5. Since the boundary curves of Σ generate π1(Σ) and since
they all have hyperbolic image under the elementary representation ρ, the
group ρ(π1(Σ)) has a fixed point ξ in ∂∞H2 (case (T) above). Choose a
geodesic line ` of H2 with endpoint ξ. For any γ ∈ Γ we may write in a
unique way ρ(γ) = aγuγ where aγ belongs to the stabilizer A of ξ and ` in
PSL(2,R) and uγ ∈ PSL(2,R) is unipotent or trivial. The map γ 7→ aγ can
be seen as a nonzero element ω of H1(Σg,R) after identifying A with (R,+).
Consider a standard presentation

π1(Σ) = 〈c1, . . . , ck | c1 · · · ck = 1〉
of π1(Σ) by generators and relations, where c1, . . . , ck represent curves freely
homotopic to the boundary components of Σ, and cicj represents a simple
curve for any i < j. We claim that ρ sends one of the cicj to a hyperbolic
element. Indeed, otherwise we would have ω(ci) + ω(cj) = 0 for all i 6= j;
solving this linear system gives ω(ci) = 0 for all i, which would contradict
the assumption that ρ(ci) is hyperbolic.

For 1 ≤ i ≤ k, let ξi ∈ ∂∞H2 be the fixed point of ρ(ci) that is different
from ξ. If the image of ρ is not abelian, then there exists i such that ξi 6= ξi+1

(with the convention that ξk+1 = ξ1). Precomposing ρ by a Dehn twist
along a curve freely homotopic to cici+1 corresponds to conjugating ρ(ci) and
ρ(ci+1) by ρ(cici+1) while leaving all the other ρ(cj) unchanged. Applying a
large enough power of this Dehn twist, with the appropriate sign if ρ(cici+1)
is hyperbolic, pushes ξi and ξi+1 to two distinct points arbitrarily close to ξ;
in particular, we can make ξi and ξi+1 distinct from the other points ξj . We
then proceed similarly with the new point ξi+1 and ξi+2, and so on, until all
the points ξi are pairwise distinct. We then conclude as above: one of the
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cicj (with i 6= j) has hyperbolic image under ρ. It cuts Σ into two smaller
surfaces on which ρ induces nonabelian representations. �

To prove Lemma 3.2, just make repeated use of Claim 3.4 to reduce to a
surface of genus 0, then of Claim 3.5 to decompose it into pairs of pants. �

3.2. Representations of the fundamental group of a pair of pants.
The following lemma gives a dictionary between the geometric and nongeo-
metric representations (Definition 2.9) of the fundamental group of a pair of
pants.

Lemma 3.6. Let Γ = 〈α, β, γ |αβγ = 1〉 be the fundamental group of a pair
of pants Σ, with α, β, γ corresponding to the boundary loops.

• For any a, b, c > 0 such that none is the sum of the other two, there
are exactly two representations τ ∈ Hom(Γ,PSL(2,R)) satisfying

(3.2) (λτ (α), λτ (β), λτ (γ)) = (a, b, c),

up to conjugation under PGL(2,R). One of them is geometric (with
|eu(τ)| = 1). The other is nongeometric (with eu(τ) = 0), and is
obtained from the geometric one by folding along any of the eight
triskelion laminations of Σ.
• For any a, b, c > 0 such that one is the sum of the other two, there
are exactly four representations τ ∈ Hom(Γ,PSL(2,R)) satisfying
(3.2), up to conjugation under PGL(2,R). One of them is geometric
(with |eu(τ)| = 1). The other three are elementary (with eu(τ) = 0):
two have an image that is not virtually abelian, the third one is their
abelianization. Each of the two nonabelian elementary representa-
tions is obtained from the geometric one by folding along any of four
different triskelion laminations of Σ.

When one of a, b, c is the sum of the other two, the images of the two
nonabelian elementary representations τ ∈ Hom(Γ,PSL(2,R)) are conjugate
to triangular matrices; their abelianization is by definition their projection
to the group of diagonal matrices.

Proof. Fix a, b, c > 0. We first determine the number of conjugacy classes
of representations τ satisfying (3.2). Set (A,B,C) := (ea/2, eb/2, ec/2), and
let τ ∈ Hom(Γ,PSL(2,R)) satisfy (3.2). Up to conjugating τ by PGL(2,R),
we can find lifts τ(α) ∈ SL(2,R) of τ(α) and τ(β) ∈ SL(2,R) of τ(β) of the
form

τ(α) =

(
A 0
0 A−1

)
and τ(β) =

(
B + x y
z B−1 − x

)
with x, y, z ∈ R. Since α and β freely generate Γ, this determines a lift
τ ∈ Hom(Γ, SL(2,R)) of τ . The sign ε ∈ {±1} of Tr(τ(α)) Tr(τ(β)) Tr(τ(γ))
does not depend on the choice of τ(α) and τ(β). By (2.2), we have eu(τ) ∈
{−1, 0, 1}, with |eu(τ)| = 1 if and only if τ is geometric, and by (2.3)

ε = (−1)eu(τ).

The trace of τ(γ) = τ(αβ)−1 is

A(B + x) +A−1(B−1 − x) = ε(C + C−1),
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hence

x =
ε(C + C−1)−AB − (AB)−1

A−A−1

is uniquely determined by A,B,C and ε. Let ν := (B + x)(B−1 − x). Since
τ(β) ∈ SL(2,R), we have yz = ν − 1. If ν 6= 1, then any pair (y, z) of
reals with product ν − 1 can be obtained by conjugating τ(α) and τ(β)
by a diagonal matrix in PGL(2,R) (which does not change x). Thus τ is
unique up to conjugation once we fix ε ∈ {−1, 1}. If ν = 1, then τ(β) is
either upper or lower triangular, or both, hence three conjugacy classes for τ ,
with τ(Γ) consisting respectively of upper triangular, lower triangular, and
diagonal matrices. The condition ν = 1 amounts to (B−1 −B − x)x = 0, or
equivalently to(

BC

A
− ε
)(

AC

B
− ε
)
·
(
AB

C
− ε
)

(ABC − ε) = 0 :

in other words, ε = 1 and one of a, b, c is the sum of the other two.
Let j ∈ Hom(Γ,PSL(2,R)) be geometric (Definition 2.9). For any folding

ρ of j along a triskelion lamination Υ of Σ, the functions λj and λρ agree on
{α, β, γ} (Remark 2.8), and ρ is not conjugate to j under PGL(2,R) because
the folding map f is not an isometry (see Section 2.1). Therefore, eu(ρ) = 0
by the above discussion.

If none of a, b, c is the sum of the other two, then ρ belongs to the unique
conjugacy class of representations τ satisfying (3.2) and eu(τ) = 0.

If one of a, b, c is the sum of the other two, then ρ belongs to one of the two
conjugacy classes of representations τ whose image is not virtually abelian
and that satisfy (3.2) and ε = 1 (Observation 2.7). The representation ρ′

obtained from j by folding along the image of Υ under the natural involution
of the pair of pants belongs to the other conjugacy class of such represen-
tations. The abelianization of ρ or ρ′ is not conjugate to j, hence satisfies
(3.2) and ε = 1 as well. �

Corollary 3.7. Let Γ = 〈α, β, γ |αβγ = 1〉 be the fundamental group of
a pair of pants Σ, with α, β, γ corresponding to the boundary loops. Con-
sider two representations j, ρ ∈ Hom(Γ,PSL(2,R)) with j geometric (Defi-
nition 2.9), with ρ nongeometric, and with

(λj(α), λj(β), λj(γ)) = (λρ(α), λρ(β), λρ(γ)).

Then there exists a 1-Lipschitz, (j, ρ)-equivariant map f : H2 → H2 such that
Lipp(f) < 1 for any p ∈ H2 projecting to a point of j(Γ)\H2 off the boundary
of the convex core.

Note that in this setting any (j, ρ)-equivariant map f : H2 → H2 satis-
fies Lip(f) ≥ 1 (Remark 2.6), and if Lip(f) = 1 then f is an isometry in
restriction to the translation axes of j(α), j(β), j(γ) in H2. The convex core
of j(Γ)\H2 naturally identifies with Σ.

Proof. We first assume that the group ρ(Γ) is nonabelian. By Lemma 3.6,
the representation ρ is obtained from j by folding along any of at least four
of the eight triskelion laminations of Σ. Let ` be an injectively immersed
geodesic that spirals between two boundary components.
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If the two boundary components are different, then ` is contained in only
two triskelion laminations, and intersects the others transversely.

If the two boundary components are the same, then ` intersects trans-
versely all triskelion laminations of Σ.

In both cases we see that a lift of ` to H2 cannot be isometrically pre-
served by all 1-Lipschitz, (j, ρ)-equivariant maps f : H2 → H2 (such maps
exist since ρ is a folding of j). This holds for any `, hence shows that the
lamination Λ̃ ⊂ H2 of Lemma 2.2 is contained in (in fact, equal to) the
preimage of the boundary of the convex core of j(Γ)\H2, which identifies
with the boundary of Σ. By Lemma 2.2, this means that there exists a 1-
Lipschitz, (j, ρ)-equivariant map f : H2 → H2 such that Lipp(f) < 1 for any
p ∈ H2 projecting to a point of j(Γ)\H2 off the boundary of the convex core.

We now assume that ρ(Γ) is abelian. By Lemma 3.6, the representation
ρ is the abelianization of some representation ρ′ that is a folding of j. The
group ρ′(Γ) fixes a point ξ ∈ ∂∞H2, and ρ(Γ) preserves a geodesic line ` of H2

with endpoint ξ. By postcomposing any 1-Lipschitz, (j, ρ′)-equivariant map
with the projection onto ` along the horospheres centered at ξ, we obtain a 1-
Lipschitz, (j, ρ)-equivariant map. Moreover, since 1 is the optimal Lipschitz
constant (Remark 2.6), this shows that the stretch locus (Definition 2.3) of
(j, ρ) is contained in that of (j, ρ′), and we conclude as above. �

Remark 3.8. The nonabelian, nongeometric representations in Lemma 3.6
can also be obtained by folding along a nonmaximal geodesic lamination
consisting of a unique leaf spiraling from a boundary component to itself.
Folding along a maximal lamination which is not a triskelion gives a repre-
sentation with values in PGL(2,R) and not PSL(2,R).

3.3. Proof of Proposition 3.1. By Lemma 3.2, there is a pants decomposi-
tion Π of Σg such that ρmaps any cuff to a hyperbolic element, and such that
if ρ(Γg) is not virtually abelian then the restriction of ρ to the fundamental
group of each pair of pants is nonabelian. Let j ∈ Hom(Γg,PSL(2,R)) be a
Fuchsian representation such that λj(γ) = λρ(γ) for all γ ∈ Γg corresponding
to cuffs of pants of Π. The twist parameters along the cuffs will be adjusted
later, so for the moment we choose them arbitrarily.

Let C be the j(Γg)-invariant (disjoint) union of all geodesics of H2 pro-
jecting to the cuffs in j(Γg)\H2 ' Σg. For each pair of pants P in Π, choose
a subgroup ΓP of Γg which is conjugate to π1(P ). Then j|ΓP is the holo-
nomy of a hyperbolic metric on P with cuff lengths given by λρ. Choose
a lift P̃ ⊂ H2 of the convex core of j(ΓP )\H2. This lift is the closure of
a connected component of H2 r C. If the restrictions of j and ρ to ΓP are
conjugate by some isometry fP of H2, then we give P the label −1 or 1, de-
pending on whether fP preserves the orientation or not. If the restrictions
of j and ρ to ΓP are not conjugate, then we give P the label 0. In this case,

• by Corollary 3.7, there is a 1-Lipschitz, (j|ΓP , ρ|ΓP )-equivariant map
fP : P̃ → H2 with Lipp(f

P ) < 1 for all p /∈ ∂P̃ ;
• by Lemma 3.6, if ρ(Γg) is not virtually abelian then ρ|ΓP is a fold-
ing of j|ΓP along some triskelion lamination of P ; we denote by
FP : P̃ → H2 the folding map.
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Note that in restriction to any connected component of ∂P̃ (a line), the maps
fP and FP are both isometries, but they may disagree by a constant shift.

The collection of all maps fP , extended (j, ρ)-equivariantly, piece together
to yield a map f∗ : H2 r C → H2.

The obstruction to extending f∗ by continuity on each geodesic ` ⊂ C is
that the maps on either side of ` may disagree by a constant shift along `.
This discrepancy δ(`) ∈ R is the same on the whole j(Γg)-orbit of `. To
correct it, we postcompose j with an earthquake supported on the cuff asso-
ciated with `, of length −δ(`).

We repeat for each j(Γg)-orbit in C, and eventually obtain a new Fuchsian
representation j0. By construction, there is a 1-Lipschitz, (j0, ρ)-equivariant
map f : H2 → H2, obtained simply by gluing together isometric translates
of the fP . This extension f satisfies Proposition 3.1.(1).

If ρ(Γg) is not virtually abelian, then similarly the maps fP for P labeled
±1 and FP for P labeled 0 piece together to yield a map F ∗ : H2 r C → H2.
As above, we can modify j by earthquakes into a new Fuchsian representa-
tion j′0, and F ∗ by piecewise isometries into a (j′0, ρ)-equivariant, continuous
map F : H2 → H2 which is a folding map. This proves Proposition 3.1.(2).

Proposition 3.1.(3) is satisfied by construction.

3.4. Uniform Lipschitz bounds. In order to prove the second statement
of Theorem 1.1 in Section 4.4, we shall use the following result, which gives
Lipschitz bounds analogous to Proposition 3.1.(1) but uniform.

Proposition 3.9. For any decomposition Π of Σg into pairs of pants labeled
−1, 0, 1 and any continuous family (jt)t≥0 ⊂ Hom(Γg,PSL(2,R)) of Fuchsian
representations, there exist a family (ρt)t≥0 ⊂ Hom(Γg,PSL(2,R)) of non-
Fuchsian representations and, for any t in a small interval [0, t0], a 1-Lip-
schitz, (jt, ρt)-equivariant map ϕt : H2 → H2, with the following properties:

• ϕt is an orientation-preserving (resp. orientation-reversing) isometry
in restriction to any connected subset of H2 projecting to a union of
pants labeled −1 (resp. 1) in jt(Γg)\H2 ' Σg;
• for any η > 0 there exists C < 1 such that Lipp(ϕt) ≤ C for all
t ∈ [0, t0] and all p ∈ H2 whose image in jt(Γg)\H2 ' Σg lies inside
a pair of pants P labeled 0, at distance ≥ η from the boundary of P .

Proposition 3.9 is based on the following uniform version of Corollary 3.7.

Lemma 3.10. Let Γ = 〈α, β, γ |αβγ = 1〉 be the fundamental group of a pair
of pants Σ, with α, β, γ corresponding to the boundary loops. Consider two
continuous families (jt)t≥0, (ρt)t≥0 ⊂ Hom(Γ,PSL(2,R)) of representations
with jt geometric (Definition 2.9), ρt nongeometric, and(

λjt(α), λjt(β), λjt(γ)
)

=
(
λρt(α), λρt(β), λρt(γ)

)
for all t ≥ 0. Then there exists a family of 1-Lipschitz, (jt, ρt)-equivariant
maps ϕt : H2 → H2, defined for all t in a small interval [0, t0], with the
following property: for any η > 0 there exists C < 1 such that Lipp(ϕt) ≤ C
for any t ∈ [0, t0] and any p ∈ H2 whose image in jt(Γ)\H2 lies at distance
≥ η from the boundary of the convex core.
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Proof of Lemma 3.10. By Corollary 3.7, there exists a 1-Lipschitz, (j0, ρ0)-
equivariant map f0 : H2 → H2 such that Lipp(f0) < 1 for any p ∈ H2 whose
image in j0(Γ)\H2 does not belong to the boundary of the convex core. If
(jt, ρt) = (j0, ρ0) for all t, then we may take ϕt = f0. In the general case, we
shall build ϕt as a small deformation of f0 in restriction to the preimage of
the convex core of jt(Γ)\H2.

Choose ∆ > 0 so that for all small t ≥ 0, the 2∆-neighborhoods of the
boundary components of the convex core of the hyperbolic surface jt(Γ)\H2

are disjoint. Choose a small δ ∈ (0,∆/2) and let σδ : R+ → R+ be the
function that satisfies

σδ(η) =

 0 for 0 ≤ η ≤ 2δ,
∆− 2δ for η = ∆,
η for η ≥ 2∆

and is affine on [2δ,∆] and [∆, 2∆] (Figure 2). Note that σδ is (1 + o(1))-

0 2δ ∆ 2∆

η

σδ(η)

Figure 2. The function σδ

Lipschitz as δ → 0, and 1-Lipschitz away from [∆, 2∆]. For any t ≥ 0, let
Nt ⊂ H2 be the preimage of the convex core of jt(Γ)\H2, and let πt : H2 → Nt

be the closest-point projection, which is 1-Lipschitz. We set

ϕ0 := f0 ◦ Jδ ◦ π0,

where Jδ is the homotopy of H2 taking any point at distance η ≤ 2∆ from
a boundary component `0 of N0, to the point at distance σδ(η) from `0 on
the same perpendicular ray to `0, leaving other points unchanged. By con-
struction, in restriction to the 2δ-neighborhood of ∂N0, the map ϕ0 factors
through the closest-point projection onto ∂N0. The function p 7→ Lipp(f0) is
j0(Γ)-invariant, upper semicontinuous, and < 1 on H2r∂N0, hence bounded
away from 1 when p ∈ N0 stays at distance ≥ ∆−2δ from ∂N0. This implies
that if we have chosen δ small enough (which we shall assume from now on),
then Lip(ϕ0) = 1 and Lipp(ϕ0) < 1 for all p in the interior of N0. For t > 0,
we construct ϕt as a deformation of ϕ0 via a partition of unity, as follows.

Let Uδt ⊂ Nt be the δ-neighborhood of ∂Nt and N δ
t := NtrUδt its comple-

ment in Nt; we define U2δ
t similarly. Choose a 1-Lipschitz, (jt, ρt)-equivariant

map ϕ0
t : U2δ

t → H2 factoring through the closest-point projection onto ∂Nt

and taking any boundary component `t of Nt, stabilized by a cyclic sub-
group jt(S) of jt(Γ), isometrically to the translation axis of ρt(S) in H2. Up
to postcomposing each ϕ0

t with an appropriate shift along the axis of ρt(S),
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we may assume that ϕ0
t (p) → ϕ0(p) for any p ∈ U2δ

0 as t → 0 (recall that
the restriction of ϕ0 to any boundary component of N0 is an isometry).

LetB1, . . . , Bn ⊂ N0 be balls ofH2, each projecting injectively to j0(Γ)\H2,
disjoint from a neighborhood of ∂N0, and such that

N δ
0 ⊂ j0(Γ) ·

n⋃
i=1

Bi.

For 1 ≤ i ≤ n, let ϕit : jt(Γ) · Bi → H2 be the (jt, ρt)-equivariant map that
agrees with ϕ0 on Bi. By construction, for all 1 ≤ i ≤ n (resp. for i = 0)
and for all p ∈ j0(Γ) · Bi (resp. p ∈ U2δ

0 ) we have ϕit(p) → ϕ0(p) as t → 0,
uniformly for p in any compact set. However, the maps ϕit, for 0 ≤ i ≤ n, may
not agree at points where their domains overlap. The goal is to paste them
together by the procedure described in Section 2.1, using a jt(Γ)-invariant
partition of unity (ψit)0≤i≤n that we now construct.

Let ψ0
t : H2 → [0, 1] be the function supported on U2δ

t that takes any
point at distance η from ∂Nt to τ(η) ∈ [0, 1], where τ([0, δ]) = 1, where
τ([2δ,+∞)) = 0, and where τ is affine on [δ, 2δ]. Let ψ1, . . . , ψn : H2 → [0, 1]
be j0(Γ)-invariant Lipschitz functions inducing a partition of unity on a
neighborhood of N δ

0 , with ψi supported in j0(Γ) ·Bi. Since Nt has a compact
fundamental domain for jt(Γ) that varies continuously in t (for instance a
right-angled octagon), for small enough t we have

N δ
t ⊂ jt(Γ) ·

n⋃
i=1

Bi.

For 1 ≤ i ≤ n and t ≥ 0, let ψ̂it : H2 → [0, 1] be the jt(Γ)-invariant function
supported on jt(Γ) ·Bi that agrees with ψi on Bi. Then

∑n
i=1 ψ̂

i
t = 1 + o(1)

as t→ 0, with an error term uniform on N δ
t . Therefore the functions

ψ0
t and ψit := (1− ψ0

t )
ψ̂it∑n
k=1 ψ̂

k
t

: H2 −→ [0, 1]

for 1 ≤ i ≤ n form a jt(Γ)-invariant partition of unity of Nt, subordinated
to the covering U2δ

t ∪ jt(Γ) ·B1∪· · ·∪ jt(Γ) ·Bn ⊃ Nt, and are all L-Lipschitz
for some L > 0 independent of i and t.

For t ≥ 0, let ϕt :=
∑n

i=0 ψ
i
t ϕ

i
t : Nt → H2 be the averaged map defined

in Section 2.1. This map is (jt, ρt)-equivariant by construction. We extend
it to a map ϕt : H2 → H2 by precomposing with the closest-point projec-
tion πt : H2 → Nt. We claim that the maps ϕt satisfy the conclusion of
Lemma 3.10. Indeed, by Lemma 2.4, for any t ≥ 0 and p in the interior
of Nt,

(3.3) Lipp(ϕt) ≤
∑
i∈It(p)

(
Lipp(ψ

i
t)Rt(p) + ψit(p) Lipp(ϕ

i
t)
)
,

where It(p) is the set of indices 0 ≤ i ≤ n such that p belongs to the support
of ψit, and Rt(p) ≥ 0 is the diameter of the set {ϕit(p) | i ∈ It(p)}. Let η > 0
be the distance from p to ∂Nt.

If η < δ, then ϕt coincides on a neighborhood of p with ϕ0
t , hence with

the closest-point projection onto ∂Nt postcomposed with an isometry of H2,
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and the right-hand side of (3.3) reduces to

Lipp(ϕ
0
t ) =

1

cosh η
< 1

(see [GK, (A.9)] for instance).
If η ≥ δ, then the bound on Lipp(ϕ

0
t ) still holds, and Lipp(ϕ

i
t) for 1 ≤ i ≤ n

can also be uniformly bounded away from 1. Indeed, supq∈Bi Lipq(ϕ
i
t) < 1

since Bi is disjoint from a neighborhood of ∂N0 and the local Lipschitz
constant is upper semicontinuous, and we argue by equivariance. Moreover,
all the other contributions to (3.3) are small: Rt(p)→ 0 as t→ 0, uniformly
in p, and Lipp(ψ

i
t) is bounded independently of p, i, t (by L). Therefore, for

small t there exists C < 1, independent of p and t, such that Lipp(ϕt) ≤ C.
This treats the case when p ∈ Nt. To conclude, we note that on a

neighborhood of any p ∈ H2 r Nt the map ϕt coincides with the closest-
point projection onto ∂Nt postcomposed with an isometry of H2, hence
Lipp(ϕt) = 1/ cosh η < 1 where η = d(p, ∂Nt). �

Proof of Proposition 3.9. Let Υ be a lamination of Σg consisting of all the
cuffs of Π together with a triskelion lamination inside each pair of pants
labeled 0. Let c : Σg r Υ → {−1, 1} be a coloring taking the value −1
(resp. 1) on each pair of pants labeled −1 (resp. 1), and both values on each
pair of pants labeled 0. For any t ≥ 0, let ρ′t be the folding of jt along Υ
with coloring c.

We now argue similarly to the proof of Proposition 3.1 in Section 3.3. For
each pair of pants P in Π, choose a subgroup ΓP of Γg which is conjugate
to π1(P ), and for any t ≥ 0 a lift P̃t ⊂ H2 of the convex core of jt(ΓP )\H2.

If P is labeled −1 (resp. 1), then for any t ≥ 0 the restrictions of jt and
ρ′t to ΓP are conjugate by some orientation-preserving (resp. orientation-
reversing) isometry ϕPt of H2.

If P is labeled 0, then by Lemma 3.10 there is a family of 1-Lipschitz,
(jt|ΓP , ρ′t|ΓP )-equivariant maps ϕPt : H2 → H2, defined for all t in a small inter-
val [0, t0], with the following property: for any η > 0 there exists C < 1 such
that Lipp(ϕ

P
t ) ≤ C for all t ∈ [0, t0] and all p ∈ P̃t at distance ≥ η from ∂P̃t.

The collection of all maps ϕPt , extended (jt, ρ
′
t)-equivariantly, piece to-

gether to yield a map ϕ∗t : H2 r Ct → H2, where Ct is the union of all
geodesics of H2 projecting to cuffs of Π in jt(Γg)\H2 ' Σg.

The obstruction to extending ϕ∗t by continuity on each geodesic `t ⊂ Ct is
that the maps on either side of `t may disagree by a constant shift along `t
if `t separates two pairs of pants labeled (±1, 0) or (0, 0). This discrepancy
δ(`t) ∈ R is the same on the whole jt(Γg)-orbit of `t. To correct it, we
precompose the folding ρ′t of jt with an earthquake supported on the cuff
associated with `t (in the jt-metric), of length −δ(`t).

We repeat for each jt(Γg)-orbit in Ct, and eventually obtain a new folded
representation ρt. By construction, there is a family of 1-Lipschitz, (jt, ρt)-
equivariant maps ϕt : H2 → H2 satisfying Proposition 3.9, obtained simply
by gluing together isometric translates of the ϕPt . �
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4. Surjectivity of the two projections

In this section we prove Theorem 1.1. We first construct uniformly length-
ening deformations of surfaces with boundary (Section 4.1), then glue these
together according to combinatorics given by Proposition 3.1 (Sections 4.2
and 4.4). Section 4.3 is devoted to the proof of a technical lemma.

4.1. Uniformly lengthening deformations of compact hyperbolic sur-
faces with boundary. Our two main tools to prove Theorem 1.1 are Propo-
sition 3.1 and the following lemma.

Lemma 4.1. Let Γ be the fundamental group and j0 ∈ Hom(Γ,PSL(2,R))
the holonomy of a compact, connected, hyperbolic surface Σ with nonempty
geodesic boundary. Then there exist t0 > 0 and a continuous family of rep-
resentations (jt)0≤t≤t0 with the following properties:

(a) λj0(γ) = (1−t)λjt(γ) for any t ∈ [0, t0] and any γ ∈ Γ corresponding
to a boundary component of Σ;

(b) supγ∈Γr{1}
λj0 (γ)

λjt (γ) < 1 for any t ∈ (0, t0];
(c) jt(γ) = j0(γ) + O(t) for any γ ∈ Γ as t → 0, where both sides are

seen as 2× 2 real matrices with determinant 1;
(d) for any compact subset K of H2 projecting to the interior of the

convex core of j0(Γ)\H2, there exists L > 0 such that

d(p, ft(p)) ≤ Lt
for any p ∈ K, any t ∈ [0, t0], and any 1-Lipschitz, (jt, j0)-equivariant
map ft : H2 → H2.

As in Section 3.2, the convex core of j0(Γ)\H2 naturally identifies with Σ.
The idea is to construct the representations jt as holonomies of hyperbolic
surfaces obtained from j0(Γ)\H2 by strip deformations. This type of defor-
mation was first introduced by Thurston [T2, proof of Lem. 3.4]. We refer
to [PT] and [DGK] for more details.

Proof. We first explain how to lengthen one boundary component β of Σ.
Choose a finite collection of disjoint, biinfinite geodesic arcs α1, . . . , αn ⊂
j0(Γ)\H2, each crossing β orthogonally twice, and subdividing the convex
core Σ into right-angled hexagons and one-holed right-angled bigons. Along
each arc αi, following [T2], slice j0(Γ)\H2 open and insert a strip Ai of H2,
bounded by two geodesics, with narrowest cross section at the midpoint of
αi ∩ Σ (see Figure 3).

This yields a new complete hyperbolic surface, with a compact convex
core, equipped with a natural 1-Lipschitz map ςβt to j0(Γ)\H2 obtained by
collapsing the strips Ai back to lines. Note that the image under ςβt of
the new convex core is strictly contained in Σ (see Figure 3). The geodesic
corresponding to β is longer in the new surface than in Σ. By adjusting
the widths of the strips Ai, we may assume that the ratio of lengths is 1

1−t .
Note that the appropriate widths for this ratio are in O(t) as t → 0. All
lengths of geodesics corresponding to boundary components other than β
are unchanged.
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αi

β

Σ

ςβt

Ai

Figure 3. A strip deformation. In the source of the collaps-
ing map ςβt we show the new peripheral geodesic, dotted.

Repeat the construction, iteratively, for all boundary components β1, . . . , βr
of Σ, in some arbitrary order. We thus obtain a new complete hyperbolic
surface jt(Γ)\H2, with a compact convex core Σt, such that jt satisfies (a).

We claim that jt also satisfies (b). Indeed, consider the 1-Lipschitz map
ςt := ςβrt ◦· · ·◦ς

β1
t from Σt to Σ. If 1 were its optimal Lipschitz constant, then

by Lemma 2.2 there would exist a geodesic lamination of Σt whose leaves are
isometrically preserved by ςt. But this is not the case here since for every i,
the map ςβit does not isometrically preserve any geodesic lamination except
the boundary components other than βi. Therefore ςt has Lipschitz constant
< 1, which implies (b) by Remark 2.6.

Up to replacing each jt with a conjugate under PSL(2,R), we may as-
sume that (c) holds. Indeed, it is well known that there exist elements
γ1, . . . , γn ∈ Γ whose length functions form a smooth coordinate system
for Hom(Γ,PSL(2,R))/PSL(2,R) near [j0] (see [GX, Th. 2.1] for instance).
For any i, the preimage under ςt of the closed geodesic of Σ associated
with γi is obtained by expanding finitely many strips of width O(t), hence
λjt(γi) ≤ λj0(γi) +O(t) as t→ 0. On the other hand, λjt(γi) ≥ λj0(γi) due
to the existence of the 1-Lipschitz map ςt. Therefore, d′(j0, jt) = O(t) for any
smooth metric d′ on a neighborhood of [j0] in Hom(Γ,PSL(2,R))/PSL(2,R).

To check (d), we use a perturbative version of the argument that a j0(Γ)-
invariant, 1-Lipschitz map must be the identity on the preimage N0 ⊂ H2 of
the convex core Σ of j0(Γ)\H2. For any hyperbolic element h ∈ PSL(2,R),
with translation axis Ah ⊂ H2, and for any p ∈ H2, a classical formula gives

(4.1) sinh
(d(p, h · p)

2

)
= sinh

(λ(h)

2

)
· cosh d(p,Ah)

(see Figure 4, left). Consider p ∈ H2 in the interior of N0. We can find three
translation axes Aj0(γ1),Aj0(γ2),Aj0(γ3) ⊂ ∂N0 of elements of j0(Γ) such that
if qi denotes the projection of p to Aj0(γi), then p belongs to the interior of
the triangle q1q2q3. For any t ≥ 0 and any 1-Lipschitz, (jt, j0)-equivariant
map ft : H2 → H2,

d
(
ft(p), j0(γi) · ft(p)

)
≤ d(p, jt(γi) · p),

which by (4.1) may be written as

sinh
(λj0(γi)

2

)
· cosh d

(
ft(p),Aj0(γi)

)
≤ sinh

(λjt(γi)
2

)
· cosh d

(
p,Ajt(γi)

)
.
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Since λj0(γi) = λjt(γi) +O(t) and d(p,Ajt(γi)) = d(p,Aj0(γi)) +O(t) by (c),
this implies

cosh d
(
ft(p),Aj0(γi)

)
≤ cosh d

(
p,Aj0(γi)

)
+O(t),

where the error term does not depend on the choice of the map ft. Since
d(p,Aj0(γi)) > 0, we may invert the hyperbolic cosine:

d
(
ft(p),Aj0(γi)

)
≤ d
(
p,Aj0(γi)

)
+O(t).

Applied to i = 1, 2, 3, this means that ft(p) belongs to a curvilinear tri-
angle around p bounded by three hypercycles (curves at constant distance
from a geodesic line) expanding at rate O(t) as t becomes positive, hence
d(p, ft(p)) = O(t) (see Figure 4, right). All estimates O(t) are robust under
small perturbations of p, hence can be made uniform (and still independent
of ft) for p in a compact set K, yielding (d). �

λ(h)

p h · p

Ah

d(p,Ah)
p

Aj0(γ1)

Aj0(γ2)
Aj0(γ3)

Figure 4. Left: A hyperbolic quadrilateral with two right
angles. Right: The point ft(p) belongs to the shaded region.

4.2. Gluing surfaces with boundary. We now prove the first statement
of Theorem 1.1. Namely, given [ρ] ∈ Repnfd

g , we construct [j] ∈ Repfd
g that

strictly dominates [ρ].
If λρ ≡ 0, then any [j] ∈ Repfd

g strictly dominates [ρ]. We now suppose
that λρ 6≡ 0. Proposition 3.1.(1) then gives us an element [j0] ∈ Repfd

g , a la-
beled pants decomposition Π of Σg, and, for any j0, ρ ∈ Hom(Γg,PSL(2,R))
in the respective classes [j0], [ρ] (which we now fix), a 1-Lipschitz, (j0, ρ)-
equivariant map f : H2 → H2 that is an orientation-preserving (resp. orien-
tation-reversing) isometry in restriction to any connected subset of H2 pro-
jecting to a union of pants labeled −1 (resp. 1) in j0(Γg)\H2 ' Σg, and that
satisfies Lipp(f) < 1 for any p ∈ H2 projecting to the interior of a pair of
pants labeled 0.

Not all pairs of pants are labeled −1, and not all 1, since j0 and ρ are
not conjugate under PGL(2,R). By Remark 2.6, the class [j0] dominates
[ρ] in the sense that λ(ρ(γ)) ≤ λ(j0(γ)) for all γ ∈ Γg. Our goal is to
use Lemma 4.1 to modify j0 into a representation j such that [j] strictly
dominates [ρ]. For this purpose, we erase all the cuffs that separate two
pairs of pants of Π with labels (−1,−1) or (1, 1), and write

Σg = Σ1 ∪ · · · ∪ Σm,

where Σi, for any 1 ≤ i ≤ m, is a compact surface with boundary that is
• either a pair of pants labeled 0,
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• or a full connected component of the subsurface of Σg made of pants
labeled −1,
• or a full connected component of the subsurface of Σg made of pants
labeled 1

(see Figure 5). The boundary components of the Σi are the cuffs that sepa-
rated two pairs of pants of Π with labels (−1, 1), (±1, 0), or (0, 0).

−1 −1 1 0 0 1

Figure 5. A labeled pants decomposition with m = 5. The
boundary components of the Σi, 1 ≤ i ≤ 5, are in bold.

Choose a small δ > 0 such that in all hyperbolic metrics on Σg which
are close enough to that defined by j0, any simple geodesic entering the δ-
neighborhood of the geodesic representative of a cuff of Π crosses it. Let
C0 ⊂ H2 be the union of all geodesic lines of H2 projecting to boundary
components of the Σi in j0(Γg)\H2 ' Σg, let N δ

0 ⊂ H2 be the complement
of the δ-neighborhood of C0, and let K ⊂ H2 r C0 be a compact set whose
interior contains a fundamental domain of N δ

0 for the action of j0(Γg), with
m connected components projecting respectively to Σ1, . . . ,Σm.

We apply Lemma 4.1 to Γi := π1(Σi) and ji0 := j0|Γi and obtain continuous
families (jit)0≤t≤t0 ⊂ Hom(Γi,PSL(2,R)) of representations, for 1 ≤ i ≤ m,
satisfying properties (a),(b),(c),(d) of Lemma 4.1, with a uniform constant
L > 0 for the compact set K ⊂ H2 r C0. For any t ∈ [0, t0], using (a),
we can glue together the (compact) convex cores of the jit(Γi)\H2 following
the same combinatorics as the Σi. This gives a closed hyperbolic surface of
genus g, hence a holonomy representation jt ∈ Hom(Γg,PSL(2,R)). By (c),
up to adjusting the twist parameters, we may assume that

(4.2) jt(γ) = j0(γ) +O(t)

for any γ ∈ Γg as t→ 0, where both sides are seen as 2×2 real matrices with
determinant 1. To complete the proof of the first statement of Theorem 1.1,
it is sufficient to prove that for small enough t > 0,

(4.3) sup
γ∈(Γg)s

λρ(γ)

λjt(γ)
< 1,

where (Γg)s is the set of nontrivial elements of Γg corresponding to simple
closed curves on Σg: then [j] := [jt] will strictly dominate [ρ] by Theorem 2.5.
Note that λ(jt(γ)) = λ(jit(γ)) for all γ in Γi, seen as a subgroup of Γg. Thus
(b) gives the control required in (4.3) for simple closed curves contained in
one of the Σi. We now explain why the lengths of the other simple closed
curves also decrease uniformly, based on (c) and (d).

For any t ∈ (0, t0], let Ct ⊂ H2 be the union of the lifts to H2 of the
simple closed geodesics of jt(Γg)\H2 ' Σg corresponding to C0 and let N δ

t

be the complement of the δ-neighborhood of Ct in H2. For t small enough,
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we can find a fundamental domain Kt of N δ
t for the action of jt(Γg) that is

contained in K and has m connected components. By (b) and Theorem 2.5,
for any 1 ≤ i ≤ m and t ∈ (0, t0] there exists a (jt|Γi , j0|Γi)-equivariant
map f it : H2 → H2 with Lip(f it ) < 1. For small t > 0, we choose a (jt, j0)-
equivariant map ft : (N δ

t ∪ Ct)→ H2 such that
• ft = f it on the component of Kt projecting to Σi, for all 1 ≤ i ≤ m;
• ft takes any geodesic line in Ct to the corresponding line in C0, mul-
tiplying all distances on it by the uniform factor (1− t).

We choose the ft so that, in addition, for any compact set K ′ ⊂ H2 there
exists L1 ≥ 0 such that d(x′, ft(x

′)) ≤ L1t for all small enough t > 0 and all
x′ ∈ Ct ∩K ′. Consider the (jt, ρ)-equivariant map

Ft := f ◦ ft : (N δ
t ∪ Ct) −→ H2,

where f : H2 → H2 is the (j0, ρ)-equivariant map from the beginning of the
proof. In order to prove (4.3), it is sufficient to establish the following.

Lemma 4.2. For small enough t > 0, there exists C < 1 such that for all
p, q ∈ ∂N δ

t lying at distance δ from a line `t ⊂ Ct, on opposite sides of `t,

d(Ft(p), Ft(q)) ≤ C d(p, q).

Indeed, fix a small t > 0. Any geodesic segment I = [p, q] of H2 projecting to
a closed geodesic of jt(Γg)\H2 ' Σg may be decomposed into subsegments
I1, . . . , In contained in N δ

t alternating with subsegments I ′1, . . . , I ′n crossing
connected components of H2 r N δ

t (indeed, any simple closed curve that
enters one of these components crosses it, by choice of δ). By construction,
the map Ft has Lipschitz constant < 1 on each connected component of N δ

t ,
hence moves the endpoints of each Ik closer together by a uniform factor (in-
dependent of I). Lemma 4.2 ensures that the same holds for the I ′k. Thus the
ratio d(Ft(p), Ft(q))/d(p, q) is bounded by some factor C ′ < 1 independent
of I, and the corresponding element γ ∈ Γg satisfies λ(ρ(γ)) ≤ C ′λ(jt(γ)).
This proves (4.3), hence completes the proof of the first statement of Theo-
rem 1.1.

4.3. Proof of Lemma 4.2. In this section we give a proof of Lemma 4.2.
We first make the following observation.

Observation 4.3. There exists L′ ≥ 0 such that for any small enough t > 0,
any p ∈ ∂N δ

t at distance δ from a geodesic `t ⊂ Ct, and any x ∈ `t,
d(ft(p), ft(x)) ≤ (1− t) d(p, x) + L′t.

Proof of Observation 4.3. Since ft is (jt, j0)-equivariant and C0 has only fini-
tely many connected components modulo j0(Γg), we may fix a geodesic `0 ⊂
C0 and prove the observation only for the geodesics `t ⊂ Ct corresponding
to `0. For any t > 0, the map ft takes `t linearly to `0, multiplying all
distances by the uniform factor 1− t. Let ht : H2 → H2 be the orientation-
preserving map that coincides with ft on `t, takes any line orthogonal to `t
to a line orthogonal to `0, and multiplies all distances by 1− t on such lines.
At distance η from `t, the differential of ht has principal values 1 − t and
(1−t) cosh((1−t)η)/ cosh η ≤ 1−t (see [GK,(A.9)]), hence Lip(ht) ≤ 1−t and

d(ft(x), ht(p)) = d(ht(x), ht(p)) ≤ (1− t) d(x, p)
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for all x ∈ `t and p ∈ H2. By the triangle inequality, it is enough to find
L′ ≥ 0 such that d(ht(p), ft(p)) ≤ L′t for all small enough t > 0 and all
p ∈ ∂N δ

t at distance δ from `t. Since ft and ht are both (jt, j0)-equivariant
under the stabilizer S of `0 in Γg, and jt(S) acts cocompactly on the set U t of
points at distance ≤ δ from `t, we may restrict to p in a compact fundamental
domain of U t for jt(S). Let K ′ ⊂ H2 be a compact set containing such
fundamental domains for all t ∈ [0, t0]. By construction of ft, there exists
L1 ≥ 0 such that d(x′, ft(x

′)) ≤ L1t for all small enough t > 0 and all
x′ ∈ `t ∩K ′. By definition of ht, this implies the existence of L2 ≥ 0 such
that d(p, ht(p)) ≤ L2t for all small enough t > 0 and all p ∈ K ′. On the other
hand, condition (d) of Lemma 4.1 (applied to the Γi and ji0 as in Section 4.2)
implies the existence of L3 ≥ 0 such that d(p, ft(p)) ≤ L3t for all t and
p ∈ ∂N δ

t ∩K ′. By the triangle inequality, we may take L′ = L2 + L3. �

Proof of Lemma 4.2. As in the proof of Observation 4.3, we may fix a geo-
desic `0 ⊂ C0 and restrict to the geodesics `t ⊂ Ct corresponding to `0. Fix a
small t > 0 and consider p, q ∈ ∂N δ

t lying at distance δ from `t, on opposite
sides of `t. The segment [p, q] can be subdivided, at its intersection point x
with `t, into two subsegments to which Observation 4.3 applies, yielding

(4.4)
{
d(ft(p), ft(x)) ≤ (1− t) d(p, x) + L′t,
d(ft(x), ft(q)) ≤ (1− t) d(x, q) + L′t.

Up to switching p and q, we may assume that either [p, x] projects to a pair
of pants labeled 0 in jt(Γg)\H2 ' Σg, or [p, x] projects to a pair of pants
labeled −1 and [x, q] to a pair of pants labeled 1.

Suppose that [p, x] projects to a pair of pants labeled 0 in jt(Γg)\H2 ' Σg.
We first observe that if t is small enough (independently of p), then

(4.5) d(ft(p), `0) ≥ 3δ

4
.

Indeed, as in the proof of Observation 4.3, the inequality is true for p ∈ ∂N δ
t

in a fixed compact set K ′ independent of t, by condition (d) of Lemma 4.1
and (4.2), and we then use the fact that ft is (jt, j0)-equivariant under the
stabilizer S of `0 in Γg, which acts cocompactly (by jt) on the set of points at
distance δ from `t. By (4.5), if t is small enough (independently of p), then
the segment [ft(p), ft(x)] spends at least δ/4 units of length in the comple-
ment N δ/2

0 of the δ/2-neighborhood of C0. The point is that Lipy(f) < 1 for
all y ∈ H2rC0 projecting to a pair of pants labeled 0 in j0(Γg)\H2 ' Σg, and
this bound is uniform in restriction to N δ/2

0 since the function p 7→ Lipp(f)
is upper semicontinuous and j0(Γg)-invariant. Remark 2.1 thus implies the
existence of a constant ε > 0, independent of t, `t, p, x, such that

(4.6) d
(
f ◦ ft(p), f ◦ ft(x)

)
≤ d(ft(p), ft(x))− ε.

Using the triangle inequality and the fact that f is 1-Lipschitz, together with
(4.4) and (4.6), we find

d(Ft(p), Ft(q)) ≤ d
(
f ◦ ft(p), f ◦ ft(x)

)
+ d
(
f ◦ ft(x), f ◦ ft(q)

)
≤ (1− t) d(p, x) + L′t− ε+ (1− t) d(x, q) + L′t,

which is bounded by (1− t) d(p, q) as soon as t ≤ ε/(2L′).
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Suppose that [p, x] projects to a pair of pants labeled −1 and [x, q] to a
pair of pants labeled 1. We then use the fact that the continuous map f folds
along `0 = ft(`t). In restriction to the connected component of H2 r C0 con-
taining ft(p) (resp. ft(q)), it is an isometry preserving (resp. reversing) the
orientation. In particular, d(Ft(p), Ft(q)) < d(ft(p), ft(q)). Moreover, this
inequality can be made uniform in the following sense: there exists ε > 0
such that

d(Ft(p), Ft(q)) ≤ d(ft(p), ft(q))− ε
whenever ft(p) and ft(q) lie at distance ≥ 3δ/4 from `0 (which is the case for
t small enough by (4.5)) and at distance ≤ 3L′ from each other. By (4.4),

(4.7) d(ft(p), ft(q)) ≤ (1− t) d(p, q) + 2L′t,

which implies
d(Ft(p), Ft(q)) ≤ (1− t) d(p, q)

for d(p, q) ≤ 3L′ as soon as t ≤ ε/(2L′) is small enough. If d(p, q) ≥ 3L′,
then applying the 1-Lipschitz map f to (4.7) directly gives

d(Ft(p), Ft(q)) ≤ (1− t) d(p, q) + 2L′t ≤
(

1− t

3

)
d(p, q). �

4.4. Folding a given surface. We now prove the second statement of The-
orem 1.1. Namely, given [j0] ∈ Repfd

g and an integer k ∈ (−2g + 2, 2g − 2),
we construct [ρ] ∈ Repnfd

g with eu(ρ) = k that is strictly dominated by [j0].
It is easy to find [ρ] with eu(ρ) = k such that λρ(γ) ≤ λj0(γ) for all γ ∈ Γg:

just decompose Σg into pairs of pants and attribute arbitrary values 0, 1,−1
to each so that the sum is k. Consider a lamination Υ of Σg consisting of
all the cuffs together with a triskelion lamination inside each pair of pants
labeled 0, and let c : Σg r Υ → {−1, 1} be a coloring taking the value
−1 (resp. 1) on each pair of pants labeled −1 (resp. 1), and both values on
each pair of pants labeled 0. Folding along Υ with the coloring c gives an
element [ρ] ∈ Repnfd

g with λρ(γ) ≤ λj0(γ) for all γ ∈ Γg. However, we need
a strict domination. The idea is to obtain ρ by folding, not j0, but a small
deformation of j0. For this purpose, we use the following result, which is
analogous to Lemma 4.1.

Lemma 4.4. Let Γ be the fundamental group and j0 ∈ Hom(Γ,PSL(2,R))
the holonomy of a compact, connected hyperbolic surface Σ with nonempty
geodesic boundary. Then there exist t0 > 0 and a continuous family of rep-
resentations (jt)0≤t≤t0 with the following properties:

(a) λjt(γ) = (1−t)λj0(γ) for any t ∈ [0, t0] and any γ ∈ Γ corresponding
to a boundary component of Σ;

(b) supγ∈Γr{1}
λjt (γ)

λj0 (γ) < 1 for any t ∈ (0, t0];
(c) jt(γ) = j0(γ) + O(t) for any γ ∈ Γ as t → 0, where both sides are

seen as 2× 2 real matrices with determinant 1;
(d) for any compact subset K of H2 projecting to the interior of the

convex core of j0(Γ)\H2, there exists L > 0 such that

d(p, ft(p)) ≤ Lt
for any p ∈ K, any t ∈ [0, t0], and any 1-Lipschitz, (j0, jt)-equivariant
map ft : H2 → H2.
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As in the proof of Lemma 4.1, we construct the representations jt as
holonomies of hyperbolic surfaces obtained from j0(Γ)\H2 by deformation.
Now the deformation needs to be shortening instead of lengthening, so we
use negative strip deformations.

Proof of Lemma 4.4. We see Σ as the convex core of j0(Γ)\H2. To shorten
one boundary component β of Σ, choose a finite collection of disjoint, bi-
infinite geodesic arcs α1, . . . , αn ⊂ j0(Γ)\H2, each crossing β orthogonally
twice, and subdividing Σ into right-angled hexagons and one-holed right-
angled bigons. Near each αi, choose a second geodesic arc α′i, also crossing β
twice, such that αi, α′i approach each other closest at some points pi, p′i ∈ Σ.
We take all arcs to be pairwise disjoint. For every i, delete the hyperbolic
strip Ai bounded by αi and α′i and glue the arcs back together isometrically,
identifying pi with p′i.

This yields a new complete hyperbolic surface, with a compact convex
core, equipped with a natural 1-Lipschitz map ςβt from j0(Γ)\H2, obtained
by collapsing the strips Ai to lines. The set ςβt (Σ) is strictly contained in
the new convex core. The geodesic corresponding to β is shorter in the
new surface than in Σ. By adjusting the widths of the strips Ai, we may
assume that the ratio of lengths is 1

1−t . Note that the appropriate widths
for this ratio are in O(t) as t→ 0. All lengths of geodesics corresponding to
boundary components other than β are unchanged.

Repeat the construction, iteratively, for all boundary components β1, . . . , βr
of Σ, in some arbitrary order. We thus obtain a new complete hyperbolic
surface jt(Γ)\H2, with a compact convex core Σt, such that jt satisfies (a).
As in the proof of Lemma 4.1, up to replacing each jt with a conjugate under
PSL(2,R), we may assume that (c) is satisfied. To see that (b) and (d) also
hold, we use the 1-Lipschitz map ςt := ςβrt ◦ · · · ◦ ς

β1
t from Σ to Σt and argue

as in the proof of Lemma 4.1, switching jt and j0. �

As in Section 4.2, we write Σg = Σ1∪· · ·∪Σm, where Σi, for any 1 ≤ i ≤ m,
is a compact surface with boundary that is

• either a pair of pants labeled 0,
• or a full connected component of the subsurface of Σg made of pants
labeled −1,
• or a full connected component of the subsurface of Σg made of pants
labeled 1.

Choose a small δ > 0 such that in all hyperbolic metrics on Σg which
are close enough to that defined by j0, any simple geodesic entering the
δ-neighborhood of the geodesic representative of a cuff of our chosen pants
decomposition crosses the cuff. We use again the notation C0, N

δ
0 ,K from

Section 4.2. Applying Lemma 4.4 to Γi := π1(Σi) and ji0 := j0|Γi , we
obtain continuous families of representations (jit)0≤t≤t0 for 1 ≤ i ≤ m sat-
isfying (a),(b),(c),(d), with a uniform constant L > 0 for the compact set
K ⊂ H2 r C0. For any t ≥ 0, using (a), we can glue together the con-
vex cores of the jit(Γi)\H2 following the same combinatorics as the Σi. This
gives a closed hyperbolic surface of genus g, hence a holonomy representation
jt ∈ Hom(Γg,PSL(2,R)).
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By (c), up to adjusting the twist parameters, we may assume that jt(γ) =
j0(γ) +O(t) for any γ ∈ Γg as t→ 0.

Recall the notation Ct, N δ
t from Section 4.2. By Proposition 3.9, there exist

a family (ρt)0≤t≤t0 ⊂ Hom(Γg,PSL(2,R)) of non-Fuchsian representations
and, for any t ∈ [0, t0], a 1-Lipschitz, (jt, ρt)-equivariant map ϕt : H2 → H2

that is an orientation-preserving (resp. orientation-reversing) isometry in re-
striction to any connected subset of H2 projecting to a union of pants labeled
−1 (resp. 1) in jt(Γg)\H2 ' Σg, such that

(4.8) Lipp(ϕt) ≤ C∗ < 1

for all t ∈ [0, t0] and all p ∈ N δ
t projecting to a pair of pants labeled 0 in

jt(Γg)\H2 ' Σg, for some C∗ < 1 independent of p and t. We claim that for
t > 0 small enough,

(4.9) sup
γ∈(Γg)s

λρt(γ)

λj0(γ)
< 1,

which by Theorem 2.5 is enough to prove that [ρt] is strictly dominated
by [j0]. Indeed, by (b) and Theorem 2.5, for any 1 ≤ i ≤ m and t ∈ (0, t0],
there exists a (jt|Γi , j0|Γi)-equivariant map f it : H2 → H2 with Lip(f it ) < 1.
Let ft : (N δ

0 ∪ C0)→ H2 be a (j0, jt)-equivariant map such that

• ft = f it on the component of K projecting to Σi, for all 1 ≤ i ≤ m;
• ft takes any geodesic line in C0 to the corresponding line in Ct, mul-
tiplying all distances by the uniform factor (1− t), and d(x, ft(x)) ≤
L1t for all x ∈ C0 ∩K, for some L1 ≥ 0 independent of x and t.

Consider the (j0, ρt)-equivariant map

Gt := ϕt ◦ ft : (N δ
0 ∪ C0) −→ H2.

Any geodesic segment I = [p, q] of H2 projecting to a closed geodesic of
j0(Γg)\H2 ' Σg may be decomposed into subsegments I1, . . . , In contained
in N δ

0 alternating with subsegments I ′1, . . . , I ′n crossing connected compo-
nents of H2 rN δ

0 . By contractivity of ft, the map Gt has Lipschitz constant
< 1 on each connected component of N δ

0 , hence moves the endpoints of
each Ik closer together by a uniform factor (independent of I). The sub-
segments I ′k are treated by the following lemma, which implies (4.9) and
therefore completes the proof of the second statement of Theorem 1.1.

Lemma 4.5 (Analogue of Lemma 4.2). For small enough t > 0, there exists
C < 1 such that for all p, q ∈ ∂N δ

0 lying at distance δ from a line `0 ⊂ C0,
on opposite sides of `0,

d(Gt(p), Gt(q)) ≤ C d(p, q).

The proof of Lemma 4.5 uses the following observation, which is identical
to Observation 4.3 after exchanging j0 and jt.

Observation 4.6. There exists L′ ≥ 0 such that for any small enough t ≥ 0,
any p ∈ ∂N δ

0 at distance δ from a geodesic `0 ⊂ C0, and any x ∈ `0,
(4.10) d(ft(p), ft(x)) ≤ (1− t) d(p, x) + L′t.
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Proof of Lemma 4.5. We argue as in the proof of Lemma 4.2, but switch j0
and jt and use (4.8) to obtain the analogue

d
(
ϕt ◦ ft(p), ϕt ◦ ft(x)

)
≤ d(ft(p), ft(x))− ε

of (4.6) when [p, x] projects to a pair of pants labeled 0 in j0(Γg)\H2 ' Σg.
�
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