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Abstract. It is possible to extend the known domain of analyticity of dynamical zeta
functions, and also of resolvents of transfer operators, by use of the tube theorem. The
case of piecewise monotone maps of the interval is worked out explicitly, and one recovers
in a very different manner some recent results of Keller and Nowicki. In an appendix, it is
shown that the study of piecewise monotone maps reduces to the Markovian case.

1. Introduction.

It is often possible to associate with dynamical systems some dynamical zeta functions
with interesting analyticity properties. For instance, if (X, f) is a dynamical system,
Fix f™ the set of fixed points for the m-th iterate of f, and ¢ > 0 a function on X, we
may introduce

m—1
=Y T 5 T st
m=1 r€lFix f™ k=0

and prove that ¢ is holomorphic or meromorphic for (z,s) in a certain domain D C C2,
under suitable assumptions on X, f, and ¢. For functions of several complex variables, it
is however a general fact that holomorphy in a domain D *) may imply holomorphy in a
strictly larger domain D. The extension from D to D is called analytic completion. The
purpose of this note is to show that by analytic completion one may derive new analytic
properties of dynamical zeta functions. One can similarly extend the domain of analyticity
of the resolvent (1 — 2L)™" of the transfer operator L defined by

Lo(z)= D g(y)'B(y)
yify=x
but this will not be discussed in detail here (see Remark (5) in Section 2).

The tool that we shall use is the tube theorem (see for instance Bochner and Martin
(3]). Let D be a domain (= open connected set) in C". If

D ={(21500nsZn ) (R EZ] 50004 RE8,) € T}

*) In general, a domain D is an open connected subset of C", a function f : D — C is
holomorphic if it has an absolutely convergent Taylor expansion (in n variables) near each
point of D.



we say that D is a tube with base T'; the imaginaly parts of the z; are thus unrestricted.
The tube theorem now asserts that if a function is holomorphic in the tube D, it eztends
(uniquely) to a function holomorphic in D where D is the tube with base F F being the

convez hull of T'.

We shall not go into any details of the study of functions of several variables, but we
mention the following fact (Hartog’s main theorem, see for instance Bochner and Martin [3])
which is important to know. Let D be ¢ domain for the variable z, and 0 < p < P < oo; if
(z,w) = f(z,w) is holomorphic in Dx {w : |w| < p} and if, for each z € D, w — f(z,w) is
holomorphic in {w : |w| < P}, then (z,w) — f(z,w) is holomorphic in D x {w : |w| < P}.

In what follows we shall give two examples of applications of the tube theorem, to
obtain new analyticity properties of zeta functions associated with piecewise monotone
maps in one dimension. In particular we shall recover some results of Keller and Nowicki
[6]. These examples are used to show the scope of the method, but other applications are
certainly possible.

Our method gives analytic zeta functions which are not directly related to determi-
nants of operators acting on Banach spaces. This is different from the work of Keller and
Nowicki mentioned above, where the zeta functions are related to transfer operators, also
studied by Young [15], which act on specific Banach spaces.

It may be worth mentioning here that analytic completion has been repeatedly used
in physical applications (in quantum field theory, see for instance Streater and Wightman
[13], and in statistical mechanics, see Lieb and Ruelle [7]).

2. Piecewise monotone maps.

We take X to be a compact subset of R, and say that J is a closed interval of X if
J = X N [u,v] for suitable u < v. We assume that X is the union of finitely many disjoint
closed intervals J,...,Jy, and that f : X — X is such that f|J; is strictly monotone
and satisfies the Darboux property for : = 1,..., N. [The Darboux property means here
simply that fJ; is a closed interval of X; in particular f is continuous.]

Given g : X — C, we let
n
varg = sup 3" lg(ai) — g(ai1)]
1

where the sup is over finite families of points of X, with ag < a; < ... < a,. We say that
g is of bounded variation if varg < co. We shall use the fact that if ¢ > 0 and Res > 0,
then

var(g®) < %V&I‘ (gR”) :

[Indeed if 0 < u < v, then

v
u’IS/ |s ¢ 1|dt = EL / Res.tRes=1 gt
u

Re s
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ﬁ (uRes _ plte s) ]
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We say that (J1,...,Jn) is a generating partition if every intersection

() 5%

n=0

consists of at most one point. Define ¢ : X -» +1 such that ¢ | J; = +1 (resp. —1)if f is
increasing (resp. decreasing) on J;. [We may assume that no J; is reduced to a point, or
else choose ¢ | J; arbitrarily.] Write then

m—1
Fix™ f™ = {7: € Fix f™ : H e(ffz) = —1} :

k=0

Baladi and Keller [1] have studied the zeta function
((z)=exp ) -

" m=—1
- > T et

m=1 relix fm k=0

where f is piecewise monotone as above, associated with a generating partition, and ¢ is
of bounded variation. If

m—1

6= Iim (max H Ig(fkf”)l)]/m

m— 00 exX
R R

they show in particular that 1/( is helomorphic when |z| < §~!. Their proof uses an idea of
Haydn [4] and a device called Markov extension, originating with Hofbauer, and for which
there is an improved and lucid exposition in Keller and Nowicki [6]. It is possible, however
to bypass the use of the Markov extension and reduce the problem to the Markovian case,
as explained in the Appendix of the present paper *). The proof of the results of Baladi
and Keller simplifies quite a bit in the Markovian case, as shown to the author by V.
Baladi. We shall also use in what follows the “negative zeta function”

(%] m—1
. Lm .
("(z) =exp2 ) = > IT o(f*=).
m=1 r€Fix~ fm k=0

Note the factor 2 in the exponential and note also that it is not required that the partition
(J1,...,Jn) be generating. This negative zeta function is also holomorphic for |z| < 67!
(see Baladi and Ruelle [2]. As indicated in [2] it is not necessary to assume that ¢ is
piecewise continuous as in [1], bounded variation is sufficient.)

If u 1s of bounded variation and u > 0, then u® is of bounded variation when o > 1.

[In fact
varu® < a(|[u* o) varu .

*) Further details will be given elsewhere.



Indeed, if 0 < u, v, we have
[v® —u®| = I/ at* dt| < a.max (v v* ) ju —v| ]
The condition that u® be of bounded variation for all & > 0 (used in the following theorem)

is automatically satisfied if u > const > 0; it is otherwise a mild restriction on u.

2.1. Theorem. Let the functions u,v be of bounded variation X — C, with |u| <1
and v > 0. Furthermore assume that x — v(x)* is of bounded variation for all a > 0. We

write
0 i u(z)v(z) =0

gs(z) =
u(z)v(z)™® otherwise.

If the partition (J1,...,JN) 18 generating, define the zeta function

m—1
¢(z,8) = exp Z Z H gs(frz) .

m=1 z€Fix fm k=0

Define also the negative zeta function

oo i m=—1
C‘(z,s):epr Z z: Z H gs(ka)

m=1 z€Fix~ fm k=0
without assuming that (J1,...,JN) be generating. Write
m—1 1
0 :li;njip (zelll'};c:fm kl__—_[() m)I/m
0~ = limsu i L _yi/m
=l € oo 1L Sl ™

Then 1/((z,s) is holomorphic when |z|8%¢* < 1, Res > 0; (™ (z,s) is meromorphic when
|z|(6)*¢* <1, Res>0.%

The case of { (assuming that (J;,...,Jn) is generating) and the case of (™ are similar,
we shall discuss only the former. It will suffice to prove the theorem under the assumption

that 8 < oo.
! £ u(e)o(o)
0 if u(z)v(z)=0
9(z,t) = {u(m)v(m)t otherwise .

*) T am indebted to Mark Pollicott for pointing out an error in an earlier version of this

theorem.



Note that we may equivalently define
g(z,t) = u(z)v(z)"

if Ret > 0, and continue by analyticity. We also introduce

RIS

0 m
d(z,t) = exp — Z =
m

=1 zE€Fix f™ k=0
and
. m—1 i R 1/m
0.(Ret) = limsup ( max [] »(f*z) =
m—oo TEFix fm 2,
6~ %t if Ret<0
g%t if Ret >0
where

m—1

6 = lim sup ( max H v(fk:c))]/m .

— rz€lix fm
m o0 f I\‘:U

With these definitions we see that d(z,t) is holomorphic when
N|z|0.(Ret) < 1
because card Fix f™ < N™_ and also when

|3|é"""’ 1
Ret >0

(I)

(IT)

This second region is a consequence of the theorem of Baladi and Keller (1]. (As noted
earlier, one need not assume piecewise continuity of u, v, see [2]; see also [2] for the corre-

sponding property of (~, where it is not needed that (Jy,...,J ~) be generating).

The regions I and II are both tubes with respect to the variables log z,t, the basis of
I is a convex cone with apex at (—log N, 0) and the basis of II contains an open set near

(0,0). The tube theorem therefore implies that d(z,t) is holomorphic when

|2|0.(Ret) < 1.
Taking ¢ = —s we note that g(z, —s) = gs(z) . Therefore
I/C(Z,S) = d(z> _S)

1s holomorphic when
|2]6%¢* <1 |, Res>0

proving the theorem. [J



Remarks.

(1) If g5 is unbounded, it may happen that # = oo, in which case the theorem is
vacuous. If @ is finite, the value of the theorem is that it replaces the (easily obtained)

region of holomorphy
N|z|g%* <1

by the nontrivial region
|zjge* < 1.

(2) The study of piccewise monotone maps of the interval [0,1] C R is readily re-
duced to the situation of the theorem. [Let the monotonicity intervals be [a;—q,a;] for
i=1,....,N. If £ €(0.1) and & > 0 is the smallest integer such that frte {6 o N1 T
replace € by two points £ < &4 aud insert an interval of length 1/4! between them, ob-
taining a set X and a map X — [0.1]. The piecewise monotone map of [0,1] lifts then
to a continuous map of X (sce [5]). The replacement of [0,1] by X produces only trivial
changes in the zeta functions.]

(3) An interesting special case of (2) is when f is a piecewise monotone differentiable
map [0,1] — [0.1] and g(x) = |f'(+)]7". Theorem 2.1 reproduces then in particular some
results of Ieller and Nowicki [6).

(4) In his beautiful study of the thermodynamic formalisin for the Gauss map, Mayer
[8], [9] has obtained meromorphic extension of zeta functions by a method totally different
from that of analytic completion discussed here.

(5) Analytic completion can also be applied to the resolvant (1 — zL)7! of the transfer
operator £. We bypass the consideration of Banach spaces and consider [(1 - zﬁ)_l@] (z)
for suitable ® and given r as a function of z. This method can be applied for instance to
the case of rational maps of the Riemann sphere (see [12]).

2.2. Theorem. Let f be a piccewise monotone C> Markon map of the interval [0, 1],
with inf |f'(v)] > A > 1. Also let 0 : [0.1] = R be C™ on the intervals of monotonicity of
e

f, such that *
" .
| I&f(')l |(].1? < o
J dr

for all o« > 0, and define

sl I/m
= hmsup | sup H |p(f"]zr)|
e T k=0
If we write
iad ~m
C(z,8) = oxp P Z lo()]*
m=1 r€Fix fm

*) Tt is not clear if this condition is necessary.
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the function 1/((=,s) is holomorphic when.

[Z]@ T2 el Res>U.

We use Remark 2 above to put the present system in the general framework discussed
earlier. This allows in particular f and ¢ to be discontinnons (2-valued) at the division
$is ¢, hence 1/¢ is holomorphic for all

points «;. Note that if » does not vanish, |o(-)
z and Res > 0; the case of mterest 1s when ¢ has zeros.

For integer & > 1, and Res > 2k we sce readily that [o(r)]* = (o(2)%)%/? is of class
C?*=1_ Therefore (see Tangerman [14]. Ruelle [11], Pollicott [10]) 1/¢ is holomorphie for
|| A2 oxp P (log || ") < 1

hence for
const l:|/\_l"" AG s g2 , Res>2 (I)
but 1/¢ is also holomorphic for

|z]8%* <1 . Res>0 (I1)

by the result of Baladi and Keller [1] (because ] is of bounded variation for all & > 0

by assumption).

The regions I and II are both tubes with respect to the variables log z, s, and the tube
theorem implies that 1/¢ is holomorphic when

[s[(8X jHer £ 1 , Res>0

as announced. [

A. Appendix. Reducing the study of piecewise monotone maps to the
Markovian case.
Let X be a compact subset of B, We assume that X is the union of finitely many

disjoint closed intervals J, < ... < Jy, and that f: X — X is such that f|J; is strictly
monotone and satisfies the Darboux property (i.e. fJ; is an interval) for 2 = 1,... N,

The partition (Jy...... Jn) is said to bhe generating if every intersection
o
Seae? ¢ §
m f ']I(H)
n=>0

consists of at most one point.

The total variation of ¢ : X — C is denoted by varg, and ¢ 1s said to be of bounded

variation if var g < oc.

|



A.l. Proposition. Let X, f,(J1,...,Jn), g be as above, with (Jy,...,JNn) gener-
ating and g of bounded variation. There exist then A f (Jl,.. JN) g with the same
properties, such that X may be zdentzﬁed with a closed subset of X that f = f|X g =
9iX. J; = J NX fori= 1., N, and (Jl, JN) 18 ¢ Markov partition for f Further-
more, if £ ¢ X, then g(f"{) =0 for some n 2 0.

Let ¢(¢) = %1 depending on whether f is increasing or decreasing on J; (if J; is
reduced to a point, or empty, make an arbitrary choice). We define

={£:N>{1,...,N})

with the topology of pointwise convergence. If {(k) = €'(k) for k < n and £(n) < €'(n) we
n—1 n—1 %
write £ < €' if J] e(é(k)) =1, and € > ¢ if [[ e(é(k)) = —1. This makes X into an
0 1

ordered Cantor set, that can be embedded in R. We also define ff by
(FE)n) = E(n +1)

ie., fis the shift, and

J,-—-{feX:{(O):i} .
In particular (fl ooy fh) 1s a Markov partition for f, and f is monotone on each J;. We
define now 57 : X — X by

(Jz)(n)=1: & flz e J;.

This map is injective because we have assumed (Jy,. .. JN) generating, it is order pre-
serving by our definition of the order on X and we have f o7 = jo f. We may thus use j
to identify X with a subset of A and we have then f = f |X

There remains to define g with the properties announced. Let
u; = min J; , v; = max J;

where J; is now considered as a subset of f, We may extend ¢ | J; to a function § on
[ui, vi] such that
var (7 | [ui,vi]) = var(g | Ji) .

[Take for instance g(w) = g(z) where ¢ = max {y € J; : y < w}.] We complete the
definition of § by setting it equal to 0 on the complement of the intervals [u;,v;]. The
function § is thus of bounded variation on X, and § | X = g. The following lemma
concludes the proof of the proposition. [J

A.2. Lemma. If ¢ us such that
f"f € [uf(n),vf(n)] for all n >0, then £ € X .

8



If we define

n

Tn(€) = F7* [tery, vew)
k=0
then J3;(§) 3 €, hence J (&) # 0 for all n > 0. We have J§(§) = [Ue(o),vg(o)] and, for

n >0, R
Tan(€) = [ugy,vey] N F 1 In_a(FE) -

By induction on n we shall show that J;({) is a subinterval of :7;(0), of the form [u},v}],
* € X. Note that f [1L5(0),v£(0)] N Jx_;(f€) is a nonempty intersection of

n

subintervals of X with endpoints in X, and is therefore again a subinterval of X with
endpoints in X. Since f | Jgy has the Darboux property, we see that J:(£) = [uk,vE],
with u},, v; € X as announced. The nonempty intervals J¥(£) N X form a decreasing
sequence, hence their intersection contains some (* € X. We have thus

3 *
with u}), v

{& = 7©> N renx)s¢

n>0 n>0

hence £ € X, proving the lemma. 0O
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