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1. Introduction.

We consider equations of the form
(1:1) U F(u,x) + DAu ,

: . m : : @ : ;
u€R , x in a bounded region <R . Here D 1s a positive diagonal matrix
: ; i ; 1. . ' -
of diffusion coefficients and F is C° smooth in both its arguments. We consider

both Dirichlet and Neumann boundary conditions.

Under very general assumptions, we shall give rigorous upper bounds on
the complexity of solutions to (1.1), both in space and in time, with estimates
that are proportional to the volume of € . Our notions of complexity, which will
be detailed below, involve rates of growth of small perturbations of solutions
to (1.1). It will be seen that the diffusion term DAu in (1.1) limits complexity,
just as the term -th/Zm does in the Schrodinger equations; indeed, quantum

mechanical estimates will be used to bound the relevant growth rates.

The estimates to be derived are valid for any set of equations (1.1)

satisfying a mild compactness condition :

(1.2) Equation (1) admits a positively invariant region [27], i.e., there exists
a compact set K cR™ such that, for any solution u(x,t) having all its boun-
dary and initial values in K , u(x,t) € K for all t for which u(x,t) 1is

defined.

In connection with a local existence theorem [27], condition (1.2)
provides a-priori estimates which ensure global existence and uniqueness. This
condition holds for many important systems of reaction-diffusion equations; for
examples and methods of constructing such a K , see [27]. We shall assume initial

. . 2
conditions in the space L (%, rR™)



We shall be most interested in equations (1.1) for which some solutions
are knowr. tc have complicated spatial and temporal behavior. These include

systems for which the reaction equation

(1.3)

8 = FL,0)

has a limit cycle for some set of x € Q . We have in mind, for example, equations
(1.3) which model the kinetics of the Belousov-Zhahotinskii reagent, an oscillating
chemical reaction. (Both the realistic Field-Noyes model [10] and the simple

"\-w" caricature [16], [14], [15], [12], [13], [3] satisfy condition (1.2)

under appropriate assumptions on D [27]1). It is well accepted that only reaction
and diffusion are involved in’the formation of the complicated patterns which
develop when this fluid is allowed to sit in a thin layer (and covered to prevent
convection). These patterns may include spirals and/or "target patterns" (described
in Section 5), as well as thin transition or "shock" regions between these
subpatterns (targets or spirals). As discussed in Section 5, the bounds provide
upper limits to the number of coherent subpatterns per unit of area. One feature

of these bounds is that they can be independent of the scale of spatial variation
in the kinetics (1.3). Thus, though the formation of the target patterns is known
to be facilitated by the addition of impurities [29], there may be an upper

bound to the density of these subpatterns independent of the distribution of the

impurities. Other applications are also discussed in Section 5.

Similar estimates were made in Ruelle [25], Babin and Vishik [1],
Constantin and Foias [4], Ruelle [26] for (the more difficult case of) the
Navier-Stokes equations, and used to get upper bounds for the entropy and the
Hausdorff dimension of the attracting set. The latter numbers are measures,
respectively, of the temporal and spatial complexity of the time-averaged solutions.
The notions to be used in this paper, which will be described in Section 2, are
more general in the sense that they measure instantaneous rather than asymptotic

complexity. However, as shown in the Appendix, the time-averaged versions of



these concepts are bounds for the entropy and the Hausdorff dimension, and

similar methods give bounds on these as well.

The reason for using non-asymptotic notions is that patterns in reaction-
diffusion systems are constantly changing and, over a very long time scale may
simplify. (For example, in the Belousov-Zhabotinskii (BZ) reagent, the number
of target patterns decreases over time as some of them are taken over by, and
merged into, other target patterns). Thus, we seek a theory that can quantify

complexity of the "metastable'" solutions, rather than the final attracting sets.

The paper is organized as follows : In Section 2, we discuss our
notions of spatial and temporal complexity. The main results are given in
Section 3. For Dirichlet conditions, we use quantum-mechanical estimates to com-—
pute these bounds. For rectangular domains with either Dirichlet or Neumann
conditions, other estimates are provided in Section 4. In Section 5 bounds are
explicitly calculated for a simple example. Section 6 contains a discussion of
applications, and the connection of this paper to previous results of Conway
et. al [5] on the non-existence of spatial structure in small domains. The
appendix extends the results to infinite time, and gives the connection between

Section 2 and ergodic theory.

2. Measures of spatial and temporal complexity.

Small perturbations ¢ of u satisfy the linearized equation

(2.1) 0)

G ™ Dag + dF-@

where dF is the n x n matrix dF/3u . Note that Dirichlet boundary conditions

0 . Neumann conditions for n imply homogeneous

s . 2
Neumann conditions for ¢ . We introduce the L norm

on u imply that QIBQ
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gl = [fCz @haxt/?
1=1
where @ = (wl’°"’¢%) . The instantaneous rate of growth of |[|@|| is
d —3 1 i = 1 -
(2.2) =¢ log llell = el 5 llell b2 (@,DA@+dF-@) .

7 5 : 2 ..
Here (-,:) denotes the inner product associated with the L norm. Similarly,

the instantaneous rate of growth of a k-volume element is

d
(2.3) o log llo; A 0 a--eng ||

2

. . 2 : ;
where the exterior product (A) of vectors in L~ , and their norms, are defined

in the usual manner.

We take as our measure of temporal complexity the quantities

: max ¢ (k,u,t)
A

by (u, t)

or

: max c, (k,u,t)

h.:(a; &)
N K N

where the subscripts D and N stand, respectively for Dirichlet and Neumann,

and
(2.4) c(k,u,t) =: max 5 log @.A**"AQ
'’ dt 1 <k
O, A+ *AQ
~ Nk
with c(k,u,t) equal to cp Or cy - Similarly we shall use h(u,t) to denote
either hD or hN . h(u,t) may be viewed as the sum of the rates of growth

of the unstable modes of the system. It is also the "instantaneous' concept

whose asymptotic analogue is a bound for topological entropy [25], [26]. This

will be discussed in the Appendix. We note for now that the growth of small
perturbations to solutions of (1.1) corresponds to sensitive dependence on initial

conditions, and h(u,t) indicates how much of this is present at time ¢t .



(However, the existence of this sensitive dependence at some finite time does
not indicate what is normally called '"chaos" since the rate of growth of pertur-

bations may decay as t > ® ).

We shall take as the measure of spatial complexity d(u,t) a quantity
which is an upper bound for the number of unstable and neutrally stable modes,
and whose asymptotic analogue can be interpreted as a bound for Hausdorff dimension
of the attracting set in LZ(Q, R") of (1.1). Let c(s,u,t) , s >0 be
defined from (2.4) by linear interpolation between successive integer values of

s . Then

dD(g,t) =: max{s : cD(s,g,t) >0} ,

(2.5)

dN(g,t) : maxis : cN(s,g,t) > 0}

As before, we use d(g,t) to denote either d_ or d

3. Estimates of complexity.

We first show that the quantity cD(k,u,t) defined in the previous
section may be estimated in terms of the eigenvalues of an associated diffusion
operator DA+w , where w : Q +1Rl . We will then make use of estimates on these

eigenvalues which come from the study of the classical limit of quantum mechanics,

with Da+w interpreted as a Schrdodinger operator (up to sign).

The associated "potential" w is not unique. We first let the matrix
W be the symmetric part of dF , i.e. , W =~%(dF+(dF)*), where * denotes
adjoint. (Here W depends on x and t through its dependence on a solution
u of (1.1); since we are concerned with instantaneous rate of growth at fixed

t , we ignore the dependence on t). Let w = w(x) be an upper bound for W,

i.e. any scalar such that the matrix wI-W 1is a non-negative operator. (I 1is



the n X n identity matrix. (The best choice is w(x) = A(x) , where X is

the largest eigenvalue of W ; one may also take the uniform norm |dF(x)| of

the matrix dF , or [ L N?j]l/z , where W,j is the i,jth component of W ).
.. 1 1 ~
1s]
For any such w , (2.2) implies
d 1 1
(31) = 1og lleoll = 5 (. DApHIQ) < 5 (@, DAgrwn) .
llell lloll

Remark: For the estimates that will follow, it is desirable to have w as small
as possible. The upper bound w(x) 1is not independent of changes of coordinates,

A @ . However, we

~

and hence could possibly be improved by a linear change @ -
require that D be preserved under this change, and hence that A commute with

D . For simple systems, it may be possible by inspection to get a better bound

(see Section 5).

: 2 2
Now consider DA+w as an operator on L (Q,IRH) with g|39 =0 ; let

a, be the largest eigenvalue. From (3.1) it follows that

d
(3.2) 4 Jl10g gl < a,

Similarly, the instantaneous rate of growth of a k-dimensional volume element
I @1/\®2A"'AmkH under the evolution of (1.1) is also bounded in terms of the

eigenvalues of DA+W

Lemma_1 : Let a, > a, Zosme 3 8 > ... be the eigenvalues of DA+w in decreasing

o it 1 —

order, then

d
E log “mlA-'-Agk[| R Byhdyhveetay

The exterior products (a) of vectors in a Hilbert space, and their

norms, are defined in the standard way, and Lemma 1 is proved in the same manner

as (3.2). (See [25]).



The rest of the estimates for °h and dD make use of semi-cdlassical

formulae for the eigenvalues of scalar operators

ggggggigigg_l : Let D>O0 be a scalar and w : @ *R . Let b1 > bz.Z T—

be the eigenvalues of DA+w , acting on LZ(Q, R) , where Q cR" is bounded,

and zero boundary conditions are imposed on 3% . Then
a) The sum of the positive eigenvalues bi > 0 satisfies

(3.4) i, < BD W2 [ttty

b.>o = = Q
i
Here Lm is a universal constant depending only on the dimension m of the
spatial domain. The best estimates of Lm currently known are
E. & i L, < .24008 L, < .040304
1—-—3° 2-=" i 3 ="
« k
b) Let ¢ (k) = I b, , and let c*(s) be defined for all s > O by linear

i=1
interpolation between integers. Let

(3.5) d* = max{s : c*(s)_z 0}
Then
(3.6) 3% < AmD—m/2|Q|2/(m+2)[I wl+m/2]m/(m+2)

As before, the A are universal constants, and are estimated by

A, < 2.050 A, < .5597 Ay < .1329

Proof : Part a) is in Lieb and Thirring [20]. Part b), in conjectural form in
[25], is proved in [19]. Lieb's proof uses an estimate of the form

m

cz(Dzs)

S li=!

(3.7) c*(s) < ¢ (D,8) =D



with concave Cy (this fact will be used below).One shows that
2 m

max{s : c,(s) > 0} < o™ Ae
Q

m
1+ 5

We now relate the quantities estimated in Propositiom 1 to hD(u,t)

and dD(u,t) . Let 0K D1 <D

matrix D, w: Q> R! an upper bound (for each x € @) on W = %(dF+(dF)*) 5

2_5 wwiw L Dn be the eigenvalues of the diagonal

i i . g 2
and bi 2 b; > ... be the eigenvalues of the operator DiA+w acting on L7(2, R)

with zero boundary conditions.

The estimates on hD(u,t) and dD(u,t) are then given by

Theorem 1. Under the conditions (1.2) of the introduction we have

n .
(3.8) a) hy(u,t) < I I bhj < L (2 Dim/z)f o B
i=1 j:b j>o0 i Q
2 g B ..
(3.9) b) 4 (u,t) <A C D;mlz))|9|m+2[f Y
i

Proof. Part a) follows from Lemma 1 and part a) of Prop. 1. To prove part b)

we use (3.7)

dD(u,t) S_max{sl+---+sn : cl(Dl,sl)+'°'+c1(Dn,sn) > 0}

m

k=

max{Zs. : ZD. 2c (DT s.) > 0}
i 1 2 i

N

H
I

m

by D.zmax{s : c.(s) > 0}
i 1 2 -

_2_ 1+
| m+2[IQ‘J dx]m+2

Nofg

—m/2[

A

A (£ D.)
m . X
1

Q

as in the proof of part b) of Prop. 1.
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(3.10) M = max max w(u,x)
xEQ  uek

(for one of the choices of w this is M = max|dF|) . We have then
X,U

Ellau) = max-é% log Hg”_ﬁ M
©

~

-m/2 1+m/2

i

) |2l

| A

L (ZD
m .
1

hD(u,t)

-m/2
i

m/2

dD(u,t) )| 2|M

I A

A (XD
m .
i

If m= 1, we may replace Ll 5 A1 in these formulae by 2/3m and Y3/
respectively. This is because in one dimension, & 1is always '"cubic"; see mnext

section.

4. The special case of cubic boxes, Dirichlet and Neumann boundary conditions.

If @ 1is rectangular, we may estimate directly the eigenvalues of
DA+M , both for Dirichlet and Neumann boundary conditions, without resorting to
Proposition 1. The results obtained have sharper constants than the above corollary,

but are less powerful than the theorem, because they use M rather than

jw1+m/2 . For simplicity we assume that @ 1is a cube of side L .
m
The eigenfunctions of DA+M in the cube © =1 [0,L] are of the form
m TE . 1
I sin with integers gi > 0 in the case of Dirichlet boundary conditions,
1 m mE.X.
and 1 cos ——= with integer 51-3 0 in the case of Neumann boundary conditions.
1

The sum of the largest k eigenvalues of DA+M satisfies therefore

2
e (k) or cr() = E(M—% 1£1%)
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where the sum extends over k allowed points §& = (&1,...,£m) closest to the

origin.
We get an upper bound for c;(k) by spreading the unit mass located
m
at (El,...,im) uniformly on the unit cube H[Ei—l,ii] a still higher upper
1

bound is obtained by replacing the umion of cubes by a piece of sphere (ball) of

the same volume :

)
cp (k) < J( —D—’ZT— [&]%ydE
L

The integration is over the part £, > 0,...,& > 0 of the ball centered at
1= m —

the origin, with radius R such that 2_momRm = k (where . is the volume of

the mball of unit radius). If c;(s) is defined for real s > O by linear
interpolation between integers, the same argument applies, k being simply

replaced by s 1in the formula.

To evaluate cz(k) we spread the unit mass located at (gl,...,gm)
m

uniformly on the unit cube H[éi,£i+1] , obtaining
1

Dﬂz 5 it
cx(k) < fo1 - = Imax(]e]-/m,0)1)ae
L

where the integral is over the same region as above. Again we may replace Kk

by a real number s > O .

The angular integrations in the above estimates are trivial, so that one

o
may replace dg by il d|g|m . Writing X = 2)1/2 KL |z] we obtain
om M L
m
o 2 ~ e -
(4.1) *e) < B alH? L (a2H ™
D — LI 2
2 D o
m
o 2 5
2
(4.2) c*(s) = oy
N — ,m 2
2 Dm

m-1 5 2, m-1
[f, A dA+ITO(1-(x—TO) A dA]
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where
Dmﬂ2 1/2
(4.3) B = @ 2)
ML
1./2 2 s 1/m

and T = Q~——) . The largest T for which (4.1) and (4.2) are
ML

non negative are respectively given by

e}
m

Tm+2 Tm
e T 0
and
w2 om a2
. A I X .
m+2 m = higher order in Ts

We have thus

o
max{s : c;(s) »:0F < (1 )m/Z(___ m/2 m
- D’ 2"
o
max{s : c;(s) >0} < [(1+ g.m/Z O(TO)](Siz)m/Z 22

and changing from Dirichlet to Neumann boundary condition is a small correction

when T, is small. In the Dirichlet case we may write

p¥ = max{s : c*(s) > 0} < A~ D—m/zlﬂlbm/z
D D == — m
where
(
-15 for m=1
T
25
(4.4) A=asHP LMo for m =2
m m 2 21[
C~)3/2 12 for m =3
6T

To estimate the sum of the positive eigenvalues of DA+M we take T =

in (4.1) or T = 1+To in (4.2), and find that the sum is

(4.5) _SL m/2|91M1+m/2



_.]_3_

in the Dirichlet case, with

[ 2
37
o}
c _ 2 m -m _ ) 1
(4.6) Lm T m+2 ol m = 8w
1
15'n2

In the Neumann case there are again O(to) corrections to (4.5)

Theorem 2. Under the conditions (1.2) of the introduction, if © 1is cubic one

may write

4.7) by (u,t) < Loz D;m/z)lglml+m/2
2L

(4.8) ay(u,0) < a2 o) o™
i

with the definitions (3.10), (4.4), (4.6) and

-m/2
i

1+m/2

(4.9) hy (u, ) < T 0%y |elu
Bl

-m/2
i

m/2

(4.10) dN(u,t) < AV ylalM
=%

M N
where Lm’ Am now depend on £ , but differ from L; , A; only by terms of

order O(TO) with 129 given by (4.3).

5. A simple example.

We consider the reaction-diffusion equation

(5.1) u = ( )\)E"'DA}i u€R , DZR



_—

R2

: . : ; n 0w
function. The system is enclosed in a bounded region Q@ <R , and u 1s imposed

2 2
where X = k(1 - lﬂ%_) , W = c—k1 l&l_ + g(x) , and g : @ >R is a smooth
R

on 932 . The region K may be here taken to be K = {3:]2! £ R}

The symmetrized matrix W of the linearization of (5.1) has components

=
I

2 2k
= k(1 - 15%—) = Z% o’ +-—7l u.u

11 : ATV IR b
2 2k
2k 2 1
W., = k(l—lgl—) - == u. - — u,u
22 2 2z 2 e
K
_ _ ~2k L _
Wi = Wgq = 2 12 ¥ 2 (uy=uy)

.th

It can easily be checked that for any the 2 X 2 matrix with 1i,]

Y1°%
component uiuj is a non-negative matrix. Hence W 1is bounded above by E

with components

2 2k
W -—k(].-'l_u‘%—)*'—?'lu
R

W = u
5 R 12
2 2k
= 1
= k(1 - lEL—) - —— u.u
22 R2 R2 12
k
= = & — 2 .2
LIPS Woq = ;- (u2 ul)

A scalar upper bound for W is the largest eigenvalue of E' or

2 2
(5.2) w=k(1 - lE%—) + k liﬂ—-< M = max {k,k. }.
R 1 g% — 1

Thus we have

2. .(1+m/2)

-m/
(5.3) by (u,t) < 2L DM o]

(5.4) dp(u,t) < 2AmD"“/2Mm/21sz|
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In the case of cubic domains we may replace Lm,Am by the smaller constants

LC,A; . In particular this can always be done in the one-dimensional case (m = 1).

In the case of cubic domains, the Neumann boundary conditions may also be treated,

using L = LS +0 e, A -a o G2
Note that the bounds on h and d (which are independent of the solu-

tions u ) are in terms of the volume of & , the size of D and an inverse time

M= max{k,kl} ; the larger this inverse time, the more possible structure in

the solution. The spatial variation in the kinetics is not reflected in the

estimates. Also note that the frequencies associated with the oscillations play

no role in the estimates, only the "Floquet time" given by k and the measure

k1 of frequency variation with amplitude. Furthermore, the coefficient of k

in (5.2) will be small whenever the solution u is close to the limit cycle

|u| = R . Thus, the more important time scale is given by k1 .

6. Discussion.

The existence of the upper bounds on complexity reflects the intuitively
clear idea that diffusion gives lower bounds to the size of stable spatial
structures. Indeed, [d(g,t)/lgl]l/m gives a (minimum) characteristic length
scale for the size of a coherent spatial structure. However, the estimates are

by no means sharp.

The estimates on the dN(B’t) can be connected to some observed quantities
(at least modulo some reasonable assumptions). For example, consider patterns
in the Belousov-Zhabotinskii reagent [32]. In this oscillating reagent, phases
can be identified by changes in color. If the reagent is thoroughly stirred and

poured into a thin layer (and covered to prevent convection), bright blue spots



form in the red medium and propagate outward. The centers of these blue spots

then turn red and this also propagates outward. The process repeats with a

period of the order of 2 to 3 per minute, and after a short time the entire sheet
is covered with patterns of outwardly moving concentric circles known as "target
patterns" (See [16] for a picture). If the liquid is sheared slightly during

this process and then left alone, there emerge spiral patterns in addition to,

or instead of, target patterns. A non-oscillating variant on this recipe, created
by Winfree to mimic the mathematical behavior of Cardiac tissue [28], produces
similar patterns. With care, one can observe the rather complex three-dimensional
structure of these patterns, some topological features of which have been analyzed

by Winfree and Strogatz [31].

During the formation of the target patterns/spirals (to be called sub-
patterns), it seems clear that each subpattern develops independently of the
others. If we make the reasonable assumption that each developing pattern corres—
ponds to at least one unstable or neutral mode of (1.1) (with the appropriate
kinetics), linearized around the solution at that time, then dN(E’t) gives
an upper bound to the number of subpatterns for a class of functions F(Eﬁﬁ)
for which the eigenvalues of (dF+(dF)*)/2 are uniformly (over the class)
bounded above independent of x , the estimates of Section 3 can be thought of
as giving bounds independent of the density of impurities (as in the simple

example of Section 5).

In general, structure can exist in oscillating and diffusing chemical
reactions with or without the intervention of impurities. (For some of the
references to this literature, see [30], [15]). Even without diffusion, however,
spatial differences in frequency do lead to structure. Consider, for example,
an oscillating chemical reaction carried out in a tube, with a gradient along
the tube in the frequency of the underlying oscillation. (For the Belousov-

Zhabotinskii reaction, this is easily accomplished by temperature gradients in
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a surrounding bath or chemical gradients that do not diffuse away over the time
scale in question [17]). If there were no diffusion, it can be seen [17] that,
starting from an initially homogeneous state, the system would evolve so as to
develop waves whose wavelength becomes smaller and smaller (without limit) as

t 1increases.

In the presence of diffusion, the wave-lengths do not become infinitely
small. The estimates of Section 3 do not explicitly describe the minimal wave-
length at which the decrease ends. The theory of this paper does, however, show
that there are bounds on the complexity of the solution independent of the
steepness of the frequency gradient. This is especially interesting because, for
quite steep frequency gradients, numerical calculations (with Neumann conditions)
[8] suggest that solutions do not approach any stable periodic configuration,
with a fixed (common) frequency. Instead, one can get "plateaus" of frequency,
i.e. intervals along the tube on which the frequency is constant, with abrupt
changes of frequency in between, and the dynamics can be quite complicated. (A
demonstration of this was carried out by Winfree [30], chapt. 14) on chromato-
graphy paper soaked in Belousov-Zhabotinskii reagent in the presence of a tempe-
rature gradient; one can explicitly see the plateaus). For an analysis of a

related but spatially discrete equation, see [9].

The results of this paper may be viewed as extensions of the results
of Conway et. al. on the non-existence of spatial structure for reaction-diffu-
sion equations, with homogeneous Neumann boundary conditions, on domains that
are sufficiently small [5]. More precisely, let A > O be the principal eigen-—
value of -A on Q (with Neumann conditions), D, the smallest (positive)
eigenvalue of the (positive definite) matrix D , and M = max{|dF|: u € K},
where |dF| denotes the uniform norm of the matrix dF . Note that the compact-

ness of K implies that M <« . Let 0 = ADl—M . The following theorem says

that if o > 0 , the solutions to (1.1) decay to spatially homogeneous solutions.
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Theorem [5] : Consider the problem (1.1), with F = F(u), u(x,0) = uo(x) =
and homogeneous Neumann data on 32 . Assume (1.1) admits a bounded invariant

region K , and {uo(x) : x € Q}cK.If o>0 , there are constants

C12Cp2Cq > 0 such that, for t >0 ,
-ot
1) ||vxu(.,t)|| ) S e
L
2) IIuo,t)JG(t)IILz_g cze_ot

where
- 1 — g s
u(t) = T—T-f u(x,t)dx and u satisfies
% Q

du

L r@eg(t) , ul0) = TYIZT SJZ u_ () dx

and g(t) < c3e_0t

A is inversely proportional to the squared diameter of © . Hence, the
hypothesis o > O says that diffusion (on a domain of size |Q|) is fast relative
to the reaction term. The estimate (4.10) of spatial complexity is in terms of

the same quantities A,D1 and M (or, equivalently, Al , D1 and M ).

In the Appendix we shall discuss the asymptotic versions of Sections 2
and 3, and the relation to Hausdorff dimension and entropy. For here, we note
that our hypotheses imply that there is an attractor for (1.1) (with Dirichlet
or Neumann conditions) in LZ(Q,ﬁRn) , and it has finite Hausdorff dimension
dimH . As will be seen in the Appendix, if w = M , then (4.8), (4.10) give

bounds for dimH . Now if (1.1) is to have an attractor that is not a point

dimH must be at least 1. Thus, from (4.8), (4.10) we get

1 < A (0.™2)|q|¥™?
= L

[ N .
where A denotes A or A . In conclusion,
m m m
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2
-m/2, m
(zD. ) 2 /m

i
(6.1) —lQ—I—Z-/m——Am M<O

which has the same form as the main hypothesis of Smoller's theorem (with the
opposite sign). Thus we recover (but less sharply) Smoller's result that a
necessary condition for (asymptotic) complexity is that a quantity (5.1) analogous

to o must be negative.
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Appendix.

Time Averages : connecting with ergodic theory.

We now extend the theory of Sections 2,3 and 4 to allow t > « . For
u: > R" , @ a solution to (2.1) as before, the characteristic exponent

A(u,p) 1is the following limit (if it exists)

(1) A(g.@ = lim £ Tog [loco) |

trx
2 Z 7
Let f£U denote the one-parameter flow on L (Q,ZRn) associated with (1.1),

which takes the initial condition wu(-,0) into u(-,t) and let df" be its

=]

derivative at u . The possible characteristic exponents depend on u = u(-,0)

and are the logarithms of the eigenvalues of

(A2) A = TERLEED daE
u u

o L0 ~

t]1/2t
A

The limit exists. (Here * denotes the operator adjoint). Note that, if |l ol|
grows exponentially in time, the RHS of (A1) is just the limit, as t > « , of

(2.2)

Let Al(E) 2_)2(3) > ... be the eigenvalues of Au , and Qs 00 @

~

solutions of (2.1) for that u . Then

o
(A3) lim _ log HglA"'Ang ,
too

if it exists, is at most Al(u)+---+xk(u) , and equality holds for some choices

~

of Q1o -

The above statements are independent of measure. However, if we consider
2 n g
L (g, R) as a measure space, we can also make statements about the existence
of the limits (A1)-(A3). Our assumptions imply that the time evolution of (D

maps the set of initial conditions in K , after any finite time, to a compact



= Y -

subset K(t) < LZ(Q,IRH) . Therefore, the solutions of (1.1) which take their
values in K at time zero tend to a compact set K = 0 K(t) when t - « ,

and K 1is invariant under time evolution. It follows E;gm the Markov-Kakutani
fixed point theorem (see Dunford-Schwartz [7]1 I p.456) that there is at least

one probability measure p with support in K which is invariant under time
evolution, and we may assume that p 1is ergodic. (In general there will be

many ergodic measures with support in K). Also the derivative dfz is a compact
linear operator on LZ(QJRH) which depends continuously on u . T;;se conditions
are sufficient to apply the multiplicative ergodic theorem. (This theorem was
proved by Oseledec [22] for finite dimensional matrices; it extends to compact
operators. as proved in Ruelle [24] and Mané [21]). The theorem insures that,

for almost all u (with respect to p), and all @ , the limits (A1)-(A3)

exist. Since p 1is ergodic, these limits are independent of u , but dependent

on p

1f the time evolution defined by (1.1) has sensitive dependence on
initial conditionms, it actually produces information in the information—theoretic
sense. The average amount of information h(p) produced per unit time is the

Kolmogorov-Sinai invariant, or entropy. At least for finite dimensional systems,

it can be shown [23] that
(A4) h(p) < sum of the positive characteristic exponents

(There are important cases where equality holds. See in particular Bowen and
Ruelle [2]). Assume that (A4) holds and let w(x) be an upper bound to the

largest eigenvalue of W =-% (dF+(dF)*) as in Section 3. Then, since

k
(A3) achieves its supremum I Ai(p) , it follows from Lemma 1 that
i=1
1 b i
(AS) Al(p)+’--+xk(p) ﬁ_tlm T—j dt(al+---+ak) = Jo(dg)(a1+---+ak)

00 (o]

where the aj are as in Section 3. (Remember that w and therefore the aj
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depend on the time. By the ergodic theorem, the time average is replaced by an
average over u = u(0)) . Then the upper bounds obtained earlier for h(u,t)
apply also to h(p) , and these upper bounds are independent of p . We therefore
obtain bounds on

h(K) = sup h(p)
]

where the sup 1is taken over all ergodic measures with support in K s ‘Thiis

sup 1is the topological entropy of K .

Because the compact set K 1is invariant under the maps £ , and the
. . t s 5 e
derivatives dfu are compact operators, it follows that K has finite Hausdorff
dimension dimHK . A result of Ledrappier [18], based on earlier work by

Frederikson, Kaplan and Yorke [11] and Douady and Oesterlé [6], yields the

estimate
(A6) dimHK < sup max{s : T(p,s) > 0}
P
k
Here c(p,k) = I Ai(p) , and ¢ interpolates linearly for non-integer values
i=1

of the argument. From (A5), we see that our earlier estimates again apply to
get bounds on dimHK . The estimate obtained for dimHK is clearly also an

upper bound for the number of non-negative characteristic exponents (for any p).
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