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Aim of the course

The aim of the course is to describe the Riemann-Hilbert correspondence for
holonomic D-modules in the irregular case following [DK13], and its appli-
cations to integral transforms with irregular kernels, following [KS14]. On
a complex manifold X, this approach makes an essential use of the indsheaf
of temperate holomorphic functions O t

X (this indsheaf can also be viewed
as a sheaf on the subanalytic site Xsa associated with X). Unfortunately,
the sheaf O t

X still does not contain enough informations to recover a holo-
nomic D-modules from the complex RHomD(M ,O t

X) and one has to work
with the enhanced ind-sheaf O E

X , roughly speaking, the sheaf of solutions in
O t

X×Cs
of the equation (∂s − 1)u = 0. As an application, we show that the

De Rham functor (with values in O E
X) commutes with irregular kernels and

we treat explicitly the Laplace transform.

Organization

The course will cover 12 hours along 6 weeks, from Thursday 12/02/2015 to
Thursday 19/03/2015.

Contents

1. Indsheaves and subanalytic sheaves (after [KS01])

2. The indsheaf O t
X of temperate holomorphic functions (after [KS01,

KS03])

3. Enhanced indsheaves (after [DK13], inspired by [Ta08])

4. The enhanced indsheaf O E
X (after [DK13])

5. The Riemann-Hilbert correspondence (after [DK13], using [Sa00, Mo09,
Mo11, Ke10, Ke11])
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6. Integral transform with irregular kernels and Laplace transform (af-
ter [KS14])

Prerequisites

The audience is supposed to be familiar with the basic language of de-
rived categories and sheaf theory (see [SGA4, KS06]) and D-module theory
(see [Ka03]).
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[SGA4] S-G-A 4, Sém. Géom. Alg. (1963–64) by M. Artin, A. Grothendieck
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