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The Gross–Zagier formula

Consider
• a (modular) elliptic curve E/Q of conductor N, corresponding to a normalized new cusp
form fE =

∑
n>1 an(E)qn ∈ S2(Γ0(N)),

• an imaginary quadratic field K (with dK its discriminant) satisfying that every prime factor
of N splits in K .

Denote by X0(N) the compactified modular curve of level Γ0(N) over Q. Recall that away from
cusps, X0(N)(C) is the set of isomorphism classes of cyclic isogenies [E → E ′] of complex elliptic
curves of degree N.
Choose an ideal n of OK satisfying OK/n = Z/NZ. For a modular parameterization
ϕ : X0(N)→ E , we define the Heegner point

PϕK :=
∑

a∈Cl(K)

ϕ([C/a→ C/n−1a]) ∈ E(C).

By the theory of CM elliptic curves, one sees that the above sum is independent of n and the
choice of representatives of Cl(K); moreover, PϕK belongs to E(K).

Theorem (Gross–Zagier, 1986)

L′(1,E/K) =
32π2‖fE‖2Pet

|O×K |2
√
|dK |

hNT(PϕK )

degϕ
.
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Néron–Tate height

Let K be a general number field and C/K a geometrically connected smooth projective curve.
We recall the definition of the Néron–Tate height on Div(C)0 (which is same as Z1(C)0).
Let JC be the Jacobian variety of C over K , so that there is a canonical homomorphism
α : Div(C)0 → JC (K) of abelian groups. (Twice of) the theta divisor on JC gives rise to a height
function h : JC (K)→ R. For every D ∈ Div(C)0, we define

hNT(D) := lim
n→∞

h(α(nD))

n2

in which the limit exists. We have
• hNT descends to a function on CH1(C)0 = Div(C)0/ ∼rat;
• hNT is a positive definite quadratic function on CH1(C)0.

In what follows, we denote by 〈 , 〉NT : CH1(C)0 × CH1(C)0 → R the associated quadratic form.
The quadratic form 〈 , 〉NT admits a decomposition into local heights over all places of K , which
we review. For ? ∈ { , u} where u is a place of K , put C? := C ⊗K K? and denote by
(Div(C?)0 × Div(C?)0)∗ the subgroup of Div(C?)0 × Div(C?)0 consisting of pairs of degree zero
divisors with disjoint support.
For every place u of K , there is a unique function (called Néron symbol)

〈 〉u : (Div(Cu)0 × Div(Cu)0)∗ → R

that is bi-additive, symmetric, continues, and satisfies

〈a, b〉u = −
∑

mx log |f (x)|u

when a =
∑

mxx and b = div(f ).
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Néron–Tate height

We have the identity of real-valued functions on (Div(C)0 × Div(C)0)∗

〈 , 〉NT = −
∑
u

〈 , 〉u .

Since the natural map (Div(C)0 × Div(C)0)∗ → CH1(C)0 × CH1(C)0 is surjective, this gives a
decomposition formula for the Néron–Tate height pairing.
We review the definition of 〈 , 〉u :
• Suppose that u <∞. If Cu admits a smooth projective model Cu over OKu , then

〈a, b〉u = log qu · (a, b)Cu ,

where (a, b)Cu denotes the intersection number of the Zariski closures of a and b in Cu and
qu denotes the residue cardinality of Ku .
More generally, Cu always admits a regular projective model Cu and we shall take a and b to
be flat extensions of a and b, respectively. Here, an extension is flat if it has zero
intersection number with every component of the special fiber of Cu .
• Suppose that u | ∞. We have

〈a, b〉u =
[Ku : R]

2

∑
mxGb(x)

if a =
∑

mxx , where Gb is a Green function for b, that is, a smooth function on Cu(C) \ |b|
such that ddcGb + δb = 0 as currents (recall: dc = (4πi)−1(∂ − ∂)).
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Beilinson’s height pairing

We introduce Beilinson’s generalization of the Néron–Tate height to higher dimensional varieties.
Suppose that X is a smooth scheme over a field K of characteristic zero. For every prime number
`,
• We denote by Zm(X)0 the kernel of the de Rham cycle class map

clX ,dR : Zm(X)→ H2m
dR(X/K)(m),

and by CHm(X)0 the image of Zm(X)0 in CHm(X).
• When K is a non-archimedean local field, we denote by Zm(X)〈`〉 the kernels of the
(absolute) `-adic cycle class map

clX ,` : Zm(X)→ H2m(X ,Q`(m)).

By the comparison theorem between de Rham and `-adic cohomology, we have
Zm(X)〈`〉 ⊆ Zm(X)0. In fact, the Monodromy–Weight conjecture for X implies that when `
is invertible on OK , Zm(X)〈`〉 = Zm(X)0.
• When K is a number field, we define Zm(X)〈`〉 via the following Cartesian diagram

Zm(X)〈`〉 //

��

∏
u-∞` Zm(Xu)〈`〉

��
Zm(X) // ∏

u-∞` Zm(Xu)

where the product is taken over all non-archimedean places u of K not above `. We denote
by CHm(X)〈`〉 the image of Zm(X)〈`〉 in CHm(X).
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Beilinson’s height pairing

Now we let K be a number field and consider
• a smooth projective scheme X over K of pure dimension n − 1 (for some n > 2),
• a prime number ` such that Xu has good reduction for every place u of K above `,
• a pair of nonnegative integers (d1, d2) satisfying d1 + d2 = n.

For ? ∈ { , u} where u is a place of K and # ∈ {〈`〉, 0}, denote by (Zd1 (X?)# × Zd2 (X?)#)∗ the
subgroup of Zd1 (X?)# × Zd2 (X?)# consisting of pairs of cycles with disjoint support.
We define maps

〈 , 〉u : (Zd1 (Xu)0 × Zd2 (Xu)0)∗ → R,

〈 , 〉u : (Zd1 (Xu)〈`〉 × Zd2 (Xu)〈`〉)∗ → R⊗Q Q`,

〈 , 〉u : (Zd1 (Xu)0 × Zd2 (Xu)0)∗ → R,

when u | ∞, u - `∞ and u | `, respectively. Take an element (c1, c2) in the source of these maps
and denote by Zi the support of ci so that Z1 ∩ Z2 = ∅.

Case 1: u | ∞. We define

〈c1, c2〉u :=
[Ku : R]

2

∫
Xu(C)

δc1 ∧ gc2 ∈ R,

where δc1 denotes the Dirac current of c1 and gc2 is a regular harmonic Green current for c2,
that is, a smooth (d2 − 1, d2 − 1)-form on Xu(C) \Z2 such that ddcgc2 + δc2 = 0 as currents.
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Beilinson’s height pairing

Case 2: u -∞`. Let αi ∈ H2di
Zi

(Xu ,Q`(di )) be the refined cycle class of ci . As αi goes to zero in
H2di (Xu ,Q`(di )) by definition, there exists γi ∈ H2di−1(Ui ,Q`(di )) that goes to αi under the
coboundary map H2di−1(Ui ,Q`(di ))→ H2di

Zi
(Xu ,Q`(di )), where Ui := Xu \ Zi . Then

〈c1, c2〉u := log qu ⊗ 〈c1, c2〉′u ,

where 〈c1, c2〉′u is the image of γ1 ∪ γ2 under the composite map

H2n−2(U1 ∩ U2,Q`(n))→ H2n−1(Xu ,Q`(n))
TrXu/Ku−−−−−→ H1(SpecKu ,Q`(1)) = Q`

in which the first arrow is the coboundary map in the Mayer–Vietoris exact sequence for the
covering Xu = U1 ∪ U2. Here, the identification H1(SpecKu ,Q`(1)) = Q` is the composition

H1(SpecKu ,Q`(1))→ H2
Specκu (SpecOKu ,Q`(1))

∼−→ H0(Specκu ,Q`) = Q`

where κu denotes the residue field of Ku ; this is negative to the one given by the Kummer
isomorphism for Galois cohomology.
It is conjectured that 〈c1, c2〉′u belongs to Q and is independent of `.

Case 3: u | `. Choose a smooth projective model Xu of Xu over OKu . Then

〈c1, c2〉u := log qu · (C1, C2)Xu ,

where Ci denotes the Zariski closure of ci in Xu . Later, we will justify this definition and in
particular show that it is independent of the choice of the model.
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Beilinson’s height pairing

Finally, we define

〈 , 〉B :=
∑
u

〈 , 〉u : (Zd1 (X)〈`〉 × Zd2 (X)〈`〉)∗ → R⊗Q Q`.

It is not hard to show that 〈 , 〉B is symmetric and descends to a map from
CHd1 (X)〈`〉 × CHd2 (X)〈`〉 (which we now assume). Moreover, for every correspondence
t ∈ CHn−1(X × X), 〈t∗ , 〉B = 〈 , t∗ 〉B.

Conjecture (Beilinson, Bloch)
(1) We have CHd (X)〈`〉 = CHd (X)0; and it has finite rank.
(2) The map 〈 , 〉B takes value in R, is independent of ` and is nondegenerate.
(3) For every ample class L and every integer 0 6 d 6 n

2 , the form 〈 , Ln−2d · 〉B is (−1)d -definite
on the primitive part of CHd (X)0.

(4) For every correspondence t ∈ CHn−1(X × X)0, 〈t∗ , 〉B vanishes.

The above conjecture is known when n = 2, that is, X is a curve.
In what follows, we will often use the complex sesquilinear (linear in the first variable and
conjugate linear in the second variable) extension of 〈 , 〉B or 〈 , 〉u .
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Nonarchimedean local index

Now we study 〈 , 〉′u for u -∞` when Xu admits a regular projective model Xu over OKu .
To ease notation, we suppress u on this and the next two pages. Denote by Y := X ⊗OK κ the
special fiber of X . For two closed subschemes Z1 and Z2 of X of codimension d1 and d2,
respectively, such that Z1 ∩ Z2 ⊆ Y , we have the intersection number

(Z1,Z2)X := χ
(
Y ,OZ1 ⊗

L
OX OZ2

)
.

By sesquilinear extension, we have the intersection number (C1, C2)X ∈ C for every pair
(C1, C2) ∈ Zd1 (X )C × Zd2 (X )C satisfying |C1| ∩ |C2| ⊆ Y .

Definition
We say that an extension C ∈ Zd (X )C of c ∈ Zd (X)

〈`〉
C is `-flat if the cycle class of C in

H2d (X ,Q`(d))⊗Q C vanishes.

Proposition
Given (c1, c2) ∈ (Zd1 (X)

〈`〉
C × Zd2 (X)

〈`〉
C )∗ and a pair (C1, C2) ∈ Zd1 (X )

〈`〉
C × Zd2 (X )

〈`〉
C of

extensions of (c1, c2) in which at least one is `-flat, we have

〈c1, c2〉′u = (C1, C2)X .

In particular, when X is smooth over OK , we can take Ci to be the Zariski closure of ci in X ,
hence 〈c1, c2〉′u belongs to C and is independent of `. (This justifies the definition of the local
height when u | `.)
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Étale correspondences and flat extensions

Keep the setup from the previous page. We propose a method of finding flat extensions using
étale correspondences, with the application to Shimura varieties and Hecke correspondences in
mind. For simplicity, we assume n = 2r even and d1 = d2 = r .
We say that a correspondence

t : X p←− X ′ q−→ X

of X is étale if both p and q are finite étale. A complex étale correspondence of X is a complex
linear combination of étale correspondences of X .

Definition
We say that a complex étale correspondence t of X is `-tempered if t∗(= p! ◦ q∗) annihilates
H2r (X ,Q`(r))⊗Q C.

Proposition
Let t be an `-tempered complex étale correspondence of X . Then for every pair
(c1, c2) ∈ Zr (X)C × Zr (X)C satisfying supp(t∗c1) ∩ supp(t∗c2) = ∅, we have
(t∗c1, t∗c2) ∈ (Zr (X)

〈`〉
C × Zr (X)

〈`〉
C )∗ and

〈t∗c1, t∗c2〉′u = (t∗C1, t∗C2)X ,

where Ci ∈ Zr (X )C is an arbitrary extension of ci in X for i = 1, 2. In particular, we have
〈t∗c1, t∗c2〉′u ∈ C.
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Beilinson–Bloch conjecture

From now on, we take an even positive integer n = 2r .
Let K be a number field and X a projective smooth scheme over K of (odd) dimension n− 1. We
have the L-function L(s,Hn−1(XK ,Q`(r))) for the middle degree `-adic cohomology of X for
every rational prime `, which is conjectured to be meromorphic, independent of `, and satisfy a
functional equation with center s = 0.
The unrefined Beilinson–Bloch conjecture predicts that

rank CHr (X)0 = ords=0 L(s,Hn−1(XK ,Q`(r)))

holds for every `. Note that when X is an elliptic curve, this recovers the (unrefined) Birch and
Swinnerton-Dyer conjecture.
We have an equivariant version of the Beilinson–Bloch conjecture as follows. Suppose that X
admits an action of an algebra T via étale correspondences. Then T acts on both CHr (X)0 and
Hn−1(XK ,Q`(r)). Let % be a nonzero irreducible finite-dimensional complex representation of T.
Then for every ` and every embedding Q` ↪→ C, we have the L-function

L(s,HomT(%,Hn−1(XK ,Q`(r))C)).

Then it is expected that

dimC HomT(%,CHr (X)0C) = ords=0 L(s,HomT(%,Hn−1(XK ,Q`(r))C))

holds, which can be regarded as the Beilinson–Bloch conjecture for the (conjectural Chow) motive
HomT(%, hn−1(X)(r)C), where hn−1(X) is the (conjectural Chow) motive of X of degree n − 1.
One can specify the equivariant Beilinson–Bloch conjecture to certain unitary Shimura varieties.
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Beilinson–Bloch conjecture

From now on, we fix a subfield E ⊆ C that is a CM number field with F ⊆ E be its maximal
totally real subfield.
We say that a hermitian space V over E of rank m is standard indefinite if it has signature
(m − 1, 1) at the default embedding F ⊆ R and signature (m, 0) at other real places. For a
standard indefinite hermitian space V over E of rank m, we have a system of Shimura varieties
{XL} indexed by neat open compact subgroups L ⊆ H(A∞F ), where H := U(V ), which are
smooth, quasi-projective, of dimension m − 1 over E , together with the complex uniformization:

XL(C) = H(F )\P(VC)− × H(A∞F )/L,

where P(VC)− ⊆ P(VC) is the complex open domain of negative definite lines.

Conjecture (Beilinson–Bloch for unitary Shimura varieties)
Let π be a tempered cuspidal automorphic representation of Gr (AF ), where Gr denotes the
quasi-split unitary group over E/F of rank n = 2r . Let V be a standard indefinite hermitian
space over E of rank n, with H := U(V ). For every irreducible admissible representation π̃∞ of
H(A∞F ) satisfying
(a) π̃∞v ' πv for all but finitely many non-archimedean places v of F for which Hv ' Gr,v ,

(b) HomH(A∞F )

(
π̃∞, lim−→L Hn−1

dR (XL/C)
)
6= 0,

dimC HomH(A∞F )

(
π̃∞, lim−→L CH

r (XL)0C
)

= ords= 1
2
L(s,Ππ̃∞ )

holds. Here, Ππ̃∞ is the cuspidal factor of BC(π) determined by π̃∞ via Arthur’s multiplicity
formula; in particular, Ππ̃∞ = BC(π) if BC(π) is already cuspidal (that is, π is stable).
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Automorphic representations of unitary groups

Recall that n = 2r and we have fixed the CM subfield E ⊆ C with F ⊆ E the maximal totally real
subfield.
For a positive integer m, we equip Wm := E2m with the skew-hermitian form given by the matrix( 1m
−1m

)
. Put Gm := U(Wm), the unitary group of Wm, which is a quasi-split reductive group

over F . Note that the Cartan subgroup of Gm is (ResE/F GL1)m. For every non-archimedean
place v of F , we denote by Km,v ⊆ Gm(Fv ) the stabilizer of the lattice O2m

Ev , which is a special
maximal subgroup.
In what follows, we consider a cuspidal automorphic representation π = ⊗vπv of Gr (AF )
satisfying:
(R1) If v | ∞, then πv is a holomorphic discrete series of weights ( 1−n

2 , 3−n2 , . . . , n−32 , n−12 ).

(R2) If v -∞ and is nonsplit in E , then πv is Kr,v -spherical, that is, π
Kr,v
v 6= {0}.

(R3) If v -∞, then πv is tempered (that is, πv is contained in a parabolic induction of a unitary
discrete series representation).

In (R1), a holomorphic discrete series of weights ( 1−n
2 , 3−n2 , . . . , n−32 , n−12 ) means that it is

isomorphic to a constituent of the (normalized) principal series of (| |
1
2 , | |

3
2 , . . . , | |

n−1
2 ). This is

the minimal possible weights for a holomorphic discrete series with trivial central character.
In (R2), since πv is Kr,v -spherical, there exist unitary unramified characters
χv,1, . . . χv,r : E×v → C×, unique up to permutation and taking inverse, such that πv is
isomorphic to the (normalized) principal series of (χv,1, . . . χv,r ).
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(R3) If v -∞, then πv is tempered (that is, πv is contained in a parabolic induction of a unitary
discrete series representation).

In (R1), a holomorphic discrete series of weights ( 1−n
2 , 3−n2 , . . . , n−32 , n−12 ) means that it is

isomorphic to a constituent of the (normalized) principal series of (| |
1
2 , | |

3
2 , . . . , | |

n−1
2 ). This is

the minimal possible weights for a holomorphic discrete series with trivial central character.
In (R2), since πv is Kr,v -spherical, there exist unitary unramified characters
χv,1, . . . χv,r : E×v → C×, unique up to permutation and taking inverse, such that πv is
isomorphic to the (normalized) principal series of (χv,1, . . . χv,r ).
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Automorphic representations of unitary groups

We define the (complete) standard L-function L(s, π) =
∏

v L(s, πv ) of π as follows:
• When v | ∞, L(s, πv ) :=

∏r
i=1 L(s, arg2i−1) · L(s, arg1−2i ), where arg : C× → C× is the

argument character.
• When v -∞ and is nonsplit in E , L(s, πv ) :=

∏r
i=1 L(s, χv,i ) · L(s, χ−1v,i ).

• When v splits in E , L(s, πv ) =
∏

u|v L(s, πu), where the product is taken over (two) places
of E over v , and πu is πv but regarded as a representation of GLn(Eu) ' Gr (Fv ).

As usual, L(s, π) is absolutely convergent for Re s � 0, has a meromorphic (holomorphic, in fact)
continuation to C and satisfies the functional equation

L(1− s, π) = ε(s, π)L(s, π),

in which ε( 1
2 , π) = (−1)r [F :Q]. In particular, the vanishing order of L(s, π) at the center s = 1

2 has
the same parity as r [F : Q].
• When r [F : Q] is even, we will study the central value L( 1

2 , π) via the classical theory of
theta lifting.
• When r [F : Q] is odd, we will study the central derivative L′( 1

2 , π) via the theory of
arithmetic theta lifting.

We introduce some notation for future use. For a positive integer m, denote by
• Hermm ⊆ ResE/F Matm the subscheme of hermitian matrices,
Herm◦m := Hermm ∩ResE/F GLm,
• Hermm(F )+ and Herm◦m(F )+ the subsets of Hermm(F ) of totally semi-positive and positive
definite elements, respectively.
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Weil representation

We review the notion of Weil representation. Let ψ : F\AF → C× be the standard automorphic
additive character, namely, the one satisfying ψv (x) = e2πix for every v | ∞.
For every positive integer m, every place v of F and every (nondegenerate) hermitian space Vv
over Ev of dimension n = 2r , we have the representation ωm,v of Gm(Fv )×U(Vv )(Fv ) on
S (Vm

v ) defined by the following formulae:
• For a ∈ GLm(Ev ) and φ ∈ S (Vm

v ), we have

ωm,v
(( a

at,−1
))
φ(x) = |det a|rEv · φ(xa).

• For b ∈ Hermm(Fv ) and φ ∈ S (Vm
v ), we have

ωm,v
(( 1m b

1m

))
φ(x) = ψv (tr bT (x)) · φ(x),

where T (x) = (xi , xj )16i,j6m ∈ Hermm(Fv ) is the moment matrix of x .
• For φ ∈ S (Vm

v ), we have

ωm,v
(( 1m
−1m

))
φ(x) = γmVv · φ̂(x),

where γVv ∈ {±1} is the Weil constant of Vv .
• For h ∈ U(Vv )(Fv ) and φ ∈ S (Vm

v ), we have
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When the root number is 1...

We go back to the automorphic representation π of Gr (AF ) and assume first that r [F : Q] is even.
In this case, we have a hermitian space V over E of rank n, unique up to isomorphism, that is
totally positive definite and split at every nonarchimedean place of F . Put H := U(V ).
For every φ ∈ S (V r ⊗ AF ), the theta function

θφ(g , h) :=
∑
x∈V r

ωr (g , h)φ(x) =
∑
x∈V r

ωr (g)φ(h−1x)

is an automorphic form on Gr (AF )× H(AF ).
For every ϕ ∈ π (it is now known that π has a unique realization in the space of cusp forms of
Gr (AF )), we have the (global) theta lift θφ(ϕ), defined by the formula

θφ(ϕ)(h) :=

∫
Gr (F )\Gr (AF )

ϕ(g)θφ(g , h)dg ,

which is an automorphic form on H(AF ).

Theorem (Rallis inner product formula)
For φ1 = ⊗vφ1,v , φ2 = ⊗vφ2,v ∈ S (V r ⊗ AF ) and ϕ1 = ⊗vϕ1,v , ϕ2 = ⊗ϕ2,v ∈ π, we have

〈θφ1 (ϕ1), θφ2 (ϕ2)〉H =
L( 1

2 , π)

bn(0)

∏
v

Z \v (ϕ1,v , ϕ2,v ;φ1,v , φ2,v ).
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Theta lifting

We explain the notation in the above theorem.

• 〈 , 〉H denotes the Peterson inner product of automorphic forms on H(AF ) with respect to
the Tamagawa measure.
• bn(s) =

∏
v bn,v (s), where bn,v (s) =

∏n
i=1 L(2s + i , ηn−iv ) with η : A×F → C× the

automorphic character associated with the extension E/F .

• Z \v is the normalized doubling zeta integral:

Z \v (ϕ1,v , ϕ2,v ;φ1,v , φ2,v ) =

(
L( 1

2 , πv )

bn,v (0)

)−1 ∫
Gr (Fv )

〈gϕ1,v , ϕ2,v 〉πv · 〈gφ1,v , φ2,v 〉ωr,v dgv ,

which equals 1 for all but finitely many v .

Remark
The two functionals 〈θφ1 (ϕ1), θφ2 (ϕ2)〉H and

∏
v Z

\
v (ϕ1,v , ϕ2,v ;φ1,v , φ2,v ) define two elements in⊗

v
HomGr (Fv )×Gr (Fv )

(
S (V 2r

v )H(Fv ), πv � π
∨
v
)
.

It is known that the above space has dimension 1 of which
∏

v Z
\
v is a basis. Thus, Rallis inner

product formula is nothing but the proportion of the two invariant functionals.
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Theta lifting

We sketch the proof of Rallis inner product formula.
Step 1. We regard Gr × Gr as a subgroup of G2r via the embedding(( a1 b1

c1 d1

)
,
( a2 b2
c2 d2

))
7→
( a1 b1

a2 −b2
c1 d1
−c2 d2

)
.

Step 2. Use the Siegel–Weil formula 〈θφ1 (g1,−), θφ2 (g2,−)〉H = E(0, (g1, g2), φ1 ⊗ φ2). Here,
for every Φ ∈ S (V 2r ⊗ AF ), we have the Siegel–Eisenstein series

E(s, g ,Φ) :=
∑

γ∈P2r (F )\G2r (F )

ω2r (γg)Φ(0) · H(γg)s

on G2r (AF ), where P2r ⊆ G2r denotes the upper-triangle Siegel parabolic subgroup and H
denotes the “height” function with respect to P2r .

Step 3. Using cuspidality, we have

〈θφ1 (ϕ1), θφ2 (ϕ2)〉H =

∫∫
[Gr (F )\Gr (AF )]2

ϕ1(g1)ϕ2(g2)E(s, (g1, g2), φ1 ⊗ φ2)dg1dg2

=
L(s + 1

2 , π)

bn(s)

∏
v

Z \v (s;ϕ1,v , ϕ2,v ;φ1,v , φ2,v ).

Yifeng Liu (Zhejiang University) Derivative of L-functions for unitary groups, I. & II. June 1, 2022 18 / 20



Theta lifting

We sketch the proof of Rallis inner product formula.

Step 1. We regard Gr × Gr as a subgroup of G2r via the embedding(( a1 b1
c1 d1

)
,
( a2 b2
c2 d2

))
7→
( a1 b1

a2 −b2
c1 d1
−c2 d2

)
.

Step 2. Use the Siegel–Weil formula 〈θφ1 (g1,−), θφ2 (g2,−)〉H = E(0, (g1, g2), φ1 ⊗ φ2). Here,
for every Φ ∈ S (V 2r ⊗ AF ), we have the Siegel–Eisenstein series

E(s, g ,Φ) :=
∑

γ∈P2r (F )\G2r (F )

ω2r (γg)Φ(0) · H(γg)s

on G2r (AF ), where P2r ⊆ G2r denotes the upper-triangle Siegel parabolic subgroup and H
denotes the “height” function with respect to P2r .

Step 3. Using cuspidality, we have

〈θφ1 (ϕ1), θφ2 (ϕ2)〉H =

∫∫
[Gr (F )\Gr (AF )]2

ϕ1(g1)ϕ2(g2)E(s, (g1, g2), φ1 ⊗ φ2)dg1dg2

=
L(s + 1

2 , π)

bn(s)

∏
v

Z \v (s;ϕ1,v , ϕ2,v ;φ1,v , φ2,v ).

Yifeng Liu (Zhejiang University) Derivative of L-functions for unitary groups, I. & II. June 1, 2022 18 / 20



Theta lifting

We sketch the proof of Rallis inner product formula.
Step 1. We regard Gr × Gr as a subgroup of G2r via the embedding(( a1 b1

c1 d1

)
,
( a2 b2
c2 d2

))
7→
( a1 b1

a2 −b2
c1 d1
−c2 d2

)
.

Step 2. Use the Siegel–Weil formula 〈θφ1 (g1,−), θφ2 (g2,−)〉H = E(0, (g1, g2), φ1 ⊗ φ2). Here,
for every Φ ∈ S (V 2r ⊗ AF ), we have the Siegel–Eisenstein series

E(s, g ,Φ) :=
∑

γ∈P2r (F )\G2r (F )

ω2r (γg)Φ(0) · H(γg)s

on G2r (AF ), where P2r ⊆ G2r denotes the upper-triangle Siegel parabolic subgroup and H
denotes the “height” function with respect to P2r .

Step 3. Using cuspidality, we have

〈θφ1 (ϕ1), θφ2 (ϕ2)〉H =

∫∫
[Gr (F )\Gr (AF )]2

ϕ1(g1)ϕ2(g2)E(s, (g1, g2), φ1 ⊗ φ2)dg1dg2

=
L(s + 1

2 , π)

bn(s)

∏
v

Z \v (s;ϕ1,v , ϕ2,v ;φ1,v , φ2,v ).

Yifeng Liu (Zhejiang University) Derivative of L-functions for unitary groups, I. & II. June 1, 2022 18 / 20



Theta lifting

We sketch the proof of Rallis inner product formula.
Step 1. We regard Gr × Gr as a subgroup of G2r via the embedding(( a1 b1

c1 d1

)
,
( a2 b2
c2 d2

))
7→
( a1 b1

a2 −b2
c1 d1
−c2 d2

)
.

Step 2. Use the Siegel–Weil formula 〈θφ1 (g1,−), θφ2 (g2,−)〉H = E(0, (g1, g2), φ1 ⊗ φ2). Here,
for every Φ ∈ S (V 2r ⊗ AF ), we have the Siegel–Eisenstein series

E(s, g ,Φ) :=
∑

γ∈P2r (F )\G2r (F )

ω2r (γg)Φ(0) · H(γg)s

on G2r (AF ), where P2r ⊆ G2r denotes the upper-triangle Siegel parabolic subgroup and H
denotes the “height” function with respect to P2r .

Step 3. Using cuspidality, we have

〈θφ1 (ϕ1), θφ2 (ϕ2)〉H =

∫∫
[Gr (F )\Gr (AF )]2

ϕ1(g1)ϕ2(g2)E(s, (g1, g2), φ1 ⊗ φ2)dg1dg2

=
L(s + 1

2 , π)

bn(s)

∏
v

Z \v (s;ϕ1,v , ϕ2,v ;φ1,v , φ2,v ).

Yifeng Liu (Zhejiang University) Derivative of L-functions for unitary groups, I. & II. June 1, 2022 18 / 20



Theta lifting

We sketch the proof of Rallis inner product formula.
Step 1. We regard Gr × Gr as a subgroup of G2r via the embedding(( a1 b1

c1 d1

)
,
( a2 b2
c2 d2

))
7→
( a1 b1

a2 −b2
c1 d1
−c2 d2

)
.

Step 2. Use the Siegel–Weil formula 〈θφ1 (g1,−), θφ2 (g2,−)〉H = E(0, (g1, g2), φ1 ⊗ φ2). Here,
for every Φ ∈ S (V 2r ⊗ AF ), we have the Siegel–Eisenstein series

E(s, g ,Φ) :=
∑

γ∈P2r (F )\G2r (F )

ω2r (γg)Φ(0) · H(γg)s

on G2r (AF ), where P2r ⊆ G2r denotes the upper-triangle Siegel parabolic subgroup and H
denotes the “height” function with respect to P2r .

Step 3. Using cuspidality, we have

〈θφ1 (ϕ1), θφ2 (ϕ2)〉H =

∫∫
[Gr (F )\Gr (AF )]2

ϕ1(g1)ϕ2(g2)E(s, (g1, g2), φ1 ⊗ φ2)dg1dg2

=
L(s + 1

2 , π)

bn(s)

∏
v

Z \v (s;ϕ1,v , ϕ2,v ;φ1,v , φ2,v ).

Yifeng Liu (Zhejiang University) Derivative of L-functions for unitary groups, I. & II. June 1, 2022 18 / 20



Special cycles and generating series

Let V be a standard indefinite hermitian space over E of rank n = 2r , with H := U(V ). Take a
neat open compact subgroup L ⊆ H(A∞F ). We first recall the construction of Kudla’s special
cycle Z(x)L for every element x ∈ Vm ⊗F A∞F with 1 6 m 6 n − 1.
• When T (x) 6∈ Hermm(F )+, we set Z(x)L = 0.
• When T (x) ∈ Herm◦m(F )+, we may find elements y ∈ Vm and h ∈ H(A∞F ) such that
hx = y ∈ Vm ⊗F A∞F . Denote by Vy the orthogonal complement of the subspace spanned by
components of y in V , which is standard indefinite of rank n −m. Put Hy := U(Vy ), which
is naturally a subgroup of H. Define Z(x)L to be the image cycle of the composite morphism

(Xy )hLh−1∩Hy (A∞F ) → XhLh−1
·h−→ XL,

where Xy denotes the system of Shimura varieties for Vy . It is straightforward to check that
Z(x)L does not depend on the choice of y and h. Moreover, Z(x)L is a well-defined element
in Zm(XL).
• For T (x) ∈ Hermm(F )+ in general, we have an element Z(x)L ∈ CHm(XL)Q (not
well-defined in Zm(XL)Q). Since we will not use its precise definition, we omit.

For every φ∞ ∈ S (Vm ⊗F A∞F )L and T ∈ Hermm(F ), we put

ZT (φ∞)L :=
∑

x∈L\Vm⊗FA∞F ,T (x)=T

φ∞(x)Z(x)L.

As the above summation is finite, ZT (φ∞)L is a well-defined element in CHm(XL)C. For
T ∈ Herm◦m(F )+, ZT (φ∞)L is even a well-defined element in Zm(XL)C.
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Special cycles and generating series

Denote by Ar (Gm) the space of automorphic forms on Gm(AF ) of “parallel weight r”. For
ϕ ∈ Ar (Gm), we have the Siegel–Fourier expansion

ϕ ∼
∑

T∈Hermm(F )

ϕT · qT ,

where

ϕT :=

∫
Hermm(F )\Hermm(AF )

ϕ
(( 1m b

1m

))
ψ(tr bT )−1db.

We have the following conjecture due to Kudla.

Conjecture (Modularity Hypothesis)
For φ∞ ∈ S (Vm ⊗F A∞F )L, there exists a (necessarily unique) holomorphic element
Z (φ∞)L ∈ Ar (Gm)⊗ CHm(XL) such that for every g∞ ∈ Gm(A∞F ), the Siegel–Fourier expansion
of g∞Z (φ∞)L coincides with ∑

T∈Hermm(F )

ZT (ω∞r (g∞)φ∞)L · qT .

This conjecture is formally known (that is, ignore the issue of convergence), and is only rigorously
known when m = 1.
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