Classical results $/\mathbb{C}$	P-adic Simpson correspondence	Deninger–Werner's theory	Parallel transport for Higgs bundles over curves
	00000		000000000

Parallel transport for Higgs bundles over *p*-adic curves

Daxin Xu

Morningside Center of Mathematics, Chinese Academy of Sciences.

June 3, 2022

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Classical results /℃ ●○○	P-adic Simpson correspondence 00000	Deninger–Werner's theory 00	Parallel transport for Higgs bundles over curves
Classical I	results $/\mathbb{C}$		

X smooth projective variety over $\mathbb C$

Theorem (Hodge decomposition)

$$\mathsf{H}^{n}(X^{\mathrm{an}}, \underline{\mathbb{C}}) \simeq \bigoplus_{i+j=n} \mathsf{H}^{i}(X, \Omega^{j}_{X/\mathbb{C}})$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ | 目 | のへの

Non-abelian Hodge theory provides a generalisation for cohomologies with coefficients.

Classical results $/\mathbb{C}$	P-adic Simpson correspondence	Deninger–Werner's theory	Parallel transport for Higgs bundles over curves		
000	00000	00	000000000		
Narasimhan–Seshadri correspondence					

• dim *X* = 1

$$\begin{cases} \text{irreducible unitary} \\ \mathbb{C}\text{-representations of } \pi_1^{\text{top}}(X) \end{cases} \xrightarrow{\sim} \begin{cases} \text{stable vector bundles} \\ \text{of degree 0 over } X \end{cases} \\ V \mapsto \widetilde{X} \times V/\pi_1^{\text{top}}(X) \end{cases}$$

<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ < □ > ○ < ○

NI	C. I. I. I. I. I. C. I. C. I.		
000	00000	00	000000000
Classical results $/\mathbb{C}$	P-adic Simpson correspondence	Deninger–Werner's theory	Parallel transport for Higgs bundles over curves

Narasimhan–Seshadri correspondence

• dim *X* = 1

$$\begin{cases} \text{irreducible unitary} \\ \mathbb{C}\text{-representations of } \pi_1^{\text{top}}(X) \end{cases} \xrightarrow{\sim} \begin{cases} \text{stable vector bundles} \\ \text{of degree 0 over } X \end{cases} \\ V \mapsto \widetilde{X} \times V/\pi_1^{\text{top}}(X) \end{cases}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへの

- \widetilde{X} = universal covering of X
- Action of $g \in \pi_1^{top}(X)$ is given by g(x, v) = (g(x), g(v)).

Classical results $/\mathbb{C}$	P-adic Simpson correspondence	Deninger–Werner's theory	Parallel transport for Higgs bundles over curves
000	00000	00	000000000
NI 1 I	C 1 1 1		

Narasimhan–Seshadri correspondence

dim X = 1

$$\begin{cases} \text{irreducible unitary} \\ \mathbb{C}\text{-representations of } \pi_1^{\text{top}}(X) \end{cases} \xrightarrow{\sim} \begin{cases} \text{stable vector bundles} \\ \text{of degree 0 over } X \end{cases} \\ V \quad \mapsto \quad \widetilde{X} \times V/\pi_1^{\text{top}}(X) \end{cases}$$

- \widetilde{X} = universal covering of X
- Action of $g \in \pi_1^{top}(X)$ is given by g(x, v) = (g(x), g(v)).
- A vector bundle *E* over *X* is *stable* (resp. *semi-stable*) if for any sub vector bundle *F* of *E*, we have

$$\mu(F) < (\text{resp.} \leq) \mu(E), \text{ where } \mu(E) = \frac{\deg(E)}{\operatorname{rank}(E)}$$

ション ふゆ アメビア メロア しょうくしゃ

Hitchen_	Simpson corresp	ondence	
000	00000	00	000000000
Classical results $/\mathbb{C}$	P-adic Simpson correspondence	Deninger–Werner's theory	Parallel transport for Higgs bundles over curves

• A Higgs bundle $(E, \theta)/X : E$ a vector bundle over X and $\theta : E \to E \otimes_{\mathscr{O}_X} \Omega^1_{X/\mathbb{C}}$ an \mathscr{O}_X -linear morphism such that $\theta \land \theta = 0$.

*ロト *目 * * * * * * * * * * * * * * *

• A Higgs bundle $(E, \theta)/X : E$ a vector bundle over X and $\theta : E \to E \otimes_{\mathscr{O}_X} \Omega^1_{X/\mathbb{C}}$ an \mathscr{O}_X -linear morphism such that $\theta \land \theta = 0$.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

• A Higgs bundle $(E, \theta)/X : E$ a vector bundle over X and $\theta : E \to E \otimes_{\mathscr{O}_X} \Omega^1_{X/\mathbb{C}}$ an \mathscr{O}_X -linear morphism such that $\theta \land \theta = 0$.

$$\begin{cases} \text{irreducible} \\ \mathbb{C}\text{-representations of } \pi_1^{\text{top}}(X) \end{cases} \xrightarrow{\sim} \begin{cases} \text{stable Higgs bundles} \\ \text{with zero Chern classes} \\ \text{over } X \end{cases} (E, 0) \\ \uparrow \\ \uparrow \\ \begin{cases} \text{irreducible unitary} \\ \mathbb{C}\text{-representations of } \pi_1^{\text{top}}(X) \end{cases} \xrightarrow{\sim} \begin{cases} \text{stable vector bundles} \\ \text{of degree 0 over } X \end{cases} E \end{cases}$$

• For a \mathbb{C} -representation V and (E, θ) associated Higgs bundle,

$$\operatorname{H}^{n}(X^{\operatorname{an}},V)\simeq \mathbb{H}^{n}(E\otimes_{\mathscr{O}_{X}}\Omega^{ullet}_{X/\mathbb{C}})$$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

• *K* a finite extension of \mathbb{Q}_p , \overline{K} an algebraic closure of *K*, $G_K = \text{Gal}(\overline{K}/K)$, \mathscr{O}_K , $\mathscr{O}_{\overline{K}}$ rings of integers, $\mathscr{O}_{\mathbf{C}} = \widehat{\mathscr{O}_{\overline{K}}}$ and $\mathbf{C} = \mathscr{O}_{\mathbf{C}}[\frac{1}{p}]$.

P-adic theory: Hodge–Tate decomposition

- *K* a finite extension of \mathbb{Q}_p , \overline{K} an algebraic closure of *K*, $G_K = \text{Gal}(\overline{K}/K)$, \mathscr{O}_K , $\mathscr{O}_{\overline{K}}$ rings of integers, $\mathscr{O}_{\mathbf{C}} = \widehat{\mathscr{O}_{\overline{K}}}$ and $\mathbf{C} = \mathscr{O}_{\mathbf{C}}[\frac{1}{p}]$.
- X a smooth proper variety over K.

Theorem (Faltings, Niziol, Tsuji/ Scholze)

 \exists a canonical G_{K} -equivariant **C**-linear isomorphism

$$\mathsf{H}^{n}_{\mathrm{\acute{e}t}}(X_{\overline{K}}, \mathbb{Q}_{p}) \otimes_{\mathbb{Q}_{p}} \mathbf{C} \xrightarrow{\sim} \bigoplus_{i+j=n} \mathsf{H}^{i}(X, \Omega^{j}_{X/K}) \otimes_{K} \mathbf{C}(-j), \qquad (2.1)$$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

where the action of G_K on $H^i(X, \Omega^j_{X/K})$ is trivial and on $\mathbf{C}(-j)$ is given by powers of p-adic cyclotomic character

P-adic theory: Hodge–Tate decomposition

- *K* a finite extension of \mathbb{Q}_p , \overline{K} an algebraic closure of *K*, $G_K = \text{Gal}(\overline{K}/K)$, \mathscr{O}_K , $\mathscr{O}_{\overline{K}}$ rings of integers, $\mathscr{O}_{\mathbf{C}} = \widehat{\mathscr{O}_{\overline{K}}}$ and $\mathbf{C} = \mathscr{O}_{\mathbf{C}}[\frac{1}{p}]$.
- X a smooth proper variety over K.

Theorem (Faltings, Niziol, Tsuji/ Scholze)

 \exists a canonical G_{K} -equivariant **C**-linear isomorphism

$$\mathsf{H}^{n}_{\mathrm{\acute{e}t}}(X_{\overline{K}}, \mathbb{Q}_{p}) \otimes_{\mathbb{Q}_{p}} \mathbf{C} \xrightarrow{\sim} \bigoplus_{i+j=n} \mathsf{H}^{i}(X, \Omega^{j}_{X/K}) \otimes_{K} \mathbf{C}(-j), \qquad (2.1)$$

where the action of G_K on $H^i(X, \Omega^j_{X/K})$ is trivial and on $\mathbf{C}(-j)$ is given by powers of p-adic cyclotomic character

- Non-abelian theories:
- P-adic Simpson correspondence: Faltings, Abbes–Gros and Tsuji.
- P-adic Riemann-Hilbert correspondence: Liu-Zhu, Diao-Lan-Liu-Zhu.

Classical results $/\mathbb{C}$	P-adic Simpson correspondence	Deninger–Werner's theory	Parallel transport for Higgs bundles over curves
000	0000		000000000
P-adic Sin	npson correspor	ndence	

• $\mathscr{O}_{\mathsf{C}}^{\flat} = \varprojlim_{x \mapsto x^{p}} \mathscr{O}_{\mathsf{C}} / p \mathscr{O}_{\mathsf{C}}, A_{\inf} = \mathsf{W}(\mathscr{O}_{\mathsf{C}}^{\flat}) \xrightarrow{\theta} \mathscr{O}_{\mathsf{C}}.$ • $\mathsf{Ker}(\theta) = (\xi), A_{\inf, p} = A_{\inf} / \xi^{n}, \mathscr{O}_{\mathsf{C}} = A_{\inf, 1}.$

Classical results $/\mathbb{C}$	P-adic Simpson correspondence	Deninger–Werner's theory	Parallel transport for Higgs bundles over curves
000	0000		000000000
P-adic Si	mpson correspor	ndence	

- $\mathscr{O}_{\mathbf{C}}^{\flat} = \varprojlim_{x \mapsto x^{p}} \mathscr{O}_{\mathbf{C}} / p \mathscr{O}_{\mathbf{C}}, \ A_{inf} = W(\mathscr{O}_{\mathbf{C}}^{\flat}) \xrightarrow{\theta} \mathscr{O}_{\mathbf{C}}.$
- $\operatorname{Ker}(\theta) = (\xi), \ A_{\inf,n} = A_{\inf}/\xi^n, \ \mathscr{O}_{\mathsf{C}} = A_{\inf,1}.$
- X smooth projective $/\mathcal{O}_{\mathcal{K}}$ (works with semi-stable reduction).
- A family of smooth Cartesian liftings $\mathcal{X} = (\mathcal{X}_n)/(A_{\inf,n})_{n\geq 1}$ of $X_{\mathscr{O}_{\mathsf{C}}}/\mathscr{O}_{\mathsf{C}}$. Cartesian: $\mathcal{X}_{n+1} \times_{A_{\inf,n+1}} A_{\inf,n} \simeq \mathcal{X}_n$.

ション ふゆ アメビア メロア しょうくしゃ

D adia Ci		ndanaa	
000	0000	00	000000000
Classical results $/\mathbb{C}$	P-adic Simpson correspondence	Deninger–Werner's theory	Parallel transport for Higgs bundles over curves

P-adic Simpson correspondence

•
$$\mathscr{O}^{\flat}_{\mathsf{C}} = \varprojlim_{x \mapsto x^{p}} \mathscr{O}_{\mathsf{C}} / p \mathscr{O}_{\mathsf{C}}, \ A_{\inf} = \mathsf{W}(\mathscr{O}^{\flat}_{\mathsf{C}}) \xrightarrow{\theta} \mathscr{O}_{\mathsf{C}}.$$

•
$$\operatorname{Ker}(\theta) = (\xi)$$
, $A_{\operatorname{inf},n} = A_{\operatorname{inf}}/\xi^n$, $\mathcal{O}_{\mathbf{C}} = A_{\operatorname{inf},1}$.

- X smooth projective $/\mathcal{O}_{\mathcal{K}}$ (works with semi-stable reduction).
- A family of smooth Cartesian liftings $\mathcal{X} = (\mathcal{X}_n)/(A_{\inf,n})_{n \ge 1}$ of $X_{\mathscr{O}_{\mathsf{C}}}/\mathscr{O}_{\mathsf{C}}$. Cartesian: $\mathcal{X}_{n+1} \times_{A_{\inf,n+1}} A_{\inf,n} \simeq \mathcal{X}_n$.
- Roughly speaking, \mathcal{X} induces an equivalence

$$\mathbf{H}_{\mathcal{X}}: \mathbf{GRep}_{\mathsf{small}}(X) \simeq \mathsf{HB}_{\mathsf{small}}(X_{\mathbf{C}})$$

between small generalized representations and small Higgs bundles. It is established by a "period ring" \mathscr{C}^{\dagger} .

ション ふゆ アメビア メロア しょうくしゃ

D adia Ci			danca	
000	00000		00	000000000
Classical results $/\mathbb{C}$	P-adic Simp	son correspondence	Deninger–Werner's theory	Parallel transport for Higgs bundles over curves

P-adic Simpson correspondence

•
$$\mathscr{O}^{\flat}_{\mathsf{C}} = \varprojlim_{x \mapsto x^{p}} \mathscr{O}_{\mathsf{C}} / p \mathscr{O}_{\mathsf{C}}, \ A_{\inf} = \mathsf{W}(\mathscr{O}^{\flat}_{\mathsf{C}}) \xrightarrow{\theta} \mathscr{O}_{\mathsf{C}}.$$

• Ker
$$(\theta) = (\xi)$$
, $A_{\inf,n} = A_{\inf}/\xi^n$, $\mathcal{O}_{\mathbf{C}} = A_{\inf,1}$.

- X smooth projective $/\mathcal{O}_{\mathcal{K}}$ (works with semi-stable reduction).
- A family of smooth Cartesian liftings $\mathcal{X} = (\mathcal{X}_n)/(A_{\inf,n})_{n \ge 1}$ of $X_{\mathscr{O}_{\mathsf{C}}}/\mathscr{O}_{\mathsf{C}}$. Cartesian: $\mathcal{X}_{n+1} \times_{A_{\inf,n+1}} A_{\inf,n} \simeq \mathcal{X}_n$.
- Roughly speaking, \mathcal{X} induces an equivalence

$$\mathbf{H}_{\mathcal{X}}: \mathbf{GRep}_{\mathsf{small}}(X) \simeq \mathsf{HB}_{\mathsf{small}}(X_{\mathbf{C}})$$

between small generalized representations and small Higgs bundles. It is established by a "period ring" \mathscr{C}^{\dagger} .

- In the curve case, H_χ can be extended to GRep(X).
 GRep(X) contains the category Rep_C(π₁(X_K)) of continuous finite dimensional C-representations of π₁(X_K) as a full subcategory.
- In this talk, we characterize the Higgs bundles associated to $\operatorname{Rep}_{\mathbf{C}}(\pi_1(X_{\overline{K}}))$ for curves.

- HB($X_{\mathbf{C}}$) Higgs bundle: $(M, \theta), M \in VB(X_{\mathbf{C}}), \theta : M \to \xi^{-1}M \otimes \Omega^{1}_{X_{\mathbf{C}}}.$
- $\operatorname{HB}_{\operatorname{small}}(X_{\mathbb{C}})$: (M, θ) is small, if \exists a model $M^{\circ} \in \operatorname{Coh}(X_{\mathscr{O}_{\mathbb{C}}})$ of M such that $\theta(M^{\circ}) \subset p^{\alpha}M^{\circ} \otimes \Omega^{1}_{X/\mathscr{O}_{K}}$ for $\alpha \in \mathbb{Q}_{>\frac{1}{\alpha-1}}$.

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

- HB(X_C) Higgs bundle: $(M, \theta), M \in VB(X_C), \theta : M \to \xi^{-1}M \otimes \Omega^1_{X_C}$.
- $\operatorname{HB}_{\operatorname{small}}(X_{\mathbb{C}})$: (M, θ) is small, if \exists a model $M^{\circ} \in \operatorname{Coh}(X_{\mathscr{O}_{\mathbb{C}}})$ of M such that $\theta(M^{\circ}) \subset p^{\alpha}M^{\circ} \otimes \Omega^{1}_{X/\mathscr{O}_{K}}$ for $\alpha \in \mathbb{Q}_{>\frac{1}{n-1}}$.
- GRep(X) generalized representations: certain modules in Faltings ringed topos (*Ẽ_X*, *B̃_X*) of X; Locally, they are representations of π₁(X_K) over finite projective modules over a certain *p*-adic ring.

• $\operatorname{\mathsf{Rep}}_{\mathsf{C}}(\pi_1(X_{\overline{K}})) \to \operatorname{\mathsf{GRep}}(X)$ full subcategory.

P-adic 9	Simpson	correspor	dence d	hiects	
000	00000		00		000000000
Classical results $/\mathbb{C}$	P-adic Simp	son correspondence	Deninger–Werner	's theory	Parallel transport for Higgs bundles over curves

- HB(X_C) Higgs bundle: $(M, \theta), M \in VB(X_C), \theta : M \to \xi^{-1}M \otimes \Omega^1_{X_C}$.
- $\operatorname{HB}_{\operatorname{small}}(X_{\mathbb{C}})$: (M, θ) is small, if \exists a model $M^{\circ} \in \operatorname{Coh}(X_{\mathscr{O}_{\mathbb{C}}})$ of M such that $\theta(M^{\circ}) \subset p^{\alpha}M^{\circ} \otimes \Omega^{1}_{X/\mathscr{O}_{K}}$ for $\alpha \in \mathbb{Q}_{>\frac{1}{n-1}}$.
- GRep(X) generalized representations: certain modules in Faltings ringed topos (*Ẽ_X*, *B̃_X*) of X; Locally, they are representations of π₁(X_{*K*}) over finite projective modules over a certain *p*-adic ring.
- $\operatorname{Rep}_{\mathsf{C}}(\pi_1(X_{\overline{K}})) \to \operatorname{GRep}(X)$ full subcategory.
- **GRep**_{small}(X): It is *small*, if locally, a representation admits a basis, whose $\pi_1(X_{\overline{K}})$ -action is trivial modulo p^{β} for $\beta \in \mathbb{Q}_{>\frac{2}{p-1}}$.
- (Tsuji) Small generalized representations = Dolbeault modules. Dolbeault modules are those generalized representations satisfying the admissible condition defined by C[†].

Classical results /C P-adic Simpson correspondence O Deninger-Werner's theory O Parallel transport for Higgs bundles over curves O

P-adic Simpson correspondence: picture

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

• In the curve case, one can extend $H_{\mathcal{X}}$ to all generalized representations $H_{\mathcal{X},Exp}$ by a choice of Exp.

P-adic Simpson correspondence: picture

- In the curve case, one can extend H_X to all generalized representations H_{X,Exp} by a choice of Exp.
- $\log : 1 + \mathfrak{m}_{\mathsf{C}} \to \mathsf{C}, x \mapsto \sum_{n=1}^{\infty} (-1)^{n+1} \frac{(x-1)^n}{n}.$ $\exp : B = \{x \in \mathsf{C} | |x| < p^{-\frac{1}{p-1}}\} \to 1 + \mathfrak{m}_{\mathsf{C}}, x \mapsto \sum_{n \ge 0} \frac{x^n}{n!}$ is an inverse of log on B.
- As $1 + \mathfrak{m}_{C}$ is divisible, exp extends to a section of log:

$$\mathsf{Exp}: (\mathbf{C}, +) \to (1 + \mathfrak{m}_{\mathbf{C}}, \times).$$

In the following, we assume dim $X_{\rm C} = 1$

 Conjecture: image ℍ_{X,Exp}(**Rep**_C(π₁(X_K))) = semi-stable Higgs bundles of degree zero /X_C.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Faltings sketched a proof of ⊂.

In the following, we assume dim $X_{\rm C} = 1$

- Conjecture: image ℍ_{X,Exp}(**Rep**_C(π₁(X_K))) = semi-stable Higgs bundles of degree zero /X_C.
- Faltings sketched a proof of ⊂.
- Describe essential image of 𝔄_{𝔅,Exp} with the help of Deninger–Werner's functor, which fits into above diagram:

$$\mathbb{V}^{\mathsf{DW}}: \mathsf{VB}^{\mathsf{DW}}(X_{\mathsf{C}}) \to \mathsf{Rep}_{\mathsf{C}}(\pi_1(X_{\overline{K}})).$$

A *p*-adic analogue of Narasimhan–Seshadri correspondence.

Classical results /℃	P-adic Simpson correspondence	Deninger–Werner's theory	Parallel transport for Higgs bundles over curves
000		●O	0000000000
Deninger-V	Verner's theory		

Definition

Let k be the residue field of K and Z a smooth proper \overline{k} -curve. A vector bundle E on Z is strongly semi-stable, if $F_Z^{n,*}(E)$ is semi-stable for every integer $n \ge 0$.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Classical results $/\mathbb{C}$	P-adic Simpson correspondence	Deninger–Werner's theory	Parallel transport for Higgs bundles over curves
000		●O	0000000000
Deninger-V	Verner's theory		

Definition

Let k be the residue field of K and Z a smooth proper \overline{k} -curve. A vector bundle E on Z is strongly semi-stable, if $F_Z^{n,*}(E)$ is semi-stable for every integer $n \ge 0$.

Example: Suppose genus of Z is ≥ 2 . Then $F_{Z,*}(\mathcal{O}_Z)$ is a stable bundle of rank p, but $F_Z^*(F_{Z,*}(\mathcal{O}_Z))$ is not semi-stable.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Classical results /C 000	P-adic Simpson correspondence	Deninger–Werner's theory ●O	Parallel transport for Higgs bundles over curves
Deninger-\	Nerner's theory		

Definition

Let k be the residue field of K and Z a smooth proper \overline{k} -curve. A vector bundle E on Z is strongly semi-stable, if $F_Z^{n,*}(E)$ is semi-stable for every integer $n \ge 0$.

Example: Suppose genus of Z is ≥ 2 . Then $F_{Z,*}(\mathcal{O}_Z)$ is a stable bundle of rank p, but $F_Z^*(F_{Z,*}(\mathcal{O}_Z))$ is not semi-stable.

Definition (Deninger-Werner)

Let X be a projective \mathcal{O}_K -curve with semi-stable reduction.

(i) $VB^{DW}(X_{\mathscr{O}_{C}})$: A vector bundle \mathscr{F} is DW if for every irreducible component Z_i of $X_{\overline{k}}$ and \widetilde{Z}_i = normalisation of Z_i , the pullback $\mathscr{F}_{\overline{k}}|\widetilde{Z}_i$ is strongly semi-stable of degree zero.

(ii) $VB^{DW}(X_{\mathbb{C}})$: Image of $VB^{DW}(X_{\mathscr{O}_{\mathbb{C}}}) \to VB(X_{\mathbb{C}})$.

Classical results $/\mathbb{C}$	P-adic Simpson correspondence	Deninger–Werner's theory	Parallel transport for Higgs bundles over curves
	00000	00	000000000

Theorem (Deninger–Werner)

TFAE: (i) $\mathscr{F}/X_{\mathscr{O}_{\mathsf{C}}}$ is DW.

(ii) $\forall n \ge 1$, after taking a finite extension of K, \exists a projective \mathcal{O}_K -curve Y with semi-stable reduction and a proper map $f : Y \to X$ such that

ション ふゆ アメビア メロア しょうくしゃ

- $f_{\overline{K}}: Y_{\overline{K}} \to X_{\overline{K}}$ is a Galois étale cover.
- The action of $\operatorname{Aut}(Y_{\overline{K}}/X_{\overline{K}})$ extends to an action over Y/X.
- $\overline{f}_{n}^{*}(\mathscr{F}_{n})$ is a trivial bundle, $\overline{f}_{n} = f \otimes_{\mathscr{O}_{K}} \mathscr{O}_{\overline{K}}/p^{n}\mathscr{O}_{\overline{K}}.$

This allows us to associate representation to DW vector bundles.

Theorem (Deninger–Werner)

TFAE: (i) $\mathscr{F}/X_{\mathscr{O}_{\mathsf{C}}}$ is DW.

(ii) $\forall n \ge 1$, after taking a finite extension of K, \exists a projective \mathcal{O}_K -curve Y with semi-stable reduction and a proper map $f : Y \to X$ such that

- $f_{\overline{K}}: Y_{\overline{K}} \to X_{\overline{K}}$ is a Galois étale cover.
- The action of $\operatorname{Aut}(Y_{\overline{K}}/X_{\overline{K}})$ extends to an action over Y/X.
- $\overline{f}_{n}^{*}(\mathscr{F}_{n})$ is a trivial bundle, $\overline{f}_{n} = f \otimes_{\mathscr{O}_{K}} \mathscr{O}_{\overline{K}}/p^{n} \mathscr{O}_{\overline{K}}.$

This allows us to associate representation to DW vector bundles.

- \exists an universal isomorphism $\mathscr{O}_K \xrightarrow{\sim} \lambda_*(\mathscr{O}_Y)$, λ canonical map.
- If $r = \operatorname{rank} \mathscr{F}$, we obtain a representation (parallel transport)

$$\mathsf{Gal}(Y_{\overline{K}}/X_{\overline{K}}) \circlearrowright \Gamma(Y_{\overline{k}}, \overline{f}_n^*(\mathscr{F}_n)) \xrightarrow{\sim} (\mathscr{O}_{\overline{K}}/p^n \mathscr{O}_{\overline{K}})^{\oplus r}.$$

• $\mathbb{V}_n^{\mathsf{DW}} : \mathsf{VB}^{\mathsf{DW}}(X_{\mathscr{O}_{\mathsf{C}}}) \to \mathbf{Rep}_{\mathscr{O}_{\overline{K}}/p^n\mathscr{O}_{\overline{K}}}(\pi_1(X_{\overline{K}})), \quad \mathbb{V}^{\mathsf{DW}} = \varprojlim \mathbb{V}_n^{\mathsf{DW}}[\frac{1}{p}]$

・ロト ・ 四ト ・ ヨト ・ ヨー ・ つへぐ

Theorem (Deninger–Werner)

TFAE: (i) $\mathscr{F}/X_{\mathscr{O}_{\mathsf{C}}}$ is DW.

(ii) $\forall n \ge 1$, after taking a finite extension of K, \exists a projective \mathcal{O}_K -curve Y with semi-stable reduction and a proper map $f : Y \to X$ such that

- $f_{\overline{K}}: Y_{\overline{K}} o X_{\overline{K}}$ is a Galois étale cover.
- The action of $\operatorname{Aut}(Y_{\overline{K}}/X_{\overline{K}})$ extends to an action over Y/X.
- $\overline{f}_{n}^{*}(\mathscr{F}_{n})$ is a trivial bundle, $\overline{f}_{n} = f \otimes_{\mathscr{O}_{K}} \mathscr{O}_{\overline{K}}/p^{n}\mathscr{O}_{\overline{K}}.$

This allows us to associate representation to DW vector bundles.

- \exists an universal isomorphism $\mathscr{O}_K \xrightarrow{\sim} \lambda_*(\mathscr{O}_Y)$, λ canonical map.
- If $r = \operatorname{rank} \mathscr{F}$, we obtain a representation (parallel transport)

$$\mathsf{Gal}(Y_{\overline{K}}/X_{\overline{K}}) \circlearrowright \Gamma(Y_{\overline{k}}, \overline{f}_n^*(\mathscr{F}_n)) \xrightarrow{\sim} (\mathscr{O}_{\overline{K}}/p^n \mathscr{O}_{\overline{K}})^{\oplus r}.$$

• $\mathbb{V}_n^{\mathsf{DW}} : \mathsf{VB}^{\mathsf{DW}}(X_{\mathscr{O}_{\mathsf{C}}}) \to \mathbf{Rep}_{\mathscr{O}_{\overline{K}}/p^n\mathscr{O}_{\overline{K}}}(\pi_1(X_{\overline{K}})), \quad \mathbb{V}^{\mathsf{DW}} = \varprojlim \mathbb{V}_n^{\mathsf{DW}}[\frac{1}{p}]$

- Compatibility between \mathbb{V}^{DW} and *p*-adic Simpson correspondence (X.)
- Higher dimensional case: Deninger-Werner, Würthen.

000	esuits / C	00000	OO	OOOOOOOOO
	Definition			
L (((_et X be a (i) HB ^{DW} ((ii) HB ^{DW} (a smooth projective cu $X_{\mathscr{O}_{C}}$): $M \in VB^{DW}(X_{\mathscr{O}_{C}})$ (X_{C}) : Image of HB^{DW}	$ \begin{array}{l} \operatorname{rve} / \mathscr{O}_{K}. \\ \mathfrak{O}_{c} \end{array} \ \text{and} \ a \textit{ small } \operatorname{Higg}_{c} \\ (X_{\mathscr{O}_{c}}) \to \operatorname{HB}(X_{C}). \end{array} $	$\mathfrak{g}\mathfrak{s} \ \mathfrak{field} \ heta \ \mathfrak{on} \ M.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

lassica	al results / C	<i>P</i> -adic Simpson correspondence	OO	Parallel transport for Higgs bundles over curv ●000000000
	Definitio	n		
	Let X be (i) HB ^{DV} (ii) HB ^{DV}	a smooth projective c $(X_{\mathscr{O}_{C}}): M \in VB^{DW}(X)$ $(X_{C}): Image of HB^{D}$	$\mathbb{C}_{\mathscr{O}_{C}}$) and a small Hi $\mathbb{N}^{(\mathcal{O}_{C})}$ $ o$ HB (X_{C})	ggs field θ on M .
	• To e	extend above definition	for a general Higg	s field, we need <i>twisted</i>

 To extend above definition for a general Higgs field, we need twisted pullback functor for Higgs bundles (compatible with pullback functoriality of p-adic Simpson correspondence).

(ロト (個) (E) (E) (E) (E) のへの

results / C		00	• OOOOOOOOO
Definition			
Let X be a (i) HB ^{DW} ((ii) HB ^{DW}	a smooth projective c $X_{\mathscr{O}_{C}}$): $M \in VB^{DW}(X)$ (X_{C}) : Image of HB^{DV}	$\mathbb{C}_{\mathscr{O}_{C}}$) and a small Hi $\mathbb{N}_{(\mathscr{X}_{\mathscr{O}_{C}})} o HB(X_{C})$	ggs field θ on M .
. T		C	

- To extend above definition for a general Higgs field, we need *twisted pullback functor* for Higgs bundles (compatible with pullback functoriality of *p*-adic Simpson correspondence).
- Let Y be a smooth projective \mathcal{O}_K -curve, $\mathcal{Y} = (\mathcal{Y}_N)/(A_{\inf,N})$ a smooth Cartesian lifting of $Y_{\mathcal{O}_C}/\mathcal{O}_C$.
- A proper map $f: Y \to X$ such that f_K is finite induces:

$$f^{\circ}_{\mathcal{Y},\mathcal{X},\mathsf{Exp}}(=f^{\circ}):\mathsf{HB}(X_{\mathsf{C}})\to\mathsf{HB}(Y_{\mathsf{C}}).$$

ション ふぼう メリン メリン しょうくしゃ

		00	
Definitio	n		
Let X be (i) HB ^{DV} (ii) HB ^D	e a smooth projective c $^{V}(X_{\mathscr{O}_{C}}): \ M \in VB^{DW}(X_{\mathscr{O}_{C}}): \ Image \ of \ HB^{DV}$	curve $/\mathscr{O}_{\mathcal{K}}.$ $\mathscr{O}_{\mathcal{C}_{C}}$) and a small History $\overset{\mathcal{M}}{\to}(X_{\mathscr{O}_{C}}) o HB(X_{C})$	iggs field θ on M .
		6 1111	

- To extend above definition for a general Higgs field, we need *twisted pullback functor* for Higgs bundles (compatible with pullback functoriality of *p*-adic Simpson correspondence).
- Let Y be a smooth projective \mathcal{O}_{K} -curve, $\mathcal{Y} = (\mathcal{Y}_{N})/(A_{\inf,N})$ a smooth Cartesian lifting of $Y_{\mathcal{O}_{C}}/\mathcal{O}_{C}$.
- A proper map $f: Y \to X$ such that f_K is finite induces:

 $f^{\circ}_{\mathcal{Y},\mathcal{X},\mathsf{Exp}}(=f^{\circ}):\mathsf{HB}(X_{\mathsf{C}})\to\mathsf{HB}(Y_{\mathsf{C}}).$

- When Higgs field = 0, $f^{\circ}(M, 0) = (f^{*}_{C}(M), 0)$.
- When Higgs field \neq 0, f° is different to f^{*} by a "twist".

Definition

$$\begin{split} \mathsf{HB}^{\mathsf{pDW}}_{\mathcal{X},\mathsf{Exp}}(X_{\mathsf{C}})(=\mathsf{HB}^{\mathsf{pDW}}(X_{\mathsf{C}})): \ (M,\theta) \in \mathsf{HB}(X_{\mathsf{C}}) \text{ such that after } \exists \\ f: Y \to X \text{ as above and } f^{\circ}(M,\theta) \in \mathsf{HB}^{\mathsf{DW}}(Y_{\mathsf{C}}). \end{split}$$

Parallel transport for Higgs bundles over curves 000000000 Theorem (X.) (i) $\mathbb{H}_{\mathcal{X},\mathsf{Exp}}$ sends $\operatorname{Rep}_{\mathbf{C}}(\pi_1(X_{\overline{K}}))$ to $\operatorname{HB}_{\mathcal{X},\mathsf{Exp}}^{\mathsf{pDW}}(X_{\mathbf{C}})$. (ii) \exists a quasi-inverse of $\mathbb{H}_{\mathcal{X},\mathsf{Exp}}$: $\mathbb{V}_{\mathcal{X},\mathsf{Exp}}(=\mathbb{V}):\mathsf{HB}^{\mathsf{pDW}}_{\mathcal{X},\mathsf{Exp}}(X_{\mathsf{C}})\xrightarrow{\sim}\mathsf{Rep}_{\mathsf{C}}(\pi_1(X_{\overline{K}})).$ (iii) $(E, \theta) \in HB^{pDW}_{\mathcal{X} Exp}(X_{\mathbf{C}})$ and $V = \mathbb{V}(E, \theta)$, we have $\mathsf{H}^*_{\acute{e}t}(X_{\overline{K}}, V) \simeq \mathbb{H}^*(X_{\mathsf{C}}, E \xrightarrow{\theta} E \otimes \Omega^1_{X_{\mathsf{C}}}).$

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

Parallel transport for Higgs bundles over curves P-adic Simpson correspondence 000000000 Theorem (X.) (i) $\mathbb{H}_{\mathcal{X},\mathsf{Exp}}$ sends $\mathsf{Rep}_{\mathsf{C}}(\pi_1(X_{\overline{\mathsf{K}}}))$ to $\mathsf{HB}_{\mathcal{X},\mathsf{Exp}}^{\mathsf{pDW}}(X_{\mathsf{C}})$. (ii) \exists a quasi-inverse of $\mathbb{H}_{\mathcal{X},\mathsf{Exp}}$: $\mathbb{V}_{\mathcal{X},\mathsf{Exp}}(=\mathbb{V}):\mathsf{HB}^{\mathsf{pDW}}_{\mathcal{X},\mathsf{Exp}}(X_{\mathsf{C}})\xrightarrow{\sim}\mathsf{Rep}_{\mathsf{C}}(\pi_{1}(X_{\overline{K}})).$ (iii) $(E, \theta) \in \operatorname{HB}_{\mathcal{X}, \operatorname{Exp}}^{\operatorname{pDW}}(X_{\mathbf{C}})$ and $V = \mathbb{V}(E, \theta)$, we have $\mathsf{H}^*_{\acute{e}t}(X_{\overline{K}}, V) \simeq \mathbb{H}^*(X_{\mathsf{C}}, E \xrightarrow{\theta} E \otimes \Omega^1_{X_{\mathsf{C}}}).$

Proposition

(i) HB^{pDW}_{X,Exp}(X_C) ⊂ semi-stable Higgs bundles of degree zero /X_C.
(ii) Every Higgs line bundle of degree zero ∈ HB^{pDW}_{X,Exp}(X_C).
(iii) HB^{pDW}_{X,Exp}(X_C) is abelian and closed under extensions.

• It is expected that assertion (i) is an equivalence.

Parallel transport for Higgs bundles over curves P-adic Simpson correspondence 000000000 Theorem (X.) (i) $\mathbb{H}_{\mathcal{X},\mathsf{Exp}}$ sends $\mathsf{Rep}_{\mathsf{C}}(\pi_1(X_{\overline{\mathsf{K}}}))$ to $\mathsf{HB}_{\mathcal{X},\mathsf{Exp}}^{\mathsf{pDW}}(X_{\mathsf{C}})$. (ii) \exists a quasi-inverse of $\mathbb{H}_{\mathcal{X},\mathsf{Exp}}$: $\mathbb{V}_{\mathcal{X},\mathsf{Exp}}(=\mathbb{V}):\mathsf{HB}^{\mathsf{pDW}}_{\mathcal{X},\mathsf{Exp}}(X_{\mathsf{C}})\xrightarrow{\sim}\mathsf{Rep}_{\mathsf{C}}(\pi_{1}(X_{\overline{K}})).$ (iii) $(E, \theta) \in HB^{pDW}_{\mathcal{X} Exp}(X_{\mathbf{C}})$ and $V = \mathbb{V}(E, \theta)$, we have $\mathsf{H}^*_{\mathrm{\acute{e}t}}(X_{\overline{\mathsf{V}}}, \mathsf{V}) \simeq \mathbb{H}^*(X_{\mathsf{C}}, E \xrightarrow{\theta} E \otimes \Omega^1_{\mathsf{Y}_{\mathsf{C}}}).$

Proposition

(i) HB^{pDW}_{X,Exp}(X_C) ⊂ semi-stable Higgs bundles of degree zero /X_C.
(ii) Every Higgs line bundle of degree zero ∈ HB^{pDW}_{X,Exp}(X_C).
(iii) HB^{pDW}_{X,Exp}(X_C) is abelian and closed under extensions.

- It is expected that assertion (i) is an equivalence.
- Higgs line bundles: Heuer, Abeloid: Heuer-Mann-Werner.

・ロト・日本・日本・日本・日本・今日・

- ♥ is an extension of ♥^{DW} to Higgs bundles.
 It is based on Tsuji's approach to *p*-adic Simpson correspondence.
- In this approach, small Higgs bundles are interpreted as crystals on a site (\mathfrak{X}/A_{inf}) , where $\mathfrak{X} = p$ -adic completion of $X_{\mathscr{O}_{C}}$.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

- ♥ is an extension of ♥^{DW} to Higgs bundles.
 It is based on Tsuji's approach to *p*-adic Simpson correspondence.
- In this approach, small Higgs bundles are interpreted as crystals on a site (𝔅/A_{inf}), where 𝔅 = p-adic completion of X_{𝔅c}.
- An object (\mathcal{T}, z) of (\mathcal{X}/A_{inf}) consists of a sequence of morphisms $\mathcal{T} = (\dots \mathcal{T}_N \to \mathcal{T}_{N+1} \dots)_{N \ge 1}$ of *p*-adic formal schemes \mathcal{T}_N over $\operatorname{Spf}(A_{inf}/\xi^N)$ such that
 - $\mathcal{T}_N \to \mathcal{T}_{N+1}$ is a closed immersion;
 - for $N \ge 2$, the morphism of the modulo p reduction of $\mathcal{T}_N \to \mathcal{T}_{N+1}$ is a nilpotent immersion;
 - The morphism $p: \mathscr{O}_{\mathcal{T}_N} \to \mathscr{O}_{\mathcal{T}_N}$ is injective for all $N \geq 1$;
 - $\operatorname{Ker}(\mathscr{O}_{\mathcal{T}_N} \to \mathscr{O}_{\mathcal{T}_n}) = \xi^n \mathscr{O}_{\mathcal{T}_N}$ for $1 \le n \le N$;
 - Ker $(\xi : \mathscr{O}_{\mathcal{T}_N} \to \mathscr{O}_{\mathcal{T}_N})$ is $\xi^{N-1} \mathscr{O}_{\mathcal{T}_N}$;

and a morphism $z : \mathcal{T}_1 \to \mathfrak{X}$.

• A morphism $(\mathcal{T}', z') \to (\mathcal{T}, z)$ is a family of compatible morphisms $f_N : \mathcal{T}'_N \to \mathcal{T}_N$ of formal schemes over A_{inf} such that $z \circ f_1 = z'$.

Classical results $/\mathbb{C}$ 000	P-adic Simpson correspondence	Deninger–Werner's theory OO	Parallel transport for Higgs bundles over curves
Higgs crys	tals		

Topology: Cov(*T*, *z*) = {(*u*_α : (*T*_α, *z*_α) → (*T*, *z*))_{α∈A}} such that
(i) *u*_α is étale and Cartesian for all α ∈ A
(ii) ⋃_{α∈A} *u*_{α,1}(*T*_{α,1}) = *T*₁.

ション ふぼう メリン メリン しょうくしゃ

- Functor $(\mathcal{T}, z) \mapsto \Gamma(\mathcal{T}_1, \mathscr{O}_{\mathcal{T}_1})$ defines a sheaf of rings $\overline{\mathscr{O}}_{\mathfrak{X}/A_{inf}}$.
- Consider $\overline{\mathscr{O}}_{\mathfrak{X}/A_{\mathrm{inf}},n} = \overline{\mathscr{O}}_{\mathfrak{X}/A_{\mathrm{inf}}}/p^n \overline{\mathscr{O}}_{\mathfrak{X}/A_{\mathrm{inf}}}, \ \overline{\mathscr{O}}_{\mathfrak{X}/A_{\mathrm{inf}}}[\frac{1}{p}].$

Classical results /C	P-adic Simpson correspondence	Deninger–Werner's theory	Parallel transport for Higgs bundles over curves
000		OO	000●000000
Higgs crys	tals		

- Topology: Cov(*T*, *z*) = {(*u*_α : (*T*_α, *z*_α) → (*T*, *z*))_{α∈A}} such that
 (i) *u*_α is étale and Cartesian for all α ∈ A
 (ii) ⋃_{α∈A} *u*_{α,1}(*T*_{α,1}) = *T*₁.
- Functor $(\mathcal{T}, z) \mapsto \Gamma(\mathcal{T}_1, \mathscr{O}_{\mathcal{T}_1})$ defines a sheaf of rings $\overline{\mathscr{O}}_{\mathfrak{X}/A_{inf}}$.
- Consider $\overline{\mathscr{O}}_{\mathfrak{X}/A_{\mathrm{inf}},n} = \overline{\mathscr{O}}_{\mathfrak{X}/A_{\mathrm{inf}}}/p^{n}\overline{\mathscr{O}}_{\mathfrak{X}/A_{\mathrm{inf}}}, \ \overline{\mathscr{O}}_{\mathfrak{X}/A_{\mathrm{inf}}}[\frac{1}{p}].$
- HC_Q(𝔅/A_{inf}): Crystals of *O*_{𝔅/A_{inf},Q}[¹/_ρ]-modules on (𝔅/A_{inf}), defined as in crystalline site.
- A smooth Cartesian (formal) lifting X = (X_N) of X over A_{inf} defines an object of (X/A_{inf}). The evaluation at X induces:

 $\operatorname{HC}_{\mathbb{Q}}(\mathfrak{X}/A_{\operatorname{inf}}) \xrightarrow{\iota_{\mathcal{X}}} \operatorname{Higgs} \mathscr{O}_{\mathfrak{X}}[\frac{1}{p}] \operatorname{-modules}$ with convergent conditions

Classical results /C	P-adic Simpson correspondence	Deninger–Werner's theory	Parallel transport for Higgs bundles over curves
000		OO	000●000000
Higgs crys	tals		

- Topology: Cov(*T*, *z*) = {(*u*_α : (*T*_α, *z*_α) → (*T*, *z*))_{α∈A}} such that
 (i) *u*_α is étale and Cartesian for all α ∈ A
 (ii) ⋃_{α∈A} *u*_{α,1}(*T*_{α,1}) = *T*₁.
- Functor $(\mathcal{T}, z) \mapsto \Gamma(\mathcal{T}_1, \mathscr{O}_{\mathcal{T}_1})$ defines a sheaf of rings $\overline{\mathscr{O}}_{\mathfrak{X}/A_{inf}}$.
- Consider $\overline{\mathcal{O}}_{\mathfrak{X}/A_{inf},n} = \overline{\mathcal{O}}_{\mathfrak{X}/A_{inf}}/p^n \overline{\mathcal{O}}_{\mathfrak{X}/A_{inf}}, \ \overline{\mathcal{O}}_{\mathfrak{X}/A_{inf}}[\frac{1}{p}].$
- HC_Q(𝔅/A_{inf}): Crystals of *O*_{𝔅/A_{inf},Q}[¹/_ρ]-modules on (𝔅/A_{inf}), defined as in crystalline site.
- A smooth Cartesian (formal) lifting X = (X_N) of X over A_{inf} defines an object of (X/A_{inf}). The evaluation at X induces:

 $\operatorname{HC}_{\mathbb{Q}}(\mathfrak{X}/A_{\operatorname{inf}}) \xrightarrow{\iota_{\mathcal{X}}} \operatorname{Higgs} \mathscr{O}_{\mathfrak{X}}[\frac{1}{p}]$ -modules with convergent conditions

- $HB_{small}(X_{C})$ is contained in the image of $\iota_{\mathcal{X}}$.
- $HC_{Q,fin}(\mathfrak{X}/A_{inf})$ its essential image.

Suppose X = Spec(R) → G^d_m étale. Let {V_i → X_K} be the universal cover, R_i the integral closure of R in V_i and R = lim_{i∈I} R_i. Set Δ = π₁(X_K), which acts continuously on R

 Generalized representations Rep(Δ, R

 [1/ρ]).

ション ふぼう メリン メリン しょうくしゃ

Classical results / C 000 P-adic Simpson correspondence 0000 Deninger-Werner's theory 00 Parallel transport for Higgs bundles over curves 0000 0000 Parallel transport for Higgs bundles over curves

- From Higgs crystals to generalized representations
 - Suppose X = Spec(R) → G^d_m étale. Let {V_i → X_K} be the universal cover, R_i the integral closure of R in V_i and R = lim_{i∈I} R_i. Set Δ = π₁(X_K), which acts continuously on R

 Generalized representations Rep(Δ, R

 [1/ρ]).
 - Let (M, θ) be a small Higgs bundle and $\mathcal M$ associated crystal.
 - $(\operatorname{Spf}(A_{\inf}(\overline{R})/\xi^N))$ defines an object of (\mathfrak{X}/A_{\inf}) , denoted by D.
 - The Δ -action on D induces (local p-adic Simpson correspondence)

$$\mathbf{V}:\mathsf{HC}_{\mathbb{Q},\mathsf{fin}}(\mathfrak{X}/A_{\mathsf{inf}})\to \mathbf{Rep}(\Delta,\widehat{\overline{R}}[\frac{1}{\rho}]), \ \mathcal{M}\mapsto \Gamma(D,\mathcal{M}).$$

ション ふぼう メリン メリン しょうくしゃ

From Higgs crystals to generalized representations

- Suppose X = Spec(R) → G^d_m étale. Let {V_i → X_K} be the universal cover, R_i the integral closure of R in V_i and R = lim_{i∈I} R_i. Set Δ = π₁(X_K), which acts continuously on R

 Generalized representations Rep(Δ, R

 [1/ρ]).
- Let (M, θ) be a small Higgs bundle and $\mathcal M$ associated crystal.
- $(\operatorname{Spf}(A_{\operatorname{inf}}(\overline{R})/\xi^N))$ defines an object of $(\mathfrak{X}/A_{\operatorname{inf}})$, denoted by D.
- The Δ -action on D induces (local p-adic Simpson correspondence)

$$\mathbf{V}:\mathsf{HC}_{\mathbb{Q},\mathsf{fin}}(\mathfrak{X}/A_{\mathsf{inf}})\to \mathbf{Rep}(\Delta,\widehat{\overline{R}}[\frac{1}{\rho}]), \ \mathcal{M}\mapsto \Gamma(D,\mathcal{M}).$$

- Globalize $\mathbf{V}_X : \mathrm{HC}_{\mathbb{Q},\mathrm{fin}}(\mathfrak{X}/A_{\mathrm{inf}}) \to \mathbf{GRep}(X)$ (independent of \mathcal{X}).
- $V_X \circ \iota_{\mathcal{X}} : HB_{small}(X_{\mathsf{C}}) \xrightarrow{\sim} HC_{\mathbb{Q}, fin}(\mathfrak{X}/A_{inf}) \to \mathbf{GRep}(X)$ is a quasi-inverse of $\mathbf{H}_{\mathcal{X}} : \mathbf{GRep}_{small}(X) \to HB_{small}(X_{\mathsf{C}}).$
- $\bullet\,$ The construction of V also applies to certain integral (or torsion) Higgs bundles/crystals.

From Higgs crystals to generalized representations

- Suppose X = Spec(R) → G^d_m étale. Let {V_i → X_K} be the universal cover, R_i the integral closure of R in V_i and R = lim_{i∈I} R_i. Set Δ = π₁(X_K), which acts continuously on R.
 Generalized representations Rep(Δ, R
 [1/ρ]).
- Let (M, θ) be a small Higgs bundle and $\mathcal M$ associated crystal.
- $(\operatorname{Spf}(A_{\operatorname{inf}}(\overline{R})/\xi^N))$ defines an object of $(\mathfrak{X}/A_{\operatorname{inf}})$, denoted by D.
- The Δ -action on D induces (local p-adic Simpson correspondence)

$$\mathbf{V}:\mathsf{HC}_{\mathbb{Q},\mathsf{fin}}(\mathfrak{X}/A_{\mathsf{inf}})\to \mathbf{Rep}(\Delta,\widehat{\overline{R}}[\frac{1}{\rho}]), \ \mathcal{M}\mapsto \Gamma(D,\mathcal{M}).$$

- Globalize $\mathbf{V}_X : \mathrm{HC}_{\mathbb{Q},\mathrm{fin}}(\mathfrak{X}/A_{\mathrm{inf}}) \to \mathbf{GRep}(X)$ (independent of \mathcal{X}).
- $V_X \circ \iota_{\mathcal{X}} : HB_{small}(X_{\mathbb{C}}) \xrightarrow{\sim} HC_{\mathbb{Q}, fin}(\mathfrak{X}/A_{inf}) \to \mathbf{GRep}(X)$ is a quasi-inverse of $\mathbf{H}_{\mathcal{X}} : \mathbf{GRep}_{small}(X) \to HB_{small}(X_{\mathbb{C}}).$
- The construction of **V** also applies to certain integral (or torsion) Higgs bundles/crystals.
- Crystals on prismatic site: Morrow–Tsuji, Min–Wang.

Classical results $/\mathbb{C}$ 000	P-adic Simpson correspondence	Deninger–Werner's theory 00	Parallel transport for Higgs bundles over curves
Pullback fu	unctoriality: revie	ew of f° : HB	$(X_{\mathbf{C}}) \rightarrow HB(Y_{\mathbf{C}})$

• $f: Y \to X$ a map of smooth projective curve and f_K is finite étale. $f_{\text{HIG}}: (\mathfrak{Y}/A_{\text{inf}}) \to (\mathfrak{X}/A_{\text{inf}}), \quad f_{\text{HIG}}^*: \text{HC}_{\mathbb{Q},\text{fin}}(\mathfrak{X}/A_{\text{inf}}) \to \text{HC}_{\mathbb{Q},\text{fin}}(\mathfrak{Y}/A_{\text{inf}})$ compatible with *p*-adic Simpson correspondence $\mathbf{V}_X, \mathbf{V}_Y$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへぐ

Classical results $/\mathbb{C}$	P-adic Simpson correspondence	Deninger–Werner's theory	Parallel transport for Higgs bundles over curves
000	00000	00	000000000
Pullback fu	inctoriality: revie	ew of f° : HB($(X_{c}) \rightarrow HB(Y_{c})$

• $f: Y \to X$ a map of smooth projective curve and f_K is finite étale. $f_{\text{HIG}}: (\widetilde{\mathfrak{Y}/A_{\text{inf}}}) \to (\widetilde{\mathfrak{X}/A_{\text{inf}}}), \quad f_{\text{HIG}}^*: \text{HC}_{\mathbb{Q},\text{fin}}(\mathfrak{X}/A_{\text{inf}}) \to \text{HC}_{\mathbb{Q},\text{fin}}(\mathfrak{Y}/A_{\text{inf}})$

ション ふぼう メリン メリン しょうくしゃ

compatible with *p*-adic Simpson correspondence V_X, V_Y .

 It is compatible with twisted pullback f^o_{𝔅,𝔅,Exp} of small Higgs bundles after choosing smooth Cartesian liftings 𝔅, 𝔅 via ι_𝔅, ι_𝔅.

Pullback	functoriality: rev	view of f° · HP	$R(X_{c}) \rightarrow HR(Y_{c})$
000	00000	00	000000000
Classical results $/\mathbb{C}$	P-adic Simpson correspondence	Deninger–Werner's theory	Parallel transport for Higgs bundles over curves

• $f: Y \to X$ a map of smooth projective curve and f_K is finite étale.

 $f_{\mathsf{HIG}}: (\widehat{\mathfrak{Y}}/\widetilde{A}_{\mathsf{inf}}) \to (\widehat{\mathfrak{X}}/\widetilde{A}_{\mathsf{inf}}), \quad f_{\mathsf{HIG}}^*: \mathsf{HC}_{\mathbb{Q},\mathsf{fin}}(\mathfrak{X}/A_{\mathsf{inf}}) \to \mathsf{HC}_{\mathbb{Q},\mathsf{fin}}(\mathfrak{Y}/A_{\mathsf{inf}})$

compatible with *p*-adic Simpson correspondence V_X, V_Y .

- It is compatible with twisted pullback f^o_{Y,X,Exp} of small Higgs bundles after choosing smooth Cartesian liftings Y, X via uy, ux.
- $(M, \theta) \in HB(X_{\mathbb{C}})$ of rank r, \rightsquigarrow a point in the Hitchin base $c \in \bigoplus_{i=1}^{r} \Gamma(X_{\mathbb{C}}, (\Omega_{X_{\mathbb{C}}}^{1})^{\otimes i})$ and a spectral cover:

 $\pi: Z_{\theta} := \operatorname{Spec}_{\mathscr{O}_{X_{\mathsf{C}}}}(\operatorname{Sym} T_{X_{\mathsf{C}}}/\operatorname{characteristic polynomial of } \theta) \to X_{\mathsf{C}}.$

ション ふぼう メリン メリン しょうくしゃ

 π_* induces an equivalence between line bundles on Z_{θ} and Higgs bundle whose Hitchin image is c.

Dullback	functoriality: ro	ion of fo . HI	$B(X_{-}) \setminus HB(X_{-})$
000			000000000
Classical results $/\mathbb{C}$	P-adic Simpson correspondence	Deninger–Werner's theory	Parallel transport for Higgs bundles over curves

• $f: Y \to X$ a map of smooth projective curve and f_K is finite étale.

 $f_{\mathsf{HIG}}: (\mathfrak{Y}/\overline{A}_{\mathsf{inf}}) \to (\mathfrak{X}/A_{\mathsf{inf}}), \quad f^*_{\mathsf{HIG}}: \mathsf{HC}_{\mathbb{Q},\mathsf{fin}}(\mathfrak{X}/A_{\mathsf{inf}}) \to \mathsf{HC}_{\mathbb{Q},\mathsf{fin}}(\mathfrak{Y}/A_{\mathsf{inf}})$

compatible with *p*-adic Simpson correspondence V_X, V_Y .

- It is compatible with twisted pullback f^o_{Y,X,Exp} of small Higgs bundles after choosing smooth Cartesian liftings Y, X via uy, ux.
- $(M, \theta) \in HB(X_{\mathbb{C}})$ of rank r, \rightsquigarrow a point in the Hitchin base $c \in \bigoplus_{i=1}^{r} \Gamma(X_{\mathbb{C}}, (\Omega_{X_{\mathbb{C}}}^{1})^{\otimes i})$ and a spectral cover:

 $\pi: Z_{\theta} := \operatorname{Spec}_{\mathscr{O}_{X_{\mathsf{C}}}}(\operatorname{Sym} T_{X_{\mathsf{C}}}/\operatorname{characteristic polynomial of } \theta) \to X_{\mathsf{C}}.$

 π_* induces an equivalence between line bundles on Z_{θ} and Higgs bundle whose Hitchin image is c.

The obstruction of lifting f_{Oc} to Y₂ → X₂/A_{inf,2} defines a class o_f ∈ H¹(𝔅), f^{*}(T_𝔅)). Consider line bundle L^{Exp}_{f,θ} as the image:

$$\mathsf{H}^{1}(\mathfrak{Y}, f^{*}(T_{\mathfrak{Y}})) \longrightarrow \mathsf{H}^{1}(Z_{f^{*}(\theta)}, \mathscr{O}_{Z_{f^{*}(\theta)}}) \xrightarrow{\mathsf{Exp}_{Z_{f^{*}(\theta)}}} \mathsf{H}^{1}(Z_{f^{*}(\theta)}, \mathscr{O}^{\times}).$$

•
$$f^{\circ}(M, \theta) := f^{*}(M, \theta) \otimes_{\mathscr{O}_{Z_{f^{*}(\theta)}}} \mathcal{L}_{f, \theta}^{\mathsf{Exp}}$$
, viewed as line bundles $/Z_{f^{*}(\theta)}$.

Classical results $/\mathbb{C}$	P-adic Simpson correspondence	Deninger–Werner's theory	Parallel transport for Higgs bundles over curves
000			0000000000
Trivializabl	e property of HE	3 ^{DW}	

We extend the trivilizable property of VB^{DW} to HB^{DW} .

Theorem

Let *M* be a vector bundle of rank *r* over $X_{\mathscr{O}_{\mathsf{C}}}$, θ a small Higgs field on *M*, and \mathcal{M} the associated Higgs crystal. TFAE: (i) (M, θ) belongs to $\mathsf{HB}^{\mathsf{DW}}(X_{\mathscr{O}_{\mathsf{C}}})$. (ii) For every integer $n \ge 1$, after taking a finite extension of *K*, there exists an \mathscr{O}_{K} -curve *Y* with semi-stable reduction and a proper map $f: Y \to X$ such that:

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

• f_K is a finite étale.

•
$$f^*_{\mathsf{HIG}}(\mathcal{M}_n) \simeq \overline{\mathscr{O}}_{\mathfrak{Y}/\mathcal{A}_{\mathrm{inf}},n}^{\oplus r}$$

Classical results $/\mathbb{C}$	P-adic Simpson correspondence	Deninger–Werner's theory	Parallel transport for Higgs bundles over curves
000	00000	00	0000000000
Trivializabl	e property of HE	3 ^{DW}	

We extend the trivilizable property of VB^{DW} to HB^{DW} .

Theorem

Let *M* be a vector bundle of rank *r* over $X_{\mathscr{O}_{\mathsf{C}}}$, θ a small Higgs field on *M*, and \mathcal{M} the associated Higgs crystal. TFAE: (i) (M, θ) belongs to $\mathsf{HB}^{\mathsf{DW}}(X_{\mathscr{O}_{\mathsf{C}}})$. (ii) For every integer $n \ge 1$, after taking a finite extension of *K*, there exists an \mathscr{O}_{K} -curve *Y* with semi-stable reduction and a proper map $f: Y \to X$ such that:

• f_K is a finite étale.

•
$$f^*_{\mathsf{HIG}}(\mathcal{M}_n) \simeq \overline{\mathscr{O}}_{\mathfrak{Y}/\mathcal{A}_{\mathrm{inf}},n}^{\oplus r}$$

To construct V, we may assume moreover that f_K is a Galois étale cover and that the action of Aut(Y_K/X_K) extends to Y/X.

ション ふゆ アメリア メリア しょうくしゃ

Classical results $/\mathbb{C}$	P-adic Simpson correspondence	Deninger–Werner's theory	Parallel transport for Higgs bundles over curves
000	00000	00	0000000000
Trivializabl	e property of HE	3 ^{DW}	

We extend the trivilizable property of VB^{DW} to HB^{DW} .

Theorem

Let *M* be a vector bundle of rank *r* over $X_{\mathscr{O}_{\mathsf{C}}}$, θ a small Higgs field on *M*, and \mathcal{M} the associated Higgs crystal. TFAE: (i) (M, θ) belongs to $\mathsf{HB}^{\mathsf{DW}}(X_{\mathscr{O}_{\mathsf{C}}})$. (ii) For every integer $n \ge 1$, after taking a finite extension of *K*, there exists an \mathscr{O}_{K} -curve *Y* with semi-stable reduction and a proper map $f: Y \to X$ such that:

f_K is a finite étale.

•
$$f^*_{\mathsf{HIG}}(\mathcal{M}_n) \simeq \overline{\mathscr{O}}_{\mathfrak{Y}/A_{\mathrm{inf}},n}^{\oplus r}$$

- To construct V, we may assume moreover that f_K is a Galois étale cover and that the action of Aut(Y_K/X_K) extends to Y/X.
- Idea: we can find such covers $f : Y \to X$ trivializing bundles or Higgs fields modulo some power of p.

- $(M, \theta) \in \mathsf{HB}^{\mathsf{DW}}(X_{\mathscr{O}_{\mathsf{C}}})$ of rank r
- \mathcal{M} associated Higgs crystal and n an integer ≥ 1 .
- $f: Y \to X$ a proper map of curves trivializing \mathcal{M}_n as above.

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

- $(M, \theta) \in \mathsf{HB}^{\mathsf{DW}}(X_{\mathscr{O}_{\mathsf{C}}})$ of rank r
- \mathcal{M} associated Higgs crystal and n an integer ≥ 1 .
- $f: Y \to X$ a proper map of curves trivializing \mathcal{M}_n as above.
- Generalized representation V_X(M_n) also satisfies a similar trivializable property in Faltings ringed topos (*Ẽ_Y*, *B̃_Y*) of Y:

$$\Phi^*(\mathbf{V}_X(\mathcal{M}_n))\simeq\mathbf{V}_Y(f^*_{\mathsf{HIG}}(\mathcal{M}_n))\simeq\overline{\mathscr{B}}_{Y,n}^{\oplus r},$$

ション ふぼう メリン メリン しょうくしゃ

where $\Phi: (\widetilde{E}_Y, \overline{\mathscr{B}}_Y) \to (\widetilde{E}_X, \overline{\mathscr{B}}_X)$ induced by f.

- $(M, \theta) \in \mathsf{HB}^{\mathsf{DW}}(X_{\mathscr{O}_{\mathsf{C}}})$ of rank r
- \mathcal{M} associated Higgs crystal and n an integer ≥ 1 .
- $f: Y \to X$ a proper map of curves trivializing \mathcal{M}_n as above.
- Generalized representation V_X(M_n) also satisfies a similar trivializable property in Faltings ringed topos (*Ẽ_Y*, *B̃_Y*) of Y:

$$\Phi^*(\mathbf{V}_X(\mathcal{M}_n))\simeq\mathbf{V}_Y(f^*_{\mathsf{HIG}}(\mathcal{M}_n))\simeq\overline{\mathscr{B}}_{Y,n}^{\oplus r},$$

where $\Phi : (\widetilde{E}_Y, \overline{\mathscr{B}}_Y) \to (\widetilde{E}_X, \overline{\mathscr{B}}_X)$ induced by f.

 $\bullet\,$ Faltings' comparison theorem \rightsquigarrow an almost isomorphism

$$\mathsf{Gal}(Y_{\overline{K}}/X_{\overline{K}}) \circlearrowright \Gamma(\widetilde{E}_Y, \Phi^*(\mathbf{V}_X(\mathcal{M}_n))) \simeq (\mathscr{O}_{\mathbf{C}}/p^n \mathscr{O}_{\mathbf{C}})^{\oplus r}.$$

ション ふゆ アメリア メリア しょうくしゃ

• $\mathbb{V}_n : \mathrm{HB}^{\mathrm{DW}}(X_{\mathscr{O}_{\mathbf{C}}}) \to \mathbf{Rep}_{\mathscr{O}_{\mathbf{C}}/p^n\mathscr{O}_{\mathbf{C}}}(\pi_1(X_{\overline{K}})).$

- $(M, \theta) \in \mathsf{HB}^{\mathsf{DW}}(X_{\mathscr{O}_{\mathsf{C}}})$ of rank r
- \mathcal{M} associated Higgs crystal and n an integer ≥ 1 .
- $f: Y \to X$ a proper map of curves trivializing \mathcal{M}_n as above.
- Generalized representation V_X(M_n) also satisfies a similar trivializable property in Faltings ringed topos (*Ẽ_Y*, *B̃_Y*) of Y:

$$\Phi^*(\mathbf{V}_X(\mathcal{M}_n))\simeq\mathbf{V}_Y(f^*_{\mathsf{HIG}}(\mathcal{M}_n))\simeq\overline{\mathscr{B}}_{Y,n}^{\oplus r},$$

where $\Phi: (\widetilde{E}_Y, \overline{\mathscr{B}}_Y) \to (\widetilde{E}_X, \overline{\mathscr{B}}_X)$ induced by f.

 $\bullet\,$ Faltings' comparison theorem \rightsquigarrow an almost isomorphism

$$\mathsf{Gal}(Y_{\overline{K}}/X_{\overline{K}}) \circlearrowright \Gamma(\widetilde{E}_Y, \Phi^*(\mathbf{V}_X(\mathcal{M}_n))) \simeq (\mathscr{O}_{\mathbf{C}}/p^n \mathscr{O}_{\mathbf{C}})^{\oplus r}.$$

- $\mathbb{V}_n : \mathrm{HB}^{\mathrm{DW}}(X_{\mathscr{O}_{\mathsf{C}}}) \to \mathrm{\mathbf{Rep}}_{\mathscr{O}_{\mathsf{C}}/p^n\mathscr{O}_{\mathsf{C}}}(\pi_1(X_{\overline{K}})).$
- Taking projective limit and descent, we obtain

$$\mathbb{V}: \mathrm{HB}^{\mathrm{pDW}}(X_{\mathbf{C}}) \to \mathbf{Rep}_{\mathbf{C}}(\pi_1(X_{\overline{K}})).$$

ション ふゆ アメリア メリア しょうくしゃ

Classical results $/\mathbb{C}$	P-adic Simpson correspondence	Deninger–Werner's theory	Parallel transport for Higgs bundles over curves
000		OO	00000000●0
\mathbb{V} and p -ad	dic Simpson cor	respondence	

• Show 𝔍 is a quasi-inverse of 𝔄, i.e. 𝔍 is compatible with *p*-adic Simpson correspondence.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Show V is a quasi-inverse of H, i.e. V is compatible with *p*-adic Simpson correspondence.
 For (M, θ) ∈ HB^{DW}(X_{𝒪c}), show an almost isomorphism:

$$\beta^*(\mathbb{V}(M,\theta)) \xrightarrow{\sim} \mathbf{V}_X(M,\theta).$$

ション ふゆ アメリア メリア しょうくしゃ

• With above notations, such an isomorphism exists after pullback along $f: Y \to X$ and is equipped with descent data.

Show V is a quasi-inverse of H, i.e. V is compatible with *p*-adic Simpson correspondence.
 For (M, θ) ∈ HB^{DW}(X_{ℓ/c}), show an almost isomorphism:

$$\beta^*(\mathbb{V}(M,\theta)) \xrightarrow{\sim} \mathbf{V}_X(M,\theta).$$

- With above notations, such an isomorphism exists after pullback along $f: Y \to X$ and is equipped with descent data.
- We conclude the assertion by the cohomological descent in Faltings topos (T. He).

ション ふゆ アメリア メリア しょうくしゃ

Classical results $/\mathbb{C}$	P-adic Simpson correspondence	Deninger–Werner's theory	Parallel transport for Higgs bundles over curves
000	00000	00	000000000

Thank You!

▲□▶▲圖▶▲圖▶▲圖▶ 圖 のへで