On modular representations of $\text{GL}_2(L)$ for unramified L

C. Breuil, F. Herzig, Y. Hu, S. Morra and B. Schraen

I.H.É.S.
June 17, 2020
Contents

1 Quick review of past results

2 Statement of the main theorem

3 Some ideas on the proof
1. Quick review of past results

2. Statement of the main theorem

3. Some ideas on the proof
Throughout the talk:

- p is a prime number, \mathbb{F} is a “big” finite field of characteristic p
Throughout the talk:

- p is a prime number, \mathbb{F} is a “big” finite field of characteristic p
- F is a totally real number field where p is unramified, $v|p$ is a fixed place of F
Throughout the talk:

- p is a prime number, \mathbb{F} is a “big” finite field of characteristic p
- F is a totally real number field where p is unramified, $v|p$ is a fixed place of F
- D/F is a quaternion algebra which is split at places above p and at exactly one infinite place
Throughout the talk:

- p is a prime number, \mathbb{F} is a “big” finite field of characteristic p
- F is a totally real number field where p is unramified, $v|p$ is a fixed place of F
- D/F is a quaternion algebra which is split at places above p and at exactly one infinite place
- $\bar{\rho} : \text{Gal}(\overline{F}/F) \to \text{GL}_2(\mathbb{F})$ is a continuous absolutely irreducible totally odd modular representation.
Throughout the talk:

- p is a prime number, \mathbb{F} is a “big” finite field of characteristic p
- F is a totally real number field where p is unramified, $v|p$ is a fixed place of F
- D/F is a quaternion algebra which is split at places above p
 and at exactly one infinite place
- $\bar{\rho} : \text{Gal}(\overline{F}/F) \to GL_2(\mathbb{F})$ is a continuous absolutely irreducible
 totally odd modular representation.

General aim:

Understand better certain smooth admissible representations of
$GL_2(F_v)$ over \mathbb{F} associated to $\bar{\rho}$ ($F_v :=$completion of F at v).
Local factor at v associated to \overline{r}
Local factor at v associated to \overline{r}

For $K \subset (D \otimes_F \mathbb{A}_F^\infty)^\times$ a compact open subgroup, let $X_K/F :=$ associated Shimura curve $= \text{smooth projective algebraic variety}/F$.
Local factor at v associated to \bar{r}

For $K \subset (D \otimes_F \mathbb{A}_F^\infty)^\times$ a compact open subgroup, let $X_K/F :=$ associated Shimura curve $=$ smooth projective algebraic variety $/F$.

We first consider the smooth representation of $(D \otimes_F \mathbb{A}_F^\infty)^\times$ over F:

$$\pi(\bar{r}) := \text{Hom}_{\text{Gal}(\bar{F}/F)} \left(\bar{r}, \lim_{\rightarrow K} H^1_{\text{ét}}(X_K \times_F \bar{F}, \mathbb{F}) \right) \neq 0.$$
Local factor at ν associated to \overline{r}

For $K \subset (D \otimes_F \mathbb{A}_F^\infty)^\times$ a compact open subgroup, let $X_K/F :=$ associated Shimura curve $=$ smooth projective algebraic variety$/F$.

We first consider the smooth representation of $(D \otimes_F \mathbb{A}_F^\infty)^\times$ over \mathbb{F}:

$$\pi(\overline{r}) := \text{Hom}_{\text{Gal}(\overline{F}/F)}\left(\overline{r}, \lim_{\overrightarrow{K}} H^1_{\text{ét}}(X_K \times_F \overline{F}, \mathbb{F})\right) \neq 0.$$

One doesn't know if $\pi(\overline{r})$ has a Flath decomposition as a restricted tensor product of smooth D_w^\times-representations over finite places w of F ($D_w := D \otimes_F F_w$).
Local factor at ν associated to \overline{r}

For $K \subset (D \otimes_F \mathbb{A}_F^\infty)^\times$ a compact open subgroup, let $X_K/F :=$ associated Shimura curve $=\text{smooth projective algebraic variety}/F$.

We first consider the smooth representation of $(D \otimes_F \mathbb{A}_F^\infty)^\times$ over \mathbb{F}:

$$\pi(\overline{r}) := \text{Hom}_{\text{Gal}(\overline{F}/F)}\left(\overline{r}, \lim_{\rightarrow K} H^1_{\text{ét}}(X_K \times_F \overline{F}, \mathbb{F})\right) \neq 0.$$

One doesn’t know if $\pi(\overline{r})$ has a Flath decomposition as a restricted tensor product of smooth D_w^\times-representations over finite places w of F ($D_w := D \otimes_F F_w$).

But one can still define from $\pi(\overline{r})$ in an “ad hoc” way a local factor $\pi_{\nu}(\overline{r})$ at ν under technical assumptions on \overline{r}.

C. Breuil, F. Herzig, Y. Hu, S. Morra and B. Schraen

On modular representations of $\text{GL}_2(L)$ for unramified L
From now on assume:

- $p > 5$ and $\bar{r}|_{\text{Gal}(\overline{F}/F(\sqrt{\psi}))}$ still absolutely irreducible
Local factor at v associated to \bar{r}

From now on assume:

- $p > 5$ and $\bar{r}|_{\text{Gal}(\bar{F}/F(\sqrt{1}))}$ still absolutely irreducible
- weak genericity assumption on $\bar{r}_w := \bar{r}|_{\text{Gal}(\bar{F}_w/F_w)}$ for $w|p$
Local factor at ν associated to \overline{r}

From now on assume:

- $p > 5$ and $\overline{r}|_{\text{Gal}(F/F(\sqrt{1}))}$ still absolutely irreducible
- weak genericity assumption on $\overline{r}_w := \overline{r}|_{\text{Gal}(F_w/F_w)}$ for $w | p$
- \overline{r}_w non scalar if D ramifies at w (so $w \nmid p$).
Local factor at ν associated to \overline{r}

From now on assume:

- $p > 5$ and $\overline{r}|_{\text{Gal}(\overline{F}/F(\sqrt{1}))}$ still absolutely irreducible
- weak genericity assumption on $\overline{r}_w := \overline{r}|_{\text{Gal}(\overline{F}_w/F_w)}$ for $w | p$
- \overline{r}_w non scalar if D ramifies at w (so $w \nmid p$).

Then one can define an “optimal” open compact subgroup K_ν of $((D \otimes_F \mathbb{A}_F^\infty, \nu) \times$, a certain smooth finite dim. representation M_ν of K_ν over \mathbb{F} (a “type”), and set (B.-Diamond, Emerton-Gee-Savitt):

$$\pi_\nu(\overline{r}) := \text{Hom}_{K_\nu}(M_\nu, \pi(\overline{r}))[m] \neq 0$$

where $[m] := \text{kernel of Hecke operators at certain places} \neq \nu$.

C. Breuil, F. Herzig, Y. Hu, S. Morra and B. Schraen
Local factor at v associated to \bar{r}

From now on assume:

- $p > 5$ and $\bar{r}|_{\text{Gal}(\overline{F}/F(\sqrt{1}))}$ still absolutely irreducible
- weak genericity assumption on $\bar{r}_w := \bar{r}|_{\text{Gal}(\overline{F}_w/F_w)}$ for $w|p$
- \bar{r}_w non scalar if D ramifies at w (so $w \nmid p$).

Then one can define an “optimal” open compact subgroup K^v of $(D \otimes_F \mathbb{A}_F^\infty)^\times$, a certain smooth finite dim. representation M^v of K^v over \mathbb{F} (a “type”), and set (B.-Diamond, Emerton-Gee-Savitt):

$$\pi_v(\bar{r}) := \text{Hom}_{K^v}(M^v, \pi(\bar{r}))[m] \neq 0$$

where $[m] :=$ kernel of Hecke operators at certain places $\neq v$.

$$\pi_v(\bar{r}) = \text{smooth admissible representation of } D^\times_v \cong \text{GL}_2(F_v) \text{ over } \mathbb{F} \text{ with central character } \psi := \omega \text{det}(\bar{r}_v) \ (\omega := \text{cyclo mod } p).$$
Some known results
Quick review of past results
Statement of the main theorem
Some ideas on the proof

Some known results

Theorem 1 (Emerton, building on Colmez, B., Kisin, Berger,...)

Assume $F = \mathbb{Q}$ and $D = \text{GL}_2$, then $\pi_v(\bar{r})$ is known. In particular:

- $\text{GK}(\pi_v(\bar{r})) = 1$
- $\pi_v(\bar{r})$ is of finite length
- $\pi_v(\bar{r})$ is local, i.e. only depends on \bar{r}_v.
Some known results

Theorem 1 (Emerton, building on Colmez, B., Kisin, Berger,...)

Assume $F = \mathbb{Q}$ and $D = \mathrm{GL}_2$, then $\pi_v(\overline{r})$ is known. In particular:

- $\mathrm{GK}(\pi_v(\overline{r})) = 1$
- $\pi_v(\overline{r})$ is of finite length
- $\pi_v(\overline{r})$ is local, i.e. only depends on \overline{r}_v.

(Should in fact hold as soon as $F_v = \mathbb{Q}_p$, as then $D_v \cong \mathrm{GL}_2(\mathbb{Q}_p)$.)
Some known results

Theorem 1 (Emerton, building on Colmez, B., Kisin, Berger,...)

Assume $F = \mathbb{Q}$ and $D = \text{GL}_2$, then $\pi_v(\bar{r})$ is known. In particular:

- $\text{GK}(\pi_v(\bar{r})) = 1$
- $\pi_v(\bar{r})$ is of finite length
- $\pi_v(\bar{r})$ is local, i.e. only depends on \bar{r}_v.

(Should in fact hold as soon as $F_v = \mathbb{Q}_p$, as then $D_v \cong \text{GL}_2(\mathbb{Q}_p)$.)

For $n \geq 1$ let $K_v(n) := 1 + p^n M_2(\mathcal{O}_{F_v}) \subset K_v := \mathcal{O}_{D_v}^\times \cong \text{GL}_2(\mathcal{O}_{F_v})$.
Some known results

Theorem 1 (Emerton, building on Colmez, B., Kisin, Berger,...)

Assume $F = \mathbb{Q}$ and $D = \text{GL}_2$, then $\pi_v(\bar{r})$ is known. In particular:

- $\text{GK}(\pi_v(\bar{r})) = 1$
- $\pi_v(\bar{r})$ is of finite length
- $\pi_v(\bar{r})$ is local, i.e. only depends on \bar{r}_v.

(Should in fact hold as soon as $F_v = \mathbb{Q}_p$, as then $D_v \cong \text{GL}_2(\mathbb{Q}_p)$.)

For $n \geq 1$ let $K_v(n) := 1 + p^n M_2(O_{F_v}) \subset K_v := O_{D_v}^\times \cong \text{GL}_2(O_{F_v})$.

Definition 1 (Gelfand-Kirillov dimension)

Let π_v be a smooth admissible representation of $K_v(1)$ over \mathbb{F}.

There exists a unique $\text{GK}(\pi_v) \in \{0, \ldots, \dim_{\mathbb{Z}_p}(K_v)\}$ such that there are $a \leq b$ in $\mathbb{R}_{>0}$ with $a \leq \frac{\dim_{\mathbb{F}}(\pi_v^{K_v(n)})}{p^n \text{GK}(\pi_v)} \leq b$ for all $n \geq 1$.
Let:

- $f := [F_v : \mathbb{Q}_p]$, $q := p^f$, $K := K_v$, $K(1) := K_v(1)$
- $\Gamma := K/K(1) \cong \text{GL}_2(\mathbb{F}_q)$, $Z(1) := \text{center of } K(1)$
- $m_K := \text{maximal ideal of Iwasawa algebra } \mathbb{F}[[K(1)/Z(1)]]$.

Note that $Z(1)$ acts trivially on $\pi_v(r)$ as $\psi|_{Z(1)} = 1$. For arbitrary F, D and r (as before), one has the following:

Theorem 2 (Emerton-Gee-Savitt, Le, Hu-Wang, Le-Morra-Schraen, building on B.-Paškūnas and Buzzard-Diamond-Jarvis)

The finite-dimensional Γ-representation $\pi_v(r)_{K(1)} = \pi_v(r)[m_K]$ is explicitly known, in particular is local and multiplicity free. If $D_v \neq \text{GL}_2(\mathbb{Q}_p)$ none of the statements in Theorem 1 are known.
Some known results

Let:

- $f := [F_v : \mathbb{Q}_p]$, $q := p^f$, $K := K_v$, $K(1) := K_v(1)$
- $\Gamma := K/K(1) \cong \text{GL}_2(\mathbb{F}_q)$, $Z(1) := \text{center of } K(1)$
- $m_K := \text{maximal ideal of Iwasawa algebra } \mathbb{F}[[K(1)/Z(1)]]$

Note that $Z(1)$ acts trivially on $\pi_v(\bar{r})$ as $\psi|_{Z(1)} = 1$.

For arbitrary F, D and r (as before), one has the following:

Theorem 2 (Emerton-Gee-Savitt, Le, Hu-Wang, Le-Morra-Schraen, building on B.-Paškūnas and Buzzard-Diamond-Jarvis)

The finite-dimensional Γ-representation $\pi_v(r)_{K(1)} = \pi_v(r)_{m_K}$ is explicitly known, in particular is local and multiplicity free.

If $D_v \neq \text{GL}_2(\mathbb{Q}_p)$ none of the statements in Theorem 1 are known.
Some known results

Let:
- \(f := [F_v : \mathbb{Q}_p] \), \(q := p^f \), \(K := K_v \), \(K(1) := K_v(1) \)
- \(\Gamma := K/K(1) \cong \text{GL}_2(\mathbb{F}_q) \), \(Z(1) := \text{center of } K(1) \)
- \(\mathfrak{m}_K := \text{maximal ideal of Iwasawa algebra } \mathbb{F}[[K(1)/Z(1)]] \).

Note that \(Z(1) \) acts trivially on \(\pi_v(\overline{\rho}) \) as \(\psi|_{Z(1)} = 1 \).

For arbitrary \(F, D \) and \(\overline{\rho} \) (as before), one has the following:

Theorem 2 (Emerton-Gee-Savitt, Le, Hu-Wang, Le-Morra-Schraen, building on B.-Paškūnas and Buzzard-Diamond-Jarvis)

The finite-dimensional \(\Gamma \)-representation \(\pi_v(\overline{\rho})^{K(1)} = \pi_v(\overline{\rho})[\mathfrak{m}_K] \) is explicitly known, in particular is local and multiplicity free.
Quick review of past results
Statement of the main theorem
Some ideas on the proof

Some known results

Let:

- $f := [F_v : \mathbb{Q}_p], \ q := p^f, \ K := K_v, \ K(1) := K_v(1)$
- $\Gamma := K/K(1) \cong \text{GL}_2(\mathbb{F}_q), \ Z(1) := \text{center of } K(1)$
- $\mathfrak{m}_K := \text{maximal ideal of Iwasawa algebra } \mathbb{F}[[K(1)/Z(1)]]$.

Note that $Z(1)$ acts trivially on $\pi_v(\bar{r})$ as $\psi|_{Z(1)} = 1$.

For arbitrary $F, \ D$ and \bar{r} (as before), one has the following:

Theorem 2 (Emerton-Gee-Savitt, Le, Hu-Wang, Le-Morra-Schraen, building on B.-Paškūnas and Buzzard-Diamond-Jarvis)

The finite-dimensional Γ-representation $\pi_v(\bar{r})^{K(1)} = \pi_v(\bar{r})[\mathfrak{m}_K]$ is explicitly known, in particular is local and multiplicity free.

If $D_v \neq \text{GL}_2(\mathbb{Q}_p)$ none of the statements in Theorem 1 are known.
Quick review of past results

Statement of the main theorem

Some ideas on the proof
Hypothesis on \bar{r}_v
Hypothesis on \overline{r}_v

Fix an embedding $\mathbb{F}_{q^2} \hookrightarrow \mathbb{F}$ and let $\omega_f, \omega_{2f} :=$ associated Serre’s fundamental characters of level $f, 2f$ of inertia subgroup I_v.

\[\rho \text{ reducible: } \rho \mid_{I_v} \sim = (\omega (r_0 + 1) + \cdots + p_f - 1 (r_f - 1 + 1)) \otimes \omega^* \]

for some r_i with $8 \leq r_i \leq p_f - 11$ ($\Rightarrow p \geq 19$).

\[\rho \text{ irreducible: } \rho \mid_{I_v} \sim = (\omega (r_0 + 1) + \cdots + p_f - 1 (r_f - 1 + 1)) \otimes \omega^* \]

for $9 \leq r_0 \leq p_f - 10$ and $8 \leq r_i \leq p_f - 11$ if $i > 0$.

This strong genericity assumption on ρ is not optimized!
Hypothesis on \overline{r}_v

Fix an embedding $\mathbb{F}_{q^2} \hookrightarrow \mathbb{F}$ and let $\omega_f, \omega_{2f} := \text{associated Serre's fundamental characters of level } f, 2f$ of inertia subgroup I_v.

We set $\overline{\rho} := \overline{r}_v$ and assume $\overline{\rho}$ is semi-simple such that:
Hypothesis on \tilde{r}_v

Fix an embedding $\mathbb{F}_{q^2} \hookrightarrow \mathbb{F}$ and let $\omega_f, \omega_{2f} :=$ associated Serre’s fundamental characters of level $f, 2f$ of inertia subgroup I_v. We set $\bar{\rho} := \tilde{r}_v$ and assume $\bar{\rho}$ is semi-simple such that:

- $\bar{\rho}$ reducible: $\bar{\rho}|_{I_v} \cong \begin{pmatrix} \omega_f^{(r_0+1)+\ldots+p^{f-1}(r_f-1+1)} & 0 \\ 0 & 1 \end{pmatrix} \otimes \omega_f^*$

for some r_i with $8 \leq r_i \leq p - 11 \ (\Rightarrow p \geq 19)$
Hypothesis on \bar{r}_v

Fix an embedding $\mathbb{F}_{q^2} \hookrightarrow \mathbb{F}$ and let $\omega_f, \omega_{2f} :=$ associated Serre’s fundamental characters of level f, $2f$ of inertia subgroup I_v.

We set $\bar{\rho} := \bar{r}_v$ and assume $\bar{\rho}$ is semi-simple such that:

- $\bar{\rho}$ reducible: $\bar{\rho}|_{I_v} \cong \begin{pmatrix} \omega_f^{(r_0+1)+\cdots+p^{f-1}(r_{f-1}+1)} & 0 \\ 0 & 1 \end{pmatrix} \otimes \omega_f^*$ for some r_i with $8 \leq r_i \leq p - 11 \ (\Rightarrow p \geq 19)$

- $\bar{\rho}$ irreducible: $\bar{\rho}|_{I_v} \cong \begin{pmatrix} \omega_{2f}^{(r_0+1)+\cdots+p^{f-1}(r_{f-1}+1)} & 0 \\ 0 & \omega_{2f}^{q \text{ (same)}} \end{pmatrix} \otimes \omega_f^*$ for $9 \leq r_0 \leq p - 10$ and $8 \leq r_i \leq p - 11$ if $i > 0$.
Hypothesis on \overline{r}_v

Fix an embedding $\mathbb{F}_{q^2} \hookrightarrow \mathbb{F}$ and let ω_f, $\omega_{2f} :=$ associated Serre’s fundamental characters of level f, $2f$ of inertia subgroup I_v.

We set $\overline{\rho} := \overline{r}_v$ and assume $\overline{\rho}$ is semi-simple such that:

- $\overline{\rho}$ reducible: $\overline{\rho} |_{I_v} \cong \begin{pmatrix} \omega_f^{(r_0+1) + \cdots + p^{f-1}(r_{f-1}+1)} & 0 \\ 0 & 1 \end{pmatrix} \otimes \omega^*_f$

 for some r_i with $8 \leq r_i \leq p - 11$ ($\Rightarrow p \geq 19$)

- $\overline{\rho}$ irreducible: $\overline{\rho} |_{I_v} \cong \begin{pmatrix} \omega_{2f}^{(r_0+1) + \cdots + p^{f-1}(r_{f-1}+1)} & 0 \\ 0 & \omega_{2f}^{q(same)} \end{pmatrix} \otimes \omega^*_f$

 for $9 \leq r_0 \leq p - 10$ and $8 \leq r_i \leq p - 11$ if $i > 0$.

This strong genericity assumption on $\overline{\rho}$ is not optimized!
Main result

Theorem 3

With the previous assumptions on F, D, r and ρ, we have:

$$GK(\pi v(r)) = f.$$

Remarks

The assumptions on ρ should (conjecturally) be unnecessary, i.e. one should have $GK(\pi v(r)) = f$ for F, D, r as before.

Gee-Newton proved (without the assumptions on ρ) that $GK(\pi v(r)) \geq f$, so our main result is $GK(\pi v(r)) \leq f$.

Even under the assumptions on ρ, we do not know if $\pi v(r)$ is of finite length or if $\pi v(r)$ is local.

C. Breuil, F. Herzig, Y. Hu, S. Morra and B. Schraen

On modular representations of $GL_2(L)$ for unramified L
Main result

Theorem 3

With the previous assumptions on F, D, \bar{r} and $\bar{\rho}$, we have:

$$GK(\pi_v(\bar{r})) = f.$$
Main result

Theorem 3

With the previous assumptions on F, D, \bar{r} and $\bar{\rho}$, we have:

$$GK(\pi_v(\bar{r})) = f.$$

Remarks

- The assumptions on $\bar{\rho}$ should (conjecturally) be unnecessary, i.e. one should have $GK(\pi_v(\bar{r})) = f$ for F, D, \bar{r} as before.
Theorem 3

With the previous assumptions on F, D, \bar{r} and $\bar{\rho}$, we have:

$$\text{GK}(\pi_v(\bar{r})) = f.$$

Remarks

- The assumptions on $\bar{\rho}$ should (conjecturally) be unnecessary, i.e. one should have $\text{GK}(\pi_v(\bar{r})) = f$ for F, D, \bar{r} as before.
- Gee-Newton proved (without the assumptions on $\bar{\rho}$) that $\text{GK}(\pi_v(\bar{r})) \geq f$, so our main result is $\text{GK}(\pi_v(\bar{r})) \leq f$.
Main result

Theorem 3
With the previous assumptions on F, D, \bar{r} and $\bar{\rho}$, we have:

$$GK(\pi_v(\bar{r})) = f.$$

Remarks

- The assumptions on $\bar{\rho}$ should (conjecturally) be unnecessary, i.e. one should have $GK(\pi_v(\bar{r})) = f$ for F, D, \bar{r} as before.
- Gee-Newton proved (without the assumptions on $\bar{\rho}$) that $GK(\pi_v(\bar{r})) \geq f$, so our main result is $GK(\pi_v(\bar{r})) \leq f$.
- Even under the assumptions on $\bar{\rho}$, we do not know if $\pi_v(\bar{r})$ is of finite length or if $\pi_v(\bar{r})$ is local.
Quick review of past results

Statement of the main theorem

Some ideas on the proof
First intermediate theorem

We first prove the following extension of Theorem 2 (much harder):

Theorem 4

The smooth finite-dimensional K-representation $\pi_v(r)[m_2K]$ is explicitly known, in particular is local and multiplicity free.

Let:

$I := \{g \in K, g \equiv (\ast \ast 0 \ast) \mod p\} = \text{Iwahori}$

$I(1) := \{g \in K, g \equiv (1 \ast 0 1) \mod p\} = \text{pro-Iwahori}$

$m_I := \text{maximal ideal of Iwasawa algebra } F[[I(1)/Z(1)]]$.

Corollary 1

The smooth finite-dimensional I-representation $\pi_v(r)[m_3I]$ is multiplicity free.
We first prove the following extension of Theorem 2 (much harder):

Theorem 4

The smooth finite-dimensional K-representation $\pi_v(\bar{r})[m^2_k]$ is explicitly known, in particular is local and multiplicity free.
First intermediate theorem

We first prove the following extension of Theorem 2 (much harder):

Theorem 4

The smooth finite-dimensional K-representation $\pi_v(\bar{r})[m_K^2]$ is explicitly known, in particular is local and multiplicity free.

Let:

- $I := \{g \in K, g \equiv (\ast \ast) \mod p\} = \text{Iwahori}$
- $I(1) := \{g \in K, g \equiv (1 \ast) \mod p\} = \text{pro-}p \text{ Iwahori}$
- $m_I := \text{maximal ideal of Iwasawa algebra } \mathbb{F}[[I(1)/Z(1)]]$.
First intermediate theorem

We first prove the following extension of Theorem 2 (much harder):

Theorem 4

The smooth finite-dimensional K-representation $\pi_v(\overline{r})[m_K^2]$ is explicitly known, in particular is local and multiplicity free.

Let:

- $I := \{ g \in K, g \equiv (\ast, \ast) \mod p \} = \text{Iwahori}$
- $I(1) := \{ g \in K, g \equiv (1, 0, 0, 1) \mod p \} = \text{pro-p Iwahori}$
- $m_I := \text{maximal ideal of Iwasawa algebra } \mathbb{F}[\![I(1)/Z(1)]\!]$.

Corollary 1

The smooth finite-dimensional I-representation $\pi_v(\overline{r})[m_I^3]$ is multiplicity free.
Second intermediate theorem

Let π_v be a smooth admissible representation of $I/Z(1)$ over F such that $\pi_v |_{I^3}$ is multiplicity free. Then $GK(\pi_v) \leq f$.

It then directly follows from Corollary 1 and Theorem 5:

Corollary 2

We have $GK(\pi_v(r)) \leq f$.

Using Gee-Newton for the reverse inequality, one gets Theorem 4.
Theorem 5

Let π_v be a smooth admissible representation of $I/Z(1)$ over \mathbb{F} such that $\pi_v[m_I^3]$ is multiplicity free. Then $GK(\pi_v) \leq f$.

It then directly follows from Corollary 1 and Theorem 5:

Corollary 2

We have $GK(\pi_v(r)) \leq f$.

Using Gee-Newton for the reverse inequality, one gets Theorem 4.
Theorem 5

Let π_v be a smooth admissible representation of $I/Z(1)$ over \mathbb{F} such that $\pi_v[m_i^3]$ is multiplicity free. Then $GK(\pi_v) \leq f$.

It then directly follows from Corollary 1 and Theorem 5:

Corollary 2

We have $GK(\pi_v(\overline{r})) \leq f$.
Theorem 5

Let π_v be a smooth admissible representation of $I/\mathbb{Z}(1)$ over \mathbb{F} such that $\pi_v[m_i]$ is multiplicity free. Then $GK(\pi_v) \leq f$.

It then directly follows from Corollary 1 and Theorem 5:

Corollary 2

We have $GK(\pi_v(\overline{r})) \leq f$.

Using Gee-Newton for the reverse inequality, one gets Theorem 4.
Proof of second intermediate theorem

Let \(\pi \lor v : = \text{Hom}_F(\pi v, F) \), then \(\pi \lor v / mI = (\pi I(1)v) \lor = \oplus \alpha \chi_\alpha \) for some characters \(\chi_\alpha : I/I(1) \to F \times \).

Let \(\text{Proj}_I\chi_\alpha : = \chi_\alpha \otimes F F[I/I(1)] = \text{projective envelope of } \chi_\alpha \text{ in the category of compact } F[I/I(1)]\text{-modules}. \)

As \(\chi_\alpha \) does not appear in \(mI \pi \lor v \) (by assumption), one proves there exist \(I\text{-equivariant maps } h_\alpha : (\text{Proj}_I\chi_\alpha) \oplus 2f \to \text{Proj}_I\chi_\alpha \) s.t.:

\[\text{image}(h_\alpha) \subseteq m^2I \text{Proj}_I\chi_\alpha. \]

The map \((\text{Proj}_I\chi_\alpha / mI) \oplus 2f \to m^2I \text{Proj}_I\chi_\alpha / m^3I \) is injective. \(\pi \lor v \) is a quotient of \(\oplus \alpha \text{coker}(h_\alpha) \).

Thm. 5 then follows from \(\text{GK}(\pi v) \leq \max \alpha \text{GK}(\text{coker}(h_\alpha) \lor) \).

Proposition 1 We have \(\text{GK}(\text{coker}(h_\alpha) \lor) \leq f(\text{calculation in } \text{gr}_I F F[I/I(1)]). \)
Proof of second intermediate theorem

Let $\pi_v^\vee := \text{Hom}_F(\pi_v, F)$, then $\pi_v^\vee / \mathfrak{m}_I = (\pi_v^{l(1)})^\vee = \bigoplus \alpha \chi_\alpha$ for some characters $\chi_\alpha : \mathcal{I}/\mathcal{I}^{l(1)} \to F^\times$.
Proof of second intermediate theorem

Let $\pi_v^\vee := \text{Hom}_F(\pi_v, F)$, then $\pi_v^\vee / m_I = (\pi_v^\vee)^{(1)} = \bigoplus \alpha \chi_\alpha$ for some characters $\chi_\alpha : I/I(1) \to \mathbb{F}^\times$.

Let $\text{Proj}_I \chi_\alpha := \chi_\alpha \otimes_F F[[I(1)/Z(1)]] = \text{projective envelope of } \chi_\alpha$ in the category of compact $F[[I/Z(1)]]$-modules.
Proof of second intermediate theorem

Let $\pi^\vee := \text{Hom}_F(\pi, F)$, then $\pi^\vee / m_l = (\pi^l(1))^\vee = \bigoplus \chi_\alpha$ for some characters $\chi_\alpha : l/l(1) \to F^\times$.

Let $\text{Proj}_l \chi_\alpha := \chi_\alpha \otimes_F F[[l(1)/Z(1)]] = \text{projective envelope of } \chi_\alpha$ in the category of compact $F[[l/Z(1)]]$-modules.

As χ_α does not appear in $m_l \pi^\vee / m_l^3 \pi^\vee$ (by assumption), one proves there exist l-equivariant maps $h_\alpha : (\text{Proj}_l \chi_\alpha)^{\oplus 2f} \to \text{Proj}_l \chi_\alpha$ s.t.:
Proof of second intermediate theorem

Let $\pi_v^\vee := \text{Hom}_F(\pi_v, F)$, then $\pi_v^\vee / m_I = (\pi_v^{l(1)})^\vee = \bigoplus \chi_\alpha$ for some characters $\chi_\alpha : I/I(1) \to F^\times$.

Let $\text{Proj}_I\chi_\alpha := \chi_\alpha \otimes_F F[[I(1)/Z(1)]] = \text{projective envelope of } \chi_\alpha$ in the category of compact $F[[I/Z(1)]]$-modules.

As χ_α does not appear in $m_I\pi_v^\vee / m_I^3\pi_v^\vee$ (by assumption), one proves there exist I-equivariant maps $h_\alpha : (\text{Proj}_I\chi_\alpha)^{\oplus 2^f} \to \text{Proj}_I\chi_\alpha$ s.t.:

- $\text{image}(h_\alpha) \subseteq m_I^2\text{Proj}_I\chi_\alpha$
Proof of second intermediate theorem

Let $\pi_v^\vee := \text{Hom}_F(\pi_v, F)$, then $\pi_v^\vee / m_I = (\pi_v^l(1))^\vee = \bigoplus \chi_\alpha$ for some characters $\chi_\alpha : I/I(1) \to F^\times$.

Let $\text{Proj}_I \chi_\alpha := \chi_\alpha \otimes_F F[[I(1)/Z(1)]] = \text{projective envelope of } \chi_\alpha$ in the category of compact $F[[I/Z(1)]]$-modules.

As χ_α does not appear in $m_I \pi_v^\vee / m_I^3 \pi_v^\vee$ (by assumption), one proves there exist l-equivariant maps $h_\alpha : (\text{Proj}_I \chi_\alpha)^{\oplus 2} \to \text{Proj}_I \chi_\alpha$ s.t.:

- $\text{image}(h_\alpha) \subseteq m_I^2 \text{Proj}_I \chi_\alpha$
- The map $(\text{Proj}_I \chi_\alpha / m_I)^{\oplus 2} \to m_I^2 \text{Proj}_I \chi_\alpha / m_I^3$ is injective
Proof of second intermediate theorem

Let $\pi_v^\vee := \text{Hom}_F(\pi_v, F)$, then $\pi_v^\vee / m_l = (\pi_v^{l(1)})^\vee = \bigoplus \chi_\alpha$ for some characters $\chi_\alpha : I/I(1) \to F^\times$.

Let $\text{Proj}_l \chi_\alpha := \chi_\alpha \otimes_F F[[I(1)/Z(1)]] = $ projective envelope of χ_α in the category of compact $F[[I/Z(1)]]$-modules.

As χ_α does not appear in $m_l \pi_v^\vee / m_l^3 \pi_v^\vee$ (by assumption), one proves there exist l-equivariant maps $h_\alpha : (\text{Proj}_l \chi_\alpha)^{\oplus 2f} \to \text{Proj}_l \chi_\alpha$ s.t.:

- $\text{image}(h_\alpha) \subseteq m_l^2 \text{Proj}_l \chi_\alpha$
- the map $(\text{Proj}_l \chi_\alpha / m_l)^{\oplus 2f} \to m_l^2 \text{Proj}_l \chi_\alpha / m_l^3$ is injective
- π_v^\vee is a quotient of $\bigoplus \alpha \text{coker}(h_\alpha)$.
Proof of second intermediate theorem

Let $\pi^\vee_v := \text{Hom}_F(\pi_v, F)$, then $\pi^\vee_v / m_l = (\pi^l_v)^\vee = \bigoplus \alpha \chi_\alpha$ for some characters $\chi_\alpha : l/l(1) \to F^\times$.

Let $\text{Proj}_l \chi_\alpha := \chi_\alpha \otimes_F F[[l(1)/Z(1)]] = \text{projective envelope of } \chi_\alpha$ in the category of compact $F[[l/Z(1)]]$-modules.

As χ_α does not appear in $m_l \pi^\vee_v / m_l^3 \pi^\vee_v$ (by assumption), one proves there exist l-equivariant maps $h_\alpha : (\text{Proj}_l \chi_\alpha)^{\oplus 2f} \to \text{Proj}_l \chi_\alpha$ s.t.:

- $\text{image}(h_\alpha) \subseteq m_l^2 \text{Proj}_l \chi_\alpha$
- the map $(\text{Proj}_l \chi_\alpha / m_l)^{\oplus 2f} \to m_l^2 \text{Proj}_l \chi_\alpha / m_l^3$ is injective
- π^\vee_v is a quotient of $\bigoplus \alpha \text{coker}(h_\alpha)$.

Thm. 5 then follows from $\text{GK}(\pi_v) \leq \max_\alpha \text{GK}(\text{coker}(h_\alpha)^\vee)$ and:

\[\text{Proposition 1} \]
We have $\text{GK}(\text{coker}(h_\alpha)^\vee) \leq f(\text{calculation in } \text{gr} F[[l/Z(1)]])$.

C. Breuil, F. Herzig, Y. Hu, S. Morra and B. Schraen

On modular representations of $\text{GL}_2(L)$ for unramified L.

\[\text{C. Breuil, F. Herzig, Y. Hu, S. Morra and B. Schraen} \]

\[\text{On modular representations of } \text{GL}_2(L) \text{ for unramified } L \]
Proof of second intermediate theorem

Let \(\pi_v^\vee := \text{Hom}_F(\pi_v, F) \), then \(\pi_v^\vee / \mathfrak{m}_I = (\pi_v^{I(1)})^\vee = \bigoplus \chi_\alpha \) for some characters \(\chi_\alpha : I/I(1) \to F^\times \).

Let \(\text{Proj}_I \chi_\alpha := \chi_\alpha \otimes_F F[[I(1)/Z(1)]] \) = projective envelope of \(\chi_\alpha \) in the category of compact \(F[[I/Z(1)]] \)-modules.

As \(\chi_\alpha \) does not appear in \(\mathfrak{m}_I \pi_v^\vee / \mathfrak{m}_I^3 \pi_v^\vee \) (by assumption), one proves there exist \(I \)-equivariant maps \(h_\alpha : (\text{Proj}_I \chi_\alpha)^{\oplus 2f} \to \text{Proj}_I \chi_\alpha \) s.t.:

- \(\text{image}(h_\alpha) \subseteq \mathfrak{m}_I^2 \text{Proj}_I \chi_\alpha \)
- the map \((\text{Proj}_I \chi_\alpha / \mathfrak{m}_I)^{\oplus 2f} \to \mathfrak{m}_I^2 \text{Proj}_I \chi_\alpha / \mathfrak{m}_I^3 \) is injective
- \(\pi_v^\vee \) is a quotient of \(\bigoplus \alpha \text{coker}(h_\alpha) \).

Thm. 5 then follows from \(\text{GK}(\pi_v) \leq \max \alpha \text{GK}(\text{coker}(h_\alpha)^{\vee}) \) and:

Proposition 1

We have \(\text{GK}(\text{coker}(h_\alpha)^{\vee}) \leq f \) (calculation in \(\text{gr}_{\mathfrak{m}_I} F[[I(1)/Z(1)]] \)).
Proof of first intermediate theorem
Proof of first intermediate theorem

Let:

- σ a Serre weight (\(= \) irreducible representation of Γ over \mathbb{F})
Proof of first intermediate theorem

Let:

- \(\sigma \) a Serre weight (= irreducible representation of \(\Gamma \) over \(\mathbb{F} \))
- \(\text{Proj}_{K} \sigma := \) projective envelope of \(\sigma \) in category of compact \(\mathbb{F}[[K/Z(1)]] \)-modules
Proof of first intermediate theorem

Let:

- σ a Serre weight (= irreducible representation of Γ over \mathbb{F})
- $\text{Proj}_K \sigma :=$ projective envelope of σ in category of compact $\mathbb{F}[[K/Z(1)]]$-modules

Enough to prove: $\dim_{\mathbb{F}} \text{Hom}_K(\text{Proj}_K \sigma / m_K^2, \pi_v(\bar{r})) \leq 1$.
Proof of first intermediate theorem

Let:

- σ a Serre weight (irreducible representation of Γ over \mathbb{F})
- $\text{Proj}_K\sigma$:= projective envelope of σ in category of compact $\mathbb{F}[[K/Z(1)]]$-modules

Enough to prove: $\dim_{\mathbb{F}} \text{Hom}_K(\text{Proj}_K\sigma/\mathfrak{m}_K^2, \pi_v(\bar{r})) \leq 1$.

Can assume $\text{Hom}_K(\sigma, \pi_v(\bar{r})) \neq 0$ (i.e. $\sigma =$ Serre weight of $\bar{\rho}$).
Proof of first intermediate theorem

Let:

- \(\sigma \) a Serre weight (= irreducible representation of \(\Gamma \) over \(\mathbb{F} \))
- \(\text{Proj}_K \sigma \) := projective envelope of \(\sigma \) in category of compact \(\mathbb{F}[[K/Z(1)]] \)-modules

Enough to prove: \(\dim_{\mathbb{F}} \text{Hom}_K(\text{Proj}_K \sigma / \mathfrak{m}_K^2, \pi_v(\overline{r})) \leq 1 \).

Can assume \(\text{Hom}_K(\sigma, \pi_v(\overline{r})) \neq 0 \) (i.e. \(\sigma = \) Serre weight of \(\overline{\rho} \)).

Main tool: patching functor \(M_\infty \) of Emerton-Gee-Savitt (building on Taylor-Wiles, Kisin) = exact functor from continuous repres. of \(K \) over finite type \(W(\mathbb{F}) \)-modules + central character lifting \(\psi \) to finite type \(R_\infty \)-modules satisfying several properties (cf. E.-G.-S.).

\(R_\infty = \) patched deformation ring = power series ring over \(W(\mathbb{F}) \).
Proof of first intermediate theorem

Let:

\[m_\infty := \text{maximal ideal of } R_\infty \]
Proof of first intermediate theorem

Let:

- $m_\infty :=$ maximal ideal of R_∞
- $V :=$ any finite dimensional representation of K over \mathbb{F}
Proof of first intermediate theorem

Let:
- $m_\infty :=$ maximal ideal of R_∞
- $V :=$ any finite dimensional representation of K over \mathbb{F}

from the construction of M_∞ one gets:

$$\text{Hom}_F(M_\infty(V)/m_\infty, \mathbb{F}) \cong \text{Hom}_K(V, \pi_V(\bar{r})).$$
Proof of first intermediate theorem

Let:

- \(m_\infty := \text{maximal ideal of } R_\infty \)
- \(V := \text{any finite dimensional representation of } K \text{ over } F \)

from the construction of \(M_\infty \) one gets:

\[
\text{Hom}_F(M_\infty(V)/m_\infty, F) \cong \text{Hom}_K(V, \pi_V(\bar{r})).
\]

Hence Theorem 4 (multiplicity free part) follows from:

Theorem 6

The \(R_\infty \)-module \(M_\infty(\text{Proj}_K\sigma/m_K^2) \) is cyclic.

Equivalently \(M_\infty(\text{Proj}_K\sigma/m_K^2) \cong \text{quotient of } R_\infty. \)
Proof of first intermediate theorem

We now prove Theorem 6. First: need to describe $\text{Proj}_K \sigma / \mathfrak{m}_K^2$.
Proof of first intermediate theorem

We now prove Theorem 6. First: need to describe $\text{Proj}_K \sigma/m_K^2$.

Let:

- $\text{Proj}_\Gamma \sigma = \text{Proj}_K \sigma/m_K := \text{projective envelope of } \sigma \text{ in category of } \Gamma$-$\text{representations over } \mathbb{F}$
Proof of first intermediate theorem

We now prove Theorem 6. First: need to describe $\text{Proj}_K \sigma / m_K^2$.

Let:

- $\text{Proj}_\Gamma \sigma = \text{Proj}_K \sigma / m_K :=$ projective envelope of σ in category of Γ-representations over \mathbb{F}
- $V_2^\tau := (\text{Sym}^2(F^2) \otimes_F \text{det}^{-1})^\tau =$ algebraic representation of Γ via $\tau : F_q \hookrightarrow F$ (arbitrary embedding),
Proof of first intermediate theorem

We now prove Theorem 6. First: need to describe $\text{Proj}_K \sigma / m_K^2$.

Let:

- $\text{Proj}_\Gamma \sigma = \text{Proj}_K \sigma / m_K :=$ projective envelope of σ in category of Γ-representations over \mathbb{F}
- $V_2^\tau := (\text{Sym}^2(\mathbb{F}^2) \otimes_{\mathbb{F}} \text{det}^{-1})^\tau = \text{algebraic representation of } \Gamma$
 - via $\tau : \mathbb{F}_q \hookrightarrow \mathbb{F}$ (arbitrary embedding),

then $\text{Proj}_K \sigma / m_K^2$ is a non-split extension:

$$\text{Proj}_K \sigma / m_K^2 \cong (\bigoplus_\tau (V_2^\tau \otimes_{\mathbb{F}} \text{Proj}_\Gamma \sigma)) \rightarrow \text{Proj}_\Gamma \sigma.$$

C. Breuil, F. Herzig, Y. Hu, S. Morra and B. Schraen
On modular representations of $\text{GL}_2(L)$ for unramified L
We now prove Theorem 6. First: need to describe $\text{Proj}_K \sigma / \mathfrak{m}_K^2$.

Let:

- $\text{Proj}_\Gamma \sigma = \text{Proj}_K \sigma / \mathfrak{m}_K := \text{projective envelope of } \sigma \text{ in category of } \Gamma\text{-representations over } \mathbb{F}$
- $V_2^\tau := (\text{Sym}^2(\mathbb{F}^2) \otimes_{\mathbb{F}} \det^{-1})^\tau = \text{algebraic representation of } \Gamma$ via $\tau : \mathbb{F}_q \hookrightarrow \mathbb{F}$ (arbitrary embedding),

then $\text{Proj}_K \sigma / \mathfrak{m}_K^2$ is a non-split extension:

$$\text{Proj}_K \sigma / \mathfrak{m}_K^2 \cong (\bigoplus_{\tau} (V_2^\tau \otimes_{\mathbb{F}} \text{Proj}_\Gamma \sigma)) \cong \text{Proj}_\Gamma \sigma .$$

Moreover $V_2^\tau \otimes_{\mathbb{F}} \text{Proj}_\Gamma \sigma \cong \text{Proj}_\Gamma \sigma + 2\tau \oplus \text{Proj}_\Gamma \sigma \oplus \text{Proj}_\Gamma \sigma - 2\tau$.
We now prove Theorem 6. First: need to describe $\text{Proj}_K \sigma / m_K^2$.

Let:

- $\text{Proj}_\Gamma \sigma = \text{Proj}_K \sigma / m_K :=$ projective envelope of σ in category of Γ-representations over \mathbb{F}
- $V_2^\tau := (\text{Sym}^2(\mathbb{F}^2) \otimes_{\mathbb{F}} \text{det}^{-1})^\tau =$ algebraic representation of Γ via $\tau : \mathbb{F}_q \hookrightarrow \mathbb{F}$ (arbitrary embedding),

then $\text{Proj}_K \sigma / m_K^2$ is a non-split extension:

$$\text{Proj}_K \sigma / m_K^2 \cong \left(\oplus_\tau (V_2^\tau \otimes_{\mathbb{F}} \text{Proj}_\Gamma \sigma) \right) \hookrightarrow \text{Proj}_\Gamma \sigma.$$

Moreover $V_2^\tau \otimes_{\mathbb{F}} \text{Proj}_\Gamma \sigma \cong \text{Proj}_\Gamma \sigma_{+2\tau} \oplus \text{Proj}_\Gamma \sigma \oplus \text{Proj}_\Gamma \sigma_{-2\tau}$.

Let $Q_\tau :=$ unique quotient of $\text{Proj}_K \sigma / m_K^2$ which is a non-split extension $\left(\text{Proj}_\Gamma \sigma_{+2\tau} \oplus \text{Proj}_\Gamma \sigma_{-2\tau} \right) \hookrightarrow \text{Proj}_\Gamma \sigma$.

C. Breuil, F. Herzig, Y. Hu, S. Morra and B. Schraen
Proof of first intermediate theorem

To proceed, we lift the K-representation $\text{Proj}_K \sigma/m_K^2$ to $W(\mathbb{F})$.
Proof of first intermediate theorem

To proceed, we lift the K-representation $\text{Proj}_K \sigma / m_K^2$ to $W(F)$.

Let:

- $\widetilde{\text{Proj}}_{\Gamma} \sigma := \text{unique representation of } \Gamma \text{ lifting } \text{Proj}_{\Gamma} \sigma \text{ over } W(F)$
Proof of first intermediate theorem

To proceed, we lift the K-representation $\text{Proj}_K \sigma/m_K^2$ to $W(\mathbb{F})$.

Let:
- $\tilde{\text{Proj}}_{\Gamma} \sigma := \text{unique representation of } \Gamma \text{ lifting } \text{Proj}_{\Gamma} \sigma \text{ over } W(\mathbb{F})$
- $\tilde{V}_2^\tau := (\text{Sym}^2(W(\mathbb{F})^2) \otimes_{W(\mathbb{F})} \det^{-1})^\tau$.

C. Breuil, F. Herzig, Y. Hu, S. Morra and B. Schraen

On modular representations of $\text{GL}_2(L)$ for unramified L
Proof of first intermediate theorem

To proceed, we lift the K-representation $\text{Proj}_K\sigma/m_K^2$ to $W(\mathbb{F})$.

Let:
- $\widetilde{\text{Proj}}_\Gamma\sigma := \text{unique representation of } \Gamma \text{ lifting } \text{Proj}_\Gamma\sigma \text{ over } W(\mathbb{F})$
- $\widetilde{V}_2^\tau := (\text{Sym}^2(W(\mathbb{F})^2) \otimes W(\mathbb{F}) \det^{-1})^\tau$.

One can prove:

Proposition 3

(i) There is an invariant $W(\mathbb{F})$-lattice L_2^τ in $(\widetilde{V}_2^\tau \otimes W(\mathbb{F}) \widetilde{\text{Proj}}_\Gamma\sigma)[\frac{1}{p}]$ such that $L_2^\tau/p \cong Q_\tau$.
Proof of first intermediate theorem

To proceed, we lift the K-representation $\text{Proj}_K \sigma / m_K^2$ to $W(\mathbb{F})$.

Let:

- $\tilde{\text{Proj}}_{\Gamma} \sigma := \text{unique representation of } \Gamma \text{ lifting } \text{Proj}_{\Gamma} \sigma \text{ over } W(\mathbb{F})$
- $\tilde{V}_2^\tau := \left(\text{Sym}^2 (W(\mathbb{F})^2) \otimes_{W(\mathbb{F})} \text{det}^{-1} \right)^\tau$.

One can prove:

Proposition 3

(i) There is an invariant $W(\mathbb{F})$-lattice L_2^τ in $(\tilde{V}_2^\tau \otimes_{W(\mathbb{F})} \tilde{\text{Proj}}_{\Gamma} \sigma)[\frac{1}{p}]$ such that $L_2^\tau / p \cong Q_\tau$.

(ii) Let $L := \ker \left(\tilde{\text{Proj}}_{\Gamma} \sigma \oplus (\oplus_\tau L_2^\tau) \rightarrow (\text{Proj}_{\Gamma} \sigma)^f \right)$, then $L / p \cong \text{Proj}_K \sigma / m_K^2$.
Proof of first intermediate theorem

To proceed, we lift the K-representation $\text{Proj}_K\sigma/m^2_K$ to $W(\mathbb{F})$.

Let:
- $\widetilde{\text{Proj}}_\Gamma \sigma := \text{unique representation of } \Gamma \text{ lifting } \text{Proj}_\Gamma \sigma \text{ over } W(\mathbb{F})$
- $\widetilde{V}_2^\tau := (\text{Sym}^2(W(\mathbb{F})^2) \otimes W(\mathbb{F}) \det^{-1})^\tau$.

One can prove:

Proposition 3

(i) There is an invariant $W(\mathbb{F})$-lattice L_2^τ in $(\widetilde{V}_2^\tau \otimes W(\mathbb{F}) \widetilde{\text{Proj}}_\Gamma \sigma)[\frac{1}{p}]$ such that $L_2^\tau/p \cong Q_\tau$.

(ii) Let $L := \ker \left(\widetilde{\text{Proj}}_\Gamma \sigma \oplus (\bigoplus_\tau L_2^\tau) \longrightarrow (\text{Proj}_\Gamma \sigma) \oplus f \right)$, then $L/p \cong \text{Proj}_K \sigma/m^2_K$.

It is enough to prove that $M_\infty(L)$ is cyclic.
Proof of first intermediate theorem

We know $M_\infty(\widetilde{\text{Proj}}_\Gamma \sigma)$ is cyclic (Hu-Wang, Le-Morra-Schraen).
We know $M_{\infty}(\widetilde{\text{Proj}}_{\Gamma}\sigma)$ is cyclic (Hu-Wang, Le-Morra-Schraen).

Proposition 2

The R_{∞}-module $M_{\infty}(L_2^T/p)$, and hence $M_{\infty}(L_2^T)$, are cyclic.
Quick review of past results

Statement of the main theorem

Some ideas on the proof

Proof of first intermediate theorem

We know $M_{\infty} (\widetilde{\text{Proj}}_{\Gamma} \sigma)$ is cyclic (Hu-Wang, Le-Morra-Schraen).

Proposition 2

The R_{∞}-module $M_{\infty} (L_{2}^T/p)$, and hence $M_{\infty} (L_{2}^T)$, are cyclic.

The proof is by dévissage, using:

- $M_{\infty} (\sigma') \neq 0 \iff \sigma' \hookrightarrow \pi_v (\overline{r})[m_K] \iff \sigma'$ Serre weight of $\overline{\rho}$
- $M_{\infty} (\text{Proj}_{\Gamma} \sigma')$ cyclic (Hu-Wang, Le-Morra-Schraen)
- $M'' \subsetneq M' \subseteq M$ finite type R_{∞}-modules with M' cyclic, then M cyclic $\iff M / M''$ cyclic (E.-G.-S.).
Proof of first intermediate theorem

We know $M_{\infty}(\widetilde{\text{Proj}} \Gamma \sigma)$ is cyclic (Hu-Wang, Le-Morra-Schraen).

Proposition 2

The R_{∞}-module $M_{\infty}(L_2^\tau/p)$, and hence $M_{\infty}(L_2^\tau)$, are cyclic.

The proof is by dévissage, using:

- $M_{\infty}(\sigma') \neq 0 \iff \sigma' \hookrightarrow \pi_v(\overline{\rho})[m_K]$ ($\iff \sigma'$ Serre weight of $\overline{\rho}$)
- $M_{\infty}(\text{Proj}_\Gamma \sigma')$ cyclic (Hu-Wang, Le-Morra-Schraen)
- $M'' \subsetneq M' \subseteq M$ finite type R_{∞}-modules with M' cyclic, then M cyclic $\iff M/M''$ cyclic (E.-G.-S.).

Let $L_2^\tau := \ker (\widetilde{\text{Proj}} \Gamma \sigma \oplus L_2^\tau \rightarrow \text{Proj}_\Gamma \sigma) = \widetilde{\text{Proj}} \Gamma \sigma \times_{\text{Proj}_\Gamma \sigma} L_2^\tau$.
Proof of first intermediate theorem

We know $M_\infty(\widetilde{\text{Proj}}_\Gamma \sigma)$ is cyclic (Hu-Wang, Le-Morra-Schraen).

Proposition 2

The R_∞-module $M_\infty(L_2^\tau/p)$, and hence $M_\infty(L_2^\tau)$, are cyclic.

The proof is by dévissage, using:

- $M_\infty(\sigma') \neq 0 \iff \sigma' \hookrightarrow \pi_v(\bar{r})[m_K]$ ($\iff \sigma'$ Serre weight of $\bar{\rho}$)
- $M_\infty(\text{Proj}_\Gamma \sigma')$ cyclic (Hu-Wang, Le-Morra-Schraen)
- $M'' \subsetneq M' \subseteq M$ finite type R_∞-modules with M' cyclic, then M cyclic $\iff M/M''$ cyclic (E.-G.-S.).

Let $L_2^\tau := \ker (\widetilde{\text{Proj}}_\Gamma \sigma \oplus L_2^\tau \to \text{Proj}_\Gamma \sigma) = \widetilde{\text{Proj}}_\Gamma \sigma \times_{\text{Proj}_\Gamma \sigma} L_2^\tau$.

I explain why $M_\infty(L_2^\tau) = M_\infty(\widetilde{\text{Proj}}_\Gamma \sigma) \times_{M_\infty(\text{Proj}_\Gamma \sigma)} M_\infty(L_2^\tau)$ is cyclic. Proof for L can be reduced to this case by induction.
Proof of first intermediate theorem

Let $R_v := R^\square(\bar{\rho}) :=$ framed deformations of $\bar{\rho}$ (no conditions, but need to fix determinant lifting $\omega^{-1}\psi|_{\text{Gal}(\bar{F}_v/F_v)}$, I forget this here).
Proof of first intermediate theorem

Let $R_v := R^\square(\overline{\rho}) :=$ framed deformations of $\overline{\rho}$ (no conditions, but need to fix determinant lifting $\omega^{-1}\psi|_{\text{Gal}(F_v/F_v)}$, I forget this here).

By previous cyclicities (using $R_\infty \cong R_v[[x_1, \ldots, x_h]]$):

- $M_\infty(\widehat{\text{Proj}}_{\Gamma} \sigma) \cong (R_v/J)[[x_1, \ldots, x_h]]$
Proof of first intermediate theorem

Let $R_v := R\Box(\overline{\rho}) :=$ framed deformations of $\overline{\rho}$ (no conditions, but need to fix determinant lifting $\omega^{-1}\psi|_{\text{Gal}(\overline{F}_v/F_v)}$, I forget this here).

By previous cyclicities (using $R_{\infty} \cong R_v[[x_1, \ldots, x_h]]$):

- $M_{\infty}(\tilde{\text{Proj}}_{\Gamma}\sigma) \cong (R_v/J)[[x_1, \ldots, x_h]]$
- $M_{\infty}(L_2^\tau) \cong (R_v/J_\tau)[[x_1, \ldots, x_h]]$
Proof of first intermediate theorem

Let $R_v := R\boxtimes(\bar{\rho}) :=$ framed deformations of $\bar{\rho}$ (no conditions, but need to fix determinant lifting $\omega^{-1}\psi|_{\text{Gal}(F_v/F_v)}$, I forget this here).

By previous cyclicities (using $R_\infty \cong R_v[[x_1, \ldots, x_h]]$):

- $M_\infty(\widehat{\text{Proj}}_\Gamma_\sigma) \cong (R_v/J)[[x_1, \ldots, x_h]]$
- $M_\infty(L_2^\tau) \cong (R_v/J_\tau)[[x_1, \ldots, x_h]]$
- $M_\infty(\text{Proj}_\Gamma_\sigma) \cong (R_v/(p, J))[x_1, \ldots, x_h]]$
Proof of first intermediate theorem

Let $R_v := R^\square(\overline{\rho}) := \text{framed deformations of } \overline{\rho} \text{ (no conditions, but need to fix determinant lifting } \omega^{-1}\psi|_{\text{Gal}(F_v/F_v)}, \text{ I forget this here).}$

By previous cyclicities (using $R_\infty \cong R_v[[x_1, \ldots, x_h]]$):

- $M_\infty(\widetilde{\text{Proj}}_\Gamma \sigma) \cong (R_v/J)[[x_1, \ldots, x_h]]$
- $M_\infty(L_2^\tau) \cong (R_v/J_\tau)[[x_1, \ldots, x_h]]$
- $M_\infty(\text{Proj}_\Gamma \sigma) \cong (R_v/(p, J))[x_1, \ldots, x_h]]$

where:

- R_v/J parametrizes pot. cryst. lifts of $\overline{\rho}$ of any tame type whose reduction mod p contains σ and parallel HT weights $(1, 0)$
Proof of first intermediate theorem

Let $R_v := R_{\square}(\bar{\rho}) :=$ framed deformations of $\bar{\rho}$ (no conditions, but need to fix determinant lifting $\omega^{-1}\psi|_{\text{Gal}(\bar{F}/F)}$, I forget this here).

By previous cyclicities (using $R_{\infty} \cong R_v[[x_1, \ldots, x_h]]$):

- $M_{\infty}(\widehat{\text{Proj}}_{\Gamma} \sigma) \cong (R_v/J)[[x_1, \ldots, x_h]]$
- $M_{\infty}(L_2^\tau) \cong (R_v/J_\tau)[[x_1, \ldots, x_h]]$
- $M_{\infty}(\text{Proj}_{\Gamma} \sigma) \cong (R_v/(p, J))[x_1, \ldots, x_h]]$

where:

- R_v/J parametrizes pot. cryst. lifts of $\bar{\rho}$ of any tame type whose reduction mod p contains σ and parallel HT weights $(1, 0)$
- R_v/J_τ parametrizes pot. cryst. lifts of $\bar{\rho}$ of same tame types but HT weights $(1, 0)$ outside embedding τ, $(2, -1)$ at τ.
Needed: fiber product \((R_v/J) \times_{R_v/(p,J)} (R_v/J_\tau)\) is a quotient of \(R_v\).
Needed: fiber product \((R_v/J) \times_{R_v/(p,J)} (R_v/J_\tau)\) is a quotient of \(R_v\). This holds if and only if \(J + J_\tau = (p, J)\). Enough to prove \(p \in J + J_\tau\).
Needed: fiber product \((R_v/J) \times_{R_v/(p,J)} (R_v/J_\tau)\) is a quotient of \(R_v\).

This holds if and only if \(J+J_\tau = (p, J)\). Enough to prove \(p \in J+J_\tau\).

Can explicitly compute \(J\) and \(J_\tau\) mod \(p^2\) and check:

Lemma

We have \(p \in J + J_\tau\).
Needed: fiber product \((R_v/J) \times_{R_v/\langle p, J \rangle} (R_v/J_\tau)\) is a quotient of \(R_v\). This holds if and only if \(J + J_\tau = \langle p, J \rangle\). Enough to prove \(p \in J + J_\tau\).

Can explicitly compute \(J\) and \(J_\tau\) mod \(p^2\) and check:

Lemma

We have \(p \in J + J_\tau\).

This finishes the proof of main result!
One application
Theorem 7 (Dotto-Le, building on C.-E.-G.-G.-P.-S.)

There is a “big” patched module M_∞ finitely generated over $R_\infty[[\GL_2(O_{F_v})]] + \text{compatible action of } \GL_2(F_v)$ such that $M_\infty/m_\infty \cong \pi_v(\bar{r})^\vee$.
Theorem 7 (Dotto-Le, building on C.-E.-G.-G.-P.-S.)

There is a “big” patched module \mathcal{M}_∞ finitely generated over $R_\infty[[\text{GL}_2(\mathcal{O}_{F_v})]] + \text{compatible action of } \text{GL}_2(F_v)$ such that $\mathcal{M}_\infty/m_\infty \cong \pi_v(\bar{r})^\vee$.

Corollary of our main result

For any map $R_\infty \to \mathcal{O}_E$ of $W(F)$-algebras (where $[E : \mathbb{Q}_p] < \infty$), $(\mathcal{M}_\infty \otimes_{R_\infty} \mathcal{O}_E)^\vee[1/p] =$ non-zero admissible unitary continuous representation of $\text{GL}_2(F_v)$ over E with a unit ball lifting $\pi_v(\bar{r})$.
Quick review of past results
Statement of the main theorem
Some ideas on the proof

One application

Theorem 7 (Dotto-Le, building on C.-E.-G.-G.-P.-S.)

There is a “big” patched module \mathbb{M}_∞ finitely generated over $R_\infty[[\text{GL}_2(\mathcal{O}_{F_v})]]$ + compatible action of $\text{GL}_2(F_v)$ such that $\mathbb{M}_\infty/m_\infty \cong \pi_v(\bar{r})^\vee$.

Corollary of our main result

For any map $R_\infty \to \mathcal{O}_E$ of $W(\overline{F})$-algebras (where $[E : \mathbb{Q}_p] < \infty$), $(\mathbb{M}_\infty \otimes_{R_\infty} \mathcal{O}_E)^\vee[1/p] = \text{non-zero admissible unitary continuous representation of } \text{GL}_2(F_v) \text{ over } E \text{ with a unit ball lifting } \pi_v(\bar{r})$.

Proof: The module \mathbb{M}_∞ is CM over $R_\infty[[\text{GL}_2(\mathcal{O}_{F_v})]]$ (Gee-Newton) + $\text{GK}((\mathbb{M}_\infty/m_\infty)^\vee) = f$ (our main result) $\Rightarrow \mathbb{M}_\infty$ is flat over R_∞ (“Miracle Flatness” in non-commutative setting, see Gee-Newton).
Remarks

- The case $\overline{\rho}$ non semi-simple should work as well (Hu-Wang).
Remarks

- The case $\bar{\rho}$ non semi-simple should work as well (Hu-Wang).
- Hope to prove for suitable level K^ν:

$$
GK\left(\text{Hom}_{\text{Gal}(\overline{F}/F)}\left(\overline{r}, \lim_{\rightarrow K^\nu} H^1_{\text{ét}}(X_{K^\nu K^\nu} \times_F \overline{F}, \mathbb{F}) \right) \right) = f.
$$

Need to extend previous proof to cases without multiplicity 1.