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ABSTRACT

Time is like a river of passing
events, a rushing torrent. For as
soon as a thing has appeared, it
is swept away, and another comes
in its place, and this too will be
swept away.

M. Aurelius, Meditations (Book
V)

Algebraic Geometry studies algebraic varieties over complex numbers—the solution sets of
algebraic equations with complex coefficients. A key idea, promoted by Noether, is that
understanding a variety begins with examining its lower-dimensional subvarieties. After the
introduction of topological methods, Hodge, followed by Deligne and Griffiths, enhanced the
cohomology groups of these varieties with a C*-action, inspired by partial differential equations
and harmonic integrals. This C*-action, conjecturally, is crucial for understanding subvarieties
and hence the essential features of any variety.

Over the years this framework, closely linked to Grothendieck’s motives, has led to several
breakthroughs. When a variety evolves within a family (e.g., hypersurfaces of fixed degree), the
first step in understanding the C*-action is to study those with topological cycles invariant under
C*. This leads to the Hodge locus. Recent work, including mine, suggests that the behaviour
of the Hodge locus in variations of Hodge structures is governed by a simple codimension
computation, described as the "typical-vs-atypical" dichotomy. The atypical part connects with
insights from Arithmetic Geometry, model theory, Galois theory of foliations, and transcendence
theory. A significant outcome, demonstrated by Klingler, Ullmo, and myself, shows that the
Hodge locus of the moduli space of hypersurfaces with sufficiently high dimension and degree is a
finite union of algebraic subvarieties, and isolated points having lower-than-expected codimension.
In this document I survey the main ideas behind such works and various applications.

Beyond the standard Hodge theoretic setting (which includes the well-known and studied case
of the Noether-Lefschetz locus), the two most notable cases of study will be:

e representations of complex hyperbolic lattices,
e orbit closures inside strata of abelian differentials.

In particular, the Zilber-Pink philosophy for variations of mixed Hodge structures will be used as
a unifying principle to several finiteness results scattered in the literature. In the rest of the text
I will present my main results on the topic. I take this opportunity to simplify some parts of the
theory developed in those papers—e.g. there’s a first special case of the geometric ZP in [23], a
more general one (along the same lines) in [21] and the most general one in the later [24]. In
particular I tried to tell a simple story, with the sketch of the main arguments, in a historically
reversed order.

ABSTRACT (VERSION FRANCAISE)

La géométrie algébrique étudie les variétés algébriques sur les nombres complexes—les ensem-
bles de solutions d’équations algébriques a coeflicients complexes. Une idée clé, promue par
Noether, est que la compréhension d’'une variété commence par I’examen de ses sous-variétés de
dimension inférieure. Apres I'introduction des méthodes topologiques, Hodge, suivi par Deligne
et Griffiths, ont enrichi les groupes de cohomologie de ces variétés avec une action de C* inspirée
par les équations différentielles partielles et les intégrales harmoniques. Cette action de C*
est, conjecturalement, cruciale pour comprendre les sous-variétés et donc les caractéristiques
essentielles de toute variété.

Au fil des ans, ce cadre, étroitement lié aux motifs de Grothendieck, a conduit a plusieurs
percées. Lorsqu’une variété évolue au sein d’une famille (par exemple, les hypersurfaces de degré
fixe), la premiére étape pour comprendre I'action de C* est d’étudier celles ayant des cycles
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topologiques invariants sous C*. Cela conduit au lieu de Hodge. Des travaux récents, y compris
les miens, suggerent que le comportement du lieu de Hodge dans les variations de structures de
Hodge est gouverné par un simple calcul de codimension, décrit comme la dichotomie « typique
vs atypique ». La partie atypique est liée a des idées issues de la géométrie arithmétique, de la
théorie des modeles, de la théorie de Galois des feuilletages, et de la théorie de la transcendance.
Un résultat significatif, démontré par Klingler, Ullmo et moi-méme, montre que le lieu de Hodge
de l'espace des modules des hypersurfaces de dimension et de degré suffisamment élevés est une
union finie de sous-variétés algébriques, avec des points isolés de codimension inférieure a celle
attendue. Dans ce document, je présente les idées principales derriére ces travaux ainsi que
diverses applications.

Au-dela du cadre classique de la théorie de Hodge (qui inclut le cas bien connu et étudié du
lieu de Noether-Lefschetz), les deux cas d’étude les plus notables sont :

e les représentations des réseaux hyperboliques complexes,
e les clotures d’orbites dans les strates de différentielles abéliennes.

En particulier, la philosophie de Zilber-Pink pour les variations de structures de Hodge mixtes
sera utilisée comme principe unificateur pour plusieurs résultats de finitude dispersés dans la
littérature. Dans la suite du texte, je présenterai mes principaux résultats sur ce sujet. J’en
profite pour simplifier certaines parties de la théorie développée dans ces articles—par exemple,
un premier cas particulier de la ZP géométrique se trouve dans [23], un cas plus général (dans la
méme lignée) dans [21], et le cas le plus général dans le plus récent [24]. Jai essayé de raconter
une histoire simple, avec un apercu des principaux arguments, dans un ordre historiquement
inversé.

SELECTED LIST OF THE AUTHOR’S PUBLICATIONS

(A) Effective atypical intersections and applications to orbit closures.
With D. Urbanik.
arXiv:2406.16628. See [24].
(B) Rich representations and superrigidity.
With N. Miller, M. Stover, and E. Ullmo.
Ergodic Theory Dynam. Systems. Published online 2025:1-24. doi:10.1017/etds.2024.136.
See [22].
(C) Non-density of the exceptional components of the Noether-Lefschetz locus.
With B. Klingler and E. Ullmo.
IMRN, Volume 2024, Issue 21, November 2024, Pages 13642-13650. See [20)].
(D) On the distribution of the Hodge locus.
With B. Klingler and E. Ullmo.
Invent. Math., 235(2):441-487, 2024. See [21].
(E) On the geometric Zilber-Pink theorem and the Lawrence-Venkatesh method.
With B. Klingler and E. Ullmo.
Expo. Math. 41 (2023), no.3, 718-722. See [19].
(F) Special subvarieties of non-arithmetic ball quotients and Hodge theory.
With E. Ullmo.
Ann. of Math., 197(1):159-220, (2023). See [23].

Finally we point out two recent surveys of the author [17, 18] which, among other things,
cover also some related work.
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Part 1. Preliminaries
1. INTRODUCTION

1.1. Hodge Theory. Compact Kédhler manifolds are peculiar in that they are equipped
with several compatible structures: complex, Riemannian, and symplectic. This rich interplay
makes them fundamental objects in mathematics. Classical Hodge theory [71] enhances the
classical topological invariants of the underlying space of a Kéhler manifold X by incorporating
a C*-action. Building on de Rham’s work, the key insight is that for any given Riemannian
metric on X, every cohomology class has a canonical harmonic representative. Since complex
differential forms on can be uniquely expressed as sums of forms of type (p, q), the fact that
the (p,q) components of a harmonic form remain harmonic gives rise to the celebrated Hodge
decomposition. This decomposition splits the cohomology of X with complex coefficients into a
direct sum of complex vector spaces:

H"(X,C)= @ H"(X) (HoDec).
ptg=n
This decomposition is elegantly encoded by a C*-action, where HP? is the subspace on which
z € C* acts as 2Pz%¢. The symmetry under complex conjugation (namely HP:4 = H9P) reflects
the fact that C* is viewed as a real algebraic torus.

Classical Algebraic Geometry, on the other hand, studies algebraic varieties over complex
numbers—the solution sets of algebraic equations with complex coefficients. The Kodaira
embedding theorem characterizes smooth complex projective varieties among all compact Kéhler
manifolds and underpins the concept of a polarized Hodge structure, which grants favorable
properties to the period domains of such objects that play a central role in Griffiths’ approach
[66, 61] to Hodge theory. Another key distinction between algebraic and general Kéahler manifolds
is that while general Kéahler manifolds may not admit complex submanifolds of positive dimension,
algebraic varieties possess them in abundance. For instance, an algebraic subvariety Z C X of
codimension j (or more generally, an algebraic cycle) gives rise to an algebraic cohomology
class [Z] € H?*(X,Q), whose image in H**(X,C) lies in H**¥(X) relatively to (HoDec). A
rational cohomology class lying in some H**(X) is called a Hodge class (equivalently those
are classes fixed by the action of C*). This suggests the tempting belief that the Hodge structure
of a compact complex variety is governed by the geometry of its subvarieties, or more precisely,
its Chow group. A special case of this belief is indeed one of the Clay millennium problems:

Conjecture 1.1 (Hodge). For every smooth projective complex algebraic variety X, a class
A € H*(X,Q) is algebraic if and only if it is Hodge.

This conjecture remains a central open problem in mathematics, lying at the intersection of
Complex Analytic and Algebraic Geometry. Roughly speaking, its validity asserts that there are
many algebraic cycles.

1.2. Cycles and Hodge classes in families: the Hodge locus. Recent years have seen
significant activity in understanding how algebraic cycles vary within families, following a path
laid in the previous centuries by figures such as M. Noether, Picard, Poincaré, Lefschetz, Weil,
Griffiths, Grothendieck, and Deligne, among others. For a smooth projective family of algebraic
varieties f : X — S, the Hodge structures associated with each fiber X := f~1(s) enrich the
local system R* fyZprim of primitive cohomology with the structure of V, a polarized variation
of Hodge structures (VHS). Since Hodge theory is at its core a transcendental phenomenon,
understanding how algebraic cycles and Hodge classes vary with s € S(C) is a challenging
problem. This has led to the study of the Hodge locus, a subset of the base S(C) where the
dimension (over Q) of the cohomology group H**(X,,Q), or possibly some tensor construction
thereof, is larger than expected.

In 1995, Cattani-Deligne-Kaplan [33] achieved a breakthrough in Hodge theory by proving
that the Hodge locus on a nonsingular projective variety S parametrizing a polarized VHS V
is a countable union of algebraic subvarieties. More recently, this result has been established
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using methods from o-minimal geometry [13]. The Cattani-Deligne-Kaplan result is regarded by
many as the most compelling evidence for the Hodge conjecture’s validity, alongside Deligne’s
proof that Hodge classes on abelian varieties are absolute and various special cases such as
the Lefschetz (1,1) theorem, and results by Schoen and Markman on Hodge-Weil 4-folds (very
recently culminated in [85]). The Hodge locus also plays a central role in conjectures like
André-Oort and Zilber-Pink, which will be discussed in more detail later.

A simple yet rich example, still far from being fully understood, involves hypersurfaces. A
hypersurface X of degree d and dimension n is defined as the zero set in CP" 41 of a homogeneous
polynomial F' of degree d in n + 2 variable. It is smooth if the partial derivatives of F' do not
vanish simultaneously on C"*2 — {0}.

For fixed n and d, the parameter space of hypersurfaces in CP" ! of degree d is simply the
complex vector space of homogeneous polynomials of degree d, denoted V = C[Xy, ..., Xpt1]q-
However, the parameter space of smooth hypersurfaces U, 4 = V — A is more intricate. The
relevant VHS enriches the (primitive) cohomology H™(X,Z), and the Hodge locus remains far
from understood. In the case n = 2 and d, this locus strictly contains the Noether-Lefschetz
locus, which can be defined purely using algebraic geometry:

NLg := {[X] € Uz : Pic(CP?) — Pic(X) is not an isomorphism}.

For a surface X outside NLg, every curve on X has the pleasant and useful property that it is
the complete intersection of X with another surface in CP3. This object has been the subject of
many beautiful studies by Griffiths, Green, Voisin, Ciliberto, Harris, and Miranda and recently
by myself with Klingler and Ullmo [20].

The most pressing challenges in the field revolve around two fundamental questions:

Question 1.2. What can we say about about Hodge loci? What do Hodge loci reveal to us?

1.3. The typical-vs-atypical dichotomy. In the case of arbitrary VHS, one of the most
representative results is one I obtained in collaboration with B. Klingler and E. Ullmo (see also
the ICM report [76] for more details). Let (S, V) be a pair where S is a smooth quasi-projective
complex variety and V an integral and polarised VHS on S, and denote by HL(S, V¥) the Hodge
locus (more precise definitions will come later). We have:

Theorem 1.3 ([21, Sec. 2]). The Hodge locus HL(S,V®) can be decomposed into its typical
and atypical part, behaving as follows:

(1) If the typical Hodge locus is non-empty, then the Hodge locus is dense in S.
(2) The geometric Zilber-Pink (ZP) conjecture holds true. That is, there are only finitely
many mazximal atypical special subvarieties of positive period dimension.

If the level of V is > 3 (cf. Section 5.1), then the positive-dimensional Hodge locus is a strict
algebraic subvariety of S. (Equivalently, there are only finitely many maximal special subvarieties
of positive period dimension.)

From the period-domain perspective, the Hodge locus is simply the intersection between
sub-period domains and the image along the period map of S in I'\D. Informally, a special
subvariety is considered atypical if its codimension is less than expected, based on a simple
dimension count within the period domain I'\ D naturally attached to V. Otherwise, it is
typical.

The concept of level refines the weight of a Hodge structure. These notions, though simple,
are pervasive. They have even found interesting applications in string theory, as demonstrated
by the work of Grimm and van de Heisteeg [67], and I believe such applications are on the cusp
of substantial growth.

Conjecturally, the zero-dimensional atypical Hodge locus should consist of finitely many
maximal components. This part of the Zilber-Pink conjecture (referred to as the arithmetic part
of ZP) remains elusive and is the richest in arithmetic properties. Only for variations of Hodge
structures of level 1 has the Pila-Zannier strategy [95] managed to reduce the problem to a Large
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Galois Orbits hypothesis [38]. This case corresponds largely to that of Shimura varieties, where
the paradigm of atypical intersections was first developed by Zilber [114], Bombieri-Masser-
Zannier [27], and Pink [97]. One of the most spectacular recent results in this area is the proof of
the André-Oort conjecture [94], which is the culmination of years of work by many researchers.

The key tools underpinning this theorem are o-minimality (a branch of model theory) and
functional transcendence (FT)—in the level 1 case, see the ICM reports of Pila [92] and
Tsimerman [105]. These concepts, along with the Zilber-Pink philosophy, have dramatically
expanded our understanding of the Hodge locus, though many questions remain open, and new
challenges have emerged. A notable early case of this theorem was explored in my earlier work
[23], which dealt with the case where S is a ball quotient, and V is a VHS designed to control
the totally geodesic subvarieties. More recently, I introduced, in collaboration with D. Urbanik
[24], a new and more general framework for proving related results. FT has quickly evolved to
higher levels of generality, and today, it is best understood in the context of foliated principal
bundles, as recently introduced in [26].

In essence, FT asserts the following: Let P — S be an algebraic principal G-bundle (G a
suitable algebraic group) with a principal and equivariant connection V. If a subvariety of
P intersects non-transversally with an analytic leaf £ C P, then the projection to S of such
an intersection is contained within a strict weakly-special subvariety (and thus, it is not
Zariski dense). This viewpoint is adopted in my work with Urbanik to tackle more subtle cases
of subvarieties of automorphic bundles over period domains, not predicted by Theorem 1.3. This
is usually referred to as the Ax-Schanuel theorem.

Much work has already been done on atypical intersections and their connection with FT, yet
many new avenues are opening. . .

2. HISTORY AND PRELIMINARIES

The focus of this text is the Hodge locus of a variation of Hodge structures, a crucial object in
Algebraic and Arithmetic Geometry, closely linked to but broader than the Hodge conjecture.
I will provide a historical perspective on the Hodge locus, tracing its evolution through the
Zilber-Pink viewpoint (borrowed from Number Theory) and its emerging connections to abelian
differentials and non-arithmetic complex hyperbolic lattices.

To set the stage, I will first review the historical background and common ground of the
three proposed research axes, introducing key concepts such as the Mumford-Tate group and
the Zilber-Pink conjecture.

The beginnings: 1882-1920. Max Noether states his famous theorem on curves: if d > 4,
there is a countable union of closed subvarieties of the parameter space U 4 of smooth degree d
surfaces outside of which the restriction map Pic(P?) — Pic(X) is an isomorphism. (For d = 2
or d = 3, there is no analogous statement; smooth complex surfaces of these degrees have Picard
groups of rank 2 and 7, respectively.)

In the 1920s, Lefschetz proves this using topological methods, marking the debut of the
Noether-Lefschetz locus NLy C Uz 4 (i.e., the locus of surfaces for which the restriction map is
not an isomorphism) in the study of surfaces. Hodge theory enters the first proofs of Noether’s
theorem through Lefschetz’s theorem on (1, 1)-classes!: given a compact Kéhler manifold X, the
first Chern class ¢; : Pic(X) — H?(X,C) surjects onto H>' N H?(X,Z) C H*(X,C). Lefschetz’s
original proof worked on projective surfaces and used normal functions, introduced by Poincaré.
A posteriori, this translates the Noether-Lefschetz problem from a cycle-theoretic task into an
analytic one. It is also the only case of the Hodge conjecture proved for all Kéhler manifolds.

Hodge theory: 1950-1970. Hodge [71] introduced the Hodge decomposition for every
compact Kéhler manifold. In 1968, Griffiths [66, 61] initiated his study of variation of Hodge
structures, including the ones enriching the local system associated to a smooth projective

IWe refer also the the work of Kodaira-Spencer [78] for the first modern proof and remark that, even after the
Hodge decomposition is established delicate algebraization issues have to be considered.
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family of algebraic varieties (e.g. the primitive part of H2(X,Z) for the degree d surfaces).
Deligne [41] vastly generalized Hodge’s results, showing that the cohomology of any complex
algebraic variety (not necessarily compact) is functorially endowed with a mixed Z-Hodge
structure.

Griffiths School: 1983 and Early 90s. Griffiths and his students—Carlson, Green, and
Harris—[32] introduced new ideas from infinitesimal variations of Hodge structures. Green and
Voisin proved the Fxplicit Noether-Lefschetz Theorem: each irreducible component Y of NLy
satisfies

-1
d—3§codimU2‘dY§h2’0: <d3 )

The upper bound on codimension follows easily from the Hodge decomposition: a class [, €
H?(X, Q) is algebraic if and only if it has type (1, 1), equivalent to [, w = 0 for allw € H°(X,Q%).
Additionally, the family of smooth degree d surfaces containing a line forms a component of NLy
of codimension d — 3. However, proving that this provides a lower bound is more subtle and
depends on delicate algebraic considerations.

In a 1988 paper, Ciliberto, Harris, and Miranda introduced the following key definitions: a
component Y of NLg is general if it has codimension 2>°, and exceptional otherwise (originally
called special). This general-special dichotomy spurred many further results from numerous
contributors. For example, if d > 5 (if d = 4, there are no exceptional components), it is known
that the union of the general components of NL, is Zariski-dense in Us 4 [36], and that NLg is
even dense in Us 4 for the analytic topology [108, Prop. 5.20]. See [37] for explicit exceptional
components.

Arithmetic/Diophantine Geometry: 1969-2000s. The viewpoint presented here traces
back to Serre’s work on open image theorems for abelian varieties and the related work of
Mumford [90] and Tate from 1969. They sought to predict the image of the Galois group acting
on the f-adic Tate module of an abelian variety A, introducing the notion of the Mumford-Tate
group.

Definition 2.1. The Mumford-Tate group of a Q-Hodge structure V., MT(V), is the Tan-
nakian group associated to the category (V)Y® C QHS. Equivalently, it is the Zariski closure in
GL(V) (considered as a Q-algebraic group) of the image of the C*-action defining the Hodge
decomposition on V.

(When the Hodge structure is polarized, as it will usually be the case in this text, the
Mumford-Tate group can also be described as the stabilizer in GL(V') of the Hodge classes in
arbitrary tensor operations.)

Deligne [41] proved that the image of the Galois group acting on Tate module is a subgroup
of MT ® Qy. Pohlmann, in ’68, proved the Mumford—Tate conjecture for abelian varieties with
Complex Multiplication (which asserts that, under the Artin comparison isomorphism, the ¢-adic
Galois monodromy agrees with the Qg-points of Mumford-Tate group). I recall now the most
general definition of Complex Multiplication for Hodge structures:

Definition 2.2. A Hodge structure V is CM if MT(V') is commutative.

In 1989, André [1], and later Oort in 1995 [91], proposed the André-Oort conjecture (AO) for
Shimura varieties, partly inspired by non-abelian analogues of the Manin-Mumford conjecture
and the distribution of CM points on moduli spaces (see also [3]). Shimura varieties, a special
class of varieties that include modular curves and, more generally, moduli spaces parametrizing
principally polarized Abelian varieties of a given dimension (possibly with additional prescribed
structures), were originally introduced by Shimura in the 1960s in his study of the theory of
complex multiplication.

Theorem 2.3 (AO for Shimura varieties, [94, 104]). Let S be a Shimura variety. An irreducible

subvariety is a sub-Shimura variety if and only if it contains a Zariski-dense set of CM points.
9



In 1999, Bombieri, Masser, and Zannier [113] began studying other types of atypical inter-
sections. The first example was curves against algebraic subgroups of multiplicative groups.
Independently, Zilber explored similar ideas in the setting of exponential sum equations and the
Schanuel conjecture (2002). Pink, motivated by unifying the Mordell-Lang and AO conjectures,
proposed his own version of the conjecture. A further important step came with the advent of
the Pila-Zannier strategy for Manin-Mumford (see the recent book [93]).

String Theory: 1984-2000s. The interest of string theorists in Calabi-Yau 3-manifolds stems
from their connection to conformal field theories (CFTs). Gukov and Vafa [69] posed a question
regarding the existence of infinitely many Calabi-Yau manifolds with complex multiplication
of a fixed dimension, motivated by the connection to rational conformal field theories (RCFT),
introduced earlier by Friedan-Qiu-Shenker. Around the same time, Moore explored the arithmetic-
string theory connection, particularly the role of attractor varieties in black hole constructions
within IIB string theory. These investigations revealed connections to atypical intersections that
are not necessarily of CM type. For more recent investigations, see also [30].

The last decade. Let V be a polarizable variation of Hodge structures, simply Z-VHS from
now on, on an irreducible smooth quasi-projective variety S. At this point, it’s useful to formally
introduce the Hodge locus of (S, V) and the concept of level. I start by the Hodge locus:

(2.0.1) HL(S,V®) := {s € S(C) : MT(Vs) S MT(V)},

where M'T (V) denotes the Mumford-Tate group at a very general point of S, fixed and denoted
by 0. Informally, the Hodge locus parametrizes the closed points of S corresponding to Hodge
structures with additional Hodge symmetries. Cattani, Deligne, and Kaplan [33] proved that the
Hodge locus is a countable union of algebraic subvarieties of S, known as special subvarieties
for (S,V). According to Griffiths’ theory, V induces a period map

(2.0.2) U:S5—=TI\D, s~ [V,

where D is a subset of the flag variety of chains of subspaces of fixed dimensions of Vo ® C (the
extra conditions are imposed by the polarization). It is natural a homogeneous space under
G, the real points of MT(V). In particular HL(S, V®) can be interpreted as the preimage of
Mumford-Tate subdomains of I'\D. Indeed to each subvariety Y C S, there is associated a
sub-period domain I'y\Dy C T'\D such that Y C $=}(Ty\Dy) (the right hand side is in fact
known to be an algebraic subvariety, as we will see later), and Y is special when it is a component
of U1 (Py\Dy)
Intuitively, the level measures the minimum number of Lie bracket iterations

-1 -1

o fo™ lo7 e
one needs before obtaining zero, where g~! C Lie(G ® C) represents the Griffiths sub-space
of the holomorphic tangent space of D at the fixed base point 0. More will be discussed in
Section 5.1, but we remark here that:

e If D is Hermitian, i.e. I'\D is a connected Shimura varieties, it is well known that
(971, 071] =0, so the level is 1.

e The natural VHS V on Uy 4 has level 1 if d = 4, and 2 if d > 5. (There are no periods
for d < 3).

e The natural VHS V on U, 4 has level > 3 when n and d are big enough, cf. Corollary 6.16
for the precise statement. 1

From a Hodge-theoretic perspective, Hodge structures of even weight can look more natural,
as algebraic classes always lie in even dimensional cohomology. For instance, the primitive
cohomology of a degree d surface (d > 4) is concentrated in H?, and the vectorial Hodge locus,
i.e. the locus where there are some extra Hodge vectors, is precisely the Noether-Lefschetz
locus. The Hodge classes in tensorial constructions of such H? are geometrically more subtle and
play a crucial role here. This is a first evidence of the importance of the so called Tannakian
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viewpoint and is concretely reflected in the study of arbitrary Mumford-Tate subdomains of
period domains.

Until recent progress, much less was known about levels > 3. In 2017, Klingler [75] began
exploring the Zilber-Pink conjecture for arbitrary variations of Hodge structures. A.J. de Jong
had formulated similar conjectures in a personal note from 2004. In [21], Klingler, Ullmo, and I
proposed a stronger conjecture, now widely regarded as the correct version, along with another
conjecture describing the typical Hodge locus. This also marked the beginning of the idea that
‘atypical intersections govern typical ones.”

Definition 2.4. A special subvariety Y = U~H(T'y\Dy)" is atypical if codimyg)(¥(Y)) <
codimp (Dy ), and typical otherwise. The union of the atypical (resp. typical) special subvarieties
is denoted by HL(S, V®)atyp (resp. HL(S, V®)iyp ).

(Possibly after replacing the base by a finite covering, Griffiths proved that the period map
is a proper holomorphic map. In fact, recently a stronger conjecture of Griffiths on the quasi-
projectivity of images of period maps has been established [10]. Therefore, it makes sense to
speak of the dimensions of ¥(S) and ¥(Y).)

Let (S,V) be a pair where S is a smooth quasi-projective complex variety and V an integral
and polarised VHS on S with associated period map ¥ : S — I'\D.

Conjecture 2.5 (Zilber-Pink Conjecture for VHS). There are only finitely many mazimal
atypical subvarieties for (S,V). In particular the atypical Hodge locus is not Zariski-dense.

Conjecture 2.6 (Density of the Typical Hodge Locus). The following are equivalent:
(1) HL(S,V®)yyp, is not empty;
(2) HL(S,V®)yyp, is dense in S(C);
(3) There exists a sub-period domain D' C D such that dim ¥(S) — codimp D" > 0.

This was made possible thanks to several developments regarding functional transcendence,
culminating in the so-called Ax-Schanuel (AS) type theorems: Blazquez-Sanz, Casale, Freitag,
and Nagloo [26] (in the very general setting of principal G-bundles), Bakker-Tsimerman [15, 16]
(in the period domain first, and then in the period torsor). The case of level 1 was obtained in
[87]. A representative statement to keep in mind is the following:

Theorem 2.7 (Special case of AS in the period domain, Bakker-Tsimerman). Let Y C D be
an algebraic subvariety of codimension > dim S and denote by Yr its image in I'\D. Each
component of W~ (Yr) lies in a strict weakly special subvariety® of S.

Even more recently, a new avenue opened with my work with D. Urbanik, where I’ve extended
the setting of Zilber-Pink to the notable case of Z-variations of mixed HS [24] and found
applications of our theory to Teichmiiller problems. For simplicity I will mainly discuss the pure
case, but this generalization is crucial for several applications and it is highly non-trivial.

The future is bright. It is worth mentioning that, in its debut, functional transcendence
was tightly related with o-minimality. O-minimality has been applied with success to make
progress on questions in Hodge theory (Griffiths conjecture, definable period maps [10]), and
has recently had its own explosion of results guided by Binyamini (sharply o-minimal sets, the
resolution of Wilkie’s conjecture, see e.g. [25]). Another remarkable example is the Linear
Shafarevich Conjecture in the quasi-projective case, by Bakker, Brunebarbe, and Tsimerman
[12], which further uses the definable setting and among other things, the Ax-Schanuel theorem
for abelian varieties.

The applications of the Zilber—Pink conjecture viewpoint have quickly permeated various
areas and captured the attention of many mathematicians. To mention a few examples:

e Study of the torsion locus of the Ceresa normal function by Gao and Zhang [59], as well
as related work by Kerr-Tayou [73] and Hain [70], has offered further advancements.

2They are generalization of the special subvarieties and defined as follows: maximal subvarieties with given
algebraic monodromy group. They will be discussed in detail in Section 3.2.
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e Description of the maximal compact subvarieties of Siegel modular varieties [68] — an
area that has seen incremental progress over many years.

e A Diophantine direction, driven by the Lawrence and Venkatesh method [82], with later
contributions by Lawrence-Sawin; Javanpeykar-Kramer-Lehn-Maculan; and Klingler,
Ullmo and myself [19].

e A Conjecture of Matsushita on Lagrangian fibrations of hyperkahler manifolds [8, 110].

e The work of Dimitrov—Gao—Habegger and Kiihne on the uniform Mordell-Lang conjecture
[57].

e Lam and Tripathy [80, Thm. 1.1.3.] provide, conditional on the Zilber-Pink conjecture,
a family of counterexamples to the Attractor Conjecture in all suitably high, odd
dimensions.

e Finally, in [54, Thm. 5.3.1.], the authors use a special case of Zilber-Pink recently
established by Richard-Yafaev [98] to construct infinitely many rank-two local systems
of geometric origin which are not pullbacks of hypergeometric local systems.

We remark that Zilber-Pink offers a common foundation for considering different questions,
as well as a guide for what to expect. However, the key ideas needed to progress are new each
time and require different inputs from various theories (Algebraic and Arithmetic Geometry,
Ergodic Theory, Model Theory, etc.).

To conclude this overview, the following diagram might serve as a road map for Hodge theory

in families:
Lvi=1
Abelian
: Acg Q
N L Exceptional
N
Und &
& Lvi>3
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Part 2. Hodge theory in families
3. THE HODGE LOCUS

To describe the general framework we will work with, we first recall the concept of variations
of mixed Hodge structures refining the above definitions.

3.1. Preliminary definitions. A mixed Z-Hodge structure (ZMHS) is a triple (V, W,, F'*)
consisting of a (torsion-free) finitely generated Z-module V), a finite ascending filtration W, of
Vo =V ®7 Q (called the weight filtration) and a finite decreasing filtration F'® of V¢ (called the
Hodge filtration) such that for each n € Z,

(Gr)Y Vi, GV F*)

is a pure Q-Hodge structure of weight n. A graded polarization of a mixed Z-Hodge structure is
the datum of a polarization on the pure Q-Hodge structure GV V = @, Gr’V V. Analogously
one defines QMHS.

The following is [96, 1.4, 1.5] and explains under which conditions a homomorphism A : S¢ —
GL(V¢) gives a MHS (where S denotes the Deligne torus: the Weil restriction from C to R of
C*):

Lemma 3.1. Let V be a finite dimensional Q-vector space. A morphism h : S¢ — GL(V¢)
defines a QMHS on V if and only if there exists a connected Q-algebraic subgroup G C GL(V)
such that h factors through Gc and satisfies the following conditions (where we write W_1 for
the unipotent radical of G):

e The composition morphism Sc — G¢ — (G/W_1)c is defined over the reals;

e Precomposing S — (G/W_1)r with the weight homomorphism G,, g — S we obtain a
cocharacter of the center of (G/W_1)r defined over Q;

e The weight filtration on Lie G defined by Adoh satisfies Wy(LieG) = LieG and
W_l(Lie G) = Lie W_l.

Definition 3.2. A mixed Hodge datum is a pair (G, D) where G is a connected linear algebraic
Q-group and D is a G(R)W_1(C)-conjugacy class of homomorphisms S — G(C), satisfying the
conditions of Lemma 3.1.

Definition 3.3. Let S be a smooth quasi-projective complex variety and Og its sheaf of holo-
morphic functions, and R C C a ring. A variation of mixed R-Hodge structures (RVMHS) over
S is a triple (V, W, F'*), where:

(1) V is a locally constant Rg-module on S,

(2) W, is a finite increasing filtration (called the weight filtration) of the K -local system Vg
by K-local sub-systems,

(8) F* is a finite descending filtration (called the Hodge filtration) of the holomorphic vector
bundle V :=V ®gy Og by holomorphic subbundles,

such that

(a) for each s € S, the triple (Vs,(Wa)s, F?) is a mized R-Hodge structure.
(b) the flat connection V : V — V @ QL whose sheaf of horizontal sections is V¢ satisfies
the Griffiths’ transversality condition

VF* Cc QL@ F* L
A graded polarization VU for (V, W,, F'*) is a sequence
Wy, : Gr)V (Vi) x Grf (Vi) — K(—k)s

of V-flat bilinear forms inducing graded polarisations Wy s on the mived R-Hodge structure
(Vs, (We)s, E?) for all s € S.
13



An important admissibility condition for variations of mixed Hodge structures was introduced
by Kashiwara in [72] (see also, for example, [58, Def. 3.3]). From now on we denote by ZVMHS
the category of graded-polarizable and admissible VMHS over S. When Z is replaced by Q, this
is a Tannakian category, as discussed for example in [75, §2.4], and references therein. (The fact
that the category of admissible QVMHS is abelian due to Kashiwara, see [72, §4.5 and Prop.
5.2.6] for the relevant statements.)

Definition 3.4. For every s € S, the Mumford-Tate group Gs(V) of the Hodge structure V
is the Tannakian group of (Vs)® of QMHS (here the exact faithful Q-linear tensor functor
For : QM HS — Vecq is simply the forgetful functor).

It is a connected QQ-algebraic group, and
e reductive if Vg (or V) is pure; in general
e it is an extension of G,(Gr'V'V) by a unipotent group (here W denotes the weight
filtration on V).

We note that Gr'' can be viewed as an exact functor [41, Them. 2.3.5(iv)] from QVMHS
to QVHS. We have also a notion of Mumford—Tate group of the QVMHS V, simply as the
Tannakian group of V. Here we pick the fiber functor associated to some base point s € .S, that
is the functor

ws : QVMHS — QMHS — Vecg, V= Vg — For(Vy).
We denote the Mumford-Tate group by MT(V,w;). Thanks to [42, II, Thm. 3.2], the resulting
group, by the general theory, will not depend on such choice of a base point s (that is there’s a
unique natural isomorphism MT(V,w,) =2 MT(V,wy)). See also [2] for an equivalent point of
view. By the general Tannakian formalism we have a canonical inclusion MT(V) € MT(V, ws),
at every s € S.
We define the following subset of 52" = S(C).

(3.1.1) HL(S,V®) := {s € §*" : MT(Vs) # MT(V,ws)}.

It is naturally a countable union of complex subspaces, and in fact Cattani, Deligne and Kaplan
[33, Thm. 1.1] proved the following in the pure case, and Patrick, Pearlstein, and Schnell in the
mixed case [29]. We also refer to [13, Thm. 1.6] (see also [14]) for an alternative proof, using
o-minimality, and also to [9], for the mixed case.

Theorem 3.5. Let S be a smooth connected complex quasi-projective algebraic variety and
V be a ZVMHS over S. Then HL(S,V®) is a countable union of closed irreducible algebraic
subvarieties of S: the strict maximal special subvarieties of S for V.

In general, the notion of special subvariety is defined as follows:

Definition 3.6. Let (S,V) be a ZVMHS. A special subvariety Y C S is a closed irreducible
complex algebraic subvariety which is maximal for the Mumford-Tate group Gy associated to
(Y7 V|Y)

For us, from now on, all special subvarieties, so in particular all components of the Hodge
locus, will be equipped with their reduced algebraic structure.

Then the datum of such a pair (S,V) is the same datum as a (mized) period map. Let (G, D)
be a (connected, mixed) Hodge datum as in [75, Def. 3.3] associated to (S,V), and I'\D the
associated mixed Mumford-Tate domain (called also Hodge variety by some authors). (Here
and in the sequel, we always assume that I is a torsion free finite index subgroup of G(Z)). We
will be mainly concerned with period maps:

U S - TN\D,
that are locally liftable, holomorphic and horizontal maps (see [75, §3.5]).

Definition 3.7.

(1) A subvariety Z of S is said of positive period dimension for V if W(Z2") has positive
dimension (i.e. is not a point).
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(2) The Hodge locus of positive period dimension HL(S, V¥) .4 is the union of the special
subvarieties of S for V of positive period dimension.

Remark 3.8. In the pure case the Mumford-Tate domain D decomposes as a product D; X
.-+ x Dy, according to the decomposition of the adjoint group G4 into a product Gi x - - - x Gy,
of simple factors (notice that some factors G; may be R-anisotropic). A subvariety Z of positive
period dimension of S is said of positive period dimension factorwise if moreover the projection
of ®(Z?") on each factor I';\D;, 1 <1 < r, has positive dimension.

Definition 3.9. A special subvariety Y C S, with Hodge datum (Gy, Dy) (associated to V|ysm )
is atypical if

(3.1.2) codimp\ p ¥(Y™") < codimp\ p ¥(S*") + codimp\p 'y \ Dy
Otherwise, it is said to be typical.

Here I'y simply denotes I' N Gy (Q). Moreover the map I'y'\Dy — I'\ D is quasi-finite, so the
formal “codimension” makes sense.

Remark 3.10. One can rewrite the atypical condition appearing in Definition 3.9 in terms of
dimension, rather than codimension:

dim ¥ (S*") — dim ¥(Y*") < dim D — dim Dy.

Definition 3.11. The atypical Hodge locus HL(S, V¥®)uyp, C HL(S,V®) (resp. the typical
Hodge locus HL(S, V), € HL(S, V®)) is the union of the atypical (resp. strict typical) special
subvarieties of S for V.

We expect the Hodge locus
HL(S, V¥) = HL(S, V®¥),typ U HL(S, V®)iyp

to satisfy the Conjecture 2.5, Conjecture 2.6 (cf. [21] as well as [24, Sec. 4] for the mixed case).
Formally there is no difference in the statements for the mixed and the pure case.

3.2. Weakly special subvarieties in Hodge Theory. Essentially from Theorem 3.5, we
observe that there are countably many special subvarieties for (S, V). It is also easy to observe
that an intersection of special subvarieties is a union of special subvarieties. In this section we
compare such notions and proprieties with the more general concept of weakly special subvarieties.

Much of what we will need is a consequence of the following [2, Thm. 1] (see also [41]). Let V
be a ZVMHS on S. For any closed point s € S, let Gg s be the Mumford-Tate group of (S, V)
at ws, and Hg s the algebraic monodromy at s of the Q-local system Vg (that is the connected
component of the identity of the Zariski closure of the topological monodromy).

Theorem 3.12 (André-Deligne Monodromy Theorem). The monodromy group Hg ¢ is a normal
subgroup of the derived subgroup of Ggs.

We notice here that, in the general mixed case, the derived subgroup of Gg s is not a semisimple
group.

Definition 3.13. A subset D' of the classifying space D is called a weak Mumford-Tate
subdomain if there exists an element t € D' and a normal subgroup N C MT(t) such that
D' = N(R)"™N%(C) - t, where N“ denotes the unipotent radical of N.

A weakly special submanifold of the Hodge manifold I'\ D is an irreducible component of the
image in I'\ D of a weak Mumford-Tate subdomain. The datum ((H, Dg),t) is called a weak
Hodge subdatum of (G, D). Given (S, V) with associated period map ¥ : S — I'\ D, every weakly
special subvariety of (S, V) can be described as an irreducible component of the preimage along
U of a weakly special submanifold of the Hodge variety I'\ D; see [16, Cor. 2.9]. With this new
description of weakly special subvarieties in terms of the period domain I'\ D, we obtain the
following:
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Lemma 3.14. A special subvariety Y for (S,V) is weakly special. The property of being weakly
special is closed under taking intersections and passing to irreducible components.

(In particular it makes sense to consider special and weakly special closures: the special (resp.
weakly special) closure of a variety Y C S is the intersection of all special (resp. weakly special)
subvarieties in which it is contained.)

The closure of special and weakly special subvarieties under intersection gives natural notions of
special and weakly special closures: the special (resp. weakly special) closure of a variety Y C .S
is the intersection of all special (resp. weakly special) subvarieties in which it is contained.

For our exposition we now follow [11, §3.5, and §6]. Let V' be a finite dimensional real vector
space equipped with an increasing filtration W, and a collection of non-degenerate bilinear
forms g : Gr}’¥ ® Gr})Y — R that are (—1)*-symmetric. Fix a partition of the dimension of V/
into non-negative integers hP? satisfying Hodge symmetry. For any integer k we denote by Qs
the complex projective algebraic variety parametrizing the (gx)c-isotropic filtrations {F; ,;p } on
Cr})Y Ve with dim P = 3, o h™F"
automorphisms on Qk

Let (V,W,, F*,q) be a mixed Z-Hodge structure as above, polarized by q. We denote by D
the corresponding mized period domain: the set of decreasing filtrations F’® of V¢ such that
(Vk, We, F'®,q) is a real mixed Hodge structure graded-polarized by ¢ and such that

r>p . The complex group Aut(gx) acts transitively by algebraic

dimg (F'P Grp+q NE™ Grp+q) dim F? Grp+q nE? Grp+q = hP1.

By definition, D is a semi-algebraic (in the sense of real algebraic geometry) open subset of
the smooth projective complex variety D that parametrizes the decreasing filtrations of V¢ by
complex vector subspaces such that the filtration induced on the graded pieces Grk Ve is inside
Q. for each k. In particular D maps to the product of the Q.

Given a ZVMHS V on S, we have associated a mixed Hodge datum (Gg, Dg) as in Definition 3.2
(we always assume that Gg is the generic Mumford-Tate group of V). In this case, Gg comes
with a faithful linear representation p : Gg — GL(V'), and thanks to this representation, we
obtain a morphism from Dg to the appropriate classifying space D introduced above.

Notation. We denote by Ds the Zariski closure of Dg in D (it comes with a transitive
action of G(C) and by bg C Dg the monodromy orbit of some base point hy € Dg, and write
D% = ﬁg N Dg. In particular to a ZVMHS V on S we obtain the complete Hodge-monodromy
datum:

(HS C Gs,Dg C DS)

For geometric Zilber-Pink we will work with a finer notion of atypicality, that we now recall.
This corresponds to what, in [21, Def. 5.3] is called monodromically atypical. See also Lem. 5.6,
Ex 5.7, and Rmk. 5.7 in op. cit. for a more detailed discussion, in the pure case, of such a
definition and comparisons with other variants. (The link between the two notions ultimately
comes from Theorem 3.12.)

Definition 3.15. A weakly special subvariety Y for (S,V) is called monodromically atypical if
(3.2.1) dim ¥ (52) — dim ¥(Y*") < dim D% — dim DY,

Suppose ¥ is quasi-finite, so every point is a weakly special subvariety. Then unless W is
dominant, each point is in fact a monodromically atypical weakly special subvariety.
We conclude with an important result that will be applied many times, cf. [24, Prop. 4.18].

Proposition 3.16. Let (S,V) be a ZVMHS. Then there exists a countable collection {h; : C; —
B;}°, of families of irreducible algebraic varieties of S, all of whose fibres are weakly special,
and such that every weakly special subvarieties arises as a fibre in some such family. Moreover,
the maps C; — S may be assumed quasi-finite.
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3.3. Main results: atypical. Let (S,V) be a ZVMHS, with associated Hodge-monodromy
datum (Hg C GS,Dg C Dg). The following is usually referred to as the Mized geometric
Zilber-Pink conjecture.

Theorem 3.17 (Baldi-Urbanik [24, Thm. 7.1]). There is a finite set ¥ = X gy of triples
(H, Dy, N), where (H, Dg) is some sub-Hodge datum of the generic Hodge datum (Gg, Dg),
N is a normal subgroup of H whose reductive part is semisimple, and such that the following
property holds.

For each monodromically atypical mazimal (among all monodromically atypical subvarieties)
Y C S there is some (H,Dg,N) € ¥ such that, up to the action of T, Dg/ is the image of
N(R)*N(C)“ -y, for somey € Dp.

In the pure case, it becomes:

Corollary 3.18 (Baldi-Klingler-Ullmo [21, Thm. 3.1]). Let (S,V) be a pure ZVHS, with
generic Hodge datum (G, D). Let Z be an irreducible component of the Zariski closure of
HL(S, V®)ws w-atyp i S. Then:

(a) Either Z is a maximal monodromically atypical special subvariety;

(b) Or the adjoint Mumford-Tate group G%d decomposes as a non-trivial product H%d X Lyz;
Z contains a Zariski-dense set of fibers of V,, which are monodromically atypical weakly
special subvarieties of S for W, where (possibly up to an étale covering)

\I/|Zan = (\I/HZ,\I/LZ) /A FGZ\DGZ = FHZ\DHZ X FLZ\DLZ C F\D ;

and Z is Hodge generic in a special subvariety V"1 (Pc,\Dg,)? of S for U which is
monodromically typical (and therefore typical).

3.4. Main results: typical. We prove that HL(S, V®)¢ . is algebraic in most cases. A
simple measure of the complexity of V is its level: roughly, the length of the Hodge filtration on
the holomorphic tangent space of D. See Definition 5.5 for the precise definition in terms of the
algebraic monodromy group of V. While special subvarieties usually abound for ZVHSs of level
one (e.g. families of abelian varieties or families of K3 surfaces) and for some ZVHS of level two
(e.g Green’s famous example of the Noether-Lefschetz locus for degree d (d > 3) surfaces in P3,
see [108, Proposition 5.20]), we show:

Theorem 3.19 (Baldi-Klingler-Ullmo [21, Thm. 1.5]). Let V be a polarizable ZVHS on a smooth
connected complex quasi-projective variety S. If V is of level at least 3 then HL(S, V®)g 05 is
a finite union of mazximal atypical special subvarieties (hence is algebraic). In particular, if
moreover G is simple, then HL(S, V®),0s is algebraic in S.

Theorem 3.20 (Baldi-Klingler-Ullmo [21, Thm. 3.9]). If the typical Hodge locus HL(S, V¥)pos typ
is nonempty then HL(S, V®),os typ is analytically dense in S.

Hodge theory actually gives a simple combinatorial criterion to decide whether HL(S, V),
is empty or not. Indeed see the recent works of Eterovic-Scanlon, Khelifa-Urbanik [49, 74]. They
defined:

Definition 3.21. A strict Hodge sub-datum (H, Dp) C (G, Dg) is said V-admissible if
dim ¥ (S*") + dim Dj; > dim D.

Theorem 3.22 (Eterovic-Scanlon, Khelifa-Urbanik). If (H, Dg) C (G, D¢g) is a V-admissible
Hodge sub-datum, then

HL(S, V¥ H) :={s € S:3g € G(Q)",MT(V,) C gHg '}
is dense in S?".

We refer also to [103] for results regarding the equidistribution of the typical Hodge locus.
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Definition 3.23. Let V1,Vy € ZVHS/S. We say that Vi and Vs are isogenous if there is
an equivalence of tensor categories (V10)® = (Vo q)®, where (V,)® denotes the smallest
Tannakian subcategory of QVHS’s containing V; q.

Of course the Tannakian categories (V; o)® appearing above are equivalent (as tensor cate-
gories) to the category of finite dimensional representations of their generic Mumford-Tate group.
(The equivalence is realised by the functor of ®-automorphisms of the fiber functor). It can
happen that two VHS have isomorphic Mumford-Tate groups, but the isomorphism does not
induce an equivalence of tenor categories. cf. Def. 1.10 and Thm. 2.11 in the article of Deligne
and Milne [42].

Remark 3.24. If two complex principally polarized abelian varieties A, B that are isogenous in
the usual sense (either via a polarized or an unpolarized isogeny), then the Hodge structures
HY(A,7Z),H'(B,Z) are also isogenous in the sense of Definition 3.23 (here we take as base
S the spectrum of C). However the converse is in general not true, for example H'(A,Z)
is isogenous to H'(A x A,Z). However, for two principally polarized g-dimensional abelian
varieties with Mumford—Tate group GSp,, the two notions agree, since this is the case when
the Mumford—Tate group is as big as possible.

Theorem 3.25 (Baldi-Miller-Stover-Ullmo [22, Thm. 1.18]). Let S be a smooth quasi-projective
variety and Vi,Vo two pure polarized ZVHSs on S. Assume that the generic Mumford—Tate
groups of V1 and Vo are Q-simple. If

HL(S, V?)pos,typ = HL(S, Vgg))pos,typ # 0,
then Vi is isogenous to Va. As a consequence, HL(S, V) = HL(S, VY).

4. ATYPICAL INTERSECTIONS—PROOFS

In this section we briefly explain the setting and the results of [24]. It will be the starting
point for all later considerations.

4.1. Riemann-Hilbert correspondence. Given a smooth irreducible algebraic variety S
and complex local system V — S| there is the Riemann-Hilbert correspondence functor

7 : LocSys(S™) — MICie(5)
Vs 7(V)=(H,V).

Here MIC,¢, denotes the category of locally free modules H on S with regular-singular integrable
connection V. The functor has the property that the space of V#"-flat sections of the locally free
sheaf H®" may be identified with V up to natural isomorphism. Moreover, the analytic vector
bundle V ®¢ O*" with its natural flat connection has a unique algebraic structure (H, V) with
regular singularities. The functor 7 is an equivalence of (Tannakian) categories [40].

Given a fixed such (H,V), the tensor powers H*? = H®* @ (H*)®? also carry natural
algebraic connections, where we use (—)* to denote the dual vector bundle. Correspondingly,
write V& = V®¢ @ (V*)®, Now let Hg be the algebraic monodromy group of V. Using
Chevalley’s theorem on invariants, we may understand the group Hg as the identity component
of the stabilizer of a one-dimensional subsystem L. C B, V@b, and hence it admits an algebraic
realization Hg ¢ in each fibre GL(%) as the identity component of the stabilizer of 7(L)s.

Associated to this data we may construct a certain algebraic subbundle P(sg) of the principal
left GL(Hs,)-bundle Per(H) := Zso(H,Og &c Hs,); here the fibres Per(H)s above points s € S
are identified with the set of isomorphisms Iso(Hs, Hs,). We write points of Per(H) as pairs
(B,s), where 8 : Hs — Hs,. To construct P(sg) we define

(4.1.1) P(so) :=A{(8,s) € Per(H) : B(T(L)s) = 7(L)s }

where . C @, , V** is as above. This defines an algebraic subbundle of Per(H), and using flat

frames we may observe that each P(sg) is naturally a left torsor for the Zariski closure HfSE‘H of
the monodromy representation at sg.
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4.2. Principal bundles preliminaries and Ax-Schanuel after Blazquez-Sanz, Casale,
Freitag, and Nagloo. In this section we first introduce the formalism of H-bundles and
principal connections. The reader may refer for example to [26, §2] for more details, although
we will try to be as self contained as possible. Throughout we work over the complex numbers.

Let S be an (irreducible) smooth variety, and H a linear algebraic group. Let 7 : P — S be
an H-principal bundle, that is H acts on P (on the right, with the action simply denoted by -)
and such that the action induces an isomorphism

PxH~PxgP, (p,g) — (p,p-9).

In particular the fibers of m are principal homogeneous spaces, and the choice of a point
p € P, := 7 1(s) induces an isomorphism H 2 Py, given by g + p-g. We have the following
exact sequence of S-bundles

(4.2.1) 0— kerdmr = TP =TS xg P —0,

where ker dr is the so called vertical bundle. A connection V is simply a section of (4.2.1). We
say that V is H-principal if it is H-equivariant. We additionally say that V is flat if it lifts
to a morphism of Lie algebras: the equation Vy, ., = [V, V] holds on the level of maps of
C-schemes. From now on all connections are H-principal and flat.

Since V is flat, the space of rational V-horizontal vector field is a singular foliation on P.
Moreover, if V is an algebraic flat connection we obtain a regular foliation F, cf. [26, §2.1 and
2.2].

Definition 4.1. An integral submanifold of F is an m-dimensional immersed analytic subman-
ifold S C P (not necessarily embedded in P whose tangent space at each point is generated by
the values of vector fields in F (i.e. the image of V). Mazimal connected integral submanifolds
are called leaves.

Frobenius theorem ensures that through any regular point passes a unique leaf. Finally, we
notice here that F has also vertical leaves included in the fibers of P at non regular points of V,
but we will never consider such case. (In particular when speaking of leaves, we always mean
horizontal leaves, cf. [26, end of §2.2].)

Example 4.2. The component P containing (ids,, so) of the bundle P(sg) introduced above
is a principal Hg-bundle that naturally comes with an algebraic flat connection. Consider the
algebraic connection

§: Hom(H, Os @c Hs,) — Q5 @ Hom(H, Os @¢ Hs,)-
Using this map we construct a map of algebraic bundles
V :TS xgPer(H) — TPer(H).
This map sends a pair (v, (f3,s)) to the differential operator V(v,(3,s)) at (8,s) which
computes the derivative of a function on Per(H) in the flat direction along v. By using § to

write out an explicit system of algebraic differential equations, one can see V is an algebraic
map. Then V restricts to a map T'S xg P — TP, which gives the desired section of (4.2.1).

From now on we work with groups H that are a semidirect product of a unipotent group and
a semisimple one (even if the more general case of sparse groups is considered in the literature).

The following is an immediate consequence of the main theorem of Bldzquez-Sanz, Casale,
Freitag, and Nagloo [26, Thm. 3.6].

Theorem 4.3. Let S be a smooth algebraic variety and complex local system V. — S. Let (P, V)
the associated bundle of Example 4.2. Assume that the monodromy group H = Hg of V is a
semidirect product of a semisimple and a unipotent group. Let V be a subvariety of P, x € V,
and let L C P be the leaf through x. Let U be an analytic irreducible component of VN L. If

codimp U < codimp V + codimp L,

then the projection of U in S is contained in a weakly-special subvariety.
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4.3. Hodge theory intermezzo. We also recall the Ax-Schanuel Theorem for period maps.
It is implied by the more general theorem Theorem 4.3, as we will explain in a moment. The
original proof follows a series of papers, see [15, 35, 58, 16].

Let (S,V) be a pair where S is a smooth quasi-projective complex variety and V a ZVMHS
on S with associated period map ¥ : S — I'\D.

Theorem 4.4 (Ax-Schanuel in the period domain). Let W C S x D° be an algebraic subvariety.
Let U be an irreducible complex analytic component of W N .S Xp\ po DY such that

codimg, 50 U < codimg, 0 W + codimSXDO(S X1\ Do DO) )
Then the projection of U to S is contained in a strict weakly special subvariety of (S, V).

Notice that S xp po DV is simply the image of the graph of ¥ : S — DY under Sx D — §x DO.
Then the intersection W N.S X\ po DY can be identified with the intersection in S x D° between
W and the image of S in S x D° along the map (7, ¥).

4.3.1. Relation with Period Torsors Associated to V. The relationship between Theorem 4.4
and Theorem 4.3 is ultimately explained by the torsor P in Example 4.2 associated to the
underlying local system of V. See indeed the discussion in [16]. Let (Hg, DY) be the weak
Hodge datum associated to V. We may fix a basepoint sg € S, and regard this data as being
associated to the fibre V,,. Then in particular, DO = bg is a variety parameterizing mixed
Hodge data at sg. Recall that P was constructed as subbundle of the total space of the vector
bundle Hom(H,Os @c Hs,), where H is the algebraic bundle underlying V ®7 Ogan. Then we
obtain a natural algebraic map r : P — DO, Concretely, this map acts as

[77 € HOIH(HS, Hgo)] — U(Wo,s, F;)’

where we use that both the Hodge flag and the filtration by weight are given by algebraic
subbundles of H. This is a combination of the fact that the weight filtration on V is given
by local subsystems to which we can apply the Riemann-Hilbert functor, together with the
corresponding result for the Hodge filtration on the pure graded quotients, which is a consequence
of work of Schmid [100]. To check that the map is well-defined (the image lands inside DO rather
than some larger flag variety), it suffices by Hg(C)-invariance to check this for a single leaf,
where it follows from the fact that the associated period map lands inside DO.

4.4. A constructibility fact. A useful fact which we will use repeatedly is the following:

Proposition 4.5. Let (P,V) be an algebraic H-principal bundle with flat connection on an
algebraic variety S, and let f : Z — Y be a family of subvarieties of P. Then the locus

Y(f,e) = {(x,y) : dims (L N Zy) = €}
1s algebraically constructible.

Above, by dim, we denote the local analytic dimension at the point z.

Proof. By stratifying the base ), we may assume ) is smooth.

Consider the bundle (@, d) obtained from (P, V) by pulling back along the natural projection
m:85%x)Y — S. From the definition of the fibre product one obtains an embedding Z C ). Then
Z C (@ is foliated by the intersections £, N f~1(y) where £, C Q is an analytic leaf passing
through z € Z. The locus

Z(fe):={z€ Z:dim, L. Nf 1 (y) >e}

is closed analytic. Note that if x = 7(2) is the image of z in P, then the germ of the intersection
L. N f~Y(y) at z is identified with the germ of the intersection £, N f~1(y) at z, with £, a leaf
of P passing through z.
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In fact we claim that Z(f,e) is also algebraic, and describe an explicit way to construct it.
We may assume that Z is irreducible. We denote points of Z(f,e) C Z by (z,y), in accordance
with the embedding into the product P x ). For each e, we define

Z(f,e)t = {(x,y) € Z:dim T, L, NTpf Hy) = e}

Because V is algebraic, so is the bundle |J.-p T'L above P, hence the locus Z(f,e)! is defined
by algebraically constructible conditions.

Now let ef be the dimension of the smallest component of £N f~!(y) as £ and y vary over
all possible choices. Then for e < ey we have Z(f,e) = Z(f,ef) = Z, so it suffices to show that
Z(f,e) is algebraic for e > ey. Now for e = ef + 1 the locus Z(f,e)! is not dense in Z: the
intersections of the fibres f~!(y) with the leaves £ must be smooth at a generic point, so have
tangent space dimension at most ey at a generic point. Letting Z’ C Z denote the closure of
Z(f,e)!, we may construct the family f': Z’ — ) and reduce to showing the algebraicity of
Z(f',e) for all e. The proof is therefore complete by Noetherian induction.

The locus Y(f,e) is just the image of Z(f,e), hence is algebraically constructible. O

4.5. Ax-Schanuel in families. Give h: C — B a family of subvarieties of S, we define

there exists an embedded analytic germ
Y(f,e,h) =1 (z,y) € PxY: (x,D) C (x, 2y N L) of dimension
at least e mapping into a fibre of h

The following says that if one applies the Ax-Schanuel theorem to a family of subvarieties
then the resulting intersections belong to a family of weakly special subvarieties.

Theorem 4.6. Fix some family of subvarieties of P, f : Z — Y, and an integer e > 1, such
that each fibre of f has dimension < dim H + e.

Suppose that there exists a countable collection of families {h; : C; — B;}2, of subvarieties of
S, all of whose fibres are weakly special, and that all weakly special subvarieties of S are among
the fibres of these families. Then the set Y(f,e) introduced in Proposition 4.5 is contained in

L Y(f, e, hi) for some index m after reordering the i’s.

4.6. Proof of the geometric Zilber-Pink (after Baldi-Urbanik). Let S be a smooth
quasi-projective variety, and V — S be a ZVMHS, with associated Hodge-monodromy datum
(Hs C Gg,D% C Dg). To ease the notation, we simply set D= Dg, and G = Gg. Let
m : P — S be the period torsor associated to (S,V) as in Section 4.3.1, with its algebraic
evaluation map r : P — D.

The proof of the following is quite standard.

Lemma 4.7. Consider the set
Q :={[Q] : Q is a weakly special subdomain of D}.

Then there exists a variety Y, an embedding Q — Y(C), and a family g : D — Y of algebraic
subvarieties of D such that the fibre above the point [Q)] is the variety ().

Thanks to the next lemma, in the course of the proof of the geometric Zilber-Pink, we will
freely translate the group theoretic data (H, Dy, N) into families of weakly special subvarieties.

Lemma 4.8. The theorem is equivalent to proving that monodromically atypical weakly special
subvarieties of S belong to finitely many algebraic families, where each fibre of each family is a
monodromically atypical weakly special variety.

For simplicity, from now on, we drop the adjective “monodromically” in front of words typical
and atypical (Definition 3.9 plays no role in this section, and we are always concerned with
Definition 3.15).

Proof of Theorem 3.17. 1t suffices to prove the theorem after replacing S with a finite étale

covering. Then standard techniques in Hodge theory can be used to reduce to the case where

the period map W is quasi-finite; see indeed [11] and the references therein. We will prove that,
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for each e, the e-dimensional atypical weakly special subvarieties of S belong to finitely many
algebraic families as in Lemma 4.8. We start by parametrizing the weakly special subvarieties of
D:

Proposition 4.9. There exists a family f : Z — Y of subvarieties of P x S such that all weakly
special subvarieties Y arise as follows: there is a point y € Y(C) such that' Y is a component of
the projection to S of Z, N L for some leaf L above S.

We let f be as in Proposition 4.9, and, for any integer j, write f(<7) for the subfamily defined
by the property that the varieties r(Z,) have dimension < j. (This is a priori a constructible
condition on ), but one can make it algebraic by replacing ) with a finite union of strata.) We
say a pair of integers (e, j) is in the atypical range if j < p(e) := e + dim EOS —dim S. For each e
we consider

(4.6.1)  Y(e) ==Y e) = {(x,y) € P x Y : dim, (L, N Z,) > e, dimr(Z,) < p(e)}.

This is the locus in P x ) where e-dimensional atypical intersections associated to atypical
weakly specials can appear, indeed, since the family f comes as pull-back from IVJOS, the condition
dim, (£, N Z,) > e is equivalent to dim,,)7(L; N Z,) > e. Thanks to Proposition 4.5 and
Proposition 4.9 this is a constructible set. In fact, we will be interested in two subsets of Y(e):

;o  there exists (z,y') € Y(¢')
(46.2) ke ={@m ey G oo b €
, th ists (z, 1
(469 €0 = {mp ey s B R £ )

These are once more constructible subsets, thanks to Proposition 4.5.
The following proposition is the key step to prove the geometric Zilber-Pink and crucially
uses the Ax-Schanuel theorem.

Proposition 4.10. For each (z,y) € Y(e) \ K(e), let U be a component at x of Z, N L, of
dimension > e. Then the projection of U to S surjects onto the germ of a strict weakly special
subvariety Y of S (of dimension e).

Because all the varieties in our family f arise by pulling back subvarieties of DY, it will be
convenient for the following arguments to refer to the Ax-Schanuel theorem for intersections
with the graph of a period map in S x Dg (namely Theorem 4.4), although of course all the
arguments could instead be rephrased in terms of intersections with leaves of P. We have a
natural map (7 x r) : P — S x D%, where 7 : P — § is the structure morphism.

Proof. Let (z,y) € Y(e) \ K(e) and a component U C (Z, N L) with dim, U > e. Since Z,, is a
fibre of the family f(<P(¢) the definition of p(e) implies that we are in the atypical range, i.e.

(4.6.4) codimSXDOS(ﬂ xr)(U) < COdimeDg (mxr)(Ly) + COdimeDg r(Zy).

Hence, setting s = mw(z), if (Z,s) C (S, s) is a germ obtained as the image of U, then by the
Ax-Schanuel theorem Theorem 4.4 the germ (Z,s) lies in a strict weakly special subvariety
of Y € S of S. Let Y be the smallest weakly special subvariety of S containing (Z,s),
and let (Hy, DY C lv)g),) be its monodromy datum. We fix a Hodge-theoretic embedding of
(Hy, DY c DY) into (Hg, D% C D%) and after replacing = and Z, by an Hg(C)-translate
we may assume that the orbit D’ := Hy (C) - 7(z) agrees with DY. We want to show that
r(Z,) =D

Lemma 4.11. The image r(2,) C DY lies in D'

Proof. Consider an irreducible component C’ of 7(Z,) N D' containing the image of U, which

must have dimension < j := dimr(Z,). To prove the lemma, it is enough to show that we

must have dim C’ = j. By construction, C’ is again the image of a fibre of f, so we can write

C' =r(Zy), for some y' € Y. Since Z,/ contains the projection of U particular (z,y’) € Y(e)
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and Z,y C Z,. The last inclusion is not an equality precisely when dim C’ < j. But points where
this happens are all contained in K(e) as a consequence of the second condition (4.6.3) defining
K(e). O

Suppose now instead that we have a strict inclusion r(Z,) C D , which is equivalent to the fact
that dim D’ — j > 0. A priori Y is either an atypical or a typical weakly special subvariety of
(S, V). We argue each case separately and in both cases we will derive the desired contradiction:
for the former we contradict (4.6.2), and for the latter the minimality of Y (this details are
omitted).

We have shown that r(Z,) = D', which implies that U is the germ of the weakly special
subvariety Y, concluding the proof of Proposition 4.10. U

Thus, by Proposition 4.10, each germ U arising in the definition Y(e) \ K(e) surjects onto the
germ of a weakly special subvariety of S of dimension e. The next lemma shows that, in fact,
the locus Y(e) \ K(e) contains all germs of maximal atypical subvarieties.

Lemma 4.12. Fach maximal (among atypical) atypical weakly special Y of dimension e induces

a point of Y(e) \ K(e).

Proof. As observed after (4.6.1), it is true by construction that each smooth germ of a d-
dimensional atypical subvariety Y induces a point (z,y) = (zy,yy) € Y(e), where r(Z,) =
Hy (C) - 7(z) =: D’ and dim, (L, N Z,) = e.

We need to check that not all such points are contained in KC(e):

o If there exits (z,y') € Y(¢/) with ¢ > e and Dy C r(Z,), we would like to conclude
that Y is not maximal among atypical. We can assume that y is chosen in such a way
that Z,/ is minimal among the fibres of f (<p(e) containing Dy. Consider W the Zariski
closure in S of the projection of £, N Z,/. Since we are still in the atypical range for ¢/,
by Ax-Schanuel, W lies in some strict weakly special subvariety Yy, and we must have
Y ¢ W C Y. We claim that the smallest such Yy has to by atypical. Let (Hyy, f)W)
be its monodromy datum. Consider r(Z,) N Dy, by the minimality assumption of Zy
and the stability under intersections of the family, we must have r7(Z,) C Dyy. If we
have equality, we conclude that Y is atypical. Assume therefore that r(Z,) C DW. If
Yw is typical (i.e. codimg Yy = codimbg DW), then Y x r(2,) C Y x Dw gives rise
to an atypical intersection, and this contradicts the minimality of Yy .

o If there exists (z,y') € Y(e) with 7(Z,) C D', then dim, (L, N Z,) = e and therefore
the projection of £, N Z, to S is equal to Y. This implies that Z,/ is invariant under
the monodromy of Y, and therefore that r(Z,) = D'.

O

Now we consider a countable collection {h; : C; — B;}32; of families of weakly special
subvarieties, each of whose fibres are atypical and e-dimensional. One can construct this
by refining the above families so that all the fibres have dimension e, and monodromy data
is small enough to be in the atypical range. What we proved so far gives Y(e) \ K(e) =
U2, Y(f (<p(e)) ¢, h;), and thanks to Lemma 4.12 all weakly special subvarieties induce points
of this set. Applying either the Ax-Schanuel in families, or directly the constructibly fact
Proposition 4.5, one sees that in fact finitely many h; suffice, which gives the result. O

5. TYPICAL INTERSECTIONS—PROOFS

5.1. Level, after Baldi-Klingler-Ullmo [21].

5.1.1. Preliminaries.
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Definition 5.1. Let K = Q or R, or a totally real number field. If K = Q or R, a K-Hodge-
Lie algebra is a reductive (finite dimensional) Lie algebra g over K endowed with a K-Hodge
structure of weight zero
g@:@gi, and gl=g VieZ,
1€EZ

such that the Lie bracket [-,-] : A% g — g is a morphism of K-Hodge structures, and the negative
of the Killing form By : 02l ® g®d — K is a polarisation of the K-Hodge substructure g*? (where
we identify the adjoint Lie algebra g with the derived one g3 := [g, g]).

If K is a totally real number field a K-Hodge-Lie algebra is the datum of a reductive Lie
algebra g over K and of a Q-Hodge-Lie algebra structure on Resg g 9.

(What we denoted above by g¢ is, in the literature, often denoted by g>~%.)

Remark 5.2. Given h : S — Gp a pure Hodge structure on a real algebraic group Gg in the
sense of [101, page 46], the adjoint action of h on the Lie algebra gr endows ggr with the structure
of a real Hodge-Lie algebra. Conversely one easily checks that a real Hodge-Lie algebra structure
on gr integrates into a Hodge structure on some connected real algebraic group Gg with Lie
algebra gr. Notice also that if a simple real Lie algebra gr admits a Hodge-Lie structure its
complexification gc is still simple, see [101, 4.4.10].

5.1.2. Definitions.

Definition 5.3. Given a simple R-Hodge-Lie algebra ggr, its level is the largest integer k such
that g& # 0. The level of a simple Q-Hodge-Lie algebra g is the maximum of the level of the
irreducible factors of gr := g ®g R. The level of a semi-simple Q-Hodge-Lie algebra is the
minimum of the levels of its simple factors. If K = Q or R, the level of a K-Hodge structure V
is the level of its adjoint K-Hodge-Lie Mumford-Tate algebra g*?.

Remark 5.4. Notice that our Definition 5.3 is not the standard one. Usually, the level of any
pure real Hodge structure V is defined as the maximum of k& — [ for V¥! #£ 0. We believe that
our definition, which takes into account only the adjoint Mumford-Tate Lie algebra of V, is
more appropriate. For instance, the level of the weight 2 Hodge structure H?(S,Q), for S a
K 3-surface, is one for Definition 5.3, reflecting the fact that the motive of S is of abelian type,
while it would be two with the usual definition.

It follows from Remark 5.2 that if V is a polarizable ZVHS on a smooth connected quasi-
projective variety S, with generic Hodge datum (G, D) and algebraic monodromy group H, then
any Hodge generic point = € i)(gai) defines a Q-Hodge-Lie algebra structure g2! on g4, with
Q-Hodge-Lie subalgebra h,. One immediately checks that the levels of these two structures are
independent of the choice of the Hodge generic point z in D.

Definition 5.5. Let V be a polarizable ZVHS on a smooth connected complex quasi-projective
variety S, with algebraic monodromy group H. The level of V is the level of the Q-Hodge-Lie
algebra b, for x any Hodge generic point of ®(S2) .

5.2. Proof of Theorem 3.19.

The proof uses the fact that the Q-Hodge-Lie algebra § of the algebraic monodromy group H is
generated in level 1, see below; and the analysis by Kostant [79] of root systems of Levi factors
for complex semi-simple Lie algebras.

Definition 5.6. Let K = Q or R. A K-Hodge-Lie algebra g is said to be generated in level 1 if
the smallest K-Hodge-Lie subalgebra of g whose complexification contains g~' (or equivalently
g') coincides with g.

Proposition 5.7. Let V be a polarizable ZVHS on a smooth connected complex quasi-projective
variety S, with algebraic monodromy group H. Then the Q-Hodge-Lie subalgebra structure b

defined by any point s € S on b is generated in level 1.
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More precisely, the R-Hodge-Lie subalgebra structure defined by any point s € S on the
non-compact part ¢ of hr := b ®g R is generated in degree 1, and the compact part by is of
Hodge type (0,0).

Proposition 5.8. Suppose gr is a simple R-Hodge-Lie algebra generated in level 1, and of level
at least 3. If gl C gr is an R-Hodge-Lie subalgebra satisfying ¢'* = g* for all |i| > 2 then ¢’ = g.

Assuming for the moment Proposition 5.7 and Proposition 5.8, let us finish the proof of
Theorem 3.19. Let Y C S be a monodromically typical weakly special subvariety for V, with
algebraic monodromy group Hy . In the following we fix a point z € Dy, N W (52n) and consider
the Q-Hodge-Lie algebra pair hy C b defined by this point. The typicality condition writes:

(5.2.1) dim | P by" | — dim ¥(Y*") = dim [ s~ | — dim U (5*) .
i>1 i>1
As Y is monodromically typical, we have

(5.2.2) dim hy' — dim (V™) = dimh~! — dim ¥(S*) .
We thus deduce from (5.2.1) and (5.2.2) that

dim (@hyi) = dim (@h—i) ,
i>2 i>2

thus h{/i =bh""as h{/i Chi foralli>2. As b} = h{,i and b’ = h—¢ we finally deduce:

(5.2.3) b =b" for all |i| > 2,

The assumption that b is of level at least 3 says that each simple Q-factor of b is at level at
least 3. Moreover the equality (5.2.3) remains true if we replace ) by any of its Q-simple factors
and by by its intersection with this simple factor. To deduce that hy = b, we can thus without
loss of generality assume that b is Q-simple.

By Proposition 5.7 it follows that one simple R-factor [r of bp° is generated in level 1 and of
level at least 3. It then follows from Proposition 5.8 that the intersection hyr N Ir equals [r. As
both by and bh are defined over Q and b is the smallest Q-algebra whose R-extension contains
Ir, we conclude that hy = h. Thus Y = S, which finishes the proof . U

Proof of Proposition 5.7. Passing to a finite étale cover of S if necessary, we can and will assume
without loss of generality that the monodromy of the local system V is contained in H(R). Let Vy
be the QVHS associated to the adjoint representation of the algebraic monodromy group H. For
each s € S, let b, be the fiber at s of Vy. This is a semi-simple Q-Hodge-Lie algebra. We write
br,s = BR’s ® b ¢ for the decomposition of the R-Hodge-Lie-algebra b s into its non-compact
and compact part.

As H has no Q-anisotropic factor, hr s is the smallest subalgebra of br s defined over Q and
containing hr’;. Proving that hp’; is generated in level 1 thus implies that b, is generated in
level 1. Let us now turn to the proof of this last statement.

Let h(C,s C bhes be the complex Lie subalgebra generated by h; ! and hl. It is naturally defined
over R: [](,C,s = b]’R,s ®r C and b{R,S C br,s is a real Lie subalgebra. We claim that the collection

(bﬁ%""’)ses defines a local subsystem of Vg, := Vi ®g R. To prove the claim, it is enough to

show that the corresponding holomorphic subbundle of Vy := Vy. ®c Og is stable under the
flat connection V defined by Vy.. But a local holomorphic vector field X on S identifies under
the period map with a local section u of F~1Vy over ¥(5?"); and, under this identification,
the derivation Vx at a point s is nothing else than ad w, which preserves h(as at each point
according to the very definition of the latter. Hence the claim.
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It follows that b{R’ . is an Hg(R)-submodule of the Lie algebra hg ¢ under the adjoint action,
i.e. an ideal of hgr 5. As bgr s is semi-simple we obtain a decomposition of real Lie algebras, hence
of R-Hodge-Lie algebras:

bR,S - []/]R7s ED [S 7

and of the associated flag domains Dy = Dy x Dy. The subvariety @(551) C Dpg is horizontal,
thus tangent to Dy at every point. Hence there exists dy, € Dy, such that {I;(gg;l) C Dy x {dr}.
It follows that the monodromy (Ad p)(m(S,s)) of the real local system Vy,, hence also its
Zariski-closure Hpg, is contained in H' x M, where M, is the R-anisotropic stabilizer of d,
in L. Thus Hg = Hy x My, ; Hg is the non-compact part of Hg, which is thus generated in
degree 1; and L = M, is the compact part of Hg, of pure type (0,0). Hence the result. O

Remark 5.9. Proposition 5.7 should be compared with [99, Prop. 3.4]. In op. cit. Robles
obtains a weaker result for the more general situation of an horizontal subvariety Z of Dy
not necessarily coming from an RVHS on a quasi-projective base (her result is stated for
(H,Dpg) = (G, D) but the proof adapts immediately to the general case; moreover, as indicated
to us by Robles the Qs appearing in [99, Proposition 3.4] have to be replaced by R’s). In her
case the group Hf is not necessarily a factor of Hg. Our stronger conclusion (and easier proof)
comes from the ubiquitous use of Deligne’s semisimplicity theorem.

Proof of Proposition 5.8. The proof follows from the results of Kostant in [79]. We will use his
notation in our setting to help the reader. Thus let us write m := g%, a Levi factor of the proper
parabolic subalgebra q := Flgc. Let t := centm be the center of m and let 5 := [m, m]. Thus
m = t@s. Let v be the orthogonal complement for the Killing form of m in g so that gc =m &t
and [m,t] C t. A nonzero element v € t* is called a t-root if g, # 0, where

g ={z€gc, adz(z)=v(r)z, Vx € t}.

We denote by R C t* the set of all t-roots. Following [79, Theorem 0.1], the root space g, is an
irreducible ad m-module for any v € R, and any irreducible m-submodule of t is of this form.
Moreover if v, u € R and v + p € R then [g,, 8,] = gv+u, see indeed Theorem 2.3 in op. cit..

Let R™ C R be the set of positive t-roots defined in [79, page 139]. Thus the unipotent radical
n = Flgc of g = FOgc coincides with D, cr+ 9v- Let T' € t be the grading element defining the
Hodge graduation gc = @,y o', see [99, Section 2.2]. Thus g, C g“") and v € R* if and only
if v(T) > 0.

A troot in R* is called simple if it cannot be written as a sum of two elements of RT. Let
Rgimple C R™ denote the set of simple roots. In [79, Theorem 2.7] Kostant proves that the
elements of Rgmple form a basis of t*. If Rgmple = {B1,---, 51} (where dim t = [) then moreover
the gg,, i € I :={1,--- [}, generate n under bracket.

As ggr is a simple real algebra, it follows from Remark 5.2 that g¢ is a simple complex Lie
algebra. Since ggr is assumed to be generated in level 1, it follows that for all 7 € I, gg, C gt
(otherwise $; would not be a simple root); and g* = @,c; 95,

Let hc C gc be the complex Lie subalgebra generated by @,~5 g° and @, g~*. It is naturally
an m-submodule of gc, hence hcNg' decomposes as a direct sum @D, cicr8p;- As gr is generated
in degree one and the level k of g is at least 3, it follows from [79, Theorem 2.3] that the subspace
[072,9%] C bc Ng! is not 0, thus J is not empty. Notice that, for any i € I — J and j € J, one
has [gg,, 9s,] = 0. Indeed the Killing form is ad(m)-invariant, and b is closed under ad(m); hence
bt is closed under ad(m), a fortiori under ad(t), whence (h)* = @,c;_; 95, Since g =bh @ ht
as a Lie algebra, the desired conclusion follows.

If J # I this contradicts the fact that the restriction to t of the highest root of g¢ is of the
form Y ,c;ng,Bi, with all ng, > 0 for all i € I, see [79, (2.39) and (2.44)]. Thus I = J and

bc = gc- O
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5.3. Typical Locus — All or nothing. In this section we prove Theorem 3.20. As usual, we
let

U8 5 T\D
be the period map associated to V, where (G, D) = (Gg, Dg) is the generic Hodge datum
associated to (S,V). The proof of the above result builds on a local computation (at some

smooth point).
Let I"\D’ be a period subdomain of T'\ D such that

(5.3.1) 0 < dim((¥(S*™) N T\D')°) = dim ¥(5*") + dim '\ D’ — dim T\ D,

that is we have one typical intersection Z = U~—1(I"\ D). Assume for simplicity that the image
of Z under the period map is smooth (otherwise one needs to stratify). Let H C G be the
generic Mumford-Tate of D’, and, as usual, write H = H(R)* € G = G(R)" and b for its Lie
algebra, which is an R-Hodge substructure of g = Lie(G). Finally we denote by Ng(H) the
normaliser of H in G. Let

Ch:=G/Ng(H)={H =gHg': g€ G}

be the set of all subgroups of G that are conjugated to H (under G) with its natural structure
of real-analytic manifold. Set

Oy :={(x,H'Ye DxCy :2(S) C H'} ¢ D x Cy,
and let 71 (resp. m2) be the natural projection to D (resp. to Cg). Notice that m; are real-analytic
G-equivariant maps (where G acts diagonally on IIf).

Let S be the preimage of U (S52") in D, along the natural projection map D — I'\ D, and S
be the preimage of S in Ilj, along 7. By restricting mo we have a real-analytic map

By a simple topological argument, as explained for example in [34, Proposition 1], to prove
that HL(S, V®) is dense in S, it is enough to prove that f is generically a submersion (that is
a submersion outside a nowhere-dense real analytic subset B of S ).3 As being submersive is
an open condition (for the real analytic topology), it is enough to find a smooth point in S at
which f is submersive.

Let us analyse this condition. Let y = (P, H') € D x Cy be a point of S. The real tangent
space of Cy at f(y) is canonically isomorphic to

g/ Lie(Ng(H')) = g/ng(b’).
The image of df at y = (P, H') is equal to
(5.3.2) (m + Tp(S)r +ng(h')) /ng(h')
where m is the Lie algebra of M (from the identification D = G/M). Thus f is a submersion
at y = (P, H’) if and only if (5.3.2) is equal to g/ng(h’). Now we work on the complex tangent
spaces (by tensoring all our R-Lie algebras with C), and use the fact that b, ng(h’), and m are
naturally endowed with an R-Hodge structure. Thus
gc=gv®---dg'ed®g o ®gY
for some w > 1. To ease the notation set
U .= Tp(?)(c C g_l.

It follows that f is a submersion at y = (P, H') if and only if the following two conditions are
satisfied (compare with [34, Proposition 2]):

(5.3.3) ng(h)F =g7"

3Because of its simplicity, for the convenience of the reader, we recall here Chai’s argument. Let  C S*" be
an non-empty open subset. Since f is open, the image of 7=(Q) — B in Cy is open and non-empty, hence meets
in a dense set the G(Q)+-conjugates of H, as G(Q)+ is topologically dense in G.
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for any k = w,...,2 (recall that m is pure of type (0,0), so m~* = 0 in this range), and
(5.3.4) U+ng(h) =g

Let us now exhibit a point y = (P, H') € S satisfying both (5.3.3) and (5.3.4). Let P be one
of the lifts in D of a smooth Hodge-generic point of ¥(Z2") and H' = H'(R)" where H' is the
Mumford-Tate group at that point. Then (5.3.1) implies the following decomposition of the
holomorphic tangent bundle of D at P:

(5.3.5) U+Tp(D)c=Tp(D)c=g & --®g "
In particular we have (h')~% = g=*, for all k > 1, which implies that (5.3.3) holds true, since
(h/)_k C b’. moreover, since (h')~! + U = g, also (5.3.4) is satisfied at .

5.4. Isogenies. To better explain Theorem 3.25, we give a simple and more concrete corollary
about two principally polarized families of abelian varieties h; : A; — S.

Corollary 5.10 (Baldi-Miller-Stover-Ullmo [22, Cor. 6.6]). Fiz g > 2. Let S be a smooth
quast projective variety and h; : A; — S be two principally polarized abelian scheme of relative
dimension g whose algebraic monodromy group is Spy,. Set V; := thi,*Z for the associated

VHS. If
(5.4.1) HL(S, V) pos.typ = HL(S, VE) pos.typ 7 0,
then Ay is isogenous to Ay as S-abelian schemes (and the isogeny preserves the polarizations).

Proof. We will use Remark 3.24 and the following fact: Given two principally polarized families
of abelian varieties h; : A; — S, one has Homg (A1, A2) = Hom(R1h1,+Z, Rihs,.Z); see [41, Cor.
4.4.15] which needs the full monodromy assumption. Indeed Theorem 3.25 implies that the two
ZVHSs V; for i € {1,2} are isogenous in the sense of Definition 3.23, and the above facts imply
that this notion of isogeny translates precisely to the traditional one. U

Proof of Theorem 3.25. The main step in the proof is the following lemma for which we do not
need to assume that the generic Mumford-Tate group of V; is Q-simple.

Lemma 5.11. Let f; : S — I';\D; be the period map associated with V;, i = 1,2, and let

f1 X f2 : S — Fl\Dl X FQ\DQ
be the period map associated with V1 & Va. Then HL(S, (V1 & V2)®)pos atyp 5 analytically dense
inS.

Proof. As HL(S, V,@)pos,typ # (), by Theorem 3.20 there exists sequences of special subvarieties
{Z;t}een in T;\D; and a Zariski dense sequence {W; }gen of components of both HL(S, V) pos typ
and HL(S, V&) pos typ such that

We = f71(Z10)" = f3 1 (Z2,0)°
for some components f;l(Zi’g)O of f;l(ZM). The fact that W, are again typical intersections,
guaranteed by Theorem 3.20, implies that W, is Hodge generic for V; in Z; ;. By passing to a
subsequence, we assume that Z; , has fixed dimension z;. Similarly, we may assume also that
the Wy have dimension that don’t depend on /.
Since W, is realized in two ways as a typical intersection, we have
codimp,\ p, fi(We) = codimp,\ p, Z; ¢ + codimp,\ p, (fi(S))-
for each ¢ € {1,2}. That is, if w; := dim f;(Wy), d; := dimT';\ D;, and s; := dim f;(.5), then
(5.4.2) di —w; =d; — z +d; — s;.

Note that we do not assume that our period maps are immersive. Notice that

W C (f1 x f2) N Z1p % Zay) & S.
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Let W} be an irreducible component of (f; x fg)_l(ZLg X Zay) containing W,. We claim that
W} is an atypical intersection of positive period dimension in the Hodge locus HL(S, (V1 & V2)®)
for all ¢. For this, we need to show that

codimr\ p, xr\ Dy (f1 X f2(W7)) < codimp \ p, 1\ Dy (Z1,6 X Z2,0) +codimp \ p, x1,\ D, (f1 X f2(5)).
Summing Equation (5.4.2) for ¢ = 1,2 we have

(5.4.3) di+do—w;—wo=di +dy — 21 — 29 +dy +dy — 51 — 8.

This implies the requisite equation by noticing that

max{dim(f1(Y)),dim(f2(Y))} < dim(f1 x f2(Y)) < dim(f1(Y)) + dim(f2(Y)).
for any Y in S. O

Lemma 5.12. Fach of the following holds:

(1) If the monodromy of V; is equal to the derived subgroup of its Mumford—Tate group G,
then (f1 X f2)(S) is not Hodge generic in T'1\ D1 x I'2\Ds.

(2) If the Mumford—Tate group G; of V; is Q-simple, then G4 = G34, Dy ~ Dy. Denoting
by (G, D) the corresponding Hodge datum, we have that (f1 X f2)(S) is Hodge generic in
a modular correspondence

I'\D Cc T1\D x I';\D.

Proof. By Lemma 5.11, S has a Zariski dense set of positive dimensional atypical components of
the Hodge locus for the period map fi X fa. Therefore S satisfies conclusion (a) or (b) of the
geometric Zilber-Pink conjecture stated above (namely Corollary 3.18). If conclusion (a) holds,
then (f1 x f2)(S) is not Hodge generic in I'1\ Dy x T'9\ D2, as desired. If the monodromy of V; is
equal to the derived subgroup of its Mumford—Tate group Gy, then the projection of f;(.S) on
every factor of I';\ D; is positive dimensional and Hodge generic. The same is true for the period
map f1 X fa. Therefore conclusion (b) is not satisfied. This finishes the proof of the first part of
the lemma.

If the Mumford—Tate group G; of V; is Q-simple, then the monodromy of V; is equal to the
derived subgroup of its Mumford—Tate group G; and by the first part, (f1 x f2)(5) is not Hodge
generic in I'1\D; x T'9\D2. Moreover in this situation, the only strict special subvarieties of
I'1\ Dy xT'9\ Dy whose projections on both factors are surjective are the modular correspondences.
This forces D ~ Dy and G34 = G34. This finishes the proof of the second part of the lemma. [

Theorem 3.25 is now a consequence of the characterization of isogenous ZVHSs. (]

5.5. Sketch of the proof of Theorem 3.22. Denote by S the universal cover of S, and
§ € S a Hodge generic point. Fix (H, Dy) C (G, Dg) a V-admissible Hodge sub-datum and
g € G(R) such that § € g- Dy. Consider Y = SNg- Dy C Dg, which contains 5. Since 3 is
Hodge generic, Ax-Schanuel (with the admissibility condition plugged in) implies that ¢ has an
analytic irreducible component of the expected dimension (at §). The same holds true for any ¢’
sufficiently close to g, and we conclude by density of the rational points of G in the real ones.
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Part 3. Applications
6. FIRST APPLICATIONS

In this section we present some concrete instances of the general Zilber-Pink viewpoint to
classical problems in Algebraic Geometry involving Jacobians, Neron-Severi group of degree d
surfaces (and generalizations to higher dimensional hypersurfaces), and integral points of certain
moduli spaces.

6.1. Jacobians with given Mumford—Tate group, and a question of Serre. In [90]
Mumford shows the existence of principally polarized abelian varieties X of dimension 4 having
trivial endomorphism ring, that are not Hodge generic in A (they have an exceptional Hodge
class in H*(X?2,7Z)). A question often attributed to Serre is to describe “as explicitly as possible”
such abelian varieties of Mumford’s type. The most satisfying way would be to write the equation
of a smooth projective curve over Q of genus 4, whose Jacobian is of Mumford’s type. At least
20 years ago, Gross [45, Problem 1] asked the weaker question over C.

Theorem 6.1 (Baldi-Klingler-Ullmo [21, Thm. 3.17]). There exists a smooth projective curve
C/Q of genus 4 whose Jacobian has Mumford-Tate group isogenous to a Q-form of the complex
group Gy, x SLg x SLg x SLo.

Remark 6.2 (Relation with Serre’s open image theorem). Let K be a number field (with fixed
embeddings K C Q C C), and let A/K be a g-dimensional principally polarised abelian variety.
For any prime number ¢, consider the natural Galois representation associated to the f-adic Tate
module Ty(A) of A:

p=pae: Gal(K/K) — GSpyy(Ze).

Assume that End(A/C) = Z and g Z 0 mod 4. Then Serre proved that p has open image in
GSpy, (Zy¢) and asked for explicit counterexamples in dimension 4. The above is the first known
instance of Jacobian J of a smooth projective genus 4-curve such that End(J) = Z and Im(p )
is not open in GSpg(Zy).

Remark 6.3. Actually our proof shows the existence of infinitely many such curves. Finding
explicit equations for such a curve remains an open problem.

Sketch of the proof. Let My be the moduli space of curves of genus 4, and j : My — A4 be the
Torelli morphism. Denote the image of j by

T = j(My) C Aa,

which will be referred to as the open Torelli locus, and by Ty its Zariski closure (the so called
Torelli locus). It is well known that 73 is Hodge generic in A4 and that 1 = 10—9 = codim 4, (71).

Recall that A4 contains a special curve Y whose generic Mumford-Tate group H is isogenous
to a Q-form of G, x (SL2)3/C, as proven by Mumford [90]. From Theorem 3.22, we see that
T4 cuts many Hecke translates Y,, of Y, that is: the union, varying n, of 74 N'Y,, is dense in
T4 (there are actually many different ways to see this fact?). In particular, upon extracting a
sub-sequence of Y;,, we have

(6.1.1) Y, NTL #0,
since it is not possible that all intersections happen on Ty — T,

Since the Y,, are one dimensional, for each P € Y,,, there are only two possibilities:

e P is a special point, i.e. MT(P) is a torus (so P corresponds to a 4-fold with CM);
e MT(P) = MT(Y,), which is isogenous to some Q-form of G, x (SLz)3.

4The quickest is perhaps to notice that the Torelli locus in A4 is a subvariety of codimension one, which is in
fact ample as a divisor by a result of Igusa.
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Therefore, to conclude, we have to find a n and a non-special P € Y, N T,. Heading for a
contradiction, suppose that, for all n, all points of ¥;, N T are special. By density of the
intersections, this means that 74 contains a dense set of special points. André-Oort now implies
that 7y is special, which is the contradiction we were looking for. This shows the existence of a
point of T2(C), corresponding to a curve C/C of genus 4 whose Jacobian has Mumford-Tate
group isogenous to a Q-form of the C-group Gy, x (SL2)3. To conclude the proof of Theorem 6.1
we just have to observe that My, A4, j and all the Y,, can be defined over Q C C and therefore
all intersections we considered during the proof are defined over Q. The result follows. O

6.2. Noether-Lefschetz locus and questions of Harris and Voisin. We work over C
and fix an integer d > 4. Let Uy = PHY(P3,O(d)) — A be the scheme parametrizing smooth
surfaces X of degree d in P3. Consider the so called Noether-Lefschetz locus:

NLg := {[X] € Uy : Pic(P?) — Pic(X) is not an isomorphism}.
We refer to the notes [28] for a discussion more detailed than the one given in the introduction.

Remark 6.4. NL; is a naturally a countable union of subsets {Y;}; of Uy, such that each Y;
is given by the complex points of a subvariety of Uy. In particular we can speak of irreducible
components of NL,. Notice also that each irreducible component of NL,; has a natural schematic
structure, which is often non-reduced. In what follows we will always consider these components
with their reduced structure.

We study the relationship between the following theorem and the recent general results on
the distribution of the Hodge locus discussed before [62, 63, 106].

Theorem 6.5 (Explicit Noether-Lefschetz theorem (Green-Voisin)). Each irreducible component
Y of NLg is such that
d—1
d—3 < codimp, Y < h*" = ( 3 )

In view of Theorem 6.5 the following definition is natural (it appeared explicitly® in [36, page
668], see also the previous works [32, 65]):

Definition 6.6. A component Y of NLg is said to be general if it has codimension h*°, and
exceptional otherwise.

It is known that the union of the general components of NL, is Zariski-dense in Uy [36], and
that NLg is even dense in Uy for the analytic topology (an argument of Green, written for
instance in [108, Prop. 5.20]). See also [37] for the construction of some explicit exceptional
components. We refer also to the recent works [49, 74] (inspired by the Zilber-Pink paradigm
proposed in [21]). In particular such results show, abstractly, the existence of general components
in NL; and the density of their union.

From now on, we assume d > 5 (quadrics and cubic surfaces are both rational and will have
no periods; while for d = 4, there are no exceptional components). Harris conjectured in [64,
page 301] that NL; has only finitely many exceptional components. This conjecture was first
disproved by Voisin in [107], for d big enough and divisible by 4. We refer also to [28, Example
3.10] for a brief overview of the ingenious construction of Voisin, which ultimately comes from
NL4.

After disproving Harris conjecture, Voisin asked the following [107, 0.5]:

Question 6.7 (Voisin). Is the union of exceptional components of the Noether-Lefschetz locus
Zariski dense in Uy?

The main result of this section provides a negative answer to Question 6.7 (as expected by
Voisin).

In the [36] the terminology special is used in place of ezceptional. In order to avoid a possible source of
confusion, since the word ‘special’ is at odds with its use in [21], we decided to rename it from the start.
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Theorem 6.8 (Baldi-Klingler-Ullmo [20, Thm. 6, Thm. 15]). The union of the exceptional
(i.e. of codimension < h**) components of NLqg is contained in a finite union of strict special
subvarieties of Uy for V (in particular it is not Zariski-dense in Uy).

In particular each irreducible component W of the Zariski closure of the union of the exceptional
components is contained in a strict special subvariety of Uy of the form W~1(I'y\ Dy)?, where
(Gw, D) is its associated Hodge datum, strictly contained in the generic Hodge datum (G, D)
of (Uy,V). Since the components of NL; are maximal among the components of the Hodge
locus of V having an extra Hodge vector, either W is one of the exceptional components, or the
Mumford-Tate group Gy has to be associated to some non-trivial Hodge class in some tensorial
construction of Vy,. We don’t know whether such a Hodge tensor comes from an algebraic cycle
in a suitable power of the generic surface X of W. This is what happens in [107]. We record
here an application to a finiteness question of the reasoning just explained.

Corollary 6.9 (Baldi-Klingler-Ullmo [20, Cor. 16]). Among the exceptional components of NLg,
only finitely many have algebraic monodromy isomorphic, over the real numbers, to the group
H :=SO(2h*0 plt —1).

prim

Proof of Corollary 6.9. If there were infinitely many exceptional components with monodromy
group (abstractly) isomorphic to H, Theorem 6.8 would imply the existence of a sub-Mumford-
Tate datum (G, Dy ) strictly contained in the generic Hodge datum (G, D) with the property
that Gy g strictly contains a subgroup isomorphic to H. The very last assertion contradicts

the maximality of SO(2h°, hyi, — 1) in G = SO(2h?°, hyi,), established by Dynkin [44, Thm.
1.2] (the argument in op. cit. is over C, but the statement over R follows immediately in this

case). Therefore the components of NL; under examination form a finite collection. O

We also briefly discuss a related question on the generic Picard rank of the components of
NLg4.

Question 6.10. (Ciliberto-Harris-Miranda, [36, page 668]) What is the Picard group of a
surface corresponding to a general point of a general component of NL;?

The answer is expected to be Z2, but this is not known (see also [83] for related discussion
and results). Let us call a component Y of NL; Picard generic if the Picard group of a surface
corresponding to a general point of Y is Z2, and Picard exceptional otherwise. The same
arguments give also the following;:

Theorem 6.11 (Baldi-Klingler-Ullmo [20, Thm. 8]). The union of the Picard generic general
components of NLg is dense in Uy(C), while the union of the Picard exceptional components
is contained in a finite union of strict special subvarieties of Uy for V (in particular is not
Zariski-dense in Ug).

The main ingredient in the proof of Theorem 6.8 is the following:

Proposition 6.12. Every irreducible component 'Y of NLg is special of positive period dimension,
and:

(1) If Y is exceptional (in the sense of Definition 6.6), then it is atypical (in the sense of
the previous sections);
(2) If Y is general, then it is typical if and only if it it has the expected generic Mumford-Tate

group (i.e. isogenous to Gy, X SO(2h270,h1’1 -1).

prim

Remark 6.13. In particular a general component of NL; with algebraic monodromy /generic
Mumford-Tate group strictly contained in the expected one is atypical. Once more the union
of such components will not be Zariski dense in Uy in virtue of the geometric Zilber-Pink
Theorem 3.17. Therefore we observe that the (analytic) density of NLg in Uy comes from the
union of its components which are at the same time general and typical.
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Proof. Recall that Y is special (of positive period dimension), of the form U~1(T'y\Dpy)°. In
particular one expects that

codimy, Y < codimp Dy = R0

and the equality to be the “general case”. It might happen that Y = U~1(T'y,\ Dy, )?, for some
', \Dp, strictly contained in I'y\Dp. Let (Gy, Dy) be the Hodge datum associated to Y (or,
more precisely, to V restricted to a normalization of the reduced scheme associated to Y'). Then,
Y is typical if and only if

codimy, Y = codimp Dy

(and atypical otherwise).
By construction (Gy, Dy) is contained in (H, Dp), and therefore

codimp Dy = codimp Dy + codimp,, Dy .
Hence Y is typical if and only if
codimy, Y = R0 + codimp,, Dy.

From the bound in Theorem 6.5, we see that general agree with typical if the monodromy is the
expected one, and exceptional implies atypical. O

To explain the full power of Conjecture 2.5 (compared to its geometric counterpart The-
orem 3.17), we record here the following special conjectural case, which really involves the
zero-dimensional components and is beyond our current understanding.

Conjecture 6.14. Suppose that Y — P is a Lefschetz pencil of degree d surfaces in P3. If
d > 5 the Picard number of Vs is greater or equal to 2 for at most a finite number of values of

s € PL(C).

The proof of Theorem 6.8 and the previous arguments show that the above is a special case
of the Zilber-Pink conjecture. In fact, this special case of ZP was noticed a long time ago by de
Jong [39, Sec. 3.2.2.] and should be attributed to him (see also [21, Sec. 3.6.] for a history of
the Zilber-Pink conjecture, and a comparison with de Jong’s unpublished viewpoint).

Remark 6.15 (The Noether-Lefschetz locus for arbitrary threefolds). To elucidate the role
of the Zilber-Pink viewpoint, we conclude with a general result on the distribution of the
Noether-Lefschetz locus for arbitrary (Y, L) where Y is a smooth projective threefold and L
a very ample line bundle on Y. We consider Uy ; C PH 9(L), the parameter space of smooth

surfaces X C Y such that Oy (X) = L (i.e. smooth surfaces in the same equivalence class as L),
and define

NLj, := {[X] € Uy, : Pic(Y') — Pic(X) is not a surjection}.
Similarly, the results described so far elucidate also the geometry of the more general NL;..

6.3. Higher dimensional smooth hypersurfaces. In this section we offer a simple geometric
illustration of Theorem 3.19:

Corollary 6.16 (Baldi-Klingler-Ullmo [21, Sec. 9.1]). Let IP’(]CV(n’d) be the projective space

parametrising the hypersurfaces X of IPE‘H of degree d (where N(n,d) = (””Lg“) —1). Let
Una C Pg(n’d) be the Zariski-open subset parametrising the smooth hypersurfaces X and let
V — U,,q be the ZVHS corresponding to the primitive cohomology H™ (X, Z)prim-
Ifn=3andd>5 orn=4andd>6; orn=>5,6,8andd>4; orn=70r>9 andd> 3,
then the level of V. — U, q is at least 3, and therefore HL(U,Ld,V@)F,()S C Uyq is algebraic.
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6.4. Some cases of the refined Bombieri-Lang conjecture. Let U, be the Hilbert
scheme of smooth hypersurfaces of degree d in P"*!, this is a smooth affine scheme over Z. In a
recent breakthrough, Lawrence and Venkatesh proved the following:

Theorem 6.17 ([82, Thm. 10.1, Prop. 10.2]). There exist ng € N>3 and a function dp : N — N
such that,

(6.4.1) for every n > ng and d > dop(n),

the set Uy, q(Z[S™Y)) is not Zariski dense in Uy, q, for every finite set of primes S.

Consider f,, 4 : Xy, a — Uy g the universal family of smooth degree d hypersurfaces in Pl
We denote by V the polarized Z-variation of Hodge structure (R" 2Z,C*Z)prim on U, q4c and by
v Uilhce— I'\D the associated period map. An irreducible algebraic subvariety Y C Uy, 4.c is
said to be of positive period dimension if ¥(Y#") has positive dimension. We prove the following

reinforcement of Theorem 6.17:

Theorem 6.18 (Baldi-Klingler-Ullmo [19, Main Thm.]). As long as (6.4.1) is satisfied, there
exists a closed strict subscheme E C Uy, q such that, for all finite set of primes S, we have

Un,d(Z[S_l]) C E,

pos

where Un,d(Z[S_l])pos denotes the union of the irreducible components of the Zariski closure of
Un.a(Z[S7Y) in Uy.q of positive period dimension. That is: the Zariski closure of Uy, a(Z[S™']) —
E(Z[S7Y]) has period dimension zero.

Remark 6.19. The complement of U, 4 in PN (d) g g hypersurface. Hence U,, 4 is an open affine
subvariety, stable under the natural PGL(n + 2)-action on PN Let M, 4 := [PGL(n +
2)\Up.4) be the stack of smooth hypersurfaces in P"*1 of degree d. This is a finite type
separated Deligne-Mumford algebraic stack over Z with affine coarse space. The period map
U Uy ¢ — I\D factorizes through M7, . Notice moreover that the Torelli theorem assures
that the period map M}, - — I'\D is quasi-finite for (n,d) # (2,3). The moduli stack M7 ¢
is thus Brody hyperbolic. A famous conjecture of Bombieri-Lang thus predicts that M,, 4(Z[S™1])
is finite. In particular F in Theorem 6.18 should be empty.

The following elucidation of the Lawrence-Venkatesh method for proving Theorem 6.17 will
be crucial for us. Lawrence and Venkatesh actually prove that (quoting the third paragraph of
[82, Section 1.1])-see also the last three lines of [82, Theorem 10.1].

Theorem 6.20 (Lawrence-Venkatesh). The monodromy for the universal family of hypersurfaces
must drop over each component of the Zariski closure of the integral points. Le. for any S, there
exists a closed subscheme Vs of Uy a4 (over Z[S™1]) whose irreducible components are of positive
period dimension and not monodromy generic, such that U, 4(Z[S™1]) — Vs(Z[S™Y)) is finite.

By the André-Deligne monodromy theorem Theorem 3.12 (see for example [21, Section 4 and
5]) and the fact that the ZVHS V is irreducible, it follows that each Vg lies in the Hodge locus
of positive period dimension HL(U,, 4, V¥)pos.

Remark 6.21. The Lawrence-Venkatesh method requires the choice of an auxiliary prime
number p, and the choice of an identification between C and @p. Indeed, to prove that the
7Z[S~1]-points of Un,.,q are not Zariski dense, Lawrence and Venkatesh prove that some p-adic
period map sending x € U, 4(Z[S™']) to some p-adic representation of the absolute Galois group
of Q, has fibers that are not Zariski dense in U, 4. This is done by working on a residue
disk in U, 4(Qp) and the p-adic and complex period maps are then related by a study of the
Gauss-Manin connection [82, Lemma 3.2]. What their proof actually shows, with respect to our
fixed embedding @ C C is that for each S, there exists an automorphism ¢, of C such that Vg is
contained in HL(Unvd,V@))g C Up,ac. What allows us to say that Vg lies in HL(U,, 4, V¥)pos is
the fact that HL(U,, 4, V®)pos is actually defined over some number field.
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Proof. The proof is essentially a combination of Theorem 6.17 and our earlier results on the
Hodge locus.

It follows from Corollary 6.16 that HL(U,, 4, V¥)pos is a (closed, strict) algebraic subvariety of
Un,q and, thanks to the elucidation of Theorem 6.17, we have

U Una(ZIS)pos = (J Vs € HL(Up,a, V¥)pos,
S S
where the union ranges over all finite set of primes S. It follows from Corollary 6.16 that

—Zar
E':=JVs CHL(Upd V®)pos.
S

We remark here that the above inclusion may happen to be strict. Therefore we obtained a
closed Q-subvariety £ C HL(U,, 4, V¥)pos containing all Vg (seen as Q-varieties). The Zariski
closure E in PY of E' enjoys the desired property. The proof of the Theorem is concluded.

O

7. COMPLEX HYPERBOLIC LATTICES

In the next section we present the main results of [23]. A cornerstone in the representation
theory of lattices in Lie groups is Margulis’s superrigidity theorem [84, p. 2|. Indeed, the
implications of superrigidity are profound, including arithmeticity of irreducible lattices in all
noncompact semisimple Lie groups except PO(1,n) and PU(1,n), i.e., for all but real and
complex hyperbolic lattices. Specifically, Margulis proved superrigidity of irreducible lattices
in semisimple Lie groups of real rank at least two. Using the theory of harmonic maps, this
was later extended to the rank one groups Sp(1,n) and FE[QO) by Corlette and Gromov—Schoen.
While the harmonic maps method was extended to give a new proof in higher rank [88], it is
open whether the methods of Margulis using Ergodic Theory can give an independent proof
in the rank one cases. In this section we study lattices in PU(1,n), and we briefly discuss this
setting.

Let n € Z>1 and consider the following hermitian form on C"*!

h(z) = |2of® + - + [za-1]? — |zal®
We define the n-dimensional complex ball:
B" =B¢ :={lz0:21: - :2,) €P¢:h(z) <0} CC" CPg.
and its group of automorphisms:
PU(1,n) := {g € PGL,4+1(C) : g - B" = B"}
We have: B" = PU(1,n)/ U(n) and our task is to understand the finite volume quotients
Sr:=T\B".

7.1. Non—arithmetic complex hyperbolic lattices. Regarding commensurability classes
of non-arithmetic lattices in PU(1,n), at the time of writing this paper, we have:

e When n = 2, by the work of Deligne, Mostow and Deraux, Parker, Paupert, there are 22
known commensurability classes in PU(1,2).

e When n = 3, by the work of Deligne, Mostow and Deraux, there are 2 known commen-
surability classes of non-arithmetic lattices in PU(1, 3). In both cases the trace field is
Q(v/3) and the lattices are not cocompact.

For n > 3 non-arithmetic lattices in PU(1,n) are currently not known to exist. One of the
biggest challenges in the study of complex hyperbolic lattices is to understand for each n how
many commensurability classes of non-arithmetic lattices exist in PU(1,n).
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7.2. An arithmeticity criterion. Consider the quotient by I' of the symmetric space X
associated to G = PU(1,n). In the complex hyperbolic case we obtain a ball quotient Sp = I'\ X
which has a natural structure of a quasi-projective variety, as proven by Baily-Borel [7] in the
arithmetic case, and by Mok [43] in general. By the commensurability criterion for arithmeticity of
Margulis [84] we can decide whether I is arithmetic or not by looking at modular correspondences
in the product Sr x Sp. That is [' is arithmetic if and only if Sr admits infinitely many totally
geodesic correspondences. In this section, by totally geodesic subvarieties we always mean
complex subvarieties of St, whose smooth locus is totally geodesic with respect to the canonical
Kéhler metric. Even if I" is arithmetic, Sp may have no strict totally geodesic subvarieties.
However, the existence of countably many Hecke correspondences implies that, if St contains one
totally geodesic subvariety, then it contains countably many of such. We study totally geodesic
subvarieties of St from multiple point of views, ultimately explaining how often and why they
appear.

Theorem 7.1 (Baldi-Ullmo [23, Thm 1.2.1], and independently Bader-Fiser-Miller-Stover [6]).
If St contains infinitely many maximal complex totally geodesic subvarieties, then I' C G is
arithmetic.

Remark 7.2. The above statement is equivalent to the following one. Let (Y;);en be a family
of totally geodesic subvarieties of Sp. Then every irreducible component of the Zariski closure of
the union (J;cy Y; is either one of the Y;’s, or it is a special and arithmetic subvariety of Sr.

Bader, Fisher, Miller and Stover [5, 6] proved the real and complex hyperbolic version of the
theorem using some superrigidity theorems and results on equidistribution from homogeneous
dynamics (see also earlier work of Margulis-Mohammadi [86]). This answers affirmatively a
question of C. McMullen and A. Reid.

Remark 7.3. A similar strategy applied to St x Sr gives the a new proof of Margulis commen-
surator theorem for lattices in PU(1,n), n > 1 and some lattices in PU(1,1) (including triangle
groups). See indeed [23, Thm 6.2.2].

7.3. Basic idea behind Theorem 7.1. Let K C R be the smallest field for which there is a
K-form of G, which we denote by G, and I' C G(K). For simplicity, let us assume that K is a
totally real number field and that I' C G(Ok ), where (Ok denotes the ring of integers of K.
We can define the arithmetic approximation of the hermitian symmetric space St as follows.
Since I is Zariski dense in G and has entries in K, it defines a K-form of G, which we denote
by G. We observe that I' C G(Ok) (up to finite index and conjugation). Now G(Ok) is an

arithmetic lattice in the real points G := Resg /g G. In more geometrical therms, we can realise
it as the fundamental group of a symmetric space

AA(ST) = G(Ox)\G(R)/K,

where K is some compact maximal subgroup. Given a totally geodesic submanifold Y C St
(let’s say of dimension m > 0), we can perform the same construction. Indeed, by assumption, ¥’
can be written as a sub-ball quotient I'y-\B", where I'y is a lattice in H = PU(1,m), and find

AA(Y) = H(Og)\H(R) /K.
We also obtain
AA(Y) C AA(SY).
Moreover we have an immersive map (at least in the category of topological spaces)
Sr — AA(Sr)

and every totally geodesic submanifold Y is closely related to the intersection in AA(Sp) between

Sr and AA(Y). Intuitively we think that the higher the codimension of Sp in AA(Sr), the more

“non-arithmetic” I' is. Indeed it’s easy to observe that I' is arithmetic iff such a codimension is
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zero. Now we can try compute the real dimensions of all objects involved. Naively, assuming
that I' is non-arithmetic, we would expect:

dim Sp = 2n,dimY = m,dim AA(St) ~ [K : Q] - 2n,dim AA(Y) =~ [K : Q] - m.
If so, we have that
codim 4 4(s) Y < codim 4 4(gp.) St + codim 4 4(5.) AA(Y);
indeed a direct computation shows that
[K:Q]-2n—m<[K:Q]-2n—2n+[K :Q]-2n — [K : Q] - m.

If such construction was performed inside algebraic geometry, such intersections would be quite
odd: generically two curves in P(% intersect in a bunch of points, and so on... It’s tempting to
deduce the result from our geometric Zilber-Pink Theorem 3.17.

The main steps needed to make the strategy sketched above work are the following:

(1) Realise Sr inside a Shimura variety/a period domain for Z-VHS;
(2) Show that totally geodesic subvarieties are atypical intersections;

The main tools for each step are:

(1) Simpson’s theory [101] and a result of Esnault-Groechenig [48] (see also [81]);
(2) Monodromy/Mumford-Tate computations;

7.4. Step 1: constructing a ZVHS. By construction, Sr supports a real VHS, which we
denote by V. This is the so called uniformizing VHS.

Theorem 7.4 ([23, Thm 1.3.1]). For every v € I, the trace of Ad(vy) lies in the ring of integers
of a totally real number field K. As a consequence, up to conjugation by G, I lies in G(Of).
Moreover V induces a Z-variation of Hodge structure V on Sr.

To construct a Z-VHS we need a strong rigidity condition, namely cohomological rigidity.
Building on a study initiated by Weil [111] in the cocompact case, Garland and Raghunathan
proved the following.

Theorem 7.5 ([60, Thm. 1.10]). Let G be a semisimple Lie group, not locally isomorphic to
SLa, nor to SLo(C). For any lattice T in G, the first Eilenberg-MacLane cohomology group of T
with respect to the adjoint representation is zero. In symbols:

HYT,Ad) = 0.

To see why such a vanishing is related to a rigidity result, observe that the the space of
first-order deformations of p : I' < G is naturally identified with H*(T', Ad), where

(7.4.1) Ad:T % G 2% Aut(g)

is the adjoint representation.

The following is proven by Esnault and Groechenig [48] and its proof relies on Drinfeld’s
theorem on the existence of /-adic companions over a finite field. Theorem 7.4 is a consequence
of such result.

Theorem 7.6 ([48, Thm. 1.1)). Let S be a smooth connected quasi-projective complex variety.
Then a complex local system V on S is integral, i.e. it comes as extension of scalars from a local
system of projective Or-modules of finite type (for some number field L C C), whenever it is:

(1) Irreducible;
(2) Quasi-unipotent local monodromies around the components at infinity of a compactifica-
tion with normal crossings divisori: S «— S;
(3) Cohomologically rigid, that is H' (S, i1, End®(V)) vanishes;
(4) Of finite determinant.
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Here iy, End®(V) denotes the intermediate extension seen as a perverse sheaf. See [48, Remark
2.4] for more details. Moreover H' (S, i, End®(V)) is the Zariski tangent space at the moduli
point of V of the Betti moduli stack of complex local systems of given rank with prescribed
determinant and prescribed local monodromies along the components of the normal crossing
divisor S — i(9).

Briefly, to obtain the theorem discussed above from those two ingredients; we notice that
infinitesimal rigidity implies cohomologically rigidity, moreover a computation with the explicit
toroidal compactification of Sr shows that V has quasi-unipotent monodromy at co, and that
twists by o : K — R preserve infinitesimal rigidity. The crucial fact, due to Simpson and Corlette
is that any rigid local system naturally underlies a (complex) VHS. Therefore each V7 is a VHS.
Eventually €@, V° has a natural structure of ZVHS.

Now we introduce the Fundamental commutative diagram (which generalises the theory of
modular embeddings for triangle groups):

o V= @D,V o1 =id,...,00 : K & R;
o G := Weil restriction from K to Q of G.

Griffiths theory of period domains and period maps gives a commutative diagram in the complex
analytic category:

K
>
Il
>
)

X C
Span Y G(Z)\D

It may happen that G(Z)\D is a Shimura variety. But in general G(Z)\D is not algebraic, as
we discussed before, and ¥ is only known to be holomorphic.

More facts about Dg and ] (essentially following reinterpreting in a geometric way the fact
that U is the period map associated to a VHS which is Q simple but splits over K):

e Dyisa G=GR) =] G,-orbit of one of the HSs constructed above, and the stabiliser

is compact;
All the G, are isomorphic over C, so they are PU(ps,, 4s,), Po; + @0, = 1 + 1;
We can write D5y = X x X' where X' is homogeneous under [[;5; G,

U is holomorphic and T-equivariant:

U(y.x) = (v.x,02(7).Zoyy - - -y 0r (V) -Zo,),
where z,, is the fibre of V7 at x;

U detects arithmeticity: T is arithmetic iff X’ is a point, i.e. G, is compact for any
i > 1 (Mostow-Vinberg).

7.5. Step 2: I'-special vs Z-special. Two ways for constructing special algebraic subvarieties
of SF:
I'. Take a subgroup H C G, such that 'y =I' N H a lattice and H.z C X a sub-Hermitian
domain; then 7(H.x) C St is algebraic;
Z. Take a Q-subgroup M C G, which is the Mumford-Tate group of some element € D;
then ~1(M(Z)\M(R).2)" is algebraic (Cattani-Deligne-Kaplan).
We call the former I'-special subvarieties and the latter Z-special. It’s easy to see that the
I'-specials are also Z-special. The idea is the following. We simply take M to be the Weil
restriction from K to Q of the K-form of H given by I'y.
What about the converse implication? Can we take all M’s to be Weil restriction? The
answer is yes, but the proof is more complicated and we omit here the details.

Theorem 7.7 (Baldi-Ullmo [23, Cor 5.5.2]). Let W C St be an irreducible algebraic subvariety.

The following are equivalent:
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(1) W is totally geodesic;

(2) W is bi-algebraic: some (equivalently any) analytic component of the preimage of W
along m: X — Sr is algebraic;

(8) W is I'-special;

(4) W is Z-special;

(5) W is a component of W1 (n(Y)) for some algebraic subvariety Y of DV.

The following picture can clarify what is going on:

where

U(W)=U(Sr) NH(Z)\D5

for some IfI(Z)\Dﬁ — é(Z)\D@ That’s to say that the maximal totally geodesic subvarieties
are components of the Hodge locus (of positive period dimension) for Sy and the ZVHS we
have constructed above. From here, we use the technology developed so far to control their
distribution.

7.6. End of the proof. The idea is now that if I' is not arithmetic, W is an atypical
intersection, and our Theorem 3.17 then implies the main theorem.

Rather than proving in detail the fact that non arithmetic implies atypical intersection, let us
discuss the simplest example, where we can compute everything directly:
I' € G = PU(1,2) non arithmetic, with trace field K of degree 2 over Q. So G=3GxaG.
W C St special subvariety (associated to H C G/K);
Suppose that G(Z)\Dg is a Shimura variety;
Write W = Sp N H(Z)\Dy;
COdlma(Z)\Da St = 2;

@\ HEND
. COdlch;(Z)\Da W =3.

That is: totally geodesic subvarieties are atypical. This concludes the proof, by applying
Theorem 3.17.

codlma =2

8. RICH REPRESENTATIONS AND SUPERRIGIDITY

In this section we present the main results of [22], the proofs are essentially applications of
Theorem 3.25, so we simply state the main results.

Let I" be a lattice in a Lie group G. A representation p from I' to a topological group H is
said to extend if there is a continuous homomorphism p : G — H so that p is the restriction
of p to I' under its lattice embedding in G. Then T' is superrigid if every unbounded, Zariski
dense representation of I' to a connected, adjoint simple algebraic group H over a local field & of
characteristic zero extends. It is known that there are lattices in PO(1,n) and PU(1,n) that
are not superrigid. The study of representations of real and complex hyperbolic lattices is very
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difficult and rich in open questions, and the extent to which superrigidity fails has yet to be
made precise. For example, one motivation is the first part of a question asked by David Fisher
[53, Qtn. 3.15]:

Question 8.1 (D. Fisher). Let I' C G be a lattice where G = SO(1,n) or SU(1,n). What
conditions on a representation p : I' = GL,, (k) imply that p extends or almost extends? What
conditions on I' imply that I' is arithmetic?

In particular, we build on the techniques from [23] to explore geometric conditions on a
representation that allow one to use tools from dynamics and/or Hodge theory to prove new
rigidity phenomena. The conditions we provide, which address Question 8.1 through the
behavior of totally geodesic submanifolds under maps related to the representation, have also
been considered in studying the infinite volume setting. There is some history of success along
these lines. For just one family of examples, some classes of representations studied in the
literature have maximal geometric behavior, where two distinct instances are:

e Maximal for the Toledo invariant (Koziarz—Maubon and many others)
e Maximal for their limit set (Besson, Courtois and Gallot and Shalom)

These considerations will lead us to study a class of representations generalizing those shown to
be superrigid in [5, 6], namely those that are geodesically rich, we refer to [22, Sec. 1.2].

8.1. Siu’s immersion problem. An original motivation for studying the more general rigidity
questions considered here is Siu’s immersion problem [102, Prob. (b), p. 182]. Let B™ denote the
unit ball in C" with its Bergman metric. If I' is a lattice in the holomorphic isometry group
PU(1,n) of B", then Sp will denote the ball quotient T'\B".

Question 8.2 (Siu, 1985). Is it true that every holomorphic embedding between compact ball
quotients of dimension at least 2 must have totally geodesic image?

To our knowledge the only previous result is by Cao and Mok [31], which answered Question 8.2
in the affirmative for f : T'\B" — A\B™ when n < m < 2n, and uniform lattices. See [6, Thm.
1.7] and the surrounding references for more on Siu’s analogous submersive problem. The
following is our main contribution toward a positive answer to Siu’s immersion problem.

Theorem 8.3 (Baldi-Miller-Stover-Ullmo [22, Thm. 1.3]). Let f: Sp, — Sr, be an immersive
holomorphic map between arithmetic ball quotients such that f(Sr,) does not lie in any smaller
totally geodesic subvariety of Sr,. Suppose that Sr, contains a proper totally geodesic subvariety
of positive dimension. Then the following are equivalent:

(1) The map f is covering.
(2) There is a generic sequence of positive-dimensional proper totally geodesic subvarieties
Yy C Sr, such that each f(Yy) lies is a proper totally geodesic subvariety Wy C Sr,.

The positive-dimensional hypothesis on the subvarieties of Sr, is to rule out the trivial
counterexample of points. The arithmetic ball quotients with totally geodesic subvarieties of
every possible codimension are those of simplest type, which are constructed using hermitian
forms over number fields. In this case, Theorem 8.3 reduces Question 8.2 to checking a single
dimension.

Corollary 8.4 (Baldi-Miller-Stover-Ullmo [22, Cor. 1.4]). If Question 8.2 has a positive answer
when St, is a 2-dimensional arithmetic ball quotient of simplest type, then it has a positive
answer for Sr, an arithmetic ball quotient of simplest type of any dimension n > 2.

Remark 8.5. By [31], the first open case is of a holomorphic embedding f : Sy, — Sr, with
dim Sr, = 2,dim Sr, = 4. Here Theorem 8.3 implies that it suffices to prove that there is an
infinite collection of distinct totally geodesic curves C; C Sr, such that each f(C;) lies in some

strict totally geodesic subvariety Y; C Sr,.
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From a dynamical point of view, the dimension at least two hypothesis in the previous results
is natural and critical in that it allows one to access tools from unipotent dynamics. From a
Hodge theoretic point of view, one typically works with a complex subvariety. However, there is
still something one can say for closed geodesics.

Theorem 8.6 (Baldi-Miller-Stover-Ullmo [22, Thm. 1.6]). Let S = I',\B" be a ball quotient
with an immersive holomorphic map

f:8 —T,\B™

such that f(S) does not lie in any smaller totally geodesic subvariety of ')y \B™. Let {Cy} be a
generic sequence of distinct closed geodesics in S in the sense that they are not all contained in
a finite union of maximal totally geodesic subvarieties of S. Assume that for each £ there exits a
strict complex totally geodesic subvariety Yy C Ty \B™ such that f(Cy) C Yy. Then f is a totally
geodesic immersion.

We decided not to present the details of the proofs, but we point out that they follow essentially
from Theorem 3.25, that we proved above.

9. BEYOND THE HODGE LOCUS: ORBIT CLOSURES AND ABELIAN DIFFERENTIALS

In this section we present the main results of [24].

9.1. Recap of orbit closures. In the last 15 years, moduli spaces of translation surfaces
(X, w) have attracted a lot of attention, thanks to the work of Eskin, Filip, McMullen, Mirzakhani,
Mohammadi, Moller, Wright, and many others. A variety of tools have been used to try to grasp
them, mostly from dynamics, analysis, and algebraic geometry. In particular, the work of the
aforementioned authors gives striking results on so-called orbit closures N'= GL2(R) - (X, w).
We push the Hodge-theoretic and algebro-geometric understanding of such loci N one step
further. Using tools from differential geometry and differential algebra we will show that one
can understand the distribution of orbit closures just by knowing whether they are typical or
atypical intersections.

We start by recalling the main protagonists of the theory of moduli spaces of translation
surfaces, mostly following the recent notes [52]. Let X be an irreducible smooth projective
algebraic curve over C, or simply a compact Riemann surface. A translation surface is a pair
(X,w), where X is a compact Riemann surface and w is a non-zero global section of the cotangent
bundle of X (also known as an abelian differential). If g > 1 is the genus of X, then w has 2g — 2
zeros, counted with multiplicities. Let M, denote the moduli space of genus g compact Riemann
surfaces and QM,; — M, the bundle whose fibre over [X] € M, is just the space of all (non
zero) holomorphic 1-forms on X. This is the total space of the so called Hodge bundle (with the
zero section removed). It is a rank g (algebraic) vector bundle on My, naturally equipped with
a stratification by smooth (not necessarly irreducible) algebraic subvarieties QM (x), where
k = (Ko, ..., kn) satisfies >, k; = 2¢g — 2 and denotes the multiplicities of zeros of w. We will
also write n = length(x) — 1. (In fact, to avoid orbifold issues, we will later work with finite
covers of such moduli spaces).

A holomorphic 1-form w on X can be thought of as giving a collection of charts on X to C,
such that:

e the transition maps are translations,
e the charts can ramify at finitely many points corresponding to the zeros of w,
e they are locally given by z — ZZO w.

Such charts induce the so-called period coordinates on QM (k). Fix a base point (Xo,wp) €
QM (), and look at the developing map/period coordinates, where — denotes the universal
covering

(9.1.1) Dev : QM (k) — H' (X0, Z(wo); C).
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Concretely, the map sends (X', w’) to w’ € H (X', Z(w'); C) and then applies the flat transport
to obtain an element of H'(Xy, Z(wp);C). By a theorem of Veech the map Dev is a local
biholomorphic.

We also obtain an action of GL2(R) on QM,(k), locally given by a diagonal action on a
product of copies of C 22 R2. Such an action is real analytic and outside the realm of algebraic
geometry, but it turns out to be closely related to Hodge theory.

We will study the distribution of strict orbit closures N := GLa(R) - (X,w) C QMg(k), where

() denotes the topological closure, also known in the literature as affine invariant submanifolds.
(For terminology and notations we try to follow [52].)
We start by recalling a theorem of Eskin, Filip, and Wright (see §9.2 for definitions):

Theorem 9.1 ([46, Thm. 1.5]). In each (irreducible component of each) stratum QMgy(k), all
but finitely many orbit closures have rank 1 and degree at most 2. In each genus there is a finite
union of orbit closures N of rank 2 and degree 1 such that all but finitely many of the orbit
closures of rank 1 and degree 2 are a codimension 2 subvariety of one of these N.

Our goal is to present a new and effective proof of the above, inspired by the geometric ZP
Theorem 3.17.

9.2. Structure of orbit closures. We recall a special case of a theorem of Eskin, Mirzakhani,
and Mohammadi [47, Thm. 2.1] see also [52, Thm. 1]:

Theorem 9.2 (Linearity/topological rigidity). Each orbit closure N C QMy(k) is locally in
period coordinates a linear manifold, i.e. any sufficiently small open U C N is such that Dev(U)
is an open set inside a linear subspace.

Let N C QM (k) be an orbit closure, and denote by TN its tangent bundle. The linearity of
orbit closures, as recalled in Theorem 9.2, allows one to realize TN as a local subsystem of H}el
whose fiber at (X, w) is the first relative cohomology group of X with respect to Z(w).

Remark 9.3. We pause for a moment to recall some basic facts about relative cohomology. Let
(X, Z) be a pair of a Riemann surface and a finite set of points Z = {z1,...,2,} C X (that
will usually be given by the zeros of some (non-zero) 1-form w on X). We have a short exact
sequence:

(9.2.1) 0— H%Z;Z) - HY(X,Z;Z) — H'(X;Z) — 0.

Above, H 0(Z;7) is the reduced cohomology: it denotes the group of all formal linear combinations
of points in Z, modulo the element which takes each point in Z with coefficient 1 (it is the dual
of the reduced homology group). We will always refer to the middle term as relative cohomology
and the the last term as absolute cohomology. Note that the form w naturally induces a class
inside both H'(X, Z(w);Z) and H'(X;Z) by integrating over homological cycles and using
homology-cohomology duality.

We have a version of (9.2.1) for flat bundles above QM,(x) (see also [52, 3.1.13]):

(9.2.2) 0—Wy— HL, — H' —0.

The notation is justified by the fact that Wy denotes the weight-zero local subsystem for the
mixed VHS structure on H',.

As a consequence we have another short exact sequence of real bundles above N:
(9.2.3) 0 — Wo(TN) = TN — HY(TN) — 0.

To explain the notation: H'(TN) is just the image of TA' C H), in H' (the absolute cohomol-
ogy), and Wo(TN) = TN NWj.
Let T C SLy(R) denote the upper triangular group.
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Theorem 9.4 (Isolation property, [47, Thm. 2.3], see also [52, Thm. 4.1.8.]). For every sequence
of orbit closures (N;) there are T-invariant measures u;, and after passing to a subsequence
(NG, i) there is another linear immersed submanifold M, with finite T-invariant measure p such
that N C M and p; — pu.

Note that the above result implies the same statement with 7" replaced by SLa(R), which is how
we will use it; see [52, Rem. 4.1.9 (ii)].

We can now recall the following theorem of Filip [51] (which builds on the earlier work [50], as
well as earlier work of Wright [112] and Moller [89]), see also [52, Thm. 2 and Thm. 4.4.2]. We
denote by K = K C R the smallest field over which N is K-linear in the sense of Theorem 9.2.
We have:

Theorem 9.5 (S. Filip). Let N C QM(k) be an orbit closure. There exists, up to isogeny, a
factor F C J of the relative Jacobian over N, and a subgroup S of the free abelian group on the
zeros of 1-forms, such that:
(1) F admits real multiplication by K (i.e. K = End®(Fy)), which is, in particular, a
totally real number field;
(2) The Abel-Jacobi map, possibly twisted by real multiplication, AJ : S — F assumes torsion
values;
(3) For each (X,w) € N, w is an eigenform for the real multiplication on the fibre of F
above X (see also [52, §4.2.17]).

Furthermore, these conditions, together with a dimension bound, characterize N .
(See [52, §4.5] for more details on the twisted torsion condition.)

Corollary 9.6. Each orbit closure is algebraic, that is a Zariski closed subvariety of QM. In
fact, orbit closures are defined over Q, and their Galois conjugates are again orbit closures.

From Theorem 9.5, one may introduce real multiplication, torsion and eigenform invariants
(see Section 9.4, for a geometric description). In particular, we write
e 7 =1y, the (cylinder) rank §dim H'(TN') (which is in fact an integer, since TN is
known to be symplectic thanks to [4]);
e d = dys, to simply denote the degree of the number field defining the linear equations of
N (that is [K : Q]);
e And finally ¢ = ¢y the torsion corank is dim Wy (TN).
With these notations, the dimension bound appearing at the end of Theorem 9.5 is just

dim N = 2rp + ty.

Remark 9.7. Combing Corollary 9.6 and Theorem 9.4, we observe that the Zariski closure of a
collection of orbit closures is a finite union of orbit closures

9.3. A new take on the Eskin-Filip-Wright finiteness. @ We study orbit closures via
various period maps. Denote by A, the moduli space of principally polarized abelian varieties of
dimension g, and by j the Torelli morphism j : My — Ay, X — (J(X),0x) which associates to
a genus g curve X its Jacobian J(X) (naturally equipped with its principal polarization 0x).
For every n, let A, , — A, denote the fibration whose fibre over a point [A] € Ay is Sym!™ A
(the unordered n-tuples of points of A).

The varieties A, and Ay, can be interpreted as mixed period spaces (or mixed Shimura
varieties). For A, this is the standard Siegel space description, and a detailed construction of
Ag.1 as a mixed Shimura variety appears in [56, §2]. In general one has a natural bijection

Agn ~{(H,E) : H € Spy,(Z)\Hy, E € Extyys(H,Z")},

where we view SpQQ(Z)\Hg ~ A, as the moduli space for principally polarized pure weight one

Z-Hodge structures, and we view Z" as a pure weight zero Hodge structure; see [52, 4.3.14].

One obtains an algebraic mixed period map ¢ : QMy(k) = Ay, which sends (X,w) to the

isomorphism class of the extension. The data of ¢ is equivalent to the data of the mixed ZVHS
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HKIel (at least when viewed as a map of orbifolds). Note that ¢ is quasi-finite, cf. the discussion

at the end of [77, §3.4]. We will typically work with the factorization

OM,y (k) 25 QMg — Agn,

of ¢, where the first arrow is obtained by seeing the differential w on the Jacobian of X. (Where
QA ,, denotes the total space of the Hodge bundle above A, ,,, without the zero section.)

Remark 9.8. With the language of (mixed) Shimura varieties one can equivalently describe
Ay as follows. The classifying space for the extensions of a weight one ZVHS of dimension 2g
by Z(0) is the mixed Shimura variety A,. It is the universal principally polarized abelian variety
of dimension g over A,. Finally

Ag,n = Ag XAg Ag X.Ag T X-Ag AQ/STL

(product of n factors modded out by the action of S,,, the symmetric groups on n elements). In
fact, Ag ., is a mized Shimura variety of Kuga type, see [56, §2] for more details on this. This
means that, with the notation from Hodge theory, that W_o = 0 and W_; is the unipotent
radical of its generic Mumford-Tate group, which is simply given by G297

9.4. Orbit closures as (a)typical intersections, inspired by Filip. In this section we
give a geometric reinterpretation of the conditions appearing in Theorem 9.5. Cf. [52] and
implicitly [51].

We will think of an orbit closure N (with associated invariants r,d,t as in Section 9.2) as the
reduced subvariety underlying an irreducible component of (Qp)~}(E[N]), where E[N] C QA ,
is an algebraic subvariety constructed using the conditions appearing in Theorem 9.5. In
accordance with the structure of Theorem 9.5, the variety E[N] is constructed in three stages,
depicted in the following diagram:

(9.4.1) j j j j

OMy(k) — QAy, Agn Ag

We now give details and definitions regarding the objects appearing in the above diagram.

(1) Let SIN] C Ay be the smallest weakly special subvariety of A, containing the image of
N. Tt lies in the locus R[N] of g-dimensional principally polarized abelian varieties that
have real multiplication of the same type of N (in the sense of Theorem 9.5). The latter
is a special subvariety of A, whose the generic Mumford-Tate group is isomorphic to

(ReSK/Q Gszr,K) X GSDy(g—ar)-

(2) Let M[N] C Ay be the smallest weakly special subvariety of Ay, containing N. It
lies in T[N, the bundle over R[N] consisting of n-tuples of points satisfying the same
torsion conditions as V.

(3) Let E|N] be the the bundle of 1-forms over M[N] inside in the K-eigenspace containing
the restriction of the section w to N.

The notation S[N] is chosen as we think of the variety S[N] as giving the Shimura condition.
Similarly, M[N] gives the mized-Shimura condition, and E[N] includes also the eigenform
condition in addition to the previous two.

The conditions R[N] and T[N] are simply geometric reinterpretations® of the first two items
in Theorem 9.5, whereas the conditions S[N]| and M[N] may in principle be stronger. The
condition E[N] corresponds to the third condition in Theorem 9.5. One can think of M[N] as a

6We stress here the fact that the first two conditions of Theorem 9.5 are written in terms of rational Hodge
structures (as already noticed and used by Filip). At first sight, the twist by real multiplication appearing in the
condition on the Abel-Jacobi variety could look like a statement about K-Hodge structures, but this becomes a
Q-condition after including Galois conjugate conditions.
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variety that records all mixed Hodge-theoretic conditions present on N, and E[N] as a variety
that records, in addition to M[N/], the third condition in Theorem 9.5.

Definition 9.9 (Relative (a)typicality — Intersection theoretic version). Let M be a orbit
closure in some stratum QMgy(k) (possibly equal to component of the latter). Then an orbit
closure N C M is said (intersection theoretically) atypical (relative to M) if

codim g N < codimgrg (E[N]) 4 codimgag (M),
and (intersection theoretically) typical (relative to M) otherwise.

The codimensions appearing in Definition 9.9 are formal, but one can make sense of them
by taking the image of N in QA,,. For most of this section, we will just work with the
intersection-theoretic notion of (a)typical.

We are now ready to prove our main result. That is to give a new proof, in our unifying setting,
of the finiteness parts of Theorem 9.1. More precisely, with the vocabulary of Definition 9.9:

Theorem 9.10 (Baldi-Urbanik [24, Thm. 6.5]). Let M C QM be an orbit closure (possibly
equal to an irreducible component of some stratum QMgy(k)). Then M contains at most finitely
many (strict) orbit closures N that are:

(1) Maximal, i.e. the only suborbit closures of M containing N are N and M;

(2) Atypical (relative to M) in the sense of Definition 9.9.
In particular in each (connected component of each) stratum QMgy(k), all but finitely many orbit
closures have rank 1 and degree at most 2.

For simplicity we treat only the case M = QM (x) some fixed orbit closure. We fix a base
point 5o := (X,w) € M. We write (H, D° c D) = (Hy,, DY, c D?\/() for the associated weak
Shimura (or Hodge) datum associated to M. For example H = Sp,, G2 if M = QM (k),
where n = |k| — 1.

9.4.1. Rephrasing the atypical condition in the period torsor. We now let (H, V) be the algebraic
vector bundle with regular singular connection associated to V = Hrlel7 and consider the bundle
P and map v constructed in §4.3.1. The graded quotient of H which corresponds to H},, we
denote H,ps. Then w is an algebraic section of H,ps, and we then obtain any algebraic map
r: P — Haps,s, given by

[n € Hom(Hs, Hsy)] — n(ws).

Lemma 9.11. The map r lands inside a unique eigenspace Expg = Eagsg C Haps,so for the field
of real multiplication K associated to M. The complex algebraic variety (En \ {0}) X DO
consists of a single H(C)-orbit, and the map r x v : P — (Exg \ {0}) x D° is H(C)-equivariant
and surjective.

Proof. Let L C P be a leaf coming from the rational structure of the underlying local system V.
Then from the third part of Theorem 9.5, the image (L) lies in a K-eigenspace Exg = Enqs,-

Because L is Zariski dense in P as a consequence of the previous discussion on leaves, we have
——~Zar

r~1(r(£)”") = P and hence 7(P) C E .
It is clear by construction that the map is H(C)-invariant, so surjectivity will follow if we can
show that in fact (Exq \ {0}) x D° is an orbit of H(C). This is easy in the case M equals a

stratum and more delicate in general. O

Given a suborbit closure N' C M, we will write Zx := En X DJO\/ for the analogous subvariety
of Exq x D associated to N. It is well-defined up to the action of the monodromy group I' 4.

Corollary 9.12. We have dim(Ex x b})\/) = dim E[N]. If N is an intersection-theoretically
atypical suborbit closure of M, then we have the following inequality of formal codimensions:

codimp N < codimp(r x v) " (Ex x DY) + codimp M.
45



Proof. The first equality of dimensions is formal and can be seen by translating the abelian variety
data into its Hodge-theoretic incarnation. For the second we use the fact that P — (Ea\{0})x D°
has constant fibre dimension to rewrite the inequality in Definition 9.9. The key fact is that

codimp(r x v)"HEx x DY) = dim[Ex x DS] — dim[Ex x D]
= dim E[M] — dim E[N].
O

9.4.2. Ower-parametrization. In this section, we describe a family of subvarieties of P that
(over) parametrizes all the data that can give rise to suborbit closures of M, regardless whether
such an orbit closure is typical or atypical.

Lemma 9.13. There exists an algebraic family f : Z — Y of subvarieties of Zyg = Exq x DO
such that all subvarieties Zn C Zaq associated to suborbit closures N C M arise as a fibre
Y (y) for somey €.

Proof. Tt suffices to handle the two “factors” separately. In particular, since Ens C Eaq is an
inclusion of linear subspaces, it is clear all possible choices for such a subspace are parameterized
by a union of Grassmannian varieties. It thus suffices to show that all weakly special subdomains
of DO belong to a common algebraic family, which is a consequence of Lemma 9.14 below. [

Let (Hy, D9\4) be the monodromy datum associated to (M, V|,) (where V is the standard
ZVMHS on some stratum containing M).

Lemma 9.14. There is an algebraic family (over a disconnected base) f : Z — Y of subvarieties
of D,(/)\/l such that, for every weakly special sub-datum (H;, D;), D; appears as a fibre of f.

Proof. This is a consequence of [55, Lem. 12.3] and [56, Sec. 8.2]. In particular, it is enough to
take as base ) the disjoint union of finitely many copies of G x D?W where the group G is defined
right above [55, Lem. 12.3]. The algebraic family obtained parametrizes orbits at some point
T € D?\/( of some G(C)-translate of a finite set of representatives of weakly special subdomains of
lv??\/t. (In the pure case a stronger result can be found for example in [109, §4.2].) g

We note that we have already proved the same statement in a more general setting mixed Hodge
theoretic setting (see especially Proposition 4.9)

In what follows we abusively write f : Y — Z for the pullback of the family in Lemma 9.13
to P along the map 7 x v. We write f@) : YU) — 20) for the subfamily where the fibres have
dimension j.

9.4.3. Sketch of the proof of Theorem 9.10. Let (N;);en be an infinite sequence of intersection
theoretically atypical (relatively to M) suborbit closures that don’t lie in any other suborbit
closure. The first input is as the beginning of [46, Proof of Thm. 1.5]: the Zariski closure of
their union is a finite union of orbit closures (cf. Remark 9.7), so it is enough to show that they
are not Zariski dense in M. We may fix the dimension e of the suborbit closures A; we consider;
it suffices to prove the theorem for each e separately. Similarly, we may fix the dimension j of
the inverse images (r x v)~}(Ey;, x lv)?\/l)

Now let us apply Theorem 4.6 to our situation using the family f). The hypotheses are
satisfied by Corollary 9.12, which gives the atypicality inequality with e = j — dim H, and
Proposition 3.16 which produces the desired weakly special families. We therefore obtain finitely
many families {h; : C; — B;}I; of strict weakly special subvarieties of S such that each N
maps into a fibre of one of the h;, and each map C; — M is quasi-finite. The proof is then
completed by the following;:

Lemma 9.15. Let h: C — B be an algebraic family of subvarieties of M such that w: C — M
1s quasi-finite. Then only finitely many fibres of h contain a maximal suborbit closure of M.
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Proof. Let I = (N;)$2, be a sequence of orbit closures appearing in the fibres of h. Thanks to
Theorem 9.4, after passing to a subsequence there is an orbit closure 7 containing the orbit
closures associated to I such that the sequence of measures associated to I converges to puy. Fix
an open analytic neighbourhood O C T, chosen small enough so that 7=1(O) = Oy L --- U Oy is
a disjoint union of analytic neighbourhoods of 7~!(7) which map bijectively onto O. Then by
equidistribution O intersects infinitely many orbit closures arising from the fibres of h, hence
one of the O;, say it is O1, must satisfy the property that the fibres of h above h(O1) contain
infinitely many orbit closures.

Applying Theorem 9.4 again to the subsequence of orbit closures in fibres lying above h(O1),
and pulling back along C — M, we obtain an algebraic subvariety of C which projects to an
algebraically constructible set contained in O;. After taking O; small enough this implies that
the projection consists of points, so in fact the orbit closures of interest lie in a single fibre. [J
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