The Hodge locus

Gregorio Baldi (IHES)

4th Kyoto-Hefei workshop

$$
16 / 11 / 2022
$$

- Based on a joint work with Bruno Klingler and Emmanuel Ullmo;
- Number Theory \Rightarrow Hodge Theory \Rightarrow Number Theory;
- Subtitle of the talk: Finiteness theorems in variational Hodge theory.

Motivation (from Algebraic/Arithmetic Geometry)

Let $f: X \rightarrow S$ be a smooth projective morphism of smooth irreducible \mathbb{C}-quasi-projective varieties.
Goal: Describe the Motivic locus of f :

$$
\left\{s \in S(\mathbb{C}): X_{s}=f^{-1}(s) \text { is simpler than the very general fibre }\right\}
$$

Simpler means: X_{s}, or possibly $X_{s}{ }^{n}$, contains more algebraic cycles than the very general fibre (or possibly of its powers).

Example

Let $f: \mathbb{A}_{g} \rightarrow \mathcal{A}_{g, \text { ? }}$ be the universal family of ppav of dimension g. The motivic locus of f contains:

- CM points: $s \in \mathcal{A}_{g}$ corresponding to CM abelian varieties A_{s} (cycles in $A_{s} \times A_{s}$);
- For any $k \leq g$, the set of $s=A_{s} \in \mathcal{A}_{g}$ where A_{s} contains a k-dim abelian subvariety.

Hodge linearisation

Problem: we know very little about algebraic cycles.

$$
\begin{aligned}
\left(X_{s}, \text { cycle of codim } i\right) & \rightsquigarrow\left(H^{2 i}\left(X_{s}, \mathbb{Z}\right), \text { hodge class }\right) ; \\
f: X \rightarrow S & \rightsquigarrow \mathbb{V}=R^{2 i} f_{*} \mathbb{Z} ;
\end{aligned}
$$

Motivic locus of $f \rightsquigarrow$ Hodge locus.

Remark

The Hodge conjecture "inverts" the first linearization, at least rationally.

Definitions: polarised Hodge structure

Let $V_{\mathbb{Z}}$ be a f.g. (torsion free) \mathbb{Z}-module. A Hodge structure on $V_{\mathbb{Z}}$ is a decomposition

$$
V_{\mathbb{C}}:=V_{\mathbb{Z}} \otimes_{\mathbb{C}}=\bigoplus_{p, q \in Z} V^{p, q}
$$

such that: $\overline{V^{p, q}}=V^{q, p}$. This is the same as giving

$$
x: \mathbb{S}=\operatorname{Res}_{\mathbb{R}}^{\mathbb{C}}\left(\mathbb{G}_{m}\right) \rightarrow \operatorname{GL}\left(V_{\mathbb{R}}\right)
$$

A polarization

$$
q_{\mathbb{Z}}: V_{\mathbb{Z}} \otimes V_{\mathbb{Z}} \rightarrow \mathbb{Z}(-n)
$$

is a bilinear form such that the hodge form h is positive definite and the Hodge decomposition if h-orthogonal.

Definitions: Mumford-Tate group

- A (rational) Hodge class is a vector $v \in V_{\mathbb{Q}}$ invariant under the action of \mathbb{S}. If V has weight zero, it is the same as $V_{\mathbb{Q}} \cap V^{0,0}$. A Hodge tensor is a Hodge class of $\bigoplus_{a, b} V^{\otimes a}\left(\otimes V^{\vee}\right)^{\otimes b}$.
- The Mumford-Tate group is the fixator in $\mathrm{GL}\left(V_{\mathbb{Q}}\right)$ of all Hodge tensors of V. The same as the \mathbb{Q}-Zariski closure of $x(\mathbb{S})$, or also the Tannakian group associated to V. It is a reductive \mathbb{Q}-group.

Example

\mathbb{Q}-forms of real groups (whose derived subgroup look) like:
$S U(p, q), S P_{2 g}, S O^{*}(2 r), E I I I, E V I I, S O(2 p, r)$,
$S p\left(r_{1}, r_{2}\right), E I I, E V, E V I, E V I I I, E I X, F I, F I I, G$. Non-example:
$S L_{n}, n>3$.

Definitions: (integral polarised pure) variations of Hodge

 structuresLet S be a smooth quasi-projective variety. A VHS on S is

$$
\mathbb{V}:=\left(\mathbb{V},\left(\mathcal{V}, \nabla, F^{\cdot}\right), Q\right)
$$

where:

- \mathbb{V} is a local system;
- $\left(\mathcal{V}, \nabla, F^{\cdot}\right)$ is a filtered $\mathcal{O}_{S^{-}}$module such that $\nabla\left(F^{p}\right) \subset F^{p-1} \otimes \Omega^{1}$;
- $Q: \mathcal{V} \times \mathcal{V} \rightarrow \mathbb{Z}_{S}$ bilinear form; such that each fibre is a polarised Hodge structure.

Remark

Example to keep in mind: $\mathbb{V}=R^{n} f_{*} \mathbb{Z}_{\text {prim }}$

Finally the Hodge locus

$$
\begin{aligned}
\mathrm{HL}\left(S, \mathbb{V}^{\otimes}\right):= & \left\{s \in S(\mathbb{C}): \mathbb{V}_{s} \text { has exceptional Hodge tenors }\right\} \\
& =\left\{s \in S(\mathbb{C}): M T\left(\mathbb{V}_{s}\right) \subsetneq M T(\mathbb{V})\right\} .
\end{aligned}
$$

Easy to see that it is a countable (possibly finite) union of analytic subvarieties, and in fact

Theorem (Cattani-Deligne-Kaplan 1995)

$\mathrm{HL}\left(S, \mathbb{V}^{\otimes}\right)$ is a countable union of algebraic subvarieties of S. The so called (maximal) special subvarieties.

Question

What is the distribution of HL? Can we predict whether it is big or small? Can we describe its Zariski closure? What is its arithmetic significance? . . .

Special subvarieties as intersections: typical vs atypical

A VHS $\mathbb{V} \rightarrow S$ is the same thing as a period map

$$
\Psi: S(\mathbb{C}) \rightarrow \Gamma \backslash D
$$

Given $s \in S, \mathbb{V}_{s}$ gives to $\left[x_{s}: \mathbb{S} \rightarrow \mathrm{GL}\left(V_{\mathbb{R}}\right)\right]$, which is a point $s \in D=G(\mathbb{R}) / M$, where $G=M T(\mathbb{V})$ and M some compact subgroup. Finally Γ in an arithmetic lattice of $G(\mathbb{Q})_{+}$.

- $\Gamma \backslash D$ is a complex analytic variety, but, unless it is a Shimura variety, it is not algebraic;
- Ψ is holomorphic. It is not necessarly an immersion, but it can be assumed proper;
- Griffiths transversality says that $d \Psi$ maps the tangent bundle of S to the horizontal tangent bundle $T_{h}(D) \subset T(D)$

Functoriality

Let $Y \subset S$ a (smooth irreducible closed strict) subvariety. It supports $\mathbb{V}_{\mid Y}$, which corresponds to a period map

$$
Y(\mathbb{C}) \rightarrow \Gamma_{Y} \backslash D_{Y}
$$

where D_{Y} is a homogeneous space under $H_{Y}=M T\left(\mathbb{V}_{\mid Y}\right)$. But $H_{Y} \subset G=M T(\mathbb{V})$ and functoriality gives a commutative diagram

Special subvarieties

We say that Y is (strict) special if $Y=\Psi^{-1}\left(\Gamma_{Y} \backslash D_{Y}\right)^{0}$. Informally

$$
\Psi(Y)=\Psi(S) \cap \Gamma_{Y} \backslash D_{Y} \subset \Gamma \backslash D
$$

Hodge locus $=$ union of all special $=$ union of maximal special.

Definition

A special subvariety Y is either typical or atypical:
TY $\operatorname{codim}_{\Gamma \backslash D}(\Psi(Y))=\operatorname{codim}_{\Gamma \backslash D}(\Psi(S))+\operatorname{codim}_{\Gamma \backslash D}\left(\Gamma_{Y} \backslash D_{Y}\right)$;
ATY $\operatorname{codim}_{\Gamma \backslash D}(\Psi(Y))<\operatorname{codim}_{\Gamma \backslash D}(\Psi(S))+\operatorname{codim}_{\Gamma \backslash D}\left(\Gamma_{Y} \backslash D_{Y}\right)$.

Conjecture (Zilber-Pink type conjecture for VHS)

$\mathrm{HL}\left(S, \mathbb{V}^{\otimes}\right)_{\text {atyp }}$ is algebraic, i.e. a finite union of maximal special subvarieties.

Remarks and examples

- Our ZP conjecture refines the one proposed by Klingler, and contains the 'classical' ZP for Shimura varieties. So it implies André-Oort, ...
- $\mathrm{HL}\left(S, \mathbb{V}^{\otimes}\right)=\mathrm{HL}\left(S, \mathbb{V}^{\otimes}\right)_{\text {atyp }} \amalg \mathrm{HL}\left(S, \mathbb{V}^{\otimes}\right)_{\text {typ }}$. If $\mathrm{HL}_{\text {typ }}=\emptyset$, then ZP predicts the algebraicity of the whole HL.
- Example. Let $C \subset \mathcal{A}_{g}$ be a Hodge generic curve, $g>3$. Then the HL can only be atypical (\mathcal{A}_{g} has no special divisors). So ZP predicts that $\mathrm{HL}\left(C, \mathbb{V}^{\otimes}\right)$ is a finite union of points!
Special points are very difficult to understand and are reach in arithmetic, but we can understand the geometric part of the HL.

Definition

A subvariety $Z \subset S$ is of positive period dimension if $\operatorname{dim}(\Psi(Z))>0$.

André-Oort in one picture (intersections=inclusions)

S Hodge generic in a Shimura $S h$

- Blue are the most atypical intersections: $\operatorname{codim}_{S h}\left(M_{n}=M_{n} \cap S\right)<\operatorname{codim}_{S h} S+\operatorname{codim}_{S h} M_{n}$.
- Announced for every Shimura variety by Pila, Shankar and Tsimerman.

Main results, I

We proved the geometric part of Zilber-Pink for VHS $(+\epsilon)$:

Theorem (B.-Klingler-Ullmo)

The maximal atypical special subvarieties of positive period dimension arise in a finite number of families, and each family lies in a typical intersection.

Informally: $\mathrm{HL}\left(S, \mathbb{V}^{\otimes}\right)_{\text {atyp,pos }}$ is algebraic. Generalises work of Daw-Ren regarding Shimura varieties.

Theorem (B.-Klingler-Ullmo)

Suppose that the level of \mathbb{V} is at least 3 . Then $\mathrm{HL}\left(S, \mathbb{V}^{\otimes}\right)_{\mathrm{typ}}=\emptyset$.
The level of a VHS refines the "(normalised) weight" and measures how complicated \mathbb{V} is (\sim how far it is from a family of abelian motives). The biggest k for which $\mathfrak{g}^{k,-k} \neq 0$.

Main results, II 'algebraicity'

Putting things together in level ≥ 3 :

$$
\mathrm{HL}\left(S, \mathbb{V}^{\otimes}\right)=\mathrm{HL}\left(S, \mathbb{V}^{\otimes}\right)_{\text {atyp }}
$$

ZP then predicts that $\mathrm{HL}\left(S, \mathbb{V}^{\otimes}\right)_{\text {atyp }}$ is algebraic, we get

Theorem (B.-Klingler-Ullmo)

If \mathbb{V} has level at least 3 , then $\mathrm{HL}\left(S, \mathbb{V}^{\otimes}\right)_{\mathrm{f} \text {-pos }}$ is algebraic.
A concrete example is given by the moduli spaces of ample, smooth hypersurfaces/complete intersections of degree big enough in a projective variety.

Corollary (B.-Klingler-Ullmo)

Let $\mathbb{P}_{\mathbb{C}}^{N(n, d)}$ be the projective space parametrising hypersurfaces $X \subset \mathbb{P}_{\mathbb{C}}^{n+1}$ of degree d. Let $U_{n, d} \subset \mathbb{P}_{\mathbb{C}}^{N(n, d)}$ be the Zariski-open subset parametrising the smooth hypersurfaces and let $\mathbb{V} \rightarrow U_{n, d}$ be the $\mathbb{Z} V H S$ corresponding to the primitive cohomology $H^{n}(X, \mathbb{Z})_{\text {prim }}$.
If $n \geq 3, d \geq 5$ and $(n, d) \neq(4,5)$ then $\mathrm{HL}\left(U_{n, d}, \mathbb{V}^{\otimes}\right)_{\text {pos }} \subset U_{n, d}$ is algebraic.

To complete the picture:

Theorem (B.-Klingler-Ullmo)

In level 1 and 2, if $\mathrm{HL}\left(S, \mathbb{V}^{\otimes}\right)_{\text {typ }} \neq \emptyset$ (possibly the zero dimensional part), then $\mathrm{HL}\left(S, \mathbb{V}^{\otimes}\right)$ is dense.

See also the work of Tayou and Tholozan. Can we predict when $\mathrm{HL}\left(S, \mathbb{V}^{\otimes}\right)_{\text {typ }}$ is non-empty?

Some applications

- A final (geometric) step in the Lawrence-Venkatesh method, to obtained refined results.
- Serre/Gross question on the existence of Jacobians with a given Mumford-Tate group (the Hodge locus of \mathcal{M}_{4});

Moduli space of hypersurfaces and integral points

Let K be a number field not containing a CM field.

Theorem (Lawrence-Venkatesh)

There exist $n_{0} \geq 3$ and a function $d_{0}: \mathbb{N} \rightarrow \mathbb{N}$ such that,

$$
\begin{equation*}
\text { for every } n \geq n_{0} \text { and } d \geq d_{0}(n) \tag{0.1}
\end{equation*}
$$

the set $U_{n, d}\left(\mathcal{O}_{K, S}\right)$ is not Zariski dense in $U_{n, d, \mathbb{C}}$, for every K and S.
They actually prove that each positive period dimensional component of ${\overline{U_{n, d}\left(\mathcal{O}_{K, S}\right)}}^{\mathrm{Zar}}$ is in the Hodge locus (since the monodromy drops).

In particular

$$
\bigcup_{K, S}{\overline{U_{n, d}\left(\mathcal{O}_{K, S}\right)}}_{\text {pos }} \subset \mathrm{HL}\left(U_{n, d}, \mathbb{V}^{\otimes}\right)_{\text {pos }}
$$

By our main theorem, the latter is an algebraic subvariety of $U_{n, d}$ (rather than a countable union of such). So

$$
\overline{\bigcup_{K, S} \overline{U_{n, d}\left(\mathcal{O}_{K, S}\right)_{\text {pos }}}} \subset \mathrm{HL}\left(U_{n, d}, \mathbb{V}^{\otimes}\right)_{\text {pos }}
$$

I.e. we proved the following special case of the refined Bombieri-Lang.

Theorem (B.-Klingler-Ullmo)

There exists a closed strict subvariety $E \subset U_{n, d}$ such that, for all K and all S, we have

$$
{\overline{U_{n, d}\left(\mathcal{O}_{K, S}\right)}}_{\mathrm{pos}} \subset E
$$

Otherwise stated: the Zariski closure of $U_{n, d}\left(\mathcal{O}_{K, S}\right)-E\left(\mathcal{O}_{K, S}\right)$ has period dimension zero.

THANKS FOR YOUR ATTENTION!

If there's still time: Serre's open image Theorem

Let K be a number field, A / K be a g-dimensional (pp) abelian variety

$$
\rho=\rho_{A, \ell}: \operatorname{Gal}(\bar{K} / K) \rightarrow \mathbf{G S p}_{2 g}\left(\mathbb{Z}_{\ell}\right)
$$

Assume that $\operatorname{End}(A / \mathbb{C})=\mathbb{Z}$:

- If $g=1$, then ρ has open image in $\mathrm{GL}_{2}\left(\mathbb{Z}_{\ell}\right)$ (and for ℓ big enough it is actually surjective);
- If $g \not \equiv 0 \bmod 4$, then ρ has open image (Serre);
- If $g=4$ this fails (Mumford).

Mumford-Tate group of an abelian variety

- Given an abelian variety $A, H^{1}(A, \mathbb{Q})$ is a "Hodge structure"

$$
x_{A}: \mathbb{S}=\operatorname{Res}_{\mathbb{R}}^{\mathbb{C}}\left(\mathbb{G}_{m}\right) \rightarrow \operatorname{GL}\left(H^{1}(A, \mathbb{R})\right)
$$

The Mumford-Tate group of A is the \mathbb{Q}-Zariski closure of x_{A}.

- Mumford constructed examples of 4-dim abelian varieties A with $\operatorname{End}(A)=\mathbb{Z}$ and $\mathbf{M T}(A)$ strictly contained in $\mathbf{G S p} 8 / \mathbb{Q}$.
- Gross/Serre: can we find a Jacobian "of Mumford's type"?

Theorem (B.-Klingler-Ullmo)

There exists a smooth projective curve C / K of genus 4 whose Jacobian is of Mumford's type (i.e. $\mathbf{M T}(J(C))$ is isogenous to a \mathbb{Q}-form of the complex group $\left.\mathbb{G}_{m} \times \mathrm{SL}_{2} \times \mathrm{SL}_{2} \times \mathrm{SL}_{2}\right)$.

Sketch of the proof (typical and atypical)

- Let \mathcal{M}_{4} be the moduli space of curves of genus 4 ;
- $j: \mathcal{M}_{4} \hookrightarrow \mathcal{A}_{4}, C \mapsto J(C)$;
- $\operatorname{dim} \mathcal{A}_{4}=10$ and $\operatorname{dim} \mathcal{M}_{4}=9$;
- Mumford constructed special curves $\left(M_{n}\right)_{n \in \mathbb{N}} \subset \mathcal{A}_{4}$ whose group is some \mathbb{Q}-from of $\mathbb{G}_{m} \times \mathrm{SL}_{2}^{3}$;
- We have to find a typical point in $M_{n} \cap \mathcal{M}_{4}$.

Since $10=9+1$, some M_{n} should intersect \mathcal{M}_{4} in a zero dimensional set.

- $P \in \mathcal{M}_{4} \cap M_{n}$ is Jacobian with CM; or
- $P \in \mathcal{M}_{4} \cap M_{n}$ is a Jacobian with $\mathbf{M T}_{\mathbb{C}}=\mathbb{G}_{m} \times \mathrm{SL}_{2}^{3}$.

Almost all M_{n} should cut \mathcal{M}_{4}.
The first case is an atypical intersection, and so it should not happen for all n, and all P. We "found" the desired genus 4 curve (∞-many)!

General Theorem

Theorem (B.-Klingler-Ullmo)

Let (\mathbf{G}, X) be a Shimura datum such that \mathbf{G} is absolutely simple and containing a one dimensional Shimura sub-datum $\left(\mathbf{H}, X_{H}\right)$. Let $S \subset \Gamma \backslash X$ be an irreducible subvariety of codimension one. Then the typical Hodge locus of S is (analytically) dense.

