Lieu de Hodge et applications : quelques résultats et conjectures

Gregorio Baldi

26/05/2025

- ► Habilitation à Diriger des Recherches : synthèse de l'activité scientifique
- Discipline : Mathématiques

G. Baldi

Middle gam

nd game

Post Mortem

HDR

G. Baldi

Opening

Middle game

nd game

st Mortem

HDR

G. Baldi

pening

/liddle game

Post Mortem

- 1. Opening. A guiding example: smooth hypersurfaces
 - Surfaces and the Noether-Lefschetz locus
 - New paradigm in higher dimension

HDR

G. Baldi

pening

End game

Post Mortem

- 1. Opening. A guiding example: smooth hypersurfaces
 - Surfaces and the Noether-Lefschetz locus
 - New paradigm in higher dimension
- 2. Middle Game. Zilber-Pink conjecture and general results

HDR

G. Baldi

pening

ind game

- 1. Opening. A guiding example: smooth hypersurfaces
 - Surfaces and the Noether-Lefschetz locus
 - New paradigm in higher dimension
- 2. Middle Game. Zilber-Pink conjecture and general results
- 3. End Game. Applications:
 - Moduli spaces of curves and co.
 - Complex hyperbolic lattices

Opening

Middle game

- 1. Opening. A guiding example: smooth hypersurfaces
 - Surfaces and the Noether-Lefschetz locus
 - New paradigm in higher dimension
- 2. Middle Game. Zilber-Pink conjecture and general results
- 3. End Game. Applications:
 - Moduli spaces of curves and co.
 - Complex hyperbolic lattices
- 4. Post Mortem. Ideas behind some proofs

Solutions of systems of polynomial equations

HDR

G. Baldi

Opening

1iddle game

st Mortem

Solutions of systems of polynomial equations

HDR

G. Baldi

Opening
Middle gan

Post Mortem

A hypersurface of degree d and dimension n is the zero set in \mathbb{CP}^{n+1} of a homogeneous polynomial F of degree d in n+2 variables.

Solutions of systems of polynomial equations

G. Baldi

Middle game

- A hypersurface of degree d and dimension n is the **zero** set in \mathbb{CP}^{n+1} of a homogeneous polynomial F of degree d in n+2 variables.
- ▶ **Smooth** if the partial derivatives of *F* don't simultaneously vanish.

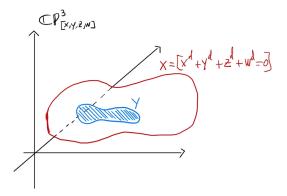
- A hypersurface of degree d and dimension n is the zero set in \mathbb{CP}^{n+1} of a homogeneous polynomial F of degree d in n+2 variables.
- ▶ **Smooth** if the partial derivatives of *F* don't simultaneously vanish.

Example (Fermat curve)

$$Y=\{[X,Y,Z]\in\mathbb{CP}^2:X^d+Y^d+Z^d=0\}$$

Goal

Understand higher dimensional varieties by looking at their lower dimensional subvarieties.



Middle game

End game

Post Mortem

Moduli spaces of smooth hypersurfaces (fix n, d)

HDR

G. Baldi

Question

How to compare hypersurfaces?

Middle game

ost Mortem

How to compare hypersurfaces?

$$X = [F = 0] \iff$$
 point of a \mathbb{C} -vector space
$$V = |\mathcal{O}_{\mathbb{P}^{n+1}}(d)| = \mathbb{C}[X_0, \dots, X_{n+1}]_d,$$

Middle game

ost Mortem

How to compare hypersurfaces?

$$X = [F = 0] \iff$$
 point of a \mathbb{C} -vector space
$$V = |\mathcal{O}_{\mathbb{P}^{n+1}}(d)| = \mathbb{C}[X_0, \dots, X_{n+1}]_d,$$

F smooth if $\notin [\Delta = 0] \subset V$.

How to compare hypersurfaces?

$$X = [F = 0] \iff$$
 point of a \mathbb{C} -vector space
$$V = |\mathcal{O}_{\mathbb{P}^{n+1}}(d)| = \mathbb{C}[X_0, \dots, X_{n+1}]_d,$$

$$F$$
 smooth if $\notin [\Delta = 0] \subset V$.

Parameter space:
$$U_{n,d} := V - \Delta$$
.

How to compare hypersurfaces?

$$X = [F = 0] \iff$$
 point of a \mathbb{C} -vector space
$$V = |\mathcal{O}_{\mathbb{P}^{n+1}}(d)| = \mathbb{C}[X_0, \dots, X_{n+1}]_d,$$

$$F$$
 smooth if $\notin [\Delta = 0] \subset V$.

Parameter space: $U_{n,d} := V - \Delta$.

Question

What can we say about a **very general** hypersurface X?

How to compare hypersurfaces?

$$X = [F = 0] \iff$$
 point of a \mathbb{C} -vector space
$$V = |\mathcal{O}_{\mathbb{P}^{n+1}}(d)| = \mathbb{C}[X_0, \dots, X_{n+1}]_d,$$

F smooth if $\notin [\Delta = 0] \subset V$.

Parameter space: $U_{n,d} := V - \Delta$.

Question

What can we say about a **very general** hypersurface X?

I.e. [X] in the complement of a countable union of subvarieites of $U_{n,d}$. 4 D > 4 A > 4 B > 4 B > B 90 0

Max Noether's theorem, 1882

HDR

G. Baldi

Opening

Aiddle game

nd game

st Mortem

G. Baldi

Opening

and manage

Post Mortem

Theorem

Every curve on the very general surface $X\subset \mathbb{P}^3$ of degree $d\geq 4$ is the complete intersection of X with another surface.

G. Baldi

Theorem

Every curve on the very general surface $X\subset \mathbb{P}^3$ of degree $d\geq 4$ is the complete intersection of X with another surface.

► The **Picard group** Pic X of line bundles on X modulo linear equivalence is a classical invariant

Opening

Middle game

Life gaine

Theorem

Every curve on the very general surface $X \subset \mathbb{P}^3$ of degree $d \geq 4$ is the complete intersection of X with another surface.

- ► The Picard group Pic X of line bundles on X modulo linear equivalence is a classical invariant
- ▶ A curve C is essentially determined by its Jacobian $\operatorname{Pic}^0 C \cong H^0(\Omega^1_C)^*/H_1(C,\mathbb{Z})$

Middle game

Post Mortem

Theorem

Every curve on the very general surface $X \subset \mathbb{P}^3$ of degree $d \geq 4$ is the complete intersection of X with another surface.

- ► The **Picard group** Pic X of line bundles on X modulo linear equivalence is a classical invariant
- ▶ A curve C is essentially determined by its Jacobian $\operatorname{Pic}^0 C \cong H^0(\Omega^1_C)^*/H_1(C,\mathbb{Z})$
- ► Far from true in higher dimensions:

Middle gan

Middle game End game

Theorem

Every curve on the very general surface $X \subset \mathbb{P}^3$ of degree $d \geq 4$ is the complete intersection of X with another surface.

- ▶ The **Picard group** Pic X of line bundles on X modulo linear equivalence is a classical invariant
- ▶ A curve C is essentially determined by its Jacobian $\operatorname{Pic}^0 C \cong H^0(\Omega^1_C)^*/H_1(C,\mathbb{Z})$
- ► Far from true in higher dimensions:

$$\operatorname{Pic} X = \langle \mathcal{O}_X(1) \rangle$$

$$\operatorname{NL}_d := \{ [X] \in U_{2,d} : \operatorname{Pic}(\mathbb{P}^3) \xrightarrow{\cong} \operatorname{Pic}(X) \}.$$

Opening

Middle game

nd game

ost Mortem

$$\operatorname{NL}_d := \{ [X] \in U_{2,d} : \operatorname{Pic}(\mathbb{P}^3) \xrightarrow{\cong} \operatorname{Pic}(X) \}.$$

Consider:

......

.

$$\operatorname{NL}_d := \{ [X] \in U_{2,d} : \operatorname{Pic}(\mathbb{P}^3) \xrightarrow{\cong} \operatorname{Pic}(X) \}.$$

Consider:

▶ Hilbert scheme F(n,g) parametrizing:

$$\operatorname{NL}_d := \{ [X] \in U_{2,d} : \operatorname{Pic}(\mathbb{P}^3) \xrightarrow{\cong} \operatorname{Pic}(X) \}.$$

Consider:

▶ Hilbert scheme F(n,g) parametrizing:

$$\operatorname{NL}_d := \{ [X] \in U_{2,d} : \operatorname{Pic}(\mathbb{P}^3) \xrightarrow{\cong} \operatorname{Pic}(X) \}.$$

Consider:

▶ Hilbert scheme F(n,g) parametrizing:

$$W(n,g) = \left\{ (C,X) \in F(n,g) : C \text{ } \begin{matrix} C \text{ not a complete} \\ \text{intersection} \end{matrix} \right\}.$$

$$\operatorname{NL}_d := \{ [X] \in U_{2,d} : \operatorname{Pic}(\mathbb{P}^3) \xrightarrow{\cong} \operatorname{Pic}(X) \}.$$

Consider:

▶ Hilbert scheme F(n,g) parametrizing:

$$W(n,g) = \left\{ (C,X) \in F(n,g) : C \text{ } \begin{array}{c} C \text{ not a complete} \\ \text{intersection} \end{array} \right\}.$$

$$\rho: F(n,g) \to |\mathcal{O}_{\mathbb{P}^3}(d)|, \quad (C,X) \mapsto X$$

$$\operatorname{NL}_d := \{ [X] \in U_{2,d} : \operatorname{Pic}(\mathbb{P}^3) \xrightarrow{\cong} \operatorname{Pic}(X) \}.$$

Consider:

▶ Hilbert scheme F(n,g) parametrizing:

$$W(n,g) = \left\{ (C,X) \in F(n,g) : C \text{ } \begin{array}{c} C \text{ not a complete} \\ \text{intersection} \end{array} \right\}.$$

$$\rho: F(n,g) \to |\mathcal{O}_{\mathbb{P}^3}(d)|, \quad (C,X) \mapsto X$$

$$U_{2,d} - \bigcup_{n,g} \rho(W(n,g))$$

F(n,g) is algebraic and ρ proper, therefore each $\rho(W(n,g))$ is a finite union of subvarieties...

Opening

F(n,g) is algebraic and ρ proper, therefore each $\rho(W(n,g))$ is a finite union of subvarieties. . . strictly (?) contained in $|\mathcal{O}_{\mathbb{P}^3}(d)|$.

Middle game

Middle game

Post Mortem

F(n,g) is algebraic and ρ proper, therefore each $\rho(W(n,g))$ is a finite union of subvarieties. . . strictly (?) contained in $|\mathcal{O}_{\mathbb{P}^3}(d)|$.

Example

 $ightharpoonup W = {\sf smooth surfaces containing a line}$

F(n,g) is algebraic and ρ proper, therefore each $\rho(W(n,g))$ is a finite union of subvarieties... strictly (?) contained in $|\mathcal{O}_{\mathbb{P}^3}(d)|$.

Example

- \blacktriangleright W = smooth surfaces containing a line
- ightharpoonup Fix $L \subset \mathbb{P}^3$, the family W_L of surfaces containing L is $H^0(\mathcal{I}_L(d)) \subset H^0(\mathcal{O}_{\mathbb{P}^3}(d))$

F(n,g) is algebraic and ρ proper, therefore each $\rho(W(n,g))$ is a finite union of subvarieties. . . strictly $\ref{eq:strictly}$ (?) contained in

Example

 $|\mathcal{O}_{\mathbb{P}^3}(d)|$.

- $ightharpoonup W = {\sf smooth surfaces containing a line}$
- ▶ Fix $L \subset \mathbb{P}^3$, the family W_L of surfaces containing L is $H^0(\mathcal{I}_L(d)) \subset H^0(\mathcal{O}_{\mathbb{P}^3}(d))$

F(n,g) is algebraic and ρ proper, therefore each $\rho(W(n,g))$ is a finite union of subvarieties. . . strictly (?) contained in $|\mathcal{O}_{\mathbb{P}^3}(d)|$.

Example

- W = smooth surfaces containing a line
- lacktriangle Fix $L\subset \mathbb{P}^3$, the family W_L of surfaces containing L is $H^0(\mathcal{I}_L(d)) \subset H^0(\mathcal{O}_{\mathbb{P}^3}(d))$
- $ightharpoonup \operatorname{codim}_{U_{2,d}} W_L = \dim H^0(L, \mathcal{O}_L(d)) = d+1$
- $ightharpoonup \dim \mathbb{G}r(1,3) = 4.$

F(n,g) is algebraic and ρ proper, therefore each $\rho(W(n,g))$ is a finite union of subvarieties...strictly (?) contained in $|\mathcal{O}_{\mathbb{P}^3}(d)|$.

Example

- W = smooth surfaces containing a line
- lacktriangle Fix $L\subset \mathbb{P}^3$, the family W_L of surfaces containing L is $H^0(\mathcal{I}_L(d)) \subset H^0(\mathcal{O}_{\mathbb{P}^3}(d))$
- $ightharpoonup \operatorname{codim}_{U_{2,d}} W_L = \dim H^0(L, \mathcal{O}_L(d)) = d+1$
- $ightharpoonup \dim \mathbb{G}r(1,3) = 4$, so codim W = d + 1 - 4 = d - 3 > 0, since d > 4.

Solomon Lefschetz, 1920s

HDR

G. Baldi

Opening

Middle game

Post Mortem

lacktriangleright The computations get more difficult as n grows

Solomon Lefschetz, 1920s

HDR

G. Baldi

Opening

Middle gar

End game

Post Mortem

- ightharpoonup The computations get more difficult as n grows
- ► The program was completed by Lefschetz: L. pencils and L. (1,1) theorem:

Solomon Lefschetz, 1920s

HDR

G. Baldi

Opening Middle gam

ind game

- ightharpoonup The computations get more difficult as n grows
- ► The program was completed by Lefschetz: L. pencils and L. (1,1) theorem:

"It was my lot to plant the harpoon of algebraic topology into the body of the whale of algebraic geometry."

End game

- ightharpoonup The computations get more difficult as n grows
- ► The program was completed by Lefschetz: L. pencils and L. (1,1) theorem:

"It was my lot to plant the harpoon of algebraic topology into the body of the whale of algebraic geometry."

Theorem (Noether-Lefschetz theorem)

If $d \geq 4$, NL_d is a countable union of strict subvarieties of $U_{2.d}$.

- ▶ The computations get more difficult as n grows
- ► The program was completed by Lefschetz: L. pencils and L. (1,1) theorem:

"It was my lot to plant the harpoon of algebraic topology into the body of the whale of algebraic geometry."

Theorem (Noether-Lefschetz theorem)

If $d \geq 4$, NL_d is a countable union of strict subvarieties of $U_{2,d}$. Any $X \notin \operatorname{NL}_d$ has $\operatorname{Pic} X = \langle \mathcal{O}_X(1) \rangle$.

The eighties and infinitesimal Hodge theory à la Griffiths

HDR

G. Baldi

Opening

Aiddle game

nd game

st Mortem

The eighties and infinitesimal Hodge theory à la

Griffiths

HDR

G. Baldi

Theorem (Explicit Noether-Lefschetz theorem, after Green & Voisin)

The eighties and infinitesimal Hodge theory à la Griffiths

HDR G. Baldi

pening

Middle game

nd game

Post Mortem

Theorem (Explicit Noether-Lefschetz theorem, after Green & Voisin)

For each irreducible component Y of NL_d :

Post Mortem

Theorem (Explicit Noether-Lefschetz theorem, after Green & Voisin)

For each irreducible component Y of NL_d :

$$d-3 \le \operatorname{codim}_{U_{2,d}} Y \le h^{2,0} = \binom{d-1}{3}.$$

Theorem (Explicit Noether-Lefschetz theorem, after Green & Voisin)

For each irreducible component Y of NL_d :

$$d-3 \le \operatorname{codim}_{U_{2,d}} Y \le h^{2,0} = \binom{d-1}{3}.$$

Definition (Ciliberto-Harris-Miranda)

A component Y is **general** if it has codimension $h^{2,0}$ and **exceptional** otherwise.

Theorem (Explicit Noether-Lefschetz theorem, after Green & Voisin)

For each irreducible component Y of NL_d :

$$d-3 \le \operatorname{codim}_{U_{2,d}} Y \le h^{2,0} = \binom{d-1}{3}.$$

Definition (Ciliberto-Harris-Miranda)

A component Y is **general** if it has codimension $h^{2,0}$ and **exceptional** otherwise.

Exceptional components exist only for $d \geq 5$.

Middle game
End game

Distribution of NL_d , after Harris, Green, Voisin...

▶ The general components are dense in $U_{2,d}(\mathbb{C})$

HDR

G. Baldi

Opening

Middle game

nd game

ost Mortem

- ▶ The general components are dense in $U_{2,d}(\mathbb{C})$
- ► Have codimension > 2d 7, with two exceptions: surfaces containing a line (*resp. conic*) with codim = d 3 (*resp.* 2d 7)

- ▶ The general components are dense in $U_{2,d}(\mathbb{C})$
- ▶ Have codimension > 2d 7, with two exceptions: surfaces containing a line (resp. conic) with codim = d 3 (resp. 2d 7)
- ▶ If $d \gg 0$ and divisible by 4 there might be infinitely many exceptional components.

Middle game

- ▶ The general components are dense in $U_{2,d}(\mathbb{C})$
- ▶ Have codimension > 2d 7, with two exceptions: surfaces containing a line (*resp. conic*) with codim = d 3 (*resp.* 2d 7)
- ▶ If $d \gg 0$ and divisible by 4 there might be infinitely many exceptional components.

Theorem (B.-Klingler-Ullmo)

The exceptional components are not Zariski dense in $U_{2,d}$.

Hypersurfaces via Hodge theory

HDR

G. Baldi

Opening

Middle game

nd game

ost Mortem

 $\qquad X = [F = 0] \text{ of dimension } n \leadsto H^n(X, \mathbb{Q}) \text{:}$

Opening

Middle game

End game

▶ X = [F = 0] of dimension $n \rightsquigarrow H^n(X, \mathbb{Q})$: its dimension depends only on n and $\deg F$

Opening

Middle game

ost Mortem

Fud same

Post Mortem

- ▶ X = [F = 0] of dimension $n \rightsquigarrow H^n(X, \mathbb{Q})$: its dimension depends only on n and $\deg F$
- ► Hodge decomposition:

$$H^n(X,\mathbb{Q})\otimes\mathbb{C}\cong\bigoplus_{p+q=n}H^{p,q}$$

- Hypersurfaces via **Hodge theory**
 - ightharpoonup X = [F = 0] of dimension $n \rightsquigarrow H^n(X, \mathbb{Q})$: its dimension depends only on n and $\deg F$
 - Hodge decomposition:

$$H^n(X,\mathbb{Q})\otimes\mathbb{C}\cong\bigoplus_{p+q=n}H^{p,q}$$

coming from partial differential equations and harmonic integrals on X

- - ightharpoonup X = [F = 0] of dimension $n \rightsquigarrow H^n(X, \mathbb{Q})$: its dimension depends only on n and $\deg F$
 - Hodge decomposition:

$$H^n(X,\mathbb{Q})\otimes\mathbb{C}\cong\bigoplus_{p+q=n}H^{p,q}$$

coming from partial differential equations and harmonic integrals on X

▶ If $n = 2\ell$ subvarieties of codimension ℓ give rise to **Hodge classes**, i.e. rational classes in $H^{\ell,\ell}$

End game

Post Mortem

- ▶ X = [F = 0] of dimension $n \rightsquigarrow H^n(X, \mathbb{Q})$: its dimension depends only on n and $\deg F$
- ▶ Hodge decomposition:

$$H^n(X,\mathbb{Q})\otimes\mathbb{C}\cong\bigoplus_{p+q=n}H^{p,q}$$

coming from partial differential equations and harmonic integrals on \boldsymbol{X}

- ▶ If $n=2\ell$ subvarieties of codimension ℓ give rise to Hodge classes, i.e. rational classes in $H^{\ell,\ell}$
- ► Hodge conjecture inverts this association

- - ightharpoonup X = [F = 0] of dimension $n \rightsquigarrow H^n(X, \mathbb{Q})$: its dimension depends only on n and $\deg F$
 - Hodge decomposition:

$$H^n(X,\mathbb{Q})\otimes\mathbb{C}\cong\bigoplus_{p+q=n}H^{p,q}$$

coming from partial differential equations and harmonic integrals on X

- ▶ If $n = 2\ell$ subvarieties of codimension ℓ give rise to **Hodge classes**, i.e. rational classes in $H^{\ell,\ell}$
- Hodge conjecture inverts this association
- $label{eq:lambda} \ell = 1 \text{ established by Lefschetz (normal functions à la}$ Poincaré).

Hypersurfaces via **Hodge theory**

- ightharpoonup X = [F = 0] of dimension $n \rightsquigarrow H^n(X, \mathbb{Q})$: its dimension depends only on n and $\deg F$
- Hodge decomposition:

$$H^n(X,\mathbb{Q})\otimes\mathbb{C}\cong\bigoplus_{p+q=n}H^{p,q}$$

coming from partial differential equations and harmonic integrals on X

- ▶ If $n = 2\ell$ subvarieties of codimension ℓ give rise to **Hodge classes**, i.e. rational classes in $H^{\ell,\ell}$
- Hodge conjecture inverts this association
- $label{eq:lambda} \ell = 1 \text{ established by Lefschetz (normal functions à la}$ Poincaré). After Kodaira-Spencer '53: algebraization &

$$0 \to \underline{\mathbb{Z}} \to \mathcal{O}_X \to \mathcal{O}_X^* \to 0$$

Introduction to VHS

HDR

G. Baldi

pening

liddle game

at Mautaus

Introduction to VHS

HDR

G. Baldi

Opening

iddle game

ost Mortem

Varying $H^n(X,\mathbb{Z})_{\text{prim}}$ with $X \in U_{n,d}$ we obtain

Introduction to VHS

HDR

G. Baldi

Opening

Middle game

Post Mortem

Varying $H^n(X,\mathbb{Z})_{\text{prim}}$ with $X \in U_{n,d}$ we obtain

variation of Hodge structures $\mathbb V$

nd game

Post Mortem

Varying $H^n(X,\mathbb{Z})_{\text{prim}}$ with $X\in U_{n,d}$ we obtain

variation of Hodge structures $\ensuremath{\mathbb{V}}$

l.e. vector bundle with connection ∇ , filtration F, polarization Q, satisfying *Griffiths transversality* such that each fiber is a polarized Hodge structure

Varying $H^n(X,\mathbb{Z})_{\mathrm{prim}}$ with $X\in U_{n,d}$ we obtain

variation of Hodge structures $\mathbb {V}$

I.e. vector bundle with connection ∇ , filtration F, polarization Q, satisfying *Griffiths transversality* such that each fiber is a polarized Hodge structure

 $\mathrm{HL}(U_{n,d},\mathbb{V}^\otimes):=\{x\in U_{n,d}:\mathbb{V}_{|x} \text{ has extra Hodge tensors}\}$

Important point: Hodge tensors vs classes (aka the Tannakian perspective)

HDR

G. Baldi

Opening

/liddle game

iu gairie

st Mortem

liddle game

nd game

Post Mortem

▶ Hodge structure on $V_{\mathbb{Z}}$:

$$V_{\mathbb{C}} := V_{\mathbb{Z}} \otimes \mathbb{C} = \bigoplus_{p,q \in \mathbb{Z}} V^{p,q}$$

Middle game

ind game

Post Mortem

▶ Hodge structure on $V_{\mathbb{Z}}$:

$$V_{\mathbb{C}} := V_{\mathbb{Z}} \otimes \mathbb{C} = \bigoplus_{p,q \in \mathbb{Z}} V^{p,q}$$

such that:
$$\overline{V^{p,q}} = V^{q,p}$$

Middle game

▶ Hodge structure on $V_{\mathbb{Z}}$:

$$V_{\mathbb{C}} := V_{\mathbb{Z}} \otimes \mathbb{C} = \bigoplus_{p,q \in \mathbb{Z}} V^{p,q}$$

such that: $\overline{V^{p,q}} = V^{q,p}$

▶ Hodge tensor is a Hodge class of $\bigoplus_{a,b} V^{\otimes a}(\otimes V^{\vee})^{\otimes b}$

Hodge structure on $V_{\mathbb{Z}}$:

$$V_{\mathbb{C}} := V_{\mathbb{Z}} \otimes \mathbb{C} = \bigoplus_{p,q \in \mathbb{Z}} V^{p,q}$$

such that: $\overline{V^{p,q}} = V^{q,p}$

- ▶ Hodge tensor is a Hodge class of $\bigoplus_{a,b} V^{\otimes a}(\otimes V^{\vee})^{\otimes b}$
- ▶ Mumford-Tate group = the fixator in $GL(V_{\mathbb{Q}})$ of all Hodge tensors of V

Ind game

▶ Hodge structure on $V_{\mathbb{Z}}$:

$$V_{\mathbb{C}} := V_{\mathbb{Z}} \otimes \mathbb{C} = \bigoplus_{p,q \in \mathbb{Z}} V^{p,q}$$

such that: $\overline{V^{p,q}} = V^{q,p}$

- ▶ Hodge tensor is a Hodge class of $\bigoplus_{a,b} V^{\otimes a}(\otimes V^{\vee})^{\otimes b}$
- ▶ Mumford–Tate group = the fixator in $\operatorname{GL}(V_{\mathbb Q})$ of all Hodge tensors of V

$$\operatorname{HL}(S, \mathbb{V}^{\otimes}) = \{ s \in S(\mathbb{C}) : \mathbf{MT}(\mathbb{V}_s) \neq \mathbf{MT}(\mathbb{V}) \}.$$

Vliddle game

Post Mortem

▶ Hodge structure on $V_{\mathbb{Z}}$:

$$V_{\mathbb{C}} := V_{\mathbb{Z}} \otimes \mathbb{C} = \bigoplus_{p,q \in \mathbb{Z}} V^{p,q}$$

such that: $\overline{V^{p,q}} = V^{q,p}$

- ▶ Hodge tensor is a Hodge class of $\bigoplus_{a,b} V^{\otimes a}(\otimes V^{\vee})^{\otimes b}$
- ▶ Mumford–Tate group = the fixator in $\operatorname{GL}(V_{\mathbb Q})$ of all Hodge tensors of V

$$\mathrm{HL}(S,\mathbb{V}^{\otimes}) = \{ s \in S(\mathbb{C}) : \mathbf{MT}(\mathbb{V}_s) \neq \mathbf{MT}(\mathbb{V}) \}.$$

Example

For $d \geq 4$, $NL_d \subset HL(U_{2,d}, \mathbb{V}^{\otimes})$. Are they equal?

HDR

G. Baldi

Opening

1iddle game

....

HDR

G. Baldi

Theorem (Cattani-Deligne-Kaplan '95)

 $\mathrm{HL}(S,\mathbb{V}^\otimes)$ is a countable union of **algebraic** subvarieties.

Opening

Middle game

nd game

HDR

G. Baldi

Jpening

/liddle game

Post Mortem

Theorem (Cattani-Deligne-Kaplan '95)

 $\mathrm{HL}(S,\mathbb{V}^{\otimes})$ is a countable union of **algebraic** subvarieties. The (maximal) special subvarieties of S.

HDR

G. Baldi

Opening

nd game

Post Mortem

Theorem (Cattani-Deligne-Kaplan '95)

 $\mathrm{HL}(S,\mathbb{V}^\otimes)$ is a countable union of **algebraic** subvarieties. The (maximal) special subvarieties of S.

Question

What can we say about $\mathrm{HL}(S,\mathbb{V}^{\otimes})$? What do they reveal?

Middle game

nd game

D. M. M.

Theorem (Cattani-Deligne-Kaplan '95)

 $\mathrm{HL}(S,\mathbb{V}^\otimes)$ is a countable union of **algebraic** subvarieties. The (maximal) special subvarieties of S.

Question

What can we say about $\mathrm{HL}(S,\mathbb{V}^{\otimes})$? What do they reveal?

Example

► Hodge conjecture is true for hypersurfaces **outside** $\mathrm{HL}(U_{n,d},\mathbb{V}^{\otimes})$

Middle game

Theorem (Cattani-Deligne-Kaplan '95)

 $\mathrm{HL}(S,\mathbb{V}^\otimes)$ is a countable union of **algebraic** subvarieties. The (maximal) special subvarieties of S.

Question

What can we say about $\mathrm{HL}(S,\mathbb{V}^{\otimes})$? What do they reveal?

Example

- ► Hodge conjecture is true for hypersurfaces **outside** $\mathrm{HL}(U_{n.d}, \mathbb{V}^{\otimes})$
- CDK is predicted by the Hodge conjecture

Delicate tension (Kandinsky 1923) of $\mathrm{HL}(S,\mathbb{V}^\otimes)$

Opening

1iddle game nd game

General theory after Griffiths, Deligne,...

HDR

G. Baldi

Opening

Middle game

End game

General theory after Griffiths, Deligne,...

HDR

G. Baldi

 $\mathsf{VHS} = \mathbf{period} \ \mathbf{map} \ \Psi \ \mathsf{to} \ \mathsf{a} \ \mathbf{period} \ \mathbf{domain} \ G(\mathbb{Z}) \backslash D$

ddle game

HDR

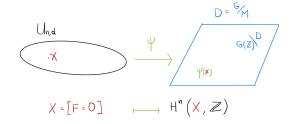
G. Baldi

Opening

Ind same

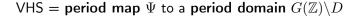
Post Mortem

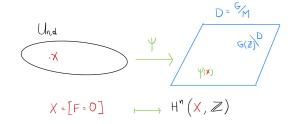
VHS = period map Ψ to a period domain $G(\mathbb{Z})\backslash D$



Middle game End game

End game

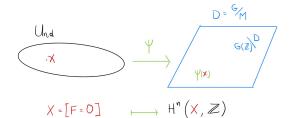




Example

(P.p.) abelian scheme over $S \leftrightsquigarrow S \to \mathcal{A}_g = \mathrm{Sp}_{2g}(\mathbb{Z}) \backslash \mathbb{H}_g$

VHS = period map Ψ to a period domain $G(\mathbb{Z})\backslash D$



Example

(P.p.) abelian scheme over $S \iff S \to \mathcal{A}_q = \mathrm{Sp}_{2q}(\mathbb{Z}) \backslash \mathbb{H}_q$ Notable example: $\mathcal{M}_q \to \mathcal{A}_q, C \mapsto \operatorname{Jac}(C)$.

Middle game

nd game

st Mortem

Definition

 $Y\subset S$ has positive period dimension if $\Psi(Y)$ is not a point.

Opening

1iddle game

nd game

Definition

 $Y\subset S$ has positive period dimension if $\Psi(Y)$ is not a point.

Theorem (B.-Klingler-Ullmo)

If n=3 and $d\geq 5$; or n=4 and $d\geq 6$; or n=5,6,8 and $d\geq 4$; or n=7 or ≥ 9 and $d\geq 3$,

pening

Middle game

ind game

G. Baldi

Definition

 $Y\subset S$ has positive period dimension if $\Psi(Y)$ is not a point.

Theorem (B.-Klingler-Ullmo)

If n=3 and $d\geq 5$; or n=4 and $d\geq 6$; or n=5,6,8 and $d\geq 4$; or n=7 or ≥ 9 and $d\geq 3$, then $\mathrm{HL}(U_{n,d},\mathbb{V}^\otimes)_{\mathrm{pos}}\subset U_{n,d}$ is algebraic.

Definition

 $Y\subset S$ has positive period dimension if $\Psi(Y)$ is not a point.

Theorem (B.-Klingler-Ullmo)

If n=3 and $d\geq 5$; or n=4 and $d\geq 6$; or n=5,6,8 and $d\geq 4$; or n=7 or ≥ 9 and $d\geq 3$, then $\mathrm{HL}(U_{n,d},\mathbb{V}^\otimes)_{\mathrm{pos}}\subset U_{n,d}$ is algebraic.

Remark (Refined Bombieri-Lang conjecture)

The above can be plugged into the Lawrence-Venkatesh method to get finer results on integral points of $U_{n,d}$.

Components of the Hodge locus as intersections: Functoriality for (S, \mathbb{V})

HDR

G. Baldi

Opening

liddle game

$$Y\subset S$$
 supports $\mathbb{V}_{|Y}$, which corresponds to a period map
$$Y(\mathbb{C})\to \Gamma_Y\backslash D_Y,$$

liddle game

Post Mortem

 $Y\subset S$ supports $\mathbb{V}_{|Y}$, which corresponds to a period map

$$Y(\mathbb{C}) \to \Gamma_Y \backslash D_Y$$
,

where D_Y is a homogeneous space under $H_Y = \mathbf{MT}(\mathbb{V}_{|Y})(\mathbb{R}).$

nd game

 $Y\subset S$ supports $\mathbb{V}_{|Y}$, which corresponds to a period map

$$Y(\mathbb{C}) \to \Gamma_Y \backslash D_Y$$
,

where D_Y is a homogeneous space under $H_Y=\mathbf{MT}(\mathbb{V}_{|Y})(\mathbb{R})$. But $H_Y\subset G=\mathbf{MT}(\mathbb{V})$ and functoriality gives

liddle game

nd game

 $Y\subset S$ supports $\mathbb{V}_{|Y}$, which corresponds to a period map

$$Y(\mathbb{C}) \to \Gamma_Y \backslash D_Y$$
,

where D_Y is a homogeneous space under $H_Y = \mathbf{MT}(\mathbb{V}_{|Y})(\mathbb{R})$. But $H_Y \subset G = \mathbf{MT}(\mathbb{V})$ and functoriality gives

$$Y(\mathbb{C}) \xrightarrow{\Psi_{|Y}} \Gamma_Y \backslash D_Y$$

$$\downarrow \qquad \qquad \downarrow$$

$$S(\mathbb{C}) \xrightarrow{\Psi} G(\mathbb{Z}) \backslash D$$

Special subvarieties

HDR

G. Baldi

 $Y \text{ is special if and only if } Y = \Psi^{-1}(\Gamma_Y \backslash D_Y)^0.$

ening Idle game I game

Special subvarieties

HDR

G. Baldi

Y is special if and only if $Y=\Psi^{-1}(\Gamma_Y\backslash D_Y)^0$. Morally $\Psi(Y){=}\Psi(S)\cap \Gamma_Y\backslash D_Y\subset G(\mathbb{Z})\backslash D.$

Opening

Middle game

End game

Middle game
End game

Y is special if and only if $Y=\Psi^{-1}(\Gamma_Y\backslash D_Y)^0$. Morally $\Psi(Y){=}\Psi(S)\cap \Gamma_Y\backslash D_Y\subset G(\mathbb{Z})\backslash D.$

Definition (B.-Klingler-Ullmo)

A special subvariety Y is either typical or atypical:

Y is special if and only if $Y=\Psi^{-1}(\Gamma_Y\backslash D_Y)^0$. Morally $\Psi(Y){=}\Psi(S)\cap \Gamma_Y\backslash D_Y\subset G(\mathbb{Z})\backslash D.$ Middle $\Psi(Y){=}\Psi(S)\cap \Gamma_Y\backslash D_Y\subset G(\mathbb{Z})\backslash D.$

Definition (B.-Klingler-Ullmo)

A special subvariety Y is either typical or atypical:

 $ightharpoonup \operatorname{codim}_{S}(Y) = \operatorname{codim}_{G(\mathbb{Z}) \setminus D}(\Gamma_{Y} \setminus D_{Y});$

Y is special if and only if $Y=\Psi^{-1}(\Gamma_Y\backslash D_Y)^0$. Morally $\Psi(Y){=}\Psi(S)\cap\Gamma_Y\backslash D_Y\subset G(\mathbb{Z})\backslash D.$

Definition (B.-Klingler-Ullmo)

A special subvariety Y is either typical or atypical:

- $ightharpoonup \operatorname{codim}_{S}(Y) = \operatorname{codim}_{G(\mathbb{Z}) \setminus D}(\Gamma_{Y} \setminus D_{Y});$
- $ightharpoonup \operatorname{codim}_{S(X)\setminus D}(\Gamma_{Y}\setminus D_{Y}).$

Y is special if and only if $Y=\Psi^{-1}(\Gamma_Y\backslash D_Y)^0$. Morally $\Psi(Y){=}\Psi(S)\cap \Gamma_Y\backslash D_Y\subset G(\mathbb{Z})\backslash D.$ Middle I End gar Post Mo

Definition (B.-Klingler-Ullmo)

A special subvariety Y is either typical or atypical:

- $ightharpoonup \operatorname{codim}_{S}(Y) = \operatorname{codim}_{G(\mathbb{Z}) \setminus D}(\Gamma_{Y} \setminus D_{Y});$
- $ightharpoonup \operatorname{codim}_{S}(Y) < \operatorname{codim}_{G(\mathbb{Z}) \setminus D}(\Gamma_{Y} \setminus D_{Y}).$

$$\mathrm{HL} = \mathrm{HL}_{\mathrm{typ}} \cup \mathrm{HL}_{\mathrm{atyp}}$$

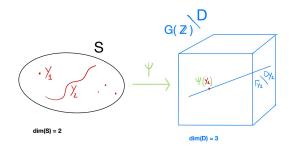
Schematic: typical components

HDR

G. Baldi

Opening
Middle gam

ind game

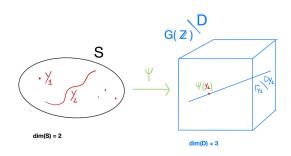


Schematic: typical components

HDR

G. Baldi

Middle game



$$2 = \operatorname{Codim}_{S}(Y_{1}) = \operatorname{Codim}_{G(\mathbb{Z}) \setminus D}(\Gamma_{Y_{1}} \setminus D_{Y_{1}})$$

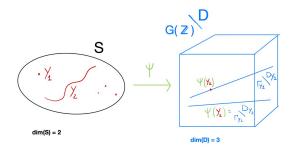
Vs atypical components

HDR

G. Baldi

Opening

End game

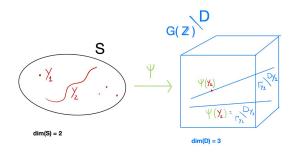


Vs atypical components

HDR

G. Baldi

pening liddle game nd game



$$1 = \operatorname{Codim}_{S}(Y_{2}) < \operatorname{Codim}_{G(\mathbb{Z}) \setminus D}(\Gamma_{Y_{2}} \setminus D_{Y_{2}}) = 2$$

The completed Zilber-Pink conjecture

HDR

G. Baldi

Let $\mathbb {V}$ be a graded-polarizable and admissible $\mathbb {Z}\mathsf{VMHS}$ over S.

ening ddle game d game

The completed Zilber-Pink conjecture

HDR

G. Baldi

Opening

nd game

Post Morter

Let $\mathbb {V}$ be a graded-polarizable and admissible $\mathbb {Z}VMHS$ over S.

Conjecture (B.-Klingler-Ullmo)

(AT) (S, \mathbb{V}) contains only finitely many maximal atypical intersections.

The completed Zilber-Pink conjecture

HDR

G. Baldi

Middle game

End game

Let $\mathbb V$ be a graded-polarizable and admissible $\mathbb Z\mathsf{VMHS}$ over S.

Conjecture (B.-Klingler-Ullmo)

- (AT) (S, \mathbb{V}) contains only finitely many maximal atypical intersections.
- (TY) The following are equivalent:

The completed Zilber-Pink conjecture

HDR

G. Baldi

Conjecture (B.-Klingler-Ullmo)

(AT) (S, \mathbb{V}) contains only finitely many maximal atypical intersections.

Let \mathbb{V} be a graded-polarizable and admissible $\mathbb{Z}VMHS$ over S.

- (TY) The following are equivalent:
 - S contains one typical intersection;

The completed Zilber-Pink conjecture

HDR

G. Baldi

Opening

nd game

Post Morte

Let $\mathbb V$ be a graded-polarizable and admissible $\mathbb Z VMHS$ over S.

Conjecture (B.-Klingler-Ullmo)

- (AT) (S, \mathbb{V}) contains only finitely many maximal atypical intersections.
- (TY) The following are equivalent:
 - S contains one typical intersection;
 - the collection of typical intersections is dense in $S(\mathbb{C})$;

pening

- .

Opening

Let $\mathbb V$ be a graded-polarizable and admissible $\mathbb Z\mathsf{VMHS}$ over S.

Conjecture (B.-Klingler-Ullmo)

- (AT) (S, \mathbb{V}) contains only finitely many maximal atypical intersections.
- (TY) The following are equivalent:
 - ► S contains one typical intersection;
 - the collection of typical intersections is dense in $S(\mathbb{C})$;
 - there exists a subperiod domain $\Gamma' \setminus D'$ such that $\dim \Psi(S) \operatorname{codim}_D(D') \geq 0$.

Let $\mathbb V$ be a graded-polarizable and admissible $\mathbb Z{VMHS}$ over S.

Conjecture (B.-Klingler-Ullmo)

- (AT) (S, \mathbb{V}) contains only finitely many maximal atypical intersections.
- (TY) The following are equivalent:
 - S contains one typical intersection;
 - the collection of typical intersections is dense in $S(\mathbb{C})$;
 - ▶ there exists a subperiod domain $\Gamma' \setminus D'$ such that $\dim \Psi(S) \operatorname{codim}_D(D') \geq 0$.

Remark

1. \Rightarrow 2., and generalization of **André-Oort** for arbitrary VHS (Pila-Shankar-Tsimerman '21, for Shimura varieties)

The Zilber-Pink conjecture, atypical history

HDR

G. Baldi

Opening

/liddle game

Ü

G. Baldi

► Bombieri-Masser-Zannier 1999: curves against algebraic subgroups of multiplicative groups

- ► Zilber 2002: exponential sum equations and the Schanuel conjecture
- Pink 2005, motivated by unifying the Mordell-Lang and AO conjectures

Opening

Middle game

.....

□ > 4 @ > 4 E > 4 E > E 904 €

- ▶ Bombieri-Masser-Zannier 1999: curves against algebraic subgroups of multiplicative groups
- ▶ Zilber 2002: exponential sum equations and the Schanuel conjecture
- Pink 2005, motivated by unifying the Mordell-Lang and AO conjectures
- Gukov-Vafa. Moore 2004: CM Calabi-Yau 3-folds and relation to string theory
- de Jong, Beyond the André-Oort conjecture. 6 page personal note, 2004. Pure VHS
- Klingler 2017. Mixed VHS but weaker version Hodge codimension

Tightly related to work of Pila, Bakker-Tsimerman

Main results

HDR

G. Baldi

Theorem ("Geometric part of completed ZP")

The conjecture holds true for $\mathrm{HL}_{\mathrm{pos}}$

Middle game

..

4□ > 4□ > 4□ > 4□ > 4□ > 9

The conjecture holds true for $\mathrm{HL}_{\mathrm{pos}}$

(AT) BKU for pure VHS, B-Urbanik for ZVMHS (new and effective proof)

Opening

Vliddle game

The conjecture holds true for $\mathrm{HL}_{\mathrm{pos}}$

- (AT) BKU for pure VHS, B-Urbanik for ZVMHS (new and effective proof)
- (TY) BKU and Eterović-Scanlon, Khelifa-Urbanik (+ Khelifa, in progress, for the mixed case)

Opening

Middle game

Post Mortem

The conjecture holds true for $\mathrm{HL}_{\mathrm{pos}}$

- (AT) BKU for pure VHS, B-Urbanik for ZVMHS (new and effective proof)
- (TY) BKU and Eterović-Scanlon, Khelifa-Urbanik (+ Khelifa, in progress, for the mixed case)

Theorem (B.-Klingler-Ullmo)

If the **level** of \mathbb{V} is ≥ 3 then every component of the Hodge locus is atypical.

The conjecture holds true for $\mathrm{HL}_{\mathrm{pos}}$

- (AT) BKU for pure VHS, B-Urbanik for ZVMHS (new and effective proof)
- (TY) BKU and Eterović-Scanlon, Khelifa-Urbanik (+ Khelifa, in progress, for the mixed case)

Theorem (B.-Klingler-Ullmo)

If the **level** of \mathbb{V} is ≥ 3 then every component of the Hodge locus is atypical.

$$\text{Smallest } k: \underbrace{[-[-[\dots[\mathfrak{g}^{-1},\mathfrak{g}^{-1}],\mathfrak{g}^{-1}]\dots],\mathfrak{g}^{-1}]}_{k \text{ times}} = 0.$$

G. Baldi

Opening

Middle game

D

Z-VMHS **Z**-VHS LvI=1 Abelian LvI=2 Exceptional Un,d Right, Lvl≥3

Roadmap for the level

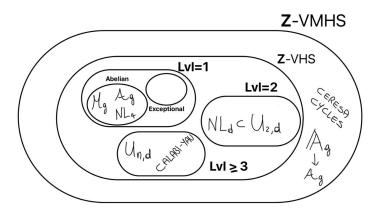
HDR

G. Baldi

Opening
Middle game

End game

Post Morte



Question

What do the conjecture/results say about the above moduli spaces? Concrete applications of such viewpoint?

Moduli spaces of smooth genus g curves and a question of Serre

HDR G. Baldi

Opening

Middle game

ind game

st Mortem

Moduli spaces of smooth genus g curves and a question of Serre

HDR

G. Baldi

Opening Middle game

Theorem (B.-Klingler-Ullmo)

There are smooth projective curves $C/\overline{\mathbb{Q}}$ of genus 4 whose Jacobian has **Mumford-Tate group** isogenous to a \mathbb{Q} -form of $M := \mathbb{C}^* \times SL_2 \times SL_2 \times SL_2$.

4 D > 4 B > 4 E > 4 E > E 990

Opening Middle game End game

Theorem (B.-Klingler-Ullmo)

There are smooth projective curves $C/\overline{\mathbb{Q}}$ of genus 4 whose Jacobian has **Mumford-Tate group** isogenous to a \mathbb{Q} -form of $M := \mathbb{C}^* \times SL_2 \times SL_2 \times SL_2$.

 $ightharpoonup \operatorname{codim}_{\mathcal{A}_4} \mathcal{M}_4 = 1$

Theorem (B.-Klingler-Ullmo)

There are smooth projective curves $C/\overline{\mathbb{Q}}$ of genus 4 whose Jacobian has **Mumford-Tate group** isogenous to a \mathbb{Q} -form of $M := \mathbb{C}^* \times SL_2 \times SL_2 \times SL_2$.

- $ightharpoonup \operatorname{codim}_{\mathcal{A}_4} \mathcal{M}_4 = 1$
- ▶ Q-forms of M define Shimura curves S in A_4 (discovered by Mumford)

Theorem (B.-Klingler-Ullmo)

There are smooth projective curves $C/\overline{\mathbb{Q}}$ of genus 4 whose Jacobian has **Mumford-Tate group** isogenous to a \mathbb{Q} -form of $M := \mathbb{C}^* \times SL_2 \times SL_2 \times SL_2$.

- $ightharpoonup \operatorname{codim}_{\mathcal{A}_4} \mathcal{M}_4 = 1$
- ▶ Q-forms of M define Shimura curves S in A_4 (discovered by Mumford)
- ▶ Main Conj. implies that usually $\mathcal{M}_4 \cap \mathcal{S}$ is a point with $\mathbf{MT}_{\mathbb{C}} = M$.

Teichmüller dynamics...

HDR

G. Baldi

Opening

liddle game

....

Opening

Middle game

pening

nd game

- ▶ Real analytic action of $GL_2(\mathbb{R})^+$ on $\Omega \mathcal{M}_g(\kappa)$,

liddle game

- ▶ Real analytic action of $GL_2(\mathbb{R})^+$ on $\Omega \mathcal{M}_g(\kappa)$, (locally given by a diagonal action on a product of copies of $\mathbb{C} \cong \mathbb{R}^2$).

- ▶ Real analytic action of $GL_2(\mathbb{R})^+$ on $\Omega \mathcal{M}_g(\kappa)$, (locally given by a diagonal action on a product of copies of $\mathbb{C} \cong \mathbb{R}^2$).
- ▶ Orbit closures $\overline{\mathrm{GL}_2(\mathbb{R})^+ \cdot (X,\omega)} \subset \Omega \mathcal{M}_g$,

G. Baldi

ddle game

- ▶ Real analytic action of $GL_2(\mathbb{R})^+$ on $\Omega \mathcal{M}_g(\kappa)$, (locally given by a diagonal action on a product of copies of $\mathbb{C} \cong \mathbb{R}^2$).
- ▶ Orbit closures $\operatorname{GL}_2(\mathbb{R})^+ \cdot (X, \omega) \subset \Omega \mathcal{M}_g$, after Masur, Veech, McMullen, Eskin, Mirzakhani, and Mohammadi. . .

- ▶ Real analytic action of $GL_2(\mathbb{R})^+$ on $\Omega \mathcal{M}_g(\kappa)$, (locally given by a diagonal action on a product of copies of $\mathbb{C} \cong \mathbb{R}^2$).
- ▶ Orbit closures $\operatorname{GL}_2(\mathbb{R})^+ \cdot (X,\omega) \subset \Omega \mathcal{M}_g$, after Masur, Veech, McMullen, Eskin, Mirzakhani, and Mohammadi. . .
- ▶ Orbit closures are algebraic, defined over Q, and admit a Hodge theoretic description (Filip, Möller).

HDR

G. Baldi

Opening |

liddle game

nd game

Post Mortem

Theorem (B.-Urbanik (effective), reproving EFW)

HDR

G. Baldi

Middle game

End game

Post Mortem

Theorem (B.-Urbanik (effective), reproving EFW)

Let $\mathcal{M} \subset \Omega \mathcal{M}_g$ be an orbit closure. Then \mathcal{M} contains at most finitely many maximal atypical suborbit closures.

HDR

G. Baldi

- r -·····g Middle game

End game

Post Morten

Theorem (B.-Urbanik (effective), reproving EFW)

Let $\mathcal{M} \subset \Omega \mathcal{M}_g$ be an orbit closure. Then \mathcal{M} contains at most finitely many maximal atypical suborbit closures.

There is moreover an algorithm that computes them.

HDR

G. Baldi

Aiddle game

-.... 5.....

Theorem (B.-Urbanik (effective), reproving EFW)

Let $\mathcal{M} \subset \Omega \mathcal{M}_g$ be an orbit closure. Then \mathcal{M} contains at most finitely many maximal atypical suborbit closures.

There is moreover an algorithm that computes them.

Corollary (Wright)

There are only finitely many maximal totally geodesic subvarieties, with respect to the **Kobayashi metric**, of $\mathcal{M}_{g,n}$ of dimension greater than 1.

HDR

G. Baldi

Aiddle game

Theorem (B.-Urbanik (effective), reproving EFW)

Let $\mathcal{M} \subset \Omega \mathcal{M}_g$ be an orbit closure. Then \mathcal{M} contains at most finitely many maximal atypical suborbit closures.

There is moreover an algorithm that computes them.

Corollary (Wright)

There are only finitely many maximal totally geodesic subvarieties, with respect to the **Kobayashi metric**, of $\mathcal{M}_{g,n}$ of dimension greater than 1.

Remark

Richer framework for suitable bundles above mixed Shimura varieties.

HDR

G. Baldi

Middle game

Theorem (B.-Urbanik (effective), reproving EFW)

Let $\mathcal{M} \subset \Omega \mathcal{M}_g$ be an orbit closure. Then \mathcal{M} contains at most finitely many maximal atypical suborbit closures.

There is moreover an algorithm that computes them.

Corollary (Wright)

There are only finitely many maximal totally geodesic subvarieties, with respect to the **Kobayashi metric**, of $\mathcal{M}_{g,n}$ of dimension greater than 1.

Remark

Richer framework for suitable bundles above mixed Shimura varieties. Not predicted by the Main Conj.

Complex hyperbolic lattices

• $G = G(\mathbb{R})^+$ simple Lie group

HDR

G. Baldi

Opening

nd game

Post Mortem

Opening

induic gaine

Post Mortem

- $G = G(\mathbb{R})^+$ simple Lie group
- ▶ Discrete subgroup $\Gamma \subset G$ is a **lattice** if it has finite covolume.

Opening

Middle game

-.... 5.....

Post Mortem

• $G = G(\mathbb{R})^+$ simple Lie group

▶ Discrete subgroup $\Gamma \subset G$ is a lattice if it has finite covolume. E.g. $G'(\mathbb{Z})$, called arithmetic

Opening

Middle game

Post Morter

- $G = G(\mathbb{R})^+$ simple Lie group
- ▶ Discrete subgroup $\Gamma \subset G$ is a lattice if it has finite covolume. E.g. $G'(\mathbb{Z})$, called arithmetic
- ▶ Other examples? Yes for $SL_2(\mathbb{R})$.

Opening

End game

Post Mortem

- $G = G(\mathbb{R})^+$ simple Lie group
- ▶ Discrete subgroup $\Gamma \subset G$ is a lattice if it has finite covolume. E.g. $G'(\mathbb{Z})$, called arithmetic
- ▶ Other examples? Yes for $SL_2(\mathbb{R})$. Possibly yes for SO(1,m) and SU(1,n) (Margulis, Corlette, Gromov-Schoen, . . .).

pening

Middle game

Post Morten

- $G = G(\mathbb{R})^+$ simple Lie group
- ▶ Discrete subgroup $\Gamma \subset G$ is a lattice if it has finite covolume. E.g. $G'(\mathbb{Z})$, called arithmetic
- ▶ Other examples? Yes for $SL_2(\mathbb{R})$. Possibly yes for SO(1,m) and SU(1,n) (Margulis, Corlette, Gromov-Schoen, . . .).
- ▶ $\mathbb{B}^n_{\mathbb{C}} = \frac{\mathrm{SU}(1,n)}{S(U(1) \times U(n))}$ parametrizes \mathbb{C} -Hodge structures of signature (1,n)

pening

End game

Post Morter

- $G = G(\mathbb{R})^+$ simple Lie group
- ▶ Discrete subgroup $\Gamma \subset G$ is a lattice if it has finite covolume. E.g. $G'(\mathbb{Z})$, called arithmetic
- ▶ Other examples? Yes for $SL_2(\mathbb{R})$. Possibly yes for SO(1,m) and SU(1,n) (Margulis, Corlette, Gromov-Schoen, . . .).
- ▶ $\mathbb{B}^n_{\mathbb{C}} = \frac{\mathrm{SU}(1,n)}{S(U(1) \times U(n))}$ parametrizes \mathbb{C} -Hodge structures of signature (1,n)

Theorem (B.-Ullmo, and independently Bader-Fisher-Miller-Stover)

- $G = G(\mathbb{R})^+$ simple Lie group
- ▶ Discrete subgroup $\Gamma \subset G$ is a **lattice** if it has finite covolume. E.g. $G'(\mathbb{Z})$, called arithmetic
- ▶ Other examples? Yes for $SL_2(\mathbb{R})$. Possibly yes for SO(1,m) and SU(1,n) (Margulis, Corlette, Gromov-Schoen, . . .).
- ▶ $\mathbb{B}^n_{\mathbb{C}} = \frac{\mathrm{SU}(1,n)}{S(U(1) \times U(n))}$ parametrizes \mathbb{C} -Hodge structures of signature (1,n)

Theorem (B.-Ullmo, and independently Bader-Fisher-Miller-Stover)

If $\Gamma \backslash \mathbb{B}^n_{\mathbb{C}}$ contains infinitely many maximal totally geodesic subvarieties,

- pening
- End game

Post Mortem

- $G = G(\mathbb{R})^+$ simple Lie group
- ▶ Discrete subgroup $\Gamma \subset G$ is a lattice if it has finite covolume. E.g. $G'(\mathbb{Z})$, called arithmetic
- ▶ Other examples? Yes for $SL_2(\mathbb{R})$. Possibly yes for SO(1,m) and SU(1,n) (Margulis, Corlette, Gromov-Schoen, . . .).
- ▶ $\mathbb{B}^n_{\mathbb{C}} = \frac{\mathrm{SU}(1,n)}{S(U(1) \times U(n))}$ parametrizes \mathbb{C} -Hodge structures of signature (1,n)

Theorem (B.-Ullmo, and independently Bader-Fisher-Miller-Stover)

If $\Gamma \backslash \mathbb{B}^n_{\mathbb{C}}$ contains infinitely many maximal totally geodesic subvarieties, then $\Gamma \subset G$ is arithmetic.

HDR

G. Baldi

Jpening

iddle game

. . .

HDR

G. Baldi

Gromov & Piatetski-Shapiro construction breaks totally geodesic submanifolds?

pening liddle game nd game

HDR

G. Baldi

Opening

Post Mortem

Gromov & Piatetski-Shapiro construction breaks totally geodesic submanifolds?

HDR

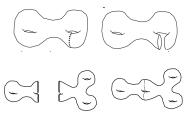
G. Baldi

Opening

nd game

Post Mortem

Gromov & Piatetski-Shapiro construction breaks totally geodesic submanifolds?



HDR

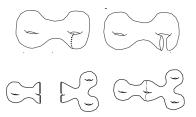
G. Baldi

Opening

nd game

Post Morten

Gromov & Piatetski-Shapiro construction breaks totally geodesic submanifolds?



▶ BFMS '19 also for SO(1, n)

HDR

G. Baldi

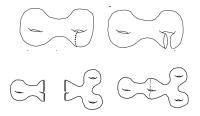
Opening

Middle game

ind game

Post Mortem

Gromov & Piatetski-Shapiro construction breaks totally geodesic submanifolds?



- ▶ BFMS '19 also for SO(1, n)
- ▶ BU: construct a $\mathbb{Z}VHS$ on $\Gamma \backslash \mathbb{B}^n_{\mathbb{C}}$. Γ NA, then totally geodesic subvarieties are atypical intersections

HDR

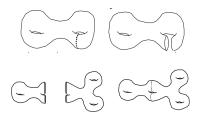
G. Baldi

Middle game

End game

Post Morten

Gromov & Piatetski-Shapiro construction breaks totally geodesic submanifolds?



- ▶ BFMS '19 also for SO(1, n)
- ▶ BU: construct a $\mathbb{Z}VHS$ on $\Gamma \backslash \mathbb{B}^n_{\mathbb{C}}$. Γ NA, then totally geodesic subvarieties are atypical intersections
- ▶ BU: Common & effective setting for understanding totally geodesics in $\mathcal{M}_{g,n}$ and $\Gamma \backslash \mathbb{B}^n_{\mathbb{C}}$

ddle game d game st Mortem

How to prove all this?

Functional transcendence for foliated bundles

HDR

G. Baldi

Middle game

Theorem (Blázquez-Sanz, Casale, Freitag, and Nagloo & Bakker–Tsimerman, . . .)

Let (P, ∇) the principal G-bundle associated to (S, \mathbb{V}) .

Middle game

Theorem (Blázquez-Sanz, Casale, Freitag, and Nagloo & Bakker–Tsimerman, . . .)

Let (P, ∇) the principal G-bundle associated to (S, \mathbb{V}) . Let V be a subvariety of P, $x \in V$, and let $\mathcal{L} \subset P$ be a **leaf** through x.

Opening Middle game

Post Mortem

Theorem (Blázquez-Sanz, Casale, Freitag, and Nagloo & Bakker–Tsimerman, . . .)

Let (P, ∇) the principal G-bundle associated to (S, \mathbb{V}) . Let V be a subvariety of P, $x \in V$, and let $\mathcal{L} \subset P$ be a **leaf** through x. Let U be an analytic component of $V \cap \mathcal{L}_x$.

Theorem (Blázquez-Sanz, Casale, Freitag, and Nagloo & Bakker–Tsimerman, . . .)

Let (P, ∇) the principal G-bundle associated to (S, \mathbb{V}) . Let V be a subvariety of P, $x \in V$, and let $\mathcal{L} \subset P$ be a **leaf** through x. Let U be an analytic component of $V \cap \mathcal{L}_x$. If

 $\dim V < \dim U + \dim G$

Opening

Theorem (Blázquez-Sanz, Casale, Freitag, and Nagloo & Post M Bakker–Tsimerman, . . .)

Let (P, ∇) the principal G-bundle associated to (S, \mathbb{V}) . Let V be a subvariety of P, $x \in V$, and let $\mathcal{L} \subset P$ be a **leaf** through x. Let U be an analytic component of $V \cap \mathcal{L}_x$. If

 $\dim V < \dim U + \dim G$

then the projection of U to S is contained in a **strict** weakly-special subvariety.

Geometric Zilber-Pink (joint with Urbanik)

HDR

G. Baldi

Middle gam

st Mortem

Geometric Zilber-Pink (joint with Urbanik)

HDR

G. Baldi

Opening

Middle game

ost Mortem

► Recall $\Psi(Y) = \Psi(S) \cap \Gamma_Y \backslash D_Y \subset G(\mathbb{Z}) \backslash D$

G. Baldi

Opening

viiddie game

Post Mortem

- ▶ Recall $\Psi(Y) = \Psi(S) \cap \Gamma_Y \backslash D_Y \subset G(\mathbb{Z}) \backslash D$
- ▶ Can we put all $\Gamma_Y \backslash D_Y$ in an algebraic family?

Opening

Post Morten

- ▶ Recall $\Psi(Y) = \Psi(S) \cap \Gamma_Y \backslash D_Y \subset G(\mathbb{Z}) \backslash D$
- ▶ Can we put all $\Gamma_Y \backslash D_Y$ in an algebraic family?
- ▶ Yes, but only in D^{\vee} (e.g. $Y(n) \subset \mathbb{C} \times \mathbb{C}$)

Geometric Zilber-Pink (joint with Urbanik)

HDR

G. Baldi

Middle game

End game

Post Morten

- ▶ Recall $\Psi(Y) = \Psi(S) \cap \Gamma_Y \backslash D_Y \subset G(\mathbb{Z}) \backslash D$
- ▶ Can we put all $\Gamma_Y \backslash D_Y$ in an algebraic family?
- ▶ Yes, but only in D^{\vee} (e.g. $Y(n) \subset \mathbb{C} \times \mathbb{C}$)
- ▶ By pull-back, we have a family $f: \mathcal{Z} \to \mathcal{B}$ such that all Ys arise as follows: there is a $b \in \mathcal{B}$ such that Y is a component of the projection to S of $\mathcal{Z}_b \cap \mathcal{L}$

Geometric Zilber-Pink (joint with Urbanik)

HDR

G. Baldi

Middle game

End game

Post Morter

- Recall $\Psi(Y) = \Psi(S) \cap \Gamma_Y \backslash D_Y \subset G(\mathbb{Z}) \backslash D$
- ▶ Can we put all $\Gamma_Y \backslash D_Y$ in an algebraic family?
- ▶ Yes, but only in D^{\vee} (e.g. $Y(n) \subset \mathbb{C} \times \mathbb{C}$)
- ▶ By pull-back, we have a family $f: \mathcal{Z} \to \mathcal{B}$ such that all Ys arise as follows: there is a $b \in \mathcal{B}$ such that Y is a component of the projection to S of $\mathcal{Z}_b \cap \mathcal{L}$
- Ax-Schanuel in families:

Opening

Middle game

- Recall $\Psi(Y) = \Psi(S) \cap \Gamma_Y \backslash D_Y \subset G(\mathbb{Z}) \backslash D$
- ▶ Can we put all $\Gamma_Y \backslash D_Y$ in an algebraic family?
- ▶ Yes, but only in D^{\vee} (e.g. $Y(n) \subset \mathbb{C} \times \mathbb{C}$)
- ▶ By pull-back, we have a family $f: \mathcal{Z} \to \mathcal{B}$ such that all Ys arise as follows: there is a $b \in \mathcal{B}$ such that Y is a component of the projection to S of $\mathcal{Z}_b \cap \mathcal{L}$
- ► Ax-Schanuel in families:

$$\Sigma(f, e) := \{(x, y) \in P \times \mathcal{B} : \dim_x(\mathcal{L}_x \cap \mathcal{Z}_b) \ge e\}$$

Geometric Zilber-Pink (joint with Urbanik)

- Recall $\Psi(Y) = \Psi(S) \cap \Gamma_Y \setminus D_Y \subset G(\mathbb{Z}) \setminus D$
- ightharpoonup Can we put all $\Gamma_Y \backslash D_Y$ in an algebraic family?
- ▶ Yes, but only in D^{\vee} (e.g. $Y(n) \subset \mathbb{C} \times \mathbb{C}$)
- ▶ By pull-back, we have a family $f: \mathcal{Z} \to \mathcal{B}$ such that all Ys arise as follows: there is a $b \in \mathcal{B}$ such that Y is a component of the projection to S of $\mathcal{Z}_h \cap \mathcal{L}$
- Ax-Schanuel in families:

$$\Sigma(f, e) := \{(x, y) \in P \times \mathcal{B} : \dim_x(\mathcal{L}_x \cap \mathcal{Z}_b) \ge e\}$$

describes, for e in the atypical range, the projection of $\Sigma(f,e)$ to S, and therefore $\mathrm{HL}_{\mathrm{pos.atv}}$.

Everything is atypical in level ≥ 3

The power of **Griffiths Transversality**:

HDR

G. Baldi

Middle game

Post Mortem

Everything is atypical in level ≥ 3

HDR

G. Baldi

Middle game

End game

The power of **Griffiths Transversality**:

Theorem (B.-Klingler-Ullmo)

Let \mathfrak{g} be a simple \mathbb{R} -Hodge-Lie algebra generated in level 1, and of level at least 3.

The power of **Griffiths Transversality**:

Theorem (B.-Klingler-Ullmo)

Let $\mathfrak g$ be a simple $\mathbb R$ -Hodge-Lie algebra generated in level 1, and of level at least 3. If $\mathfrak h\subset \mathfrak g$ is an $\mathbb R$ -Hodge-Lie subalgebra satisfying

$$\mathfrak{h}^i = \mathfrak{g}^i, \quad \forall |i| \ge 2,$$

The power of **Griffiths Transversality**:

Theorem (B.-Klingler-Ullmo)

Let $\mathfrak g$ be a simple $\mathbb R$ -Hodge-Lie algebra generated in level 1, and of level at least 3. If $\mathfrak h\subset \mathfrak g$ is an $\mathbb R$ -Hodge-Lie subalgebra satisfying

$$\mathfrak{h}^i = \mathfrak{g}^i, \quad \forall |i| \ge 2,$$

then $\mathfrak{h} = \mathfrak{g}$.

)pening Aiddle game

The power of **Griffiths Transversality**:

Theorem (B.-Klingler-Ullmo)

Let $\mathfrak g$ be a simple $\mathbb R$ -Hodge-Lie algebra generated in level 1, and of level at least 3. If $\mathfrak h\subset \mathfrak g$ is an $\mathbb R$ -Hodge-Lie subalgebra satisfying

$$\mathfrak{h}^i = \mathfrak{g}^i, \quad \forall |i| \ge 2,$$

then $\mathfrak{h} = \mathfrak{g}$.

In the style of Kostant's results on root systems of Levi factors for complex semi-simple Lie algebras.

THANKS FOR YOUR

ATTENTION!

MERCI! GRAZIE!

Middle game

Theorem (B.-Urbanik)

There is a finite set $\Sigma = \Sigma_{(S,\mathbb{V})}$ of triples $(\mathbf{H},D_H,\mathbf{N})$, where (\mathbf{H},D_H) is some sub-Hodge datum of the generic Hodge datum (\mathbf{G}_S,D_S) , \mathbf{N} is a normal subgroup of \mathbf{H} whose reductive part is semisimple, and such that the following property holds:

For each monodromically atypical maximal (among all monodromically atypical subvarieties) $Y \subset S$ there is some $(\mathbf{H}, D_H, \mathbf{N}) \in \Sigma$ such that, up to the action of Γ , D_Y^0 is the image of $\mathbf{N}(\mathbb{R})^+\mathbf{N}(\mathbb{C})^u \cdot y$, for some $y \in D_H$.