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Plan: unifications via typical-vs-atypical
intersections

1. Opening. A guiding example: smooth hypersurfaces
I Surfaces and the Noether-Lefschetz locus
I New paradigm in higher dimension

2. Middle Game. Zilber-Pink conjecture and general results
3. End Game. Applications:

I Moduli spaces of curves and co.
I Complex hyperbolic lattices

4. Post Mortem. Ideas behind some proofs
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Solutions of systems of polynomial equations

I A hypersurface of degree d and dimension n is the zero
set in CPn+1 of a homogeneous polynomial F of degree
d in n+ 2 variables.

I Smooth if the partial derivatives of F don’t
simultaneously vanish.

Example (Fermat curve)

Y = {[X,Y, Z] ∈ CP2 : Xd + Y d + Zd = 0}
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Higher dimension

Goal
Understand higher dimensional varieties by looking at their
lower dimensional subvarieties.
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Moduli spaces of smooth hypersurfaces (fix n, d)

Question

How to compare hypersurfaces?

X = [F = 0] ! point of a C-vector space
V = |OPn+1(d)| = C[X0, . . . , Xn+1]d,

F smooth if /∈ [∆ = 0] ⊂ V .

Parameter space: Un,d := V −∆.

Question

What can we say about a very general hypersurface X?

I.e. [X] in the complement of a countable union of
subvarieites of Un,d.
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Max Noether’s theorem, 1882

Theorem
Every curve on the very general surface X ⊂ P3 of degree
d ≥ 4 is the complete intersection of X with another surface.

I The Picard group PicX of line bundles on X modulo
linear equivalence is a classical invariant

I A curve C is essentially determined by its Jacobian
Pic0C ∼= H0(Ω1

C)∗/H1(C,Z)

I Far from true in higher dimensions:

PicX = 〈OX(1)〉

6 / 36



HDR

G. Baldi

Opening

Middle game

End game

Post Mortem

Max Noether’s theorem, 1882

Theorem
Every curve on the very general surface X ⊂ P3 of degree
d ≥ 4 is the complete intersection of X with another surface.

I The Picard group PicX of line bundles on X modulo
linear equivalence is a classical invariant

I A curve C is essentially determined by its Jacobian
Pic0C ∼= H0(Ω1

C)∗/H1(C,Z)

I Far from true in higher dimensions:

PicX = 〈OX(1)〉

6 / 36



HDR

G. Baldi

Opening

Middle game

End game

Post Mortem

Max Noether’s theorem, 1882

Theorem
Every curve on the very general surface X ⊂ P3 of degree
d ≥ 4 is the complete intersection of X with another surface.

I The Picard group PicX of line bundles on X modulo
linear equivalence is a classical invariant

I A curve C is essentially determined by its Jacobian
Pic0C ∼= H0(Ω1

C)∗/H1(C,Z)

I Far from true in higher dimensions:

PicX = 〈OX(1)〉

6 / 36



HDR

G. Baldi

Opening

Middle game

End game

Post Mortem

Max Noether’s theorem, 1882

Theorem
Every curve on the very general surface X ⊂ P3 of degree
d ≥ 4 is the complete intersection of X with another surface.

I The Picard group PicX of line bundles on X modulo
linear equivalence is a classical invariant

I A curve C is essentially determined by its Jacobian
Pic0C ∼= H0(Ω1

C)∗/H1(C,Z)

I Far from true in higher dimensions:

PicX = 〈OX(1)〉

6 / 36



HDR

G. Baldi

Opening

Middle game

End game

Post Mortem

Max Noether’s theorem, 1882

Theorem
Every curve on the very general surface X ⊂ P3 of degree
d ≥ 4 is the complete intersection of X with another surface.

I The Picard group PicX of line bundles on X modulo
linear equivalence is a classical invariant

I A curve C is essentially determined by its Jacobian
Pic0C ∼= H0(Ω1

C)∗/H1(C,Z)

I Far from true in higher dimensions:

PicX = 〈OX(1)〉

6 / 36



HDR

G. Baldi

Opening

Middle game

End game

Post Mortem

Max Noether’s theorem, 1882

Theorem
Every curve on the very general surface X ⊂ P3 of degree
d ≥ 4 is the complete intersection of X with another surface.

I The Picard group PicX of line bundles on X modulo
linear equivalence is a classical invariant

I A curve C is essentially determined by its Jacobian
Pic0C ∼= H0(Ω1

C)∗/H1(C,Z)

I Far from true in higher dimensions:

PicX = 〈OX(1)〉

6 / 36



HDR

G. Baldi

Opening

Middle game

End game

Post Mortem

Noether-Lefschetz locus

Definition

NLd := {[X] ∈ U2,d : Pic(P3)
6∼=−→ Pic(X)}.

Consider:
I Hilbert scheme F (n, g) parametrizing:

C ⊂ X: C a curve of degree n and genus g,
X a surface of degree d.

W (n, g) =

{
(C,X) ∈ F (n, g) : C

C not a complete
intersection

}
.

ρ : F (n, g)→ |OP3(d)|, (C,X) 7→ X

U2,d −
⋃

n,g ρ(W (n, g))
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Noether’s idea

F (n, g) is algebraic and ρ proper, therefore each ρ(W (n, g))
is a finite union of subvarieties. . .

strictly (?) contained in
|OP3(d)|.

Example

I W = smooth surfaces containing a line
I Fix L ⊂ P3, the family WL of surfaces containing L is
H0(IL(d)) ⊂ H0(OP3(d))

I codimU2,d
WL = dimH0(L,OL(d)) = d+ 1

I dimGr(1, 3) = 4, so
codimW = d+ 1− 4 = d− 3 > 0, since d ≥ 4.
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Solomon Lefschetz, 1920s

I The computations get more difficult as n grows

I The program was completed by Lefschetz: L. pencils
and L. (1,1) theorem:
“It was my lot to plant the harpoon of algebraic topology

into the body of the whale of algebraic geometry.”

Theorem (Noether-Lefschetz theorem)

If d ≥ 4, NLd is a countable union of strict subvarieties of
U2,d. Any X /∈ NLd has PicX = 〈OX(1)〉.

9 / 36
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The eighties and infinitesimal Hodge theory à la
Griffiths

Theorem (Explicit Noether-Lefschetz theorem, after
Green & Voisin)

For each irreducible component Y of NLd:

d− 3 ≤ codimU2,d
Y ≤ h2,0 =

(
d− 1

3

)
.

Definition (Ciliberto-Harris-Miranda)

A component Y is general if it has codimension h2,0 and
exceptional otherwise.

Exceptional components exist only for d ≥ 5.

10 / 36
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Distribution of NLd, after Harris, Green, Voisin. . .

I The general components are dense in U2,d(C)

I Have codimension > 2d− 7, with two exceptions:
surfaces containing a line (resp. conic) with
codim = d− 3 (resp. 2d− 7)

I If d� 0 and divisible by 4 there might be infinitely
many exceptional components.

Theorem (B.-Klingler-Ullmo)

The exceptional components are not Zariski dense in U2,d.
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Hypersurfaces via Hodge theory

I X = [F = 0] of dimension n Hn(X,Q): its
dimension depends only on n and degF

I Hodge decomposition:

Hn(X,Q)⊗ C ∼=
⊕

p+q=n

Hp,q

coming from partial differential equations and harmonic
integrals on X

I If n = 2` subvarieties of codimension ` give rise to
Hodge classes, i.e. rational classes in H`,`

I Hodge conjecture inverts this association
I ` = 1 established by Lefschetz (normal functions à la

Poincaré). After Kodaira-Spencer ‘53: algebraization &

0→ Z→ OX → O∗X → 0
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Introduction to VHS

Varying Hn(X,Z)prim with X ∈ Un,d we obtain

variation of Hodge structures V

I.e. vector bundle with connection ∇, filtration F ·,
polarization Q, satisfying Griffiths transversality such that
each fiber is a polarized Hodge structure

HL(Un,d,V⊗) := {x ∈ Un,d : V|x has extra Hodge tensors}
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Important point: Hodge tensors vs classes
(aka the Tannakian perspective)

I Hodge structure on VZ:

VC := VZ ⊗ C =
⊕
p,q∈Z

V p,q

such that: V p,q = V q,p

I Hodge tensor is a Hodge class of
⊕

a,b V
⊗a(⊗V ∨)⊗b

I Mumford–Tate group = the fixator in GL(VQ) of all
Hodge tensors of V

HL(S,V⊗) = {s ∈ S(C) : MT(Vs)6=MT(V)}.

Example

For d ≥ 4, NLd ⊂ HL(U2,d,V⊗). Are they equal?
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Hidden symmetries and the Hodge Locus

Theorem (Cattani-Deligne-Kaplan ‘95)

HL(S,V⊗) is a countable union of algebraic subvarieties.
The (maximal) special subvarieties of S.

Question

What can we say about HL(S,V⊗)? What do they reveal?

Example

I Hodge conjecture is true for hypersurfaces outside
HL(Un,d,V⊗)

I CDK is predicted by the Hodge conjecture
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Delicate tension (Kandinsky 1923) of HL(S,V⊗)
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General theory after Griffiths, Deligne,...

VHS = period map Ψ to a period domain G(Z)\D

Example

(P.p.) abelian scheme over S! S → Ag = Sp2g(Z)\Hg

Notable example: Mg → Ag, C 7→ Jac(C).
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Higher dimensional case: “n ≥ 3, d > 5”

Definition
Y ⊂ S has positive period dimension if Ψ(Y ) is not a
point.

Theorem (B.-Klingler-Ullmo)

If n = 3 and d ≥ 5; or n = 4 and d ≥ 6; or n = 5, 6, 8 and
d ≥ 4; or n = 7 or ≥ 9 and d ≥ 3,
then HL(Un,d,V⊗)pos ⊂ Un,d is algebraic.

Remark (Refined Bombieri-Lang conjecture)

The above can be plugged into the Lawrence-Venkatesh
method to get finer results on integral points of Un,d.
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Components of the Hodge locus as intersections:
Functoriality for (S,V)

Y ⊂ S supports V|Y , which corresponds to a period map

Y (C)→ ΓY \DY ,

where DY is a homogeneous space under
HY = MT(V|Y )(R). But HY ⊂ G = MT(V) and
functoriality gives

Y (C) ΓY \DY

S(C) G(Z)\D

Ψ|Y

Ψ

19 / 36
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functoriality gives

Y (C) ΓY \DY

S(C) G(Z)\D

Ψ|Y

Ψ
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Special subvarieties

Y is special if and only if Y = Ψ−1(ΓY \DY )0.

Morally

Ψ(Y )=Ψ(S) ∩ ΓY \DY ⊂ G(Z)\D.

Definition (B.-Klingler-Ullmo)

A special subvariety Y is either typical or atypical:
I codimS(Y )= codimG(Z)\D(ΓY \DY );
I codimS(Y )< codimG(Z)\D(ΓY \DY ).

HL = HLtyp ∪HLatyp
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Schematic: typical components

2 = CodimS(Y1) = CodimG(Z)\D(ΓY1\DY1)
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Vs atypical components

1 = CodimS(Y2) < CodimG(Z)\D(ΓY2\DY2) = 2
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The completed Zilber-Pink conjecture

Let V be a graded-polarizable and admissible ZVMHS over S.

Conjecture (B.-Klingler-Ullmo)

(AT) (S,V) contains only finitely many maximal atypical
intersections.

(TY) The following are equivalent:
I S contains one typical intersection;
I the collection of typical intersections is dense in S(C);
I there exists a subperiod domain Γ′\D′ such that

dim Ψ(S)− codimD(D′) ≥ 0.

Remark
1. ⇒ 2., and generalization of André-Oort for arbitrary
VHS (Pila-Shankar-Tsimerman ‘21, for Shimura varieties)
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The Zilber-Pink conjecture, atypical history

I Bombieri-Masser-Zannier 1999: curves against algebraic
subgroups of multiplicative groups

I Zilber 2002: exponential sum equations and the
Schanuel conjecture

I Pink 2005, motivated by unifying the Mordell-Lang and
AO conjectures

I Gukov-Vafa, Moore 2004: CM Calabi-Yau 3-folds and
relation to string theory

I de Jong, Beyond the André-Oort conjecture. 6 page
personal note, 2004. Pure VHS

I Klingler 2017. Mixed VHS but weaker version Hodge
codimension

Tightly related to work of Pila, Bakker-Tsimerman . . .
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Main results

Theorem (“Geometric part of completed ZP”)

The conjecture holds true for HLpos

(AT) BKU for pure VHS, B-Urbanik for ZVMHS (new and
effective proof)

(TY) BKU and Eterović-Scanlon, Khelifa-Urbanik (+ Khelifa,
in progress, for the mixed case)

Theorem (B.-Klingler-Ullmo)

If the level of V is ≥ 3 then every component of the Hodge
locus is atypical.

Smallest k : [−[−[. . . [g−1, g−1], g−1] . . . ], g−1]︸ ︷︷ ︸
k times

= 0.
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Roadmap for the level

Question

What do the conjecture/results say about the above moduli
spaces? Concrete applications of such viewpoint?
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Moduli spaces of smooth genus g curves and a
question of Serre

Theorem (B.-Klingler-Ullmo)

There are smooth projective curves C/Q of genus 4 whose
Jacobian has Mumford-Tate group isogenous to a Q-form
of M := C∗ × SL2 × SL2 × SL2.

I codimA4M4 = 1

I Q-forms of M define Shimura curves S in A4

(discovered by Mumford)
I Main Conj. implies that usuallyM4 ∩ S is a point with

MTC = M .
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Teichmüller dynamics. . .

I ΩMg = {(X,ω) : X ∈Mg, ω ∈ H0(X,Ω1
X)− {0}}

I Real analytic action of GL2(R)+ on ΩMg(κ),
(locally given by a diagonal action on a product of
copies of C ∼= R2).

I Orbit closures GL2(R)+ · (X,ω) ⊂ ΩMg, after Masur,
Veech, McMullen, Eskin, Mirzakhani, and
Mohammadi. . .

I Orbit closures are algebraic, defined over Q, and admit
a Hodge theoretic description (Filip, Möller).
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. . . and new proof of a result of Eskin-Filip-Wright
‘18, Wright ‘20

Theorem (B.-Urbanik (effective), reproving EFW)

LetM⊂ ΩMg be an orbit closure. ThenM contains at
most finitely many maximal atypical suborbit closures.

There is moreover an algorithm that computes them.

Corollary (Wright)

There are only finitely many maximal totally geodesic
subvarieties, with respect to the Kobayashi metric, ofMg,n

of dimension greater than 1.

Remark
Richer framework for suitable bundles above mixed Shimura
varieties. Not predicted by the Main Conj.
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Complex hyperbolic lattices

I G = G(R)+ simple Lie group

I Discrete subgroup Γ ⊂ G is a lattice if it has finite
covolume. E.g. G′(Z), called arithmetic

I Other examples? Yes for SL2(R). Possibly yes for
SO(1,m) and SU(1, n) (Margulis, Corlette,
Gromov-Schoen, . . . ).

I Bn
C = SU(1, n)/S(U(1)× U(n)) parametrizes C-Hodge

structures of signature (1, n)

Theorem (B.-Ullmo, and independently
Bader-Fisher-Miller-Stover)

If Γ\Bn
C contains infinitely many maximal totally geodesic

subvarieties, then Γ ⊂ G is arithmetic.

30 / 36



HDR

G. Baldi

Opening

Middle game

End game

Post Mortem

Complex hyperbolic lattices

I G = G(R)+ simple Lie group
I Discrete subgroup Γ ⊂ G is a lattice if it has finite

covolume.

E.g. G′(Z), called arithmetic
I Other examples? Yes for SL2(R). Possibly yes for

SO(1,m) and SU(1, n) (Margulis, Corlette,
Gromov-Schoen, . . . ).

I Bn
C = SU(1, n)/S(U(1)× U(n)) parametrizes C-Hodge

structures of signature (1, n)

Theorem (B.-Ullmo, and independently
Bader-Fisher-Miller-Stover)

If Γ\Bn
C contains infinitely many maximal totally geodesic

subvarieties, then Γ ⊂ G is arithmetic.

30 / 36



HDR

G. Baldi

Opening

Middle game

End game

Post Mortem

Complex hyperbolic lattices

I G = G(R)+ simple Lie group
I Discrete subgroup Γ ⊂ G is a lattice if it has finite

covolume. E.g. G′(Z), called arithmetic

I Other examples? Yes for SL2(R). Possibly yes for
SO(1,m) and SU(1, n) (Margulis, Corlette,
Gromov-Schoen, . . . ).

I Bn
C = SU(1, n)/S(U(1)× U(n)) parametrizes C-Hodge

structures of signature (1, n)

Theorem (B.-Ullmo, and independently
Bader-Fisher-Miller-Stover)

If Γ\Bn
C contains infinitely many maximal totally geodesic

subvarieties, then Γ ⊂ G is arithmetic.

30 / 36



HDR

G. Baldi

Opening

Middle game

End game

Post Mortem

Complex hyperbolic lattices

I G = G(R)+ simple Lie group
I Discrete subgroup Γ ⊂ G is a lattice if it has finite

covolume. E.g. G′(Z), called arithmetic
I Other examples? Yes for SL2(R).

Possibly yes for
SO(1,m) and SU(1, n) (Margulis, Corlette,
Gromov-Schoen, . . . ).

I Bn
C = SU(1, n)/S(U(1)× U(n)) parametrizes C-Hodge

structures of signature (1, n)

Theorem (B.-Ullmo, and independently
Bader-Fisher-Miller-Stover)

If Γ\Bn
C contains infinitely many maximal totally geodesic

subvarieties, then Γ ⊂ G is arithmetic.

30 / 36



HDR

G. Baldi

Opening

Middle game

End game

Post Mortem

Complex hyperbolic lattices

I G = G(R)+ simple Lie group
I Discrete subgroup Γ ⊂ G is a lattice if it has finite

covolume. E.g. G′(Z), called arithmetic
I Other examples? Yes for SL2(R). Possibly yes for

SO(1,m) and SU(1, n) (Margulis, Corlette,
Gromov-Schoen, . . . ).

I Bn
C = SU(1, n)/S(U(1)× U(n)) parametrizes C-Hodge

structures of signature (1, n)

Theorem (B.-Ullmo, and independently
Bader-Fisher-Miller-Stover)

If Γ\Bn
C contains infinitely many maximal totally geodesic

subvarieties, then Γ ⊂ G is arithmetic.

30 / 36



HDR

G. Baldi

Opening

Middle game

End game

Post Mortem

Complex hyperbolic lattices

I G = G(R)+ simple Lie group
I Discrete subgroup Γ ⊂ G is a lattice if it has finite

covolume. E.g. G′(Z), called arithmetic
I Other examples? Yes for SL2(R). Possibly yes for

SO(1,m) and SU(1, n) (Margulis, Corlette,
Gromov-Schoen, . . . ).

I Bn
C = SU(1, n)/S(U(1)× U(n)) parametrizes C-Hodge

structures of signature (1, n)

Theorem (B.-Ullmo, and independently
Bader-Fisher-Miller-Stover)

If Γ\Bn
C contains infinitely many maximal totally geodesic

subvarieties, then Γ ⊂ G is arithmetic.

30 / 36



HDR

G. Baldi

Opening

Middle game

End game

Post Mortem

Complex hyperbolic lattices

I G = G(R)+ simple Lie group
I Discrete subgroup Γ ⊂ G is a lattice if it has finite

covolume. E.g. G′(Z), called arithmetic
I Other examples? Yes for SL2(R). Possibly yes for

SO(1,m) and SU(1, n) (Margulis, Corlette,
Gromov-Schoen, . . . ).

I Bn
C = SU(1, n)/S(U(1)× U(n)) parametrizes C-Hodge

structures of signature (1, n)

Theorem (B.-Ullmo, and independently
Bader-Fisher-Miller-Stover)

If Γ\Bn
C contains infinitely many maximal totally geodesic

subvarieties, then Γ ⊂ G is arithmetic.

30 / 36



HDR

G. Baldi

Opening

Middle game

End game

Post Mortem

Complex hyperbolic lattices

I G = G(R)+ simple Lie group
I Discrete subgroup Γ ⊂ G is a lattice if it has finite

covolume. E.g. G′(Z), called arithmetic
I Other examples? Yes for SL2(R). Possibly yes for

SO(1,m) and SU(1, n) (Margulis, Corlette,
Gromov-Schoen, . . . ).

I Bn
C = SU(1, n)/S(U(1)× U(n)) parametrizes C-Hodge

structures of signature (1, n)

Theorem (B.-Ullmo, and independently
Bader-Fisher-Miller-Stover)

If Γ\Bn
C contains infinitely many maximal totally geodesic

subvarieties,

then Γ ⊂ G is arithmetic.

30 / 36



HDR

G. Baldi

Opening

Middle game

End game

Post Mortem

Complex hyperbolic lattices

I G = G(R)+ simple Lie group
I Discrete subgroup Γ ⊂ G is a lattice if it has finite

covolume. E.g. G′(Z), called arithmetic
I Other examples? Yes for SL2(R). Possibly yes for

SO(1,m) and SU(1, n) (Margulis, Corlette,
Gromov-Schoen, . . . ).

I Bn
C = SU(1, n)/S(U(1)× U(n)) parametrizes C-Hodge

structures of signature (1, n)

Theorem (B.-Ullmo, and independently
Bader-Fisher-Miller-Stover)

If Γ\Bn
C contains infinitely many maximal totally geodesic

subvarieties, then Γ ⊂ G is arithmetic.

30 / 36



HDR

G. Baldi

Opening

Middle game

End game

Post Mortem

Motivations after Reid & McMullen 2000s

Gromov & Piatetski-Shapiro construction breaks totally
geodesic submanifolds?

I BFMS ‘19 also for SO(1, n)

I BU: construct a ZVHS on Γ\Bn
C. Γ NA, then totally

geodesic subvarieties are atypical intersections
I BU: Common & effective setting for understanding

totally geodesics inMg,n and Γ\Bn
C
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Post Mortem

How to prove all this?

32 / 36



HDR

G. Baldi

Opening

Middle game

End game

Post Mortem

Functional transcendence for foliated bundles

Theorem (Blázquez-Sanz, Casale, Freitag, and Nagloo &
Bakker–Tsimerman, . . . )

Let (P,∇) the principal G-bundle associated to (S,V).

Let
V be a subvariety of P , x ∈ V , and let L ⊂ P be a leaf
through x. Let U be an analytic component of V ∩ Lx. If

dimV < dimU + dimG

then the projection of U to S is contained in a strict
weakly-special subvariety.
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Geometric Zilber-Pink (joint with Urbanik)

I Recall Ψ(Y ) = Ψ(S) ∩ ΓY \DY ⊂ G(Z)\D
I Can we put all ΓY \DY in an algebraic family?
I Yes, but only in D∨ (e.g. Y (n) ⊂ C× C)
I By pull-back, we have a family f : Z → B such that all
Y s arise as follows: there is a b ∈ B such that Y is a
component of the projection to S of Zb ∩ L

I Ax-Schanuel in families:

Σ(f, e) := {(x, y) ∈ P × B : dimx(Lx ∩ Zb) ≥ e}

describes, for e in the atypical range, the projection of
Σ(f, e) to S, and therefore HLpos,aty.

34 / 36



HDR

G. Baldi

Opening

Middle game

End game

Post Mortem

Geometric Zilber-Pink (joint with Urbanik)

I Recall Ψ(Y ) = Ψ(S) ∩ ΓY \DY ⊂ G(Z)\D

I Can we put all ΓY \DY in an algebraic family?
I Yes, but only in D∨ (e.g. Y (n) ⊂ C× C)
I By pull-back, we have a family f : Z → B such that all
Y s arise as follows: there is a b ∈ B such that Y is a
component of the projection to S of Zb ∩ L

I Ax-Schanuel in families:

Σ(f, e) := {(x, y) ∈ P × B : dimx(Lx ∩ Zb) ≥ e}

describes, for e in the atypical range, the projection of
Σ(f, e) to S, and therefore HLpos,aty.

34 / 36



HDR

G. Baldi

Opening

Middle game

End game

Post Mortem

Geometric Zilber-Pink (joint with Urbanik)

I Recall Ψ(Y ) = Ψ(S) ∩ ΓY \DY ⊂ G(Z)\D
I Can we put all ΓY \DY in an algebraic family?

I Yes, but only in D∨ (e.g. Y (n) ⊂ C× C)
I By pull-back, we have a family f : Z → B such that all
Y s arise as follows: there is a b ∈ B such that Y is a
component of the projection to S of Zb ∩ L

I Ax-Schanuel in families:

Σ(f, e) := {(x, y) ∈ P × B : dimx(Lx ∩ Zb) ≥ e}

describes, for e in the atypical range, the projection of
Σ(f, e) to S, and therefore HLpos,aty.

34 / 36



HDR

G. Baldi

Opening

Middle game

End game

Post Mortem

Geometric Zilber-Pink (joint with Urbanik)

I Recall Ψ(Y ) = Ψ(S) ∩ ΓY \DY ⊂ G(Z)\D
I Can we put all ΓY \DY in an algebraic family?
I Yes, but only in D∨ (e.g. Y (n) ⊂ C× C)

I By pull-back, we have a family f : Z → B such that all
Y s arise as follows: there is a b ∈ B such that Y is a
component of the projection to S of Zb ∩ L

I Ax-Schanuel in families:

Σ(f, e) := {(x, y) ∈ P × B : dimx(Lx ∩ Zb) ≥ e}

describes, for e in the atypical range, the projection of
Σ(f, e) to S, and therefore HLpos,aty.

34 / 36



HDR

G. Baldi

Opening

Middle game

End game

Post Mortem

Geometric Zilber-Pink (joint with Urbanik)

I Recall Ψ(Y ) = Ψ(S) ∩ ΓY \DY ⊂ G(Z)\D
I Can we put all ΓY \DY in an algebraic family?
I Yes, but only in D∨ (e.g. Y (n) ⊂ C× C)
I By pull-back, we have a family f : Z → B such that all
Y s arise as follows: there is a b ∈ B such that Y is a
component of the projection to S of Zb ∩ L

I Ax-Schanuel in families:

Σ(f, e) := {(x, y) ∈ P × B : dimx(Lx ∩ Zb) ≥ e}

describes, for e in the atypical range, the projection of
Σ(f, e) to S, and therefore HLpos,aty.

34 / 36



HDR

G. Baldi

Opening

Middle game

End game

Post Mortem

Geometric Zilber-Pink (joint with Urbanik)

I Recall Ψ(Y ) = Ψ(S) ∩ ΓY \DY ⊂ G(Z)\D
I Can we put all ΓY \DY in an algebraic family?
I Yes, but only in D∨ (e.g. Y (n) ⊂ C× C)
I By pull-back, we have a family f : Z → B such that all
Y s arise as follows: there is a b ∈ B such that Y is a
component of the projection to S of Zb ∩ L

I Ax-Schanuel in families:

Σ(f, e) := {(x, y) ∈ P × B : dimx(Lx ∩ Zb) ≥ e}

describes, for e in the atypical range, the projection of
Σ(f, e) to S, and therefore HLpos,aty.

34 / 36



HDR

G. Baldi

Opening

Middle game

End game

Post Mortem

Geometric Zilber-Pink (joint with Urbanik)

I Recall Ψ(Y ) = Ψ(S) ∩ ΓY \DY ⊂ G(Z)\D
I Can we put all ΓY \DY in an algebraic family?
I Yes, but only in D∨ (e.g. Y (n) ⊂ C× C)
I By pull-back, we have a family f : Z → B such that all
Y s arise as follows: there is a b ∈ B such that Y is a
component of the projection to S of Zb ∩ L

I Ax-Schanuel in families:

Σ(f, e) := {(x, y) ∈ P × B : dimx(Lx ∩ Zb) ≥ e}

describes, for e in the atypical range, the projection of
Σ(f, e) to S, and therefore HLpos,aty.

34 / 36



HDR

G. Baldi

Opening

Middle game

End game

Post Mortem

Geometric Zilber-Pink (joint with Urbanik)

I Recall Ψ(Y ) = Ψ(S) ∩ ΓY \DY ⊂ G(Z)\D
I Can we put all ΓY \DY in an algebraic family?
I Yes, but only in D∨ (e.g. Y (n) ⊂ C× C)
I By pull-back, we have a family f : Z → B such that all
Y s arise as follows: there is a b ∈ B such that Y is a
component of the projection to S of Zb ∩ L

I Ax-Schanuel in families:

Σ(f, e) := {(x, y) ∈ P × B : dimx(Lx ∩ Zb) ≥ e}

describes, for e in the atypical range, the projection of
Σ(f, e) to S, and therefore HLpos,aty.

34 / 36



HDR

G. Baldi

Opening

Middle game

End game

Post Mortem

Everything is atypical in level ≥ 3

The power of Griffiths Transversality:

Theorem (B.-Klingler-Ullmo)

Let g be a simple R-Hodge-Lie algebra generated in level 1,
and of level at least 3. If h ⊂ g is an R-Hodge-Lie subalgebra
satisfying

hi = gi, ∀|i| ≥ 2,

then h = g.

In the style of Kostant’s results on root systems of Levi
factors for complex semi-simple Lie algebras.
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THANKS FOR YOUR

ATTENTION!

MERCI! GRAZIE!
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Precise statement of Geometric Z.P.

Theorem (B.-Urbanik)

There is a finite set Σ = Σ(S,V) of triples (H, DH ,N), where
(H, DH) is some sub-Hodge datum of the generic Hodge
datum (GS , DS), N is a normal subgroup of H whose
reductive part is semisimple, and such that the following
property holds:
I For each monodromically atypical maximal (among all

monodromically atypical subvarieties) Y ⊂ S there is
some (H, DH ,N) ∈ Σ such that, up to the action of Γ,
D0

Y is the image of N(R)+N(C)u · y, for some y ∈ DH .
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