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2. Middle Game. Zilber-Pink conjecture and general results

3. End Game. Applications:

» Moduli spaces of curves and co.
» Complex hyperbolic lattices

4. Post Mortem. |deas behind some proofs

2/36



Solutions of systems of polynomial equations

Opening

Middle game
End game

Post Mortem

«40>r «Fr «=)» «E»




HDR

Solutions of systems of polynomial equations

G. Baldi

» A hypersurface of degree d and dimension n is the zero
set in CP"*! of a homogeneous polynomial F of degree
d in n + 2 variables.

3/36



Solutions of systems of polynomial equations HER

G. Baldi

» A hypersurface of degree d and dimension n is the zero
set in CP"*! of a homogeneous polynomial F of degree
d in n + 2 variables.

» Smooth if the partial derivatives of F' don't
simultaneously vanish.

3/36



Solutions of systems of polynomial equations

» A hypersurface of degree d and dimension n is the zero
set in CP"*! of a homogeneous polynomial F of degree
d in n + 2 variables.

» Smooth if the partial derivatives of F' don't
simultaneously vanish.

Example (Fermat curve)

Y ={[X,Y,Z] e CP?*: X+ Y+ 7% = 0}
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Higher dimension

Understand higher dimensional varieties by looking at their
lower dimensional subvarieties.
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How to compare hypersurfaces?

X =[F=0] e point of a C-vector space
V - ‘OPnJrl (d)‘ - C{XO, o 7Xn+1]d7
F smoothif ¢ [A=0]CV.

Parameter space: Upa =V — A.

What can we say about a very general hypersurface X 7

l.e. [X] in the complement of a countable union of
subvarieites of U, 4.
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Max Noether's theorem, 1882

Every curve on the very general surface X C P? of degree
d > 4 is the complete intersection of X with another surface.

» The Picard group Pic X of line bundles on X modulo
linear equivalence is a classical invariant

» A curve C is essentially determined by its Jacobian
Pic® C = HY(QL)*/H,(C,Z)

» Far from true in higher dimensions:

Pic X = (Ox(1))

HDR

G. Baldi
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X a surface of degree d.

W(n,g) = {(CvX) = F(n,g) ¢ intersection

p:F(n,g) = |Ops(d)], (C,X)—X

U27d B Un,g p(W(n, g))

C not a complete }

HDR

G. Baldi

7/36



HDR

Noether's idea

G. Baldi

F(n,g) is algebraic and p proper, therefore each p(WW(n, g))
is a finite union of subvarieties. . .

8/36



HDR

Noether's idea

G. Baldi

F(n,g) is algebraic and p proper, therefore each p(WW(n, g))
is a finite union of subvarieties. . . strictly (7) contained in
|Ops (d)].

8/36



HDR

Noether's idea

G. Baldi

F(n,g) is algebraic and p proper, therefore each p(WW(n, g))
is a finite union of subvarieties. . . strictly (7) contained in
|Ops (d)].

» W = smooth surfaces containing a line

8/36



Noether's idea

F(n,g) is algebraic and p proper, therefore each p(WW(n, g))
is a finite union of subvarieties. . . strictly (7) contained in
|Ops (d)].

» W = smooth surfaces containing a line

» Fix L C P3, the family Wy, of surfaces containing L is
H°(Zy,(d)) C H(Ops(d))

HDR

G. Baldi

8/36



Noether's idea

F(n,g) is algebraic and p proper, therefore each p(WW(n, g))
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G. Baldi

F(n,g) is algebraic and p proper, therefore each p(WW(n, g))
is a finite union of subvarieties. . . strictly (7) contained in
|Ops (d)].

» W = smooth surfaces containing a line

Fix L C P3, the family Wy, of surfaces containing L is
H°(Zy,(d)) C H(Ops(d))

codimy, , W, = dim H°(L, Or(d)) = d + 1

dim Gr(1,3) =4, so

codmW =d+1—-—4=d—3 >0, since d > 4.

v

v

v
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Solomon Lefschetz, 1920s

» The computations get more difficult as n grows

» The program was completed by Lefschetz: L. pencils
and L. (1,1) theorem:

“It was my lot to plant the harpoon of algebraic topology
into the body of the whale of algebraic geometry.”
Theorem (Noether-Lefschetz theorem)

If d > 4, NLg is a countable union of strict subvarieties of
Usq. Any X ¢ NLg has Pic X = (Ox(1)).

HDR

G. Baldi
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The eighties and infinitesimal Hodge theory a la
Griffiths &

Theorem (Explicit Noether-Lefschetz theorem, after

Green & Voisin)

For each irreducible component Y of NLg:

=]
d—3 < codimy, , Y < h*0 = <d3 )

Definition (Ciliberto-Harris-Miranda)

A component Y is general if it has codimension ~?° and
exceptional otherwise.

Exceptional components exist only for d > 5.
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Distribution of NL,, after Harris, Green, Voisin. ..

» The general components are dense in Uy 4(C)

» Have codimension > 2d — 7, with two exceptions:
surfaces containing a line (resp. conic) with
codim = d — 3 (resp. 2d —7)

» If d > 0 and divisible by 4 there might be infinitely
many exceptional components.

Theorem (B.-Klingler-Ullmo)

The exceptional components are not Zariski dense in Us 4.

HDR

G. Baldi
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X = [F = 0] of dimension n ~~ H"(X,Q): its
dimension depends only on n and deg F'
» Hodge decomposition:

H'(X,Q)@C= ) H
p+g=n
coming from partial differential equations and harmonic
integrals on X

» If n = 24 subvarieties of codimension £ give rise to
Hodge classes, i.e. rational classes in HbY

» Hodge conjecture inverts this association
» ( =1 established by Lefschetz (normal functions a la
Poincaré). After Kodaira-Spencer ‘53: algebraization &

0—2Z—0x 0% —0
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Introduction to VHS HDR

G. Baldi

Varying H" (X, 7Z)prim with X € U, 4 we obtain

’variation of Hodge structures V

|.e. vector bundle with connection V, filtration I,
polarization @, satisfying Griffiths transversality such that
each fiber is a polarized Hodge structure

HL(Up 4, V®) :={z € Upq : V), has extra Hodge tensors}
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Important point: Hodge tensors vs classes HDR
(aka the Tannakian perspective) @ it

» Hodge structure on V7;:

Vo=V ®C= @ vre
P,qEZL

such that: VP4 = VP
» Hodge tensor is a Hodge class of @, , VE*(@V"Y)®
» Mumford—Tate group = the fixator in GL(Vg) of all
Hodge tensors of V'

HL(S,V®) = {s € S(C) : MT(V5)#MT(V)}.

For d > 4, NLy C HL(Us 4, V®). Are they equal?
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Hidden symmetries and the Hodge Locus HER

G. Baldi

Theorem (Cattani-Deligne-Kaplan ‘95)
HL(S, V®) is a countable union of algebraic subvarieties.

The (maximal) special subvarieties of S.

Question
What can we say about HL(S, V®)? What do they reveal?

Example

» Hodge conjecture is true for hypersurfaces outside
HL(U,, 4, V&)

» CDK is predicted by the Hodge conjecture
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General theory after Griffiths, Deligne,...

G. Baldi

VHS = period map ¥ to a period domain G(Z)\D

D= %
Und
X <[F-0] H' (X, Z)

(P.p.) abelian scheme over S «vs S — A; = Spy,(Z)\H,
Notable example: My — Ay, C — Jac(C).

17/36



Higher dimensional case: “n > 3,d > 5"

Opening

Middle game

End game

Post Mortem

«40>r «Fr «=)» «E»




HDR

Higher dimensional case: “n > 3,d > 5"

G. Baldi

Y C S has positive period dimension if U(Y) is not a
point.

18/36



Higher dimensional case: “n > 3,d > 5"

Y C S has positive period dimension if U(Y) is not a
point.
Theorem (B.-Klingler-Ullmo)

Ifn=3andd>5;orn=4andd>6; orn=2>5,6,8 and
d>4;orn=To0r>9 andd > 3,

HDR

G. Baldi

18/36



Higher dimensional case: “n > 3,d > 5"

Y C S has positive period dimension if U(Y) is not a
point.

Theorem (B.-Klingler-Ullmo)

Ifn=3andd>5;orn=4andd>6; orn=2>5,6,8 and
d>4;orn=To0r>9 andd > 3,
then HL(U,, 4, V®)pos C Uy q is algebraic.

HDR

G. Baldi

18/36



Higher dimensional case: “n > 3,d > 5" HER

G. Baldi

Y C S has positive period dimension if U(Y) is not a
point.

Theorem (B.-Klingler-Ullmo)
Ifn=3andd>5;orn=4andd>6; orn=2>5,6,8 and
d>4;orn="Tor>9andd>3,

then HL(U,, 4, V®)pos C Uy q is algebraic.

Remark (Refined Bombieri-Lang conjecture)

The above can be plugged into the Lawrence-Venkatesh
method to get finer results on integral points of U, 4.
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Y C S supports Vy, which corresponds to a period map
)f((:) — ka\l)yg
where Dy is a homogeneous space under

Hy = MT(Vy)(R). But Hy C G = MT(V) and
functoriality gives

Y(C) — Ty \Dy

l J

S(C) — 2 G(Z)\D

HDR
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Definition (B.-Klingler-Ullmo)

A special subvariety Y is either typical or atypical:
» codimg(Y)= codimgz) p(C'y\Dy);
» codimg(Y)< codimgzy p(C'y \Dy ).

HL = HLiy;, UHLyy,
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Schematic: typical components

G. Baldi

\D
G(2)
S
E
BN R
dim(S) = 2
dim(D) =3

2= COdimS(Yl) = Codimg(z)\D (FYl \Dyl)
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Y
dim(s) = 2

dim(D) =3
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Vs atypical components

G. Baldi

dim(s) = 2
dim(D) =3

1= Codims(Y'g) < COdimg(Z)\D(FYZ\DY2) =2
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The completed Zilber-Pink conjecture

Let V be a graded-polarizable and admissible ZVMHS over S.
Conjecture (B.-Klingler-Ulimo)

(AT) (S,V) contains only finitely many maximal atypical
intersections.
(TY) The following are equivalent:
» S contains one typical intersection;
» the collection of typical intersections is dense in S(C);

> there exists a subperiod domain T'\ D' such that
dim ¥(S) — codimp(D’) > 0.

1. = 2., and generalization of André-Oort for arbitrary
VHS (Pila-Shankar-Tsimerman ‘21, for Shimura varieties)

HDR

G. Baldi
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The Zilber-Pink conjecture, atypical history

G. Baldi

» Bombieri-Masser-Zannier 1999: curves against algebraic
subgroups of multiplicative groups

» Zilber 2002: exponential sum equations and the
Schanuel conjecture

» Pink 2005, motivated by unifying the Mordell-Lang and
AO conjectures

» Gukov-Vafa, Moore 2004: CM Calabi-Yau 3-folds and
relation to string theory

» de Jong, Beyond the André-Oort conjecture. 6 page
personal note, 2004. Pure VHS

» Klingler 2017. Mixed VHS but weaker version Hodge
codimension

Tightly related to work of Pila, Bakker-Tsimerman ...
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Theorem (“Geometric part of completed ZP")

The conjecture holds true for HL s

(AT) BKU for pure VHS, B-Urbanik for ZVMHS (new and
effective proof)

(TY) BKU and Eterovi¢-Scanlon, Khelifa-Urbanik (+ Khelifa,
in progress, for the mixed case)

Theorem (B.-Klingler-Ullmo)

If the level of V is > 3 then every component of the Hodge
locus is atypical.

Smallest & : [—[—[...[s7 ¢ ],07']...],g7 '] =0.
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Roadmap for the level

A Q
Exceptional

What do the conjecture/results say about the above moduli
spaces? Concrete applications of such viewpoint?

G. Baldi
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Moduli spaces of smooth genus g curves and a HER
. G. Baldi
question of Serre

Theorem (B.-Klingler-Ullmo)

There are smooth projective curves C/Q of genus 4 whose
Jacobian has Mumford-Tate group isogenous to a Q-form
of M := C* x SLQ X SL2 X SL2

» codimyg, My =1
» Q-forms of M define Shimura curves S in Ay
(discovered by Mumford)

» Main Conj. implies that usually M4 NS is a point with
MT¢ = M.
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Teichmiiller dynamics. . .

G. Baldi

» OM, = {(X,w): X € Mywe H' (X, Q) - {0}}

» Real analytic action of GLa(R)* on QM (),
(locally given by a diagonal action on a product of
copies of C = R?).

» Orbit closures GLy(R)* - (X,w) C QM,, after Masur,
Veech, McMullen, Eskin, Mirzakhani, and
Mohammadi. ..

» Orbit closures are algebraic, defined over Q, and admit
a Hodge theoretic description (Filip, Maller).
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...and new proof of a result of Eskin-Filip-Wright
‘18, Wright 20

Theorem (B.-Urbanik (effective), reproving EFW)

Let M C QM be an orbit closure. Then M contains at
most finitely many maximal atypical suborbit closures.

There is moreover an algorithm that computes them.
Corollary (Wright)

There are only finitely many maximal totally geodesic
subvarieties, with respect to the Kobayashi metric, of M,
of dimension greater than 1.

Remark

Richer framework for suitable bundles above mixed Shimura
varieties. Not predicted by the Main Conj.

HDR

G. Baldi
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G = G(R)* simple Lie group
» Discrete subgroup I' C G is a lattice if it has finite
covolume. E.g. G'(Z), called arithmetic

» Other examples? Yes for SLy(R). Possibly yes for
SO(1,m) and SU(1,n) (Margulis, Corlette,
Gromov-Schoen, ...).

» BE =SU(1,n)/S(U(1) x U(n)) parametrizes C-Hodge
structures of signature (1,n)

Theorem (B.-Ullmo, and independently

Bader-Fisher-Miller-Stover)

If T\B¢ contains infinitely many maximal totally geodesic
subvarieties, then I' C G is arithmetic.
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Motivations after Reid & McMullen 2000s HDR

G. Baldi

Gromov & Piatetski-Shapiro construction breaks totally
geodesic submanifolds?

» BFMS ‘19 also for SO(1,n)

» BU: construct a ZVHS on I'\B. I' NA, then totally
geodesic subvarieties are atypical intersections

» BU: Common & effective setting for understanding
totally geodesics in M, ,, and I"\ B
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Functional transcendence for foliated bundles HDR

G. Baldi

Theorem (Blazquez-Sanz, Casale, Freitag, and Nagloo &

Bakker—Tsimerman, ...)

Let (P, V) the principal G-bundle associated to (S, V). Let
V' be a subvariety of P, x € V', and let L C P be a leaf
through x. Let U be an analytic component of V.0 L. If

dimV <dimU + dim G

then the projection of U to S is contained in a strict
weakly-special subvariety.
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Geometric Zilber-Pink (joint with Urbanik) HOR

G. Baldi

» Recall ¥(Y) = ¥(S)NT'y\Dy C G(Z)\D
» Can we put all I'y'\ Dy in an algebraic family?
» Yes, but only in DV (e.g. Y(n) C C x C)

» By pull-back, we have a family f : Z — B such that all
Y's arise as follows: there is a b € B such that Y is a
component of the projection to S of Z, N L

» Ax-Schanuel in families:
Y(f,e) :={(z,y) € P x B:dim, (L, N Z) > e}

describes, for e in the atypical range, the projection of
Y(f,e) to S, and therefore HL o5 aty-
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Everything is atypical in level > 3

The power of Griffiths Transversality:
Theorem (B.-Klingler-Ullmo)

Let g be a simple R-Hodge-Lie algebra generated in level 1,
and of level at least 3. If h C g is an R-Hodge-Lie subalgebra
satisfying 4 '

hZ = 917 V‘Z‘ > 27
then bh = g.

In the style of Kostant's results on root systems of Levi
factors for complex semi-simple Lie algebras.

HDR

G. Baldi
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G. Baldi

THANKS FOR YOUR

ATTENTION!

MERCI! GRAZIE!



HDR

Precise statement of Geometric Z.P.

G. Baldi

Theorem (B.-Urbanik)

There is a finite set 3 = X (g of triples (H, Dy, N), where
(H, Dpr) is some sub-Hodge datum of the generic Hodge
datum (Gg, Dg), N is a normal subgroup of H whose
reductive part is semisimple, and such that the following
property holds:

» For each monodromically atypical maximal (among all
monodromically atypical subvarieties) Y C S there is
some (H, Dy, IN) € X such that, up to the action of T',
DY, is the image of N(R)T™N(C)* -y, for some y € Dy.
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