Thierry Bodineau
Directeur de recherche CNRS
Laboratoire Alexander Grothendieck
Institut des Hautes Études Scientifiques
35 route de Chartres
91440 Bures-sur-Yvette, France
Bureau : 1S9
bodineau@ihes.fr
As a researcher in the field of probability theory and mathematical physics, I’m particularly interested in kinetic theory, non-equilibrium statistical mechanics, phase coexistence and renormalisation.
Past conferences :
-
Statistical Aspects of Nonlinear Physics 2025 IHES Summer School (June 23 to July 4, 2025)
-
French Japanese Conference on Probability & Interactions
(6-8 March 2024)
-
About Entropy in Large Classical Particle Systems (25-29 September 2023)
-
Mathematics of disordered systems : a tribute to Francis Comets (5-7 June 2023)
Teaching
Cours du M2 Mathématiques de l'aléatoire : Renormalisation group method and functional inequalities
Les lundis de 14h à 17h à partir du 19 janvier 2026 à l'IHES dans l'Amphithéâtre Léon Motchane Phase transitions correspond to abrupt changes in the behavior of a physical system when a parameter, such as temperature or density, is varied. These phenomena can be modeled using microscopic systems, such as the Ising model. This course provides an introduction to renormalization theory, which helps us understand how local interactions between particles can give rise to macroscopic state changes. Using examples of hierarchical models, we will analyze critical phenomena through a multiscale decomposition of Gibbs measures. We will also explain how this decomposition can be used to establish functional inequalities that characterize the relaxation rates of stochastic dynamics associated with these particle systems. References :Bauerschmidt, Brydges, Slade. "Introduction to a renormalisation group method." Vol. 2242. Springer Nature, 2019.
Bauerschmidt, Bodineau, Dagallier. "Stochastic dynamics and the Polchinski equation: an introduction." Probability Surveys 21 (2024): 200-290.
Klartag, Lehec. "Isoperimetric inequalities in high-dimensional convex sets." Bulletin of the American Mathematical Society 62.4 (2025): 575-642.