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Chapter 1

Introduction

1.1 Introduction

1.2 Equilibrium statistical mechanics

A gas or a liquid at equilibrium can be described in terms of a few macroscopic variables
as the pressure P, the volume V and the temperature T. These parameters obey well
established physical laws, for example PV = nRT for an ideal gas, and the different
phases of a system are determined by these parameters (see Figure 1.1).
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Figure 1.1: The left figure represents a phase diagram. The Lennard-Jones potential (1.2) is de-
picted on the right. The potential is tuned such that the particles repel at short distances and
attract each other otherwise.

A gas is made of a huge number of interacting atoms N ≈ 1023 and the goal of statisti-
cal mechanics is to derive the macroscopic laws of physics starting from the microscopic
interactions between the atoms. To model a gas, the positions and the velocities of the
atoms can be encoded by the variables {(xi, vi)}i 6 N which are randomly distributed ac-
cording to the Gibbs theory described next. The kinetic energy of a gas is a function of
the velocities VN = {vi}i 6 N

Hkinetic(VN) =
m
2

N

∑
i=1

v2
i , (1.1)
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6 CHAPTER 1. INTRODUCTION

where m stands for the mass of an atom. The particle interactions depend on an interac-
tion potential Φ often represented by a Lennard-Jones potential of the form (see Figure
1.1)

r > 0, Φ(r) = E0

(
1

r12 −
1
r6

)
, (1.2)

for some constant E0 > 0. An additional parameter ε > 0 is introduced to fix the typical
distance between the atoms. As a consequence, the potential Φ is rescaled in order to
define the interaction energy which depends only on the positions XN = {xi}i 6 N

Hinteraction(XN) = ∑
i,j

i 6=j

Φ
(

xi − xj

ε

)
. (1.3)

The energy between two atoms is minimal when their distance is of order ε and their
interaction becomes negligible if their distance is much larger than ε. To fix ideas, we
assume that the gas is contained in a macroscopic vessel modelled by the unit domain
T3 = [0, 1]3 so that each xi takes values in T3. In order to disregard the boundary effects,
the vessel is assumed to be periodic.

Gibbs theory is the cornerstone of statistical mechanics as it relates the macroscopic
parameters to statistical averages of some microscopic observables. At equilibrium the
atom coordinates ZN = {XN , VN} are distributed according to the Gibbs measure with
density

GN,β(ZN) =
1
ZN,β

exp
(
− β

(
Hkinetic(VN) + Hinteraction(XN)

))
, (1.4)

with respect to the Lebesgue measure dx1 . . . dxN dv1 . . . dvN in (T3 ×R3)N . At equilib-
rium, the thermodynamic parameters can be recovered by averaging microscopic vari-
ables with respect to the Gibbs measure. Since the Gibbs measure is translation invariant,
the density of the gas is simply given by

ρ = Nεd. (1.5)

The temperature is defined by

T =
m
3

EGN,β

(
v2

i
)
=

1
β

. (1.6)

Further macroscopic parameters can be recovered by computing atom correlations under
the Gibbs measure. The Gibbs theory relates the microscopic and macroscopic scales in
the thermodynamic limit, i.e. when the particle number N tends to infinity and ε tends
to 0 in such a way that the density is kept fixed

ρ = lim
N→∞,

ε→0

Nεd. (1.7)

From a probabilist view point, this limit should be interpreted as a law of large numbers
which ensures that averages of a random sequence are close to a mean behavior. As
the particle number in a gas is typically of order 1023, the limiting regime provides an
accurate description of the gas. Physical laws at equilibrium can be deduced from the
Gibbs theory and, in particular, the phase diagram can be predicted from the microscopic
description (even so, this has not been achieved yet by a fully rigorous mathematical
theory).
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1.3 Hydrodynamic limits

In every day life, most of the physical systems are out-of equilibrium and one would like
to derive the laws of non-equilibrium physics from the microscopic particle systems. In
particular, one of the great challenge would be to recover the hydrodynamic equations
from Newton’s laws of motion governing the (classical) atom dynamics. In this section,
we will review the different levels of description of a gas and their relations by scaling
limits.

Microscopic scale 

Particle system evolving 
according to Newton’s 

laws of motion 

Hydrodynamic 
limits  

Macroscopic scale 

Fluid hydrodynamic 
equations 

(Euler, Navier-Stokes) 

Mesoscopic scale 

Kinetic equations (Boltzmann equation) 

Low density limit  Fast relaxation limit

At a macroscopic scale, a gas can be seen as a continuous substance described by a few
parameters varying in time and space: the local density ρ(τ, r), the local velocity u(τ, r)
and the local temperature T(τ, r) (which is related to the local energy). Depending on
the physical regimes, the evolution of the field (ρ, v, T) follows different hydrodynamic
equations. For example, the Euler equations

∂τρ + div(ρv) = 0,
∂τv +

(
v · ∇)v + 1

ρ∇(ρT) = 0,

∂τT +
(
v · ∇)T + 2

3 T∇x · v = 0,

or the incompressible Navier-Stokes equations

∂τv +
(
v · ∇)v = −∇p + ν∆v with ∇x · v = 0,

in the latter case, p stands for the pressure which is determined by the incompressibility
constraint.

At the microscopic scale, a gas is made of atoms whose coordinates {(xi(t), vi(t))}i 6 N
evolve in time according to Newtonian dynamics

dxi

dt
= vi , m

dvi

dt
= −1

ε ∑
j 6=i
∇Φ

( xi − xj

ε

)
. (1.8)
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These equations are the Hamiltonian equations associated with the kinetic energy (1.1)
and the potential energy (1.3). The Gibbs measure (2.18) is no longer relevant to describe
the atom statistics which are now given by the evolution of a random initial data trans-
ported by the Hamiltonian flow (1.8). The macroscopic parameters (ρ, v, T) are related
to the microscopic variables by local averaging, however the scaling limit is much more
complicated than the thermodynamic limit (1.7) as it depends now on the space and
time scales. In fact, the limiting hydrodynamic equations depend on the choice of the
scaling and this explain why a fluid can be either modelled by the Euler or the Navier-
Stokes equations. There is currently no mathematical derivation of the hydrodynamic
equations from a purely deterministic dynamics. However by adding noise to the mi-
croscopic dynamics, the Euler equation has been obtained in [27] and the incompressible
Navier-Stokes equation was derived in [30] for a class of stochastic particle systems on
the cubic lattice.

Kinetic theory is a different perspective on the derivation of the hydrodynamic limits
which describes the particle evolution at an intermediate scale, namely the mesoscopic
scale. During a macroscopic time, each atom interacts, via the Hamiltonian flow (1.8),
with a huge number of other atoms leading to intricate microscopic correlations be-
tween the atoms. Mathematically, it is then extremely difficult to recover the macroscopic
parameters by averaging out microscopic coordinates with such a complex correlation
structure. Kinetic theory describes the system at the mesoscopic scale defined such that
typically, an atom encounters only a finite number of collisions. This corresponds to a
dilute gas regime with rare collisions. At the mesoscopic scale, the system can be re-
duced to a probability density f (t, x, v) which records the probability of finding, at time
t, an atom at position x with velocity v. This density evolves according to the Boltzmann
equation

∂t f + v · ∇x f = Q( f , f ),

Q( f , f )(x, v) :=
∫

S2×R3

(
f (x, v′) f (x, v′2)− f (x, v) f (x, v2)

)
b(v2 − v, ν) dv2dν,

(1.9)

where ν is a unit vector in R3 and

v′ = v−
(
(v− v2) · ν

)
ν, v′2 = v2 +

(
(v− v2) · ν

)
ν.

The precise definition of the mesoscopic scaling as well as the heuristic explanation of
the Boltzmann equation are postponed to Section 2.2. Compared to the macroscopic field
(ρ, v, T), the kinetic theory provides a more detailed description of the system and the
macroscopic parameters are deduced by averaging with respect to the velocity

ρ(t, x) =
∫

Rd
f (t, x, v)dv, u(t, x) =

1
ρ(t, x)

∫
Rd

v f (t, x, v)dv,

T(t, x) =
1

2ρ(t, x)

(∫
Rd

v2 f (t, x, v)dv−
(∫

Rd
v f (t, x, v)dv

)2
)

.

As a consequence, the fluid hydrodynamic equations can then be recovered by rescaling
the Boltzmann equation (see Figure 1.3). These limits, known as the fast relaxation limits,
are well understood mathematically and we refer the reader to the book [35] for a survey.
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To perform the fast relaxation limit, the Boltzmann equation has to be rescaled on large
time scales. However the convergence to the Boltzmann equation has been only proven
for short time scales so that an important step is currently missing in order to complete
the program of kinetic theory and to justify fully the hydrodynamic equations.

1.4 Overview of these notes

In the first part of these notes, the set-up of the kinetic theory is introduced (see Chapter
2) and the Boltzmann equation is derived as the limit of deterministic microscopic dy-
namics (see Chapter 3). This derivation raises fundamental physical questions because
the microscopic evolution is reversible but the limiting kinetic equation is irreversible.
This paradox will be solved, in Chapter 3, by a detailed analysis of the propagation of
chaos.

The second part of these notes is devoted to the study of the particle dynamics at
large times in perturbative regimes. In Chapter 4, we consider a gas at equilibrium and
show that the motion of a tagged particle, in this a gas, converges in the kinetic limit
to a Brownian motion. This shows that a random process can be obtained as a limit of
deterministic dynamics. The corresponding hydrodynamic equation, namely the heat
equation, can be derived directly from the particle system.
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Chapter 2

Hard-sphere dynamics

2.1 Microscopic description

2.1.1 Definition of hard-sphere dynamics

Hard-sphere dynamics are simply billiard dynamics where the atoms are modelled as
balls moving in straight line and undergoing elastic collisions. The number N of balls
in the dynamics is larger than in a standard billiard game, say that N is of the order
of the Avogadro number 1023. The billiard table is identified as the periodic domain
Td = [0, 1]d with dimension d > 2. Each particle has a label in {1, . . . , N}. Particle i is
a ball of diameter ε > 0 centered at xi ∈ Td with velocity vi ∈ Rd. The coordinates of
particle i are denoted by zi = (xi, vi). These balls are not allowed to overlap, so that the
coordinates ZN = {z1, z2, . . . , zN} of a configuration with N particles are restricted to the
phase space, i.e. to the domain

DN
ε :=

{
ZN = (XN , VN) ∈ TdN ×RdN , ∀i 6= j , |xi − xj| > ε

}
, (2.1)

with the notation XN = {x1, x2, . . . , xN} and VN = {v1, v2, . . . , vN}. In the following, we
will always consider εd � 1

N so that the phase space is not empty.
In dimension d = 1, the particles cannot cross and the dynamics is well understood

[37, 12]. Nevertheless, very challenging questions remain if the particles have different
masses. We refer to [39, 40] for an account of the open problems for one-dimensional
systems. Throughout these notes, we will focus on the case d > 2.

For an initial configuration ZN(0) in the domain DN
ε , the exclusion constraint between

the balls holds at any time and the microscopic evolution (1.8) can be reformulated as
follows: for all i 6 N

∂txi(t) = vi(t) , ∂tvi(t) = 0, if |xi(t)− xj(t)| > ε for all j 6= i, (2.2)

with elastic reflection at collisions between two particles. In this case, if particles i, j with
velocities vi, vj collide at time t, i.e. |xi(t)− xj(t)| = ε, then the outgoing velocities v′i, v′j
are given by {

v′i = vi −
(
(vi − vj) · ν

)
ν,

v′j = vj +
(
(vi − vj) · ν

)
ν,

(2.3)

11
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ε

vi v′i

v′j
vj

εν

Figure 2.1: On the left, a gas with hard spheres of diameter ε. On the right, a collision between
particles i, j is depicted with the notation (2.3).

where ν is the unit vector such that xi(t) = xj(t) + εν (see Figure 2.1). The conservation
laws of the dynamics are :{

Momentum conservation: v′i + v′j = vi + vj,

Energy conservation: v′i
2 + v′j

2 = v2
i + v2

j .
(2.4)

Collisions occur on configurations at the boundary ∂DN
ε of the phase space DN

ε (2.1). At
a collision between particles i, j, we distinguish the pre-collisional configurations with
incoming velocities

∂DN−
ε (i, j) :=

{
ZN ∈ ∂DN

ε , |xi − xj| = ε , (vi − vj) · (xi − xj) < 0

and ∀(k, `) 6= (i, j), |xk − x`| > ε
}

,

from the post-collisional configurations with outgoing velocities

∂DN+
ε (i, j) :=

{
ZN ∈ ∂DN

ε , |xi − xj| = ε , (vi − vj) · (xi − xj) > 0

and ∀(k, `) 6= (i, j), |xk − x`| > ε
}

.

Using notation (2.3), we introduce the map

J : (vi, vj, ν) 7→ (v′i, v′j,−ν) (2.5)

which is an involution J ◦ J = Id. From this property, we deduce that J preserves the
Lebesgue measure in Rd ×Rd × Sd−1, where Sd−1 denotes the unit ball.

LetR be the map on DN
ε which reverses the velocities

R(ZN) = (x1, . . . , xN ,−v1, . . . ,−vN) with ZN = (x1, . . . , xN , v1, . . . , vN).

For any time t > 0, we denote by Tt the map of the flow at time t so that for an initial
data ZN in DN

ε

Tt(ZN) = ZN(t). (2.6)

A more accurate definition of T is given in Proposition 2.1. Given a configuration ZN(t)
at time t, the inverse map can be obtained easily by running the dynamics backward, i.e.
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by applying Tt to the configuration with reversed velocitiesR
(
ZN(t)

)
(and reversing the

velocities at the final step to recover the initial data). As a consequence, the following
identity holds

TtRTt = R.

Thus the evolution can always be traced back and there is no loss of information by the
dynamics. This amounts to say that the hard-sphere flow is time reversible. The inverse of
Tt is denoted by T−t.

The particles interact only when they collide so that the corresponding interaction
potential is degenerate

Φ(r) =

{
∞, if r < ε,
0, if r > ε,

(2.7)

and the Hamiltonian of a configuration ZN in DN
ε depends only on the kinetic energy

HN(ZN) :=
1
2

N

∑
i=1
|vi|2. (2.8)

By (2.4), it is a conserved quantity for the dynamics. In particular, the sets of bounded
energy

∀R > 0, DN,R
ε =

{
ZN ∈ DN

ε , HN(ZN) 6 R2
}

, (2.9)

are invariant by the dynamics.

Figure 2.2: The hard-sphere flow is not well defined if 3 or more particles collide at the same
time. However triple collisions never occur for almost all initial configurations.

As the potential (2.7) is degenerate the relation with (1.8) is not straightforward. In
fact, the hard-sphere flow is not well defined for all initial data in DN

ε . For example, there
is no dynamical rule to take into account the simultaneous collision of 3 particles (see
Figure 2.2). However, the following proposition ensures that for almost all initial data
(with respect to the Lebesgue measure in DN

ε ), the hard-sphere flow is well defined at
any time.

Proposition 2.1. The hard-sphere flow is well defined for almost all configurations in DN
ε . Fur-

thermore outside a set of measure 0, the map T, introduced in (2.6), is a one parameter group
defined for all t ∈ R which preserves Lebesgue measure.
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This result has been first proved by Alexander [3], see also [10, 14]. The singularity
of the hard-sphere dynamics is a serious technical drawback to prove the kinetic limit.
However the microscopic collisions in the hard-sphere dynamics have a structure very
similar to the collisions in the Boltzmann equation (see (2.41)) and this will greatly sim-
plify the derivation of the convergence to the Boltzmann equation in Chapter 3.

Proof. To define the hard-sphere flow, we have to exclude the pathological configurations
leading to one of the following events :

• simultaneous collisions of 3 or more particles,
• grazing collisions, i.e. collisions such that (vi − vj) · ν = 0 (with notation (2.3)),
• clustering, i.e. infinite number of collisions in a finite time.

Our goal is to build a dense open subset in DN
ε consisting of configurations with only

finitely many (pairwise) collisions in any time interval [0, T], so that any of the previous
events will be excluded.

On a given time interval [0, T], we are going to show that the flow is well defined
on the set D

N,R
ε of configurations with bounded energy (2.9) outside a set ST,R of zero

measure. Then taking diverging sequences of times Tn and energy cut-off Rn, the dy-
namics can be defined in DN

ε for any time and any initial data outside the set
⋃

n STn,Rn of
measure zero.

We split [0, T] into small time intervals of size δ > 0 and consider the set

Pδ =
{

ZN ∈ DN,R
ε , a particle collides twice during the time interval [0, δ] (2.10)

or has a grazing collision
}

.

During [0, δ], the flow is well defined outside the set Pδ as each particle undergoes at
most one collision. For any time t ∈ [0, δ], the mapping Tt is well defined in the comple-
ment of Pδ which turns out to be an open set. Furthermore, any initial data in Pc

δ leads
to a trajectory with a finite number of distinct collisions which depends smoothly on the
initial data. We stress the fact that the configurations with grazing collisions have been
neglected as the trajectories are not smooth in their vicinity. The mapping Tt is a diffeo-
morphism which leaves Lebesgue measure invariant. This latter point can be checked
as the free flow (2.2) and the reflections (2.3) have both Jacobian equal to 1 (see [2] for
details).

We are going to show that the measure of Pδ is bounded from above by

|Pδ| =
∫

Pδ

dZN 6 Cδ2, (2.11)

where the constant C depends on R, N, ε. Suppose that particle i collides with the two
particles j, k in a time smaller than δ. As the velocities are all bounded by R, the particles
j, k have to be close to particle i initially

ε 6 |xi − xj| 6 ε + 2Rδ and ε 6 |xi − xk| 6 ε + 2Rδ,
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where the lower bound is due to the hard-sphere constraint. The factor δ2 in (2.11) comes
from the integration with respect to dxjdxk as both particles j, k are located in a shell of
width 2Rδ around the ball i :

∀xi ∈ Td,
∫

dxjdxk 1{ε 6 |xi−xj| 6 ε+2Rδ} 1{ε 6 |xi−xk | 6 ε+2Rδ} 6
(
cRεd−1δ

)2,

The remaining variables in (2.11) are then integrated and the integral is estimated by the
crude upper bound C.

0 δ

Pc
δ

Tδ(P
c
δ)T−δ(P

c
δ)

Figure 2.3: The phase space D
N,R
ε is schematically represented by an ellipse. At time 0, the subset

Pδ of configurations (represented in gray) is removed from D
N,R
ε . At the later time δ, the subset

Tδ

(
Pc

δ

)
∩ Pδ ⊂ Pδ of configurations (represented in black) is removed again. This boils down to

remove its pre-image P(1)
δ = T−δ

(
Tδ

(
Pc

δ

)
∩ Pδ

)
at time 0. The flow can be constructed up to time

T by removing subsets of the phase space at each time step δ.

The flow is well defined up to time δ for initial data in Pc
δ and the configurations are

mapped to the set Tδ

(
Pc

δ

)
at time δ. To extend the dynamics on [δ, 2δ], we consider only

the configurations at time δ for which each particle undergoes at most one collision in
[δ, 2δ], i.e. that the configurations in the set P̂(1)

δ = Tδ

(
Pc

δ

)
∩ Pδ at time δ are discarded.

This amounts to neglecting also the initial configurations in P(1)
δ = T−δ

(
P̂(1)

δ

)
. As the

mapping T leaves Lebesgue measure invariant, the measure of P(1)
δ will be less than Cδ2

thanks to (2.11). For any initial data outside the set Pδ ∪P(1)
δ , the dynamics is well defined

up to time 2δ. One can then iterate this procedure and extend the flow on the interval
[kδ, (k + 1)δ] by removing sets of initial configurations of the form P(k)

δ with measure less
than Cδ2. Splitting the time T into K = T

δ time intervals, the dynamics can be defined up
to time T for initial configurations outside the set

Pδ

(
T, R

)
= Pδ ∪ P(1)

δ ∪ · · · ∪ P(K)
δ

which has a measure bounded by∣∣Pδ

(
T, R

)∣∣ 6 (K + 1)Cδ2 6 2CTδ.

The sets associated with the sequence δk = 2−k are decreasing

Pδk+1

(
T, R

)
⊂ Pδk

(
T, R

)
.

Thus the set
⋂

k Pδk

(
T, R

)
has measure 0 and the flow is well defined outside this set.
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2.1.2 Liouville equation

We have seen in Proposition 2.1 that the hard-sphere flow is only defined for almost all
initial configurations. From a physical point of view, this is not a serious issue, as the
detailed description of a single configuration trajectory is irrelevant. The main goal is to
model the statistical properties of the gas and therefore we will focus on the evolution of
the probability measures on the configurations.

Initially the configurations ZN are distributed in DN
ε according to the density fN(0, ZN)

such that ∫
TdN×RdN

dXN dVN fN(0, ZN) = 1,

where dXN stands for the Lebesgue measure dx1 . . . dxN in TdN and dVN stands for the
Lebesgue measure dv1 . . . dvN in RdN . We will also use the notation dZN = dXNdVN . All
the particles should behave in the same way, so that we will consider initial measures
which are symmetric with respect to the particle labels. This symmetry will be preserved
at any time.

According to Proposition 2.1, for almost all initial data ZN , the configuration ZN(t) =
Tt(ZN), at time t, is obtained by the mapping Tt defined in (2.6). Thus the particle density
at time t is the image of the density at time 0 by the mapping Tt

fN(t, ZN) = fN(0, T−tZN). (2.12)

To rephrase this relation in simpler terms, we suppose for a moment that N = 1 and
we consider the evolution of a single particle z1(t). The particle moves in straight line
according to

∀t > 0, x1(t) = x1 + v1t, v1(t) = v1, (2.13)

where the coordinates of x1(t) should be understood modulo 1 so that the configuration
remains in the periodic domain Td. Then the relation (2.12) reads

f1(t, x1, v1) = f1(0, x1 − v1t, v1).

Taking the time derivative, we see that the distribution obeys the transport equation

∂t f1(t, x1, v1) = −v1 · ∇x1 f1(0, x1 − v1t, v1) = −v1 · ∇x1 f1(t, x1, v1),

where we used the notation

w · ∇x ϕ =
d

∑
k=1

wk∂k ϕ with w = (w1, . . . , wd) ∈ Rd

and ∂k is the derivative with respect to the kth-coordinate of x ∈ Td.
A similar computation holds also for a hard-sphere gas with N particles since the

particles do not interact in between two collisions. Thus the density satisfies the Liouville
equation in DN

ε

∂t fN(t, ZN) +
N

∑
i=1

vi · ∇xi fN(t, ZN) = 0. (2.14)
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However, one has also to prescribe boundary conditions on the density in ∂DN
ε to take

into account the collisions. We impose that on each set ∂DN+
ε (i, j) of post-collisional

configurations the density is given by

fN(t, Z′N) = fN(t, ZN), (2.15)

where Z′N is obtained from the configuration ZN ∈ ∂DN−
ε (i, j) by changing the veloci-

ties vi, vj into v′i, v′j according to the collision rule (2.3). Finally, we define SN the group
associated with the transport in DN

ε by

∀ϕ ∈ L∞(DN
ε ), SN(t)ϕ : ZN 7→ ϕ

(
T−t(ZN)

)
. (2.16)

In particular, the density at time t defined in (2.12) can be rewritten

fN(t, ZN) =
(

SN(t) fN(0)
)
(ZN).

So far the Liouville equation was interpreted as the evolution equation for probability
measures, but it can be solved for more general initial data. The following proposition
will be used, later on, to derive uniform estimates on the density of the hard-sphere
dynamics.

Proposition 2.2 (Maximum principle). Let gN , hN be two solutions of the Liouville equation
with initial data such that gN(0, ZN) 6 hN(0, ZN) for almost all configuration ZN in DN

ε , then
the order is preserved at any time t > 0

gN(t, ZN) 6 hN(t, ZN),

for almost all configuration in ZN ∈ DN
ε .

Proof. Thanks to (2.12), the solutions at time t can be expressed in terms of the initial data

hN(t, ZN)− gN(t, ZN) = hN(0, T−tZN)− gN(0, T−tZN) > 0.

This completes Proposition 2.2.

2.1.3 Invariant measures

Before studying the evolution of the particle density, we are going to focus on the station-
ary solutions of the Liouville equation (2.14) which will play a key role in these notes.
For s > 1 and β > 0, the Maxwellian distribution in Rds is denoted by

M⊗s
β (Vs) :=

s

∏
i=1

Mβ(vi) with Mβ(v) :=
(

β

2π

) d
2

exp
(
−β

2
|v|2
)

. (2.17)

In physics, the parameter β is interpreted as the inverse of a temperature. The Gibbs
measure on the particle configurations in TdN ×RdN is defined by

MN,β(ZN) :=
1
ZN

(
β

2π

) dN
2

exp(−βHN(VN)) 1DN
ε
(ZN) =

1
ZN

1DN
ε
(ZN)M⊗N

β (VN),

(2.18)
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where the Hamiltonian HN was introduced in (2.8) and the partition function ZN is the
normalization factor

ZN :=
∫

TdN×RdN
1DN

ε
(ZN)M⊗N

β (VN) dZN =
∫

TdN
∏

1 6 i 6=j 6 N
1|xi−xj|>ε dXN . (2.19)

Under the Gibbs measure, only the positions are correlated by the exclusion constraint
between the particles. We stress the fact that the particles play a symmetric role so that
the measure is exchangeable.

Proposition 2.3. The Gibbs measure MN,β is an invariant measure for the gas dynamics.

Proof. The Gibbs measure is a solution of the Liouville equation (2.14) as it is constant
in time and with respect to the positions of the configurations in DN

ε . Furthermore the
boundary conditions (2.15) are satisfied thanks to the conservation of the kinetic energy
(2.4) by the elastic collisions.

Under the Gibbs measure the positions of the particles are uniformly distributed in
the set {XN , i 6= j, |xi − xj| > ε}. The effect of the exclusion strongly depends on the
particle density

ρ := Nκdεd, (2.20)

where κdεd stands for the volume of a particle. At large density, the correlations between
the particles are so strong that physicists expect the occurence of a phase transition [1, 42].
This has been observed numerically, but there is no mathematical proof of it yet. The
behavior of the Gibbs measure is much simpler at low density. Indeed when the diameter
ε of the particles tends to 0, the exclusion constraint between the particles becomes less
relevant. At ε = 0, the positions are independent and uniformly distributed in TdN under
the measure MN,β as there is no interaction. Thus we expect that for ρ small enough, the
Gibbs measure behaves as a perturbation of the product measure.

To quantify the properties of the Gibbs measure MN,β, we define for any fixed s > 1,
the marginal of order s by

M(s)
N,β(Zs) :=

∫
MN,β(ZN) dzs+1 . . . dzN . (2.21)

If the particles were not interacting then the measure M(s)
N,β would be equal to the Gibbs

measure Ms,β. The following proposition shows that both measures remain close at very
low density, in particular the particles become asymptotically independent when ρ → 0.
Note that Ms,β is equal to the measure M⊗s

β 1Ds
ε

up to the normalization factor Zs.

Proposition 2.4. Given β > 0, there is a constant C > 0 such that for any ρ 6 1/2 the following
bound holds uniformly in N and s 6 N.∣∣∣ (M(s)

N,β −M⊗s
β

)
1Ds

ε

∣∣∣ 6 Cs ρ M⊗s
β . (2.22)

Better estimates can be obtained and we refer the reader to [34] for a detail account.
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Proof.
Step 1. We are going to derive the following estimate on the partition function (2.19)

∀s 6 N, 1 6
ZN−s

ZN
6
(
1− ρ

)−s. (2.23)

The first inequality follows by removing the exclusion constraint on the last s particles

ZN 6 ZN−s .

Let us prove the second inequality in (2.23). Recall that

Zs+1 =
∫

Td(s+1)

(
∏

1 6 i 6=j 6 s+1
1|xi−xj|>ε

)
dXs+1 .

By Fubini’s theorem, we deduce that

Zs+1 =
∫

Tds

(∫
Td

(
∏

1 6 i 6 s
1|xi−xs+1|>ε

)
dxs+1

)(
∏

1 6 i 6=j 6 s
1|xi−xj|>ε

)
dXs .

Since the volume excluded by the s particles is at most sκdεd, we get∫
Td

(
∏

1 6 i 6 s
1|xi−xs+1|>ε

)
dxs+1 > 1− sκdεd,

where κdεd stands for the volume of one particle. This implies the lower bound

Zs+1 > Zs(1− sκdεd) > Zs(1− ρ) ,

where we used s 6 N and ρ = Nκdεd. Inequality (2.23) is then completed by induction

ZN > ZN−s
(
1− ρ

)s.

Step 2. We derive now Inequality (2.44). For s 6 N, the marginal is given by

M(s)
N,β(Zs) =

1
ZN

1{Zs∈Ds
ε} M⊗s

β

(
Vs
) ∫

Rd(N−s)
M⊗(N−s)

β

(
Vs+1,N

)
dVs+1,N

×
∫

Td(N−s)

(
∏

s+1 6 k 6=` 6 N
1|xk−x`|>ε

)(
∏

i 6 s<j
1|xi−xj|>ε

)
dXs+1,N ,

with the notation

dXs+1,N := dxs+1 . . . dxN and dVs+1,N := dvs+1 . . . dvN .

As the velocities are decoupled from the positions, the measure on the velocities factor-
izes. It remains to estimate the effect of the interaction between the positions of the first s
particles and the rest of the system. Using the symmetry, we get that

M(s)
N,β =

1
ZN

1{Zs∈Ds
ε}M

⊗s
β

(
ZN−s −Z [

(s+1,N)

)
(2.24)
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with the notation

Z [
(s+1,N) :=

∫
Td(N−s)

(
1− ∏

i 6 s<j
1|xi−xj|>ε

)
∏

s+1 6 k 6=` 6 N
1|xk−x`|>ε dXs+1,N .

This leads to the following decomposition

1{Zs∈Ds
ε}
(

M⊗s
β −M(s)

N,β

)
=
(

1− ZN−s

ZN

)
1{Zs∈Ds

ε}M
⊗s
β +

Z [
(s+1,N)

ZN
1{Zs∈Ds

ε}M
⊗s
β . (2.25)

Inequality (2.23) implies that there is C > 0 such that for all ρ 6 1/2

∀s 6 N,
∣∣∣1− ZN−s

ZN

∣∣∣ 6 (1− ρ
)−s − 1 6 Csρ.

Thus the first term in (2.25) is under control. To estimate the second term, we note that

0 6 1− ∏
i 6 s<j

1|xi−xj|>ε 6 ∑
i 6 s<j

1|xi−xj|<ε

leads to the bound

Z [
(s+1,N) 6 ∑

1 6 i 6 s

∫
Td(N−s)

(
∑

s+1 6 j 6 N
1|xi−xj|<ε

)
∏

s+1 6 k 6=` 6 N
1|xk−x`|>ε dXs+1,N .

Using the symmetry between the particles and Fubini’s equality, we get∫
Td(N−s)

(
∑

s+1 6 j 6 N
1|xi−xj|<ε

)
∏

s+1 6 k 6=l 6 N
1|xk−xl |>ε dXs+1,N

6 (N − s)
∫

Td
1|xi−xs+1|<ε dxs+1

∫
Td(N−s−1)

∏
s+2 6 k 6=l 6 N

1|xk−xl |>ε dXs+2,N

= (N − s)
(∫

Td
1|xi−xs+1|<ε dxs+1

)
× ZN−s−1,

where, in the second inequality, the interaction between s + 1 and the rest of the particles
has been removed and bounded from above by 1. We deduce that

Z [
(s+1,N) 6 s(N − s)εdκd ZN−s−1 6 sρ

ZN−s−1

ZN
ZN 6

s
(1− ρ)s ρZN , (2.26)

where the last equality follows from (2.23). This shows that the second term in (2.25) is
also bounded by Csρ, for some constant C.

The proof of Proposition 2.4 is complete.

Before concluding this section, let us stress that the Gibbs measures MN,β (2.18) are
not the only invariant measures : as the kinetic energy is conserved, any probability dis-
tribution of the form F(HN)MN,β is also invariant. Nevertheless, in the large N limit, the
Maxwellian turns out to be the only relevant measures for the marginal density. Indeed,
for any β > 0, if one considers UN the uniform measure on the set of codimension 1{

(V1, . . . , VN) ∈ RdN ; HN(VN) = βN
}
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then the marginals converge to a product of Maxwellian when N tends to infinity (this
result is known as Poincaré Lemma, see [24])

∀s > 1, U (s)
N

(law)−−−→
N→∞

M⊗s
β .

For this reason, it is enough to focus on the measures of the form MN,β.

2.1.4 BBGKY hierarchy

To describe the coarse grained behavior of a gas, it is enough to investigate the averaged
evolution of a few particles as the distribution fN(t, ZN), introduced in (2.12), is symmet-
ric with respect to all the labels. Thus for s < N, we introduce the marginal

f (s)N (t, Zs) :=
∫

fN(t, ZN)dzs+1 . . . dzN .

We are going to define the analog of the Liouville equation (2.14) for the marginals. This
is known as the BBGKY hierarchy. The initials stand for Bogoliubov, Born, Green, Kirk-
wood and Yvon who discovered this hierarchy of equations independently.

In the case s = 1, a formal computation shows that

∂t f (1)N (t, z1) + v1 · ∇x1 f (1)N (t, z1)

= (N − 1)εd−1
∫

Sd−1×Rd
f (2)N (t, x1, v′1, x1 + εν, v′2)

(
(v2 − v1) · ν

)
+

dνdv2 (2.27)

− (N − 1)εd−1
∫

Sd−1×Rd
f (2)N (t, x1, v1, x1 + εν, v2)

(
(v2 − v1) · ν

)
−dνdv2,

with the collision rule

v′1 := v1 −
(
(v1 − v2) · ν

)
ν, v′2 := v2 +

(
(v1 − v2) · ν

)
ν. (2.28)

Note that this collision rule is the inverse of the mapping (2.3) : v′1, v′2 should be inter-
preted as incoming velocities.

Equation (2.27) says that particle 1 travels in a straight line before colliding with an-
other of the (N− 1) remaining particles. As all the particles play a symmetric role, we can
assume that the collision occurs with particle 2 at position x2 = x1 + εν. The contribution
εd−1 comes from the fact that the collision occurs at the surface of particle 1 (which is a
sphere of diameter ε). Finally in the right hand side of the equation, the gain part corre-
sponds to a collision leading to an outgoing velocity v1, instead the loss part is associated
with a collision with an incoming velocity v1.

Before commenting further on equation (2.27), let us stress that solving the evolution
of a single particle density f (1)N requires the knowledge of the marginal f (2)N to compute
the collision term. Thus we are led to write the family of equations for all the marginals
which is known as the BBGKY hierarchy. The marginal of order s < N evolves in Ds

ε

according to

∂t f (s)N (t, Zs) +
s

∑
i=1

vi · ∇xi f (s)N (t, Zs) =
(
Cs,s+1 f (s+1)

N
)
(t, Zs) (2.29)
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with the boundary condition in ∂Ds
ε as in (2.15)

f (s)N (t, Z′s) = f (s)N (t, Zs).

The structure of the collision term is similar to the source term in (2.27)

Cs,s+1 = C+
s,s+1 − C−s,s+1, (2.30)

where the gain and the loss part of the operator are defined for any smooth function fs+1
by

C+
s,s+1 fs+1(Zs)

= (N − s)εd−1
s

∑
i=1

∫
fs+1(. . . , xi, v′i, . . . , xi + εν, v′s+1)

(
(vs+1 − vi) · ν

)
+

dνdvs+1 ,

C−s,s+1 fs+1(Zs)

= (N − s)εd−1
s

∑
i=1

∫
fs+1(. . . , xi, vi, . . . , xi + εν, vs+1)

(
(vs+1 − vi) · ν

)
−

dνdvs+1 .

The hierarchy stops at s = N which coincides with Liouville equation (2.14). Thus all the
informations on the dynamics are encoded at the level s = N and the other equations
are simply consequences of Liouville equation. However the hierarchy will be extremely
useful to describe the structure of the correlations between particles.

The collision operators (2.30) require to integrate functions on sets of codimension
1, i.e. on the surface of a particle. The flow is defined only for almost all initial data
(see Proposition 2.1), thus the measure fN and the marginals f (s)N are also defined almost
surely. This lack of regularity means that the equations (2.29) of the BBGKY hierarchy are
formal. To make sense of these equations, they need to be rewritten in the mild sense.
This has been achieved in [36, 14, 29, 10]. Below, we will follow an approach inspired by
[36, 29].

Recall that for any integer s, the group Ss associated with the transport in Ds
ε was

defined in (2.16) as

∀ϕ ∈ L∞(Ds
ε), Ss(t)ϕ : Zs 7→ ϕ

(
T−t(Zs)

)
. (2.31)

We are going to derive a mild version of the formal equation (2.29).

Proposition 2.5. Assume that the initial distribution fN(0) is bounded from above and supported
in D

N,R
ε for some R. Then for any times t, δ > 0, we get

f (s)N (t + δ) = Ss(δ) f (s)N (t) +
∫ δ

0
dτ Ss(δ− τ)Cs,s+1Ss+1(τ) f (s+1)

N (t) + O(δ2), (2.32)

where the error term depends on N, ε, R, ‖ fN(0)‖∞.

Before proving Proposition 2.5, let us first relate it to the BBGKY hierarchy. In formula
(2.32), the collision operator Cs,s+1 does not apply directly to f (s+1)

N but to Ss+1(τ) f (s+1)
N
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so that the additional time parameter τ compensates the missing dimension. The role of
the parameter τ will be made more transparent in the proof below.

Equation (2.29) can be recovered by taking the time derivative (i.e. by letting δ tend to
0 in (2.32)): the first term Ss(δ) is associated with the transport part and the second term
formally converges to the collision operator applied to f (s+1)

N (t).

Proof. For simplicity, we choose t = 0 as the proof does not depend on the structure of
the initial data. In fact, the error term depends on ‖ fN(t)‖∞, but one can deduce from
Proposition 2.2 that ‖ fN(t)‖∞ 6 ‖ fN(0)‖∞ thus there is no loss of generality to consider
only the case t = 0. We are going to prove (2.32) in the case s = 1

f (1)N (δ, z1) =
(

S1(δ) f (1)N (0)
)
(z1) +

∫ δ

0
dτ
(

S1(δ− τ)C1,2S2(τ) f (2)N (0)
)
(z1) + O(δ2).

(2.33)

The proof is split into several steps.

Step 1. Decomposition of the trajectory.
Let E be the expectation of the particle trajectories starting from the initial measure

fN(0). In particular, for any function ϕ in Td ×Rd, one can write

E
(

ϕ(z1(δ))
)
=
∫

f (1)N (δ, z1)ϕ(z1)dz1.

In the previous expectation, the coordinates of the other particles are averaged and their
exact positions are unknown. Thus, on a short time scale, the evolution of the first particle
will be very similar to a Markov chain with random kicks at random times. By analogy
with a Poisson process, the expectation can be decomposed as

E
(

ϕ(z1(δ))
)
=E

(
ϕ(z1(δ))1{1 has no collisions in [0,δ]}

)
+ E

(
ϕ(z1(δ))1{1 has one collision in [0,δ]}

)
+ O(δ2),

where the error term is bounded by |O(δ2)| 6 δ2C(N, ε, R)‖ fN(0)‖∞ ‖ϕ‖1. This error
term comes from the probability that particle 1 has more than one collision in a time δ
and it can be estimated as in the proof of Proposition 2.1. We are now going to evaluate
the two other contributions independently.

Step 2. Evaluating the probability of one collision during [0, δ].
For any i ∈ {2, . . . , N}, let Ai ⊂ TdN ×RdN be the set of initial configurations such

that particles 1 and i collide during the time interval [0, δ] and that they have no collision
with the other particles. In the set A2, the trajectories of particles 1 and 2 are strongly
constrained. Let z1 = (x1, v1) be the coordinates of particle 1 at time δ and suppose that
it collides at time τ ∈ [0, δ] with particle 2 (see Figure 2.4), then the coordinates of both
particles at time 0 are given by

Γ′(z1, v2, τ, ν) =
(
(x1 − (δ− τ)v1 − τv′1, v′1), (x1 − (δ− τ)v1 + εν− τv′2, v′2)

)
.

In this expression, v1, v2 are outgoing velocities so that (v2 − v1) · ν > 0 and v′1, v′2 are the
corresponding incoming velocities at time 0 given by (2.28) (see Figure 2.4). The mapping
Γ′(z1, v2, τ, ν) is the composition of
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δ z1

v1

v2

v′2v′1

τ

δ z1

v1

v2

τ

v1 v2

Figure 2.4: In both pictures, the vertical axis represents the time and the horizontal axis repre-
sents the space Td. Following the backward flow from the coordinate z1 = (x1, v1) of the first
particle at time δ, a new particle is created at time τ. The left picture depicts the map Γ′ associated
with the scattering, instead the right picture corresponds to the map Γ.

• the backward transport for the first particle during a time δ− τ,
• the creation at time τ of a new particle at position x1 − (δ− τ)v1 + εν with velocity

v′2 and the deflection of the velocity v1 into v′1,
• the backward transport of both particles from time τ up to time 0.

Thus Γ′ is defined on the set

G+ =
{
(z1, v2, τ, ν) ∈ Td ×BR ×BR × [0, δ]× Sd−1; (v2 − v1) · ν > 0

}
,

where the velocities are restricted to the set BR = {v ∈ Rd, |v| 6 R} as fN(0) is sup-
ported in D

N,R
ε . Since the velocities are bounded, the particle trajectories will not wrap

around the periodic domain Td for δ small enough so that the map Γ′ is a bijection from
G+ to Γ′

(
G+
)
⊂ T2d ×R2d. The following lemma allows us to rephrase the randomness

of the initial data in terms of a random scattering of particle 1.

Lemma 2.6. The change of variables Γ′ from G+ to Γ′
(
G+
)
⊂ T2d ×R2d maps the measure

εd−1((v2 − v1) · ν)+ dz1dv2dτdν onto dz1dz2.

This lemma is illustrated in Figure 2.5 and its proof is postponed to the end of this sec-
tion. As a consequence, the initial configuration inA2 can be encoded by {z1, v2, τ, ν, Z3,N}
where Z3,N = {z3, z4, . . . , zN} stands for the remaining particles. Using this change of
variables, we can write

E
(

ϕ(z1(δ))1{1 has one collision in [0, δ] with 2}
)
=
∫

dZN fN(0, ZN) ϕ(z1(δ))1{ZN∈A2}

= εd−1
∫
((v2 − v1) · ν)+ dz1dv2dτdν

∫
dZ3,N1{(Γ′(z1,v2,τ,ν),Z3,N)∈A2}

× fN
(
0, Γ′(z1, v2, τ, ν), Z3,N

)
ϕ(z1).

The set A2 imposes two constraints on the initial data : first that particles 1 and 2 collide,
second that the other particles do not collide with 1,2. Since the first constraint has been
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εν

v2 − v1

|v2 − v1|dτ

ε ν · v2−v1|v2−v1|
dν

Figure 2.5: This picture illustrates the change of measure of Lemma 2.6 in dimension 2. The
position x2 is parametrized by a point on the surface of the particle 1 (determined by the vector
εν), the time τ and the relative velocity v2 − v1. Thus a small variation of time dτ and angle dν

means that x2 will belong to a box of length |v2 − v1|dτ and width (ν·(v2−v1))+
|v2−v1| dν.

taken into account by the representation Γ′(z1, v2, τ, ν), the event A2 can be neglected as
any further collision would lead to an event of probability of order δ2. Thus we get

E
(

ϕ(z1(δ))1{1 has one collision in [0, δ] with 2}
)

(2.34)

= εd−1
∫
((v2 − v1) · ν)+ dz1dv2dτdν

∫
dZ3,N fN

(
0, Γ′(z1, v2, τ, ν), Z3,N

)
ϕ(z1) + O(δ2)

= εd−1
∫

f (2)N
(
0, Γ′(z1, v2, τ, ν)

)
ϕ(z1)((v2 − v1) · ν)+ dz1dv2dτdν + O(δ2),

where the second marginal is obtained by integrating over the remaining particles. All
the particles play a symmetric role, thus we deduce that

E
(

ϕ(z1(δ))1{1 has one collision in [0, δ]}
)

= (N − 1)εd−1
∫

f (2)N
(
0, Γ′(z1, v2, τ, ν)

)
ϕ(z1)((v2 − v1) · ν)+ dz1dv2dτdν + O(δ2).

The mapping Γ′ can be rewritten in terms of the transport operator S2 and the creation
operator C+

1,2 introduced in (2.30)

E
(

ϕ(z1(δ))1{1 has one collision in [0, δ]}
)

(2.35)

=
∫

dz1ϕ(z1)
∫ δ

0
dτ
(

S1(δ− τ)C+
1,2S2(τ) f (2)N (0)

)
(z1) + O(δ2).

This allows us to identify one of the contribution in (2.33).

Step 3. Evaluating the probability of not colliding during [0, δ].
We will proceed in a similar way to estimate the probability that particle 1 has no

collision in [0, δ]. Any initial data in
⋂N

i=2Ac
i would lead to one of the following event

during the time interval [0, δ] :

• particle 1 has no collision,
• particle 1 collides more than once,
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• a particle collides before colliding with 1.

The last two events involve multiple collisions in the time interval [0, δ] and their proba-
bility can therefore be estimated from above by O(δ2). Thus we can write

E
(

ϕ(z1(δ))1{1 has no collisions in [0,δ]}
)

=
∫

dZN fN(0, ZN) ϕ
(
(x1 + δv1, v1)

) N

∏
i=2

(
1− 1{ZN∈Ai}

)
+ O(δ2)

=
∫

dZN fN(0, ZN) ϕ
(
(x1 + δv1, v1)

)
−

N

∑
i=2

∫
Ai

dZN fN(0, ZN)ϕ
(
(x1 + δv1, v1)

)
+ O(δ2)

=
∫

dz1 f (1)N (0, z1) ϕ
(
(x1 + δv1, v1)

)
− (N − 1)

∫
A2

dZN fN(0, ZN)ϕ
(
(x1 + δv1, v1)

)
+ O(δ2),

where we used, in the second equality, that constraining more than one particle to hit
particle 1 has a cost at least δ2 and, in the third equality, we used the symmetry between
the particles.

We are now going to change variable and parametrize the previous formula by the
coordinates of particle 1 at time δ. The first term corresponds to the free transport part in
(2.33) ∫

dz1 f (1)N (0, z1) ϕ
(
(x1 + δv1, v1)

)
=
∫

dz1 f (1)N (0, (x1 − δv1, v1)) ϕ
(
z1
)

=
∫

dz1ϕ
(
z1
)(

S1(δ) f (1)N (0)
)
(z1).

We turn now to the second term which involves A2. Let z1 = (x1, v1) be the coordinates
of particle 1 at time δ, then by analogy with the mapping Γ′, we define

Γ(z1, v2, τ, ν) =
(
(x1 − δv1, v1), (x1 − (δ− τ)v1 + εν− τv2, v2)

)
, (2.36)

for configurations with incoming velocities, i.e. configurations in the set

G− =
{
(z1, v2, τ, ν) ∈ Td ×BR ×BR × [0, δ]× Sd−1; (v2 − v1) · ν < 0

}
.

This map should be interpreted as the free transport for particle 1 and a direct collision
between particles 1 and 2 at time τ (see Figure 2.4). Following the proof of Lemma 2.6,
one can check that Γ is a bijection from G− to Γ′

(
G−
)
⊂ T2d × R2d which maps the

measure εd−1((v2 − v1) · ν)− dz1dv2dsdν onto dz1dz2. Thus we can write∫
A2

dZN fN(0, ZN)ϕ
(
(x1 + δv1, v1)

)
= εd−1

∫
((v2 − v1) · ν)− dz1dv2dτdν

∫
dZ3,N1{(Γ(z1,v2,τ,ν),Z3,N)∈A2}

× fN
(
0, Γ(z1, v2, τ, ν), Z3,N

)
ϕ(z1)

= εd−1
∫

f (2)N
(
0, Γ(z1, v2, τ, ν)

)
ϕ(z1)((v2 − v1) · ν)− dz1dv2dτdν + O(δ2),
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where the restriction in A2 has been removed by using the same argument as in (2.34).
As in (2.35), this last term can be rewritten in terms of the collision operator

(N − 1)
∫
A2

dZN fN(0, ZN)ϕ
(
(x1 + δv1, v1)

)
=
∫

dz1ϕ(z1)
∫ δ

0
dτ
(

S1(δ− τ)C−1,2S2(τ) f (2)N (0)
)
(z1) + O(δ2).

This completes the derivation of (2.33) for the case s = 1.

Step 3. The marginal of order s.
The structure of formula (2.32) is similar to the one for a single particle (2.33). In a

short time interval, the s particles evolve according to free transport and may collide at
most once with one of the (N − s) particles in the background. Thus one would like to
consider the s particles as a cloud and decompose its evolution during [0, δ] into 3 events:

• the cloud is not impacted by background particles,
• one particle in the background collides with the cloud,
• at least two particles in the background collide with the cloud.

When implementing the previous procedure, new difficulties occur if a background
particle collides successively with several of the s particles. This cannot be considered
as an event of small probability because identity (2.32) holds for almost all the configu-
rations Zs and not only in average. These events are delicate to control and require to
analyse subtle cancellations in (2.32). We refer to [36] for a complete proof.

Proof of Lemma 2.6. We first derive the change of measure for the simpler map

γ(z1, v2, τ, ν) =
(
(x1 − τv1, v1), (x1 + εν− τv2, v2)

)
. (2.37)

For simplicity, we restrict to dimension d = 2 and write the coordinates as

x1 =

(
x1,1

x1,2

)
, v1 =

(
v1,1

v1,2

)
, v2 =

(
v2,1

v2,2

)
, ν =

(
cos(ϑ)
sin(ϑ)

)
.

As the velocities are unchanged by γ, we focus on the positions(
x1,1 + τv1,1

x1,2 + τv1,2

)
and

(
x1,1 + ε cos(ϑ) + τv2,1

x1,2 + ε sin(ϑ) + τv2,2

)
. (2.38)

The Jacobian associated with this mapping is∣∣∣∣∣∣∣∣
1 0 v1,1 0
0 1 v1,2 0
1 0 v2,1 −ε sin(ϑ)
0 1 v2,2 ε cos(ϑ)

∣∣∣∣∣∣∣∣ = ε
(

sin(ϑ)(v1,2 − v2,2) + cos(ϑ)(v1,1 − v2,1)
)
= εν · (v1 − v2).

The map Γ′ is obtained from γ by composition with the free transport and then with
the scattering map (v1, v2, ν) 7→ (v′1, v′2, ν). Both mapping are bijective and have unit
Jacobian. This completes the derivation of Lemma 2.6 in dimension 2. A similar proof
can be achieved in higher dimension leading to a surface factor εd−1 instead of ε.
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2.2 Boltzmann-Grad limit

As explained in Section 1.3, the ultimate goal is to derive the fluid hydrodynamic equa-
tions by taking a scaling limit N → ∞ while keeping the particle density ρ = Nκdεd of
order 1. For large N, this leads to very complicated interactions between the particles
and there is, so far, no mathematical derivation of the corresponding macroscopic limit
(in fact the limit depends on the time and length scales at which the system is observed).

To simplify the problem, one would like to describe the statistical properties of the gas
at the intermediate mesoscopic level so that a typical particle has only a finite number of
collisions in a time scale of order 1. This can be achieved by considering a very dilute gas
regime, i.e. by tuning N and ε according to the Boltzmann-Grad scaling

N → ∞, ε→ 0 such that Nεd−1 = α, (2.39)

where α > 0 is a fixed parameter. In the Boltzmann-Grad scaling, the density ρ scales
like αε and tends to 0 as ε vanishes (i.e. N when tends to infinity). A typical particle, with
velocity of order 1, should collide with another particle in a time of order 1/α. Indeed a
particle moving in a straight line during a time t = 1/α will cover a cylinder of volume
of order εd−1/α (see Figure 2.6) and assuming that the N other particles are uniformly
distributed in the domain Td, then the probability that one particle belongs to this domain
is of order N × εd−1/α = 1 in the Boltzmann-Grad scaling.

tv

εd−1

Figure 2.6: During a time t, a particle moving in a straight line covers a cylinder of volume
tvεd−1.

It is expected that asymptotically, in the dilute regime, the density f (t, x, v) of a typical
particle in the hard-sphere gas follows an autonomous equation known as Boltzmann
equation

∂t f + v · ∇x f = α Q( f , f ),

Q( f , f )(x, v) :=
∫

Sd−1×Rd

(
f (x, v′) f (x, v′2)− f (x, v) f (x, v2)

)
b(v2 − v, ν) dv2dν,

(2.40)

where the collision rules are the same as in (2.28)

v′ = v−
(
(v− v2) · ν

)
ν, v′2 = v2 +

(
(v− v2) · ν

)
ν.

For hard-sphere dynamics, the cross section is given by

b(v2 − v, ν) =
(
(v2 − v) · ν

)
+

.

More general Newtonian dynamics (1.8) with an interaction potential Φ would lead to
a different cross-section b, but the structure of the collision term Q is expected to be un-
changed (provided the potential Φ decays fast enough to 0 at infinity).
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Before reviewing the mathematical results on the convergence of the particle system,
let us give a heuristic justification of the Boltzmann equation. The density f (t, x, v) of
a typical particle should be understood as the first marginal f (1)N in the hard-sphere gas.
Equation (2.27) for the evolution of this marginal is strongly reminiscent of the Boltzmann
equation

∂t f (1)N (t, z1) + v1 · ∇x1 f (1)N (t, z1) (2.41)

= (N − 1)εd−1︸ ︷︷ ︸
'α

∫
Sd−1×Rd

(
f (2)N (t, x1, v′1, x1 + εν, v′2)− f (2)N (t, x1, v1, x1 − εν, v2)

)
×
(
(v2 − v1) · ν

)
+

dνdv2,

where we used the change of variable ν→ −ν in the loss term of the collision operator in
order to factorize the cross-section. Note that the incoming particle is located at x1 − εν
after this change of variables. The Boltzmann-Grad scaling has been precisely tuned so
that the prefactor in (2.41) converges to α. However, equation (2.41) keeps still a trace
of the microscopic structure through the parameters N, ε. The main difficulty to recover
the Boltzmann equation from (2.41) is to rewrite the marginal of order 2 in terms of f (1)N .
Boltzmann’s intuition was that in a very dilute gas, the particles should be almost inde-
pendent and therefore the second marginal should factorize when ε is close to 0. In the
article [7, 9] published in 1872, Boltzmann stated the molecular chaos assumption

f (2)N (t, x1, v′1, x1 + εν, v′2) ≈ f (1)N (t, x1, v′1) f (1)N (t, x1, v′2),

f (2)N (t, x1, v1, x1 − εν, v2) ≈ f (1)N (t, x1, v1) f (1)N (t, x1, v2),
(2.42)

which formally implies the Boltzmann equation from (2.41). Note also that in the limit
ε → 0, the position of both particles are identified. In fact Boltzmann’s predictions were
much less quantitative than the claim (2.42) and the precise Boltzmann-Grad scaling
(2.39) was formalized much later by H. Grad in [17].

The molecular chaos assumption has strong implications as it relates the microscopic
and the mesoscopic levels and formally allows to encode the behavior of the gas by a
single equation (2.40). In Section 2.3.1, we will see that the Boltzmann equation does not
keep track of all the microscopic properties of the system and for this reason, its validity
has been challenged by several physicists at the time. Starting from the work by Grad
[17], many mathematicians have been working to justify rigorously the molecular chaos
assumption and the convergence of the particle system towards the Boltzmann equation.
We will review below some of these works.

Let us start by checking the validity of the molecular chaos assumption at time 0 for
a large class of initial data. We would like to prepare the microscopic system so that each
particle is sampled in Td ×Rd according to a probability measure with a smooth density
f0(x, v)Mβ(v) ∫

Td×Rd
f0(x, v)Mβ(v)dxdv = 1.

To take into account the exclusion constraint between the hard spheres, we consider ini-
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tial distributions of the form

fN(0, ZN) =
1

Z f0
N

( N

∏
i=1

f0(zi)
)

MN,β(ZN), (2.43)

whereZ f0
N is the normalization of the probability measure. At low density, Proposition 2.4

ensures that the marginals of the Gibbs measures are very close to a product measure. In
the Boltzmann-Grad limit, the density ρ vanishes as ε

α and the proof of Proposition 2.4 can
be applied to show that the marginals of the initial data (2.43) factorize asymptotically.

Proposition 2.7. Given β > 0, there is a constant C > 0 (depending linearly on ‖ f0‖∞) such
that in the Boltzmann-Grad limit, the following bound holds uniformly in s 6 N for the marginals
f (s)N (0) of the initial data ∣∣∣ ( f (s)N (0)− f⊗s

0 M⊗s
β

)
1Ds

ε

∣∣∣ 6 Cs αε M⊗s
β , (2.44)

with the notation

f⊗s
0 (Zs) =

s

∏
i=1

f0(zi).

This result shows that the molecular assumption (2.42) holds for the initial data (2.43)
in the limit ε→ 0.

Remark 2.8. We stress the fact that the upper bound in (2.44) is relevant only for s� log N and
globally the particles remain correlated even in the Boltzmann-Grad limit. Indeed, the exclusion
constraint amounts to conditioning the Lebesgue measure on TdN by a set whose probability is
given by ∫

TdN
∏

1 6 i 6=j 6 N
1|xi−xj|>ε dXN = ZN ,

and this probability vanishes in the thermodynamic limit in dimension d > 3. It can be shown that
the right hand side of estimate (2.23) captures the correct scaling of ZN in the Boltzmann-Grad
limit, i.e.

ZN ' exp (−Nαε) ' exp
(
−α

d
d−1 N

d−2
d−1

)
,

where we used that ε1−d = N
α . Thus if d > 3, then ZN tends to 0 which means that in the

thermodynamic limit, the Gibbs measure and the Lebesgue measure become singular.

In a breakthrough work [22], Lanford devised an amazing strategy of proof to estab-
lish the convergence of the hard-sphere dynamics in the low density limit. The proof
has then been improved in a series of works by Cercignani, Illner and Pulvirenti [10],
Uchiyama [43], Spohn [38], Gallagher, Saint-Raymond and Texier [14] leading to the fol-
lowing theorem.

Theorem 2.9. Consider a gas of N hard spheres, initially distributed according to the distribution
fN(0) introduced in (2.43) where f0Mβ is a continuous probability density. Then, there exists
T∗ > 0 (depending only on β and ‖ f0‖∞) such that, in the Boltzmann-Grad limit (2.39), the first
marginal f (1)N converges on the time interval [0, T∗/α] to the solution of the Boltzmann equation
(2.40).
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The case of particles interacting with a short range potential Φ (1.8) was first inves-
tigated by King [20] and a complete proof can be found in [14, 28]. Theorem 2.9 will be
derived in Chapter 3 as well as a partial form of the molecular chaos (2.42). Note that the
convergence is valid only for short times, so that Theorem 2.9 cannot be used to recover
the hydrodynamic equations as explained in Section 1.3.

By considering a modified particle dynamics with stochastic collisions, F. Rezakhan-
lou was able to derive the convergence to the Boltzmann equation for large times [32] as
well as the stochastic fluctuations around the limit [31]. We refer to [33] for a review of
these results. Boltzmann collision operator has a strong probabilist flavor and several
stochastic particle systems have been devised to derive the homogeneous Boltzmann
equation. We will not comment further on these approaches as they follow a different
route from the one presented in these notes, but we refer the reader to [8, 26] for an
overview.

2.3 The paradox of the irreversibility

In 1872, Boltzmann’s ideas were revolutionary as they opened the way to the descrip-
tion of non-equilibrium phenomena by macroscopic equations. This change of paradigm
in the atomistic description led ultimately to the kinetic theory which we know nowa-
days. However, the Boltzmann equation has first been heavily criticized as it seems to
violate some basic physical principles. The first objection was that the time reversibility
of the microscopic dynamics is broken by the Boltzmann equation which is irreversible.
This is related to the famous H-theorem which will be commented in Section 2.3.1. A
second paradox, raised by Zermelo in 1896, comes from an apparent contradiction with
the Poincaré recurrence Theorem. Indeed, the hard-sphere flow, which is Hamiltonian,
is such that any microscopic trajectory of the configurations will come back arbitrarily
close to its initial data after a recurrence time. This again appears to be incompatible with
the irreversibility of the Boltzmann equation which relaxes towards an equilibrium. In
Sections 2.3.2 and 2.3.3, we will introduce two simple dynamics which show that these
apparent paradoxes can be solved provided that the microscopic system is considered at
an appropriate time scale. We refer to the book [9] for a detailed historical account of the
controversies triggered by Boltzmann’s work.

2.3.1 H-theorem

Boltzmann understood that the entropy, defined as

H(t) =
∫

Td×Rd
dxdv f (t, x, v) log f (t, x, v) (2.45)

is monotonous along the flow of the Boltzmann equation (see Theorem 2.10 below) and
he related this fact to the second law of thermodynamics. The physical consequence of
the entropy dissipation is huge as it implies that Boltzmann equation is irreversible which
is in contrast to the reversibility of the microscopic hard-sphere dynamics. This paradox
was raised by Thomson [41] and Loschmidt [25].

The following theorem shows that the entropy decays in time (note that in physics,
entropy is defined with the opposite sign and it is therefore increasing).
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Theorem 2.10 (H-Theorem). The entropy t 7→ H(t) associated with a solution of Boltzmann
equation is nonincreasing. The microscopic entropy

Ĥ(t) =
∫

DN
ε

dZN fN(t, ZN) log f (t, ZN),

associated with the hard-sphere dynamics is constant in time.

Proof.
Step 1. The mesoscopic entropy.

For any function ϕ and any x in Td, we are first going to derive the following prelim-
inary result∫

Q( f , f )(x, v)ϕ(v)dv =
1
4

∫ (
f (x, v′) f (x, v′1)− f (x, v) f (x, v1)

)
(2.46)

×
(

ϕ(v) + ϕ(v1)− ϕ(v′)− ϕ(v′1)
)(

(v1 − v) · ν
)
+

dνdv1dv.

This a consequence from the identities below∫
Q( f , f )(x, v)ϕ(v)dv

=
∫ (

f (x, v′) f (x, v′1)− f (x, v) f (x, v1)
)

ϕ(v)
(
(v1 − v) · ν

)
+

dνdv1dv

=
1
2

∫ (
f (x, v′) f (x, v′1)− f (x, v) f (x, v1)

)(
ϕ(v) + ϕ(v1)

)(
(v1 − v) · ν

)
+

dνdv1dv

= −1
2

∫ (
f (x, v′) f (x, v′1)− f (x, v) f (x, v1)

)(
ϕ(v′) + ϕ(v′1)

)(
(v1 − v) · ν

)
+

dνdv1dv,

where we used successively the symmetry between the variables v, v1 and the fact that
the mapping (v, v1, ν) 7→ (v′, v′1, ν) is an involution which preserves Lebesgue measure.

As x is fixed, (2.46) can be applied to the function ϕ(v) = log f (x, v), so that∫
Q( f , f ) log f (x, v)dv = −1

4

∫ (
f (x, v′) f (x, v′1)− f (x, v) f (x, v1)

)
log

f (x, v′) f (x, v′1)
f (x, v) f (x, v1)(

(v1 − v) · ν
)
+

dνdv1dv 6 0, (2.47)

where the inequality follows from the fact that

∀a, b ∈ R+, (a− b) log
a
b
> 0.

Taking the derivative of the entropy (2.45) along the flow of the Boltzmann equation, we
get

∂H(t) =
∫

Td×Rd
dx dv ∂t f (t, x, v)

(
1 + log f (t, x, v)

)
=
∫

Td×Rd
dx dv div

(
v f log f

)
+ Q( f , f ) log f (t, x, v) 6 0,

where the first term in the integral vanishes by integration by part and the second is non
positive thanks to (2.47). This completes the first assertion.
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Step 2. The microscopic entropy.
As the flow T· of the microscopic dynamics leaves the Lebesgue measure invariant,

we get

Ĥ(t) =
∫

DN
ε

dZN fN
(
0, T−t(ZN)

)
log f

(
0, T−t(ZN)

)
= Ĥ(0).

Thus the microscopic entropy is time independent.

The H-Theorem shows that there is a discrepancy between the reversible microscopic
dynamics with constant entropy and the entropy dissipation in the kinetic equation. As
a consequence, the molecular chaos assumption (2.42) cannot be valid for the full distri-
bution on N particles. Indeed, if the following approximation by a product measure

fN(t, ZN) ≈
N

∏
i=1

f (t, xi, vi)

was correct then both entropies would be comparable

Ĥ(t) =
∫

DN
ε

dZN fN(t, ZN) log f (t, ZN) ≈ N
∫

Td×Rd
dxdv f (t, x, v) log f (t, x, v) = NH(t).

and this would contradict the H-Theorem. As a consequence, the molecular chaos as-
sumption should be questioned and a mathematical justification will be given in Section
3.5. A more in-depth physical discussion on the irreversibility and the arrow of time can
be found in [23].

Even though the microscopic evolution is deterministic, the mesoscopic description
of the system has a strong probabilist flavor. In particular, we will see in Chapter 4 that a
tagged particle behaves as a brownian motion after rescaling. To emphasize the analogy
with stochastic processes, we recall below the well known counterpart of the H-theorem
for Markov chains. For Markov chains, the decay of the relative entropy characterizes
the relaxation towards the invariant measure.

For simplicity, we consider a Markov chain {Xt}t > 0 taking values in R with semi-
group at time t given by Pt(x, dy) = Pt(x, y)dy. Suppose also that there exists an invariant
measure π(x)dx so that

∀y ∈ R,
∫

R
dx π(x)Pt(x, y) = π(y).

For any measure µ on R, the relative entropy of µ with respect to π is defined as

H
(
µ
∣∣π) = ∫

R

(
µ(x)
π(x)

log
µ(x)
π(x)

)
π(x) dx .

If µ is not absolutely continuous with respect to π, the relative entropy is infinite. Note
that the entropy defined in (2.45) is the relative entropy of f (t, x, v) with respect to the
measure Mβ(v)dxdv (which is invariant for the Boltzmann equation) with an additional
energy term β

2

∫
v2 f (t, x, v)dxdv. Since the energy is conserved by the Boltzmann equa-

tion, the entropy H(t) or the relative entropy are both nonincreasing.
The following theorem shows that the relative entropy associated with the distribu-

tion of the Markov chain is monotonous in time.
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Theorem 2.11. For any initial probability µ and any time t > 0, one has

H
(
µPt
∣∣π) ≤H

(
µ
∣∣π).

Proof. We set φ(u) = u log(u), then

H
(
µPt
∣∣π) = ∫

R
φ

(
1

π(x)

∫
R

dy µ(y)Pt(y, x)
)

π(x) dx

=
∫

R
φ

(∫
R

dy
µ(y)
π(y)

π(y)Pt(y, x)
π(x)

)
π(x) dx.

Since π is an invariant measure, one can check that y 7→ π(y)Pt(y,x)
π(x) is a probability density

on R ∫
R

dy
π(y)Pt(y, x)

π(x)
=

1
π(x)

∫
R

dy π(y)Pt(y, x) =
π(x)
π(x)

= 1.

Thus by Jensen inequality, one has

H
(
µP
∣∣π) 6 ∫

R
dxπ(x)

∫
R

dy
π(y)Pt(y, x)

π(x)
φ

(
µ(y)
π(y)

)
=
∫

R
dy
∫

R
dxπ(y)Pt(y, x)φ

(
µ(y)
π(y)

)
.

Using that
∫

R
dxPt(y, x) = 1, we conclude Theorem 2.11

H
(
µPt
∣∣π) 6 H

(
µ
∣∣π).

2.3.2 Kac ring model

This section is devoted to a simple example of deterministic dynamics exhibiting both a
relaxation towards an equilibrium and a recurrence property. This model was devised
by Mark Kac in [19] and a very complete review of the model as well as of its physical
implications can be found in the article [16].

Figure 2.7: Each picture represents a ring with N = 16 colored sites and n = 6 markers depicted
by crosses on some edges. The right configuration is deduced from the left configuration after 1
step of the dynamics.
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We consider a system of N sites on a ring and on each site, there is a black or a white
ball. Independently on each edge, a marker is placed with probability p < 1 or not with
probability 1− p. The markers are fixed once for all and the initial configuration has N
black balls. At each time step, the balls move clockwise to their neighboring sites. If
during a move, a ball crosses an edge with a marker, then this ball changes color (see
Figure 2.7).

These dynamical rules are deterministic and reversible: by applying the same rules,
but rotating counterclockwise the evolution is reversed. Moreover the system is recurrent
because after 2N steps, each ball will be in its initial position and it will have encountered
an even number of markers so that its color will be the same as at time 0. In fact, if the
number of markers is even initially, then after only N steps, the initial data is recovered.
This second property plays an analogous role to the Poincaré recurrence theorem.

To model the system, it is easier to encode the color of the ball at site i and time t by
ηi(t) ∈ {−1, 1}. The presence of a marker on the edge (i, i + 1) is represented by mi = −1
and its absence by mi = 1. The markers are initially placed randomly so that

P(mi = −1) = p <
1
2

, P(mi = 1) = 1− p.

Thus the colors change according to the rule

∀i ∈ {1, . . . , N}, ηi+1(t + 1) = mi ηi(t),

on the ring the index i = N + 1 is identified with i = 1. Initially all the balls have the
same color ηi(0) = 1 and we are interested in the mean evolution of these colors

∀t > 1, C(t) =
N

∑
i=1

ηi(t) =
N

∑
i=1

mi−1ηi−1(t− 1) =
N

∑
i=1

mi−1mi−2 . . . mi−tηi−t(0),

where the indices should be understood modulo N. Using the periodicity of the domain,
we recover that for C(2N) = C(0).

Recall that initially ηi(0) = 1 for all site i. Averaging over the markers and using the
fact that all the edges play a symmetric role, we get

E
(
C(t)

)
= NE

(
m1m2 . . . mt

)
.

For t < N, all the markers are independent and the expectation can be computed

E
(
C(t)

)
= NE(m1)

t = N(1− 2p)t.

Since t < N, the expectation decays exponentially fast and the memory of the initial
condition is lost. However correlations start building up for t > N and E

(
C(0)

)
=

N. Thus this deterministic dynamics exhibits both a fast decay to some disordered state
and a recurrence property on larger time scales. This example shows that there is no
contradiction to describe an Hamiltonian evolution (as the hard-sphere dynamics) by an
irreversible equation (as the Boltzmann equation) if the comparison is achieved on an
appropriate time scale.



36 CHAPTER 2. HARD-SPHERE DYNAMICS

2.3.3 Ehrenfest model

This model has been proposed by Paul and Tatiana Ehrenfest in 1907 [13] in order to
settle the controversies on the Boltzmann equation. A beautifully account on this model
by Mark Kac can be found in the paper [18].

Figure 2.8: At an early stage in the Ehrenfest model, the atoms are mainly on the left side.

Consider a container split into two parts by a wall. The left part of the container is
filled by a gas and the right part empty (see Figure 2.8). At time 0, a tiny hole is punctured
in the wall so that the gas can reach both sides of the container. The aim of the Ehrenfest
model is to describe the relaxation of the gas to its equilibrium state.

To simplify the model, we consider a discrete time and assume that at each time step
one atom is chosen randomly among all the atoms and transferred from one side to the
other. Let Xn be the number of atoms in the left compartment at time n and suppose
that initially X0 = K. Then {Xn}n > 1 is a Markov chain taking values in {0, . . . , K} with
transition matrix

P
(
Xn+1 = `− 1

∣∣Xn = `
)
=

`

K
, P

(
Xn+1 = `+ 1

∣∣Xn = `
)
=

K− `

K
.

When the system is at equilibrium, the atoms are uniformly distributed in both sides so
that the invariant measure of this Markov chain is

∀` ∈ {0, . . . , K}, π(`) =
1

2K

(
K
`

)
.

One can easily check that the Markov chain is reversible with respect to π

π(`)P(`, `+ 1) = π(`+ 1)P(`+ 1, `).

This relation can be interpreted as the stochastic counterpart of the reversibility of the
hard-sphere dynamics. Furthermore the Markov chain is irreducible which means that
it will visit any configuration in {0, . . . , K} an infinite number of times. If initially the
left compartment contains all the particles, then the atoms will first diffuse in the whole
container, but then after a very long time, they will eventually all return to the left side.
This behavior is analogous to the one predicted by the Poincaré recurrence theorem for
Hamiltonian systems.

Thus this simple stochastic model captures two important features of the gas dynam-
ics which are not part of Boltzmann’s theory. Fortunately, Ehrenfest model is much sim-
pler to handle than a hard-sphere gas and exact computations can be achieved in order
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to quantify the phenomena at play. If the system starts initially with X0 = `, then the
expectation of T`, the first return time of the Markov chain, at ` is given by

E`(T`) =
1

π(`)
= 2K `!(K− `)!

K!

where the subscript in the expectation E` stands for the initial state X0 = `.
When K is large, say of the order 1023, then

EK(TK) = 2K et EK/2(TK/2) '
√

2πK .

As a consequence, the first return time to K/2 (which is the mean at equilibrium) will be
infinitely shorter than the return time to K. This latter time is so large that it will never
be observed in practice.

The Boltzmann equation describes the typical behavior of a gas and therefore it is
conjectured to be valid only on much shorter time scales than the ones involved in the
Poincaré recurrence Theorem. Thus the Ehrenfest model solves the apparent contradic-
tion of the paradox raised by Zermelo.
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Chapter 3

Convergence to the Boltzmann
equation

3.1 Introduction

The goal of this chapter is to prove the convergence, stated in Theorem 2.9, of the hard-
sphere dynamics towards the Boltzmann equation. The following result is a more com-
plete version of Theorem 2.9.

Theorem 3.1. Consider a gas of N hard spheres, initially distributed according to the distribution

fN(0, ZN) =
1

Z f0
N

( N

∏
i=1

f0(zi)
)

MN,β(ZN),

introduced in (2.43) where the function f0 satisfies∫
Td×Rd

dxdv f0(x, v)Mβ(v) = 1,
∥∥ f0
∥∥

L∞ 6 exp(−µ) and
∥∥∇x f0

∥∥
L∞ 6 C, (3.1)

for some µ in R and C > 0.
There exists T∗ > 0 (depending only on β, µ and on the dimension d) such that the Boltzmann

equation (first introduced in (2.40))

∂tg + v · ∇xg = α Q(g, g) with initial data g(0, z) = f0(z)Mβ(v) (3.2)

has a unique solution on the time interval [0, T∗/α] and the first marginal of the particle system
converges to this solution in the Boltzmann-Grad limit Nεd−1 = α (2.39)

∀t ∈
[

0,
T∗

α

]
, z ∈ Td ×Rd, lim

N→∞
f (1)N (t, z) = g(t, z). (3.3)

Furthermore, the propagation of chaos holds for any time t in [0, T∗/α] and for almost all
configurations Zs in Tds ×Rds

lim
N→∞

f (s)N (t, Zs) =
s

∏
i=1

g(t, zi). (3.4)

We stress the fact that the convergence holds only up to a short time of order 1/α
(depending on the initial data).

39



40 CHAPTER 3. CONVERGENCE TO THE BOLTZMANN EQUATION

3.2 The series expansion

3.2.1 Duhamel representation

The marginals are the relevant quantities to describe the gas and they evolve according
to the BBGKY hierarchy introduced in Section 2.1.4. Recall that, the evolution of the
marginal f (s)N of order s is related, formally, to the marginal f (s+1)

N of higher order by the
following equation

∂t f (s)N +
s

∑
i=1

vi · ∇xi f (s)N = αCs,s+1 f (s+1)
N , (3.5)

with specular reflection on the boundary ∂Ds
ε and the collision operator Cs,s+1 is given by

(
Cs,s+1 f (s+1)

N
)
(Zs) :=

(N − s)εd−1

α

×
( s

∑
i=1

∫
Sd−1×Rd

f (s+1)
N (. . . , xi, v′i, . . . , xi + εν, v′s+1)

(
(vs+1 − vi) · ν

)
+

dνdvs+1

−
s

∑
i=1

∫
Sd−1×Rd

f (s+1)
N (. . . , xi, vi, . . . , xi + εν, vs+1)

(
(vs+1 − vi) · ν

)
−dνdvs+1

)
.

(3.6)

Compared to the definition (2.30) of Cs,s+1, an additional factor α has been added to match
the Boltzmann-Grad scaling.

The solution of a linear PDE with a source term can be represented by using Duhamel’s
principle which we recall next, in the case of a transport equation in Ds

ε with a source term
U (

∂t +
s

∑
i=1

vi · ∇xi

)
g(t, Zs) = U(t, Zs) with g(t = 0) = g0. (3.7)

The solution of the homogenous part of this equation(
∂t +

s

∑
i=1

vi · ∇xi

)
g1(t, Zs) = 0 with g1(t = 0) = g0,

is given in terms of the group Ss associated with the transport in Ds
ε which was intro-

duced in (2.31)
g1(t, Zs) =

(
Ss(t)g0

)
(Zs) = g0

(
T−t(Zs)

)
. (3.8)

The part of the equation containing the source term is reduced to(
∂t +

s

∑
i=1

vi · ∇xi)g2(t, Zs) = U(t, Zs) with g2(t = 0) = 0,

and the solution is given by

g2(t, Zs) =
∫ t

0
dt1
(
Ss(t− t1)U(t1)

)
(Zs).

Thus the solution of (3.7) is obtained by adding the expressions for g1 and g2

g(t, Zs) =
(
Ss(t)g0

)
(Zs) +

∫ t

0
dt1
(
Ss(t− t1)U(t1)

)
(Zs).
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The solution of (3.5) can be rewritten by using Duhamel representation

f (s)N (t) = Ss(t) f (s)N (0) +
∫ t

0
dt1Ss(t− t1)Cs,s+1 f (s+1)

N (t1). (3.9)

Note that this representation remains as formal as equation (3.5). Indeed the operator
Cs,s+1 is defined by integrating on sets of codimension 1 and f (s+1)

N is not regular enough
to be well defined on such sets. Besides this technical aspect, the main difficulty is that
(3.9) relates the marginal f (s)N at time t to the marginal f (s+1)

N at an intermediate time in
[0, t]. Since f (s+1)

N is also unknown, the formula does not seem very helpful. The key idea
is to iterate Duhamel formula up to time 0, in order to relate the solution of the BBGKY
hierarchy to the initial data

f (s)N (t) =
N−s

∑
n=0

αn
∫ t

0

∫ t1

0
. . .
∫ tn−1

0
Ss(t− t1)Cs,s+1Ss+1(t1 − t2)Cs+1,s+2

. . . Ss+n(tn) f (s+n)
N (0) dtn . . . dt1,

(3.10)

where the term n = 0 stands for the transport part Ss(t) f (s)N (0) without any collision. The
order of the marginals in the sum is always less or equal to N so that the sum is finite.
The only source of randomness comes from the initial data and formula (3.10) will allow
us to transfert this initial information at positive times. In Section 3.3.2 , we will derive
uniform estimates in N in order to control the convergence of this sum.

As in Proposition 2.5, the integration on time in (3.10) provides the missing dimension
needed to apply the collision operator Cs,s+1. The iterated Duhamel expansion is derived
in the following proposition.

Proposition 3.2. The marginals of the hard-sphere dynamics are given by

∀s 6 N, f (s)N (t) =
N−s

∑
n=0

αnQs,s+n(t) f (s+n)
N (0), (3.11)

where the operators are defined as Qs,s(t) = Ss(t) and for n > 1

Qs,s+n(t) :=
∫ t

0

∫ t1

0
. . .
∫ tn−1

0
Ss(t− t1)Cs,s+1Ss+1(t1 − t2)Cs+1,s+2 . . . Ss+n(tn)dt1 . . . dtn.

(3.12)

Proof. By construction, fN(0) is bounded from above so that the density fN is also bounded
by ‖ fN(0)‖∞ at any time (see Proposition 2.2 on the maximum principle). For the mo-
ment, we assume that fN(0) is supported in D

N,R
ε for some R. Thus we can use the short

time result (2.32) obtained in Proposition 2.5 which is recalled below

f (s)N (t) = Ss(δ) f (s)N (t− δ) + α
∫ t

t−δ
dt1Ss(t− t1)Cs,s+1Ss+1

(
t1 − (t− δ)

)
f (s+1)
N (t− δ) + O(δ2).

(3.13)

Compared to (2.32), the factor α comes from the new normalization (3.6) of the collision
operator. As in the derivation of the existence result for the dynamics in Proposition 2.1,
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we are going to iterate (3.13) and finally, let δ tend to 0. We stress the fact that the error
term O(δ2) depends on N, ε, R, ‖ fN(0)‖∞.

Using twice (3.13), we get

f (s)N (t) = Ss(2δ) f (s)N (t− 2δ)

+
∫ t−δ

t−2δ
dt1Ss(δ)Ss(t− δ− t1)Cs,s+1Ss+1(t1 − (t− 2δ)) f (s+1)

N (t− 2δ)

+
∫ t

t−δ
dt1Ss(t− t1)Cs,s+1Ss+1(t1 − (t− δ))Ss(δ) f (s+1)

N (t− 2δ)

+
∫ t

t−δ
dt1

∫ t−δ

t−2δ
dt2Ss(t− t1)Cs,s+1Ss+1(t1 − (t− δ))

Ss((t− δ)− t2)Cs+1,s+2Ss+1(t2 − (t− 2δ)) f (s+1)
N (t− 2δ) + O(3δ2)

= Ss(2δ) f (s)N (t− 2δ)

+
∫ t

t−2δ
dt1Ss(t− t1)Cs,s+1Ss+1(t1 − (t− 2δ)) f (s+1)

N (t− 2δ)

+
∫ t

t−δ
dt1

∫ t−δ

t−2δ
dt2Ss(t− t1)Cs,s+1Ss+1(t1 − t2)Cs+1,s+2Ss+1(t2 − t− 2δ) f (s+1)

N (t− 2δ)

+ O(3δ2).

The factor 3 has been added in front of the error term to indicate that each iteration
induces new error terms of the same type. Indeed (3.13) contains two terms involving
f (s)N (t− δ) which lead to two additional contributions of order O(δ2).

The time interval [0, t] is split into K := t/δ intervals of length δ and (3.13) is iter-
ated up to time 0. The order of the marginals has to remain less or equal to N so that
there cannot be more than N − s collisions. Once the marginal of order N is reached, it
evolves up to time 0 by following the backward hard-sphere flow of the full microscopic
dynamics. Note that after k iterations, f (s)N (t) is decomposed into a sum of at most N − s
terms representing the number of collisions up to time t− kδ. Thus the next iteration will
produce an error of order at most N O(δ2). Finally, we get

∀s 6 N, f (s)N (t) =
N−s

∑
n=0

αnQδ
s,s+n(t) f (s+n)

N (0) + O(K Nδ2), (3.14)

where the operators are defined as Qδ
s,s(t) = Ss(t) and for n > 1

Qδ
s,s+n(t) :=

∫
T δ

n

dTnSs(t− t1)Cs,s+1Ss+1(t1 − t2)Cs+1,s+2 . . . Ss+n(tn), (3.15)

and the time integral is over the ordered collision times Tn = (t1, . . . , tn) taking values in
the set

T δ
n :=

{
Tn = (t1, . . . , tn); ti ∈ [t− (ki − 1)δ, t− kiδ]

for a sequence of integers 0 < k1 < k2 < · · · < kn 6 K
}

.
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As in the proof of Proposition 2.1, the error term O(K Nδ2) vanishes when δ tends to 0
as K = t/δ. Furthermore, the modified truncated operator Qδ

s,s+n converge to the limit
Qs,s+n (3.12).

Thus identity (3.11) holds for any R, so that the constraint on the initial data fN(0)
can be relaxed. This completes the proof of Proposition 3.2.

3.2.2 The limiting hierarchy and the Boltzmann equation

To study the convergence of the Duhamel representation (3.11) in the Boltzmann-Grad
limit, we are going to define the limit of the BBGKY hierarchy which is known as the
Boltzmann hierarchy.

In the dilute limit ε → 0, the hard spheres are converging to points, thus the formal
limit of the collision operator is given by(

C0
s,s+1g(s+1))(Zs) :=

s

∑
i=1

∫
Sd−1×Rd

g(s+1)(. . . , xi, v′i, . . . , xi, v′s+1)
(
(vs+1 − vi) · ν

)
+

dνdvs+1

−
s

∑
i=1

∫
Sd−1×Rd

g(s+1)(. . . , xi, vi, . . . , xi, vs+1)
(
(vs+1 − vi) · ν

)
−

dνdvs+1,

(3.16)
where the collision between particles i and s + 1 takes place at xs+1 = xi. Note also

that the prefactor (N−s)εd−1

α in the definition (3.6) of Cs,s+1 has been replaced by 1 in the
Boltzmann-Grad limit.

As the number of particles N tends also to infinity, the limiting hierarchy involves an
infinite sequence of functions {g(s)(t, Zs)}s > 1. In the limit, the exclusion rule no longer
applies so that the function g(s)(t) takes values in Tds ×Rds and satisfy the Boltzmann
hierarchy

∂tg(s) +
s

∑
i=1

vi · ∇xi g
(s) = αC0

s,s+1g(s+1), (3.17)

with initial data

g(s)(0, Zs) =
s

∏
i=1

f0(zi) M⊗s
β (Vs). (3.18)

Note that the functions {g(s)(t, Zs)}s > 1 depend on the parameter α which controls the
frequency of the collision operator in (3.17). As α is fixed throughout this section, we will
omit this dependence in the notation.

In view of Proposition 2.7, the Boltzmann hierarchy is the natural limit for the marginals
f (s)N (0) at time 0. The solutions of (3.17) will be restricted to continuous function g(s) in
Tsd ×Rsd which is possible since the free transport preserves continuity on Tsd ×Rsd.
The analog of the operator Qs,s+n defined in (3.12) is given by

Q0
s,s+n(t) :=

∫ t

0

∫ t1

0
. . .
∫ tn−1

0
S0

s (t− t1)C0
s,s+1S0

s+1(t1 − t2)C0
s+1,s+2 . . . S0

s+n(tn)dt1 . . . dtn,

(3.19)
where S0

k is the group associated with the free flow of k particles on Tdk ×Rdk. Then the
iterated Duhamel formula for the Boltzmann hierarchy takes the form

∀s > 1, g(s)(t) = ∑
n > 0

αnQ0
s,s+n(t)g(s+n)(0). (3.20)
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The solution of the Boltzmann hierarchy can be explicitly related to the Boltzmann
equation.

Lemma 3.3. Let g(t, z) be a continuous solution of the Boltzmann equation (3.2) with initial
data g(0, z) = f0(z)Mβ(v). Then a solution of the Boltzmann hierarchy (3.17) is given by

∀s > 1, g(s)(t, Zs) =
s

∏
i=1

g(t, zi). (3.21)

We stress the fact that the product structure of the initial data (3.18) is kept at positive
times in (3.21). Uniqueness of the solution will be derived in Proposition 3.7.

Proof. By construction the initial data (3.18) coincide with (3.21) at time 0 and (3.21) sat-
isfies the equations (3.17) for all s > 1.

3.3 Uniform bounds on the Duhamel series

3.3.1 The Cauchy-Kovalevsky argument

There is still no general theory to ensure existence and uniqueness of solutions of the
Boltzmann equation (3.2)

∂tg + v · ∇xg = α Q(g, g)

starting from a general initial data g(0, z) = f0(z)Mβ(v). The main difficulty is that the
collision operator Q(·, ·) involves products of the density which would be naturally con-
trolled by L2 estimates. Thus the a priori bound on the entropy obtained in H-Theorem
2.10 is not sufficient to provide a control in time of the L2 norm. Nevertheless, the Cauchy
problem can be solved globally for small perturbations around an equilibrium density
and a notion of weak solutions has been develop by Di Perna and Lions to show the
global existence starting from general initial conditions. Further references on the analyt-
ical aspects related to the Boltzmann equation can be found in [10].

Solving the Cauchy problem globally in time requires to understand the cancellations
between the gain and loss parts of the collision operator. The derivation of the conver-
gence stated in Theorem 3.1 relies on cruder controls which will ensure the existence and
uniqueness only for finite time. Indeed, the collision operators in the hierarchies will be
estimated by using operators of the form

|Q|( f , f )(x, v) :=
∫

Sd−1×Rd

(
f (x, v′) f (x, v′1) + f (x, v) f (x, v1)

) (
(v1 − v) · ν

)
+

dv1dν,

(3.22)
which do not take into account the cancellations. This procedure will be applied to both
hierarchies in Sections 3.3.2 and 3.3.3, but we first discuss some consequences of this
approach.

Neglecting the cancellations in the collision operator implies that the solutions cannot
be controlled beyond a finite time. Indeed this boils down to considering the following
Riccati equation

ẋ(t) = x(t)2 with x(0) = x0 > 0, (3.23)
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which blows up in finite time

t <
1
x0

, x(t) =
x0

1− tx0
.

Following [15] and [10] (page 104), we are going to explain how equation (3.23) is
related to the Boltzmann hierarchy and use this correspondence to discuss the uniqueness
of the solutions of the hierarchy. Let us start by considering the following hierarchy of
ODE

∀k > 1, ẏk(t) = k yk+1(t) with initial data yk(0) = y0
k . (3.24)

This hierarchy is related to (3.23) by noticing that

∂tx(t)k = k x(t)k−1 ẋ(t) = k x(t)k+1.

One should view the Riccati equation as the analogous of the Boltzmann equation (asso-
ciated with the operator (3.22)) and the hierarchy (3.24) as a counterpart of the Boltzmann
hierarchy introduced in (3.17). This toy model will serve as a benchmark to understand
the conditions required for the uniqueness of the solutions of the Boltzmann hierarchy.

First of all, let us check that the uniqueness of the solutions of the hierarchy (3.24)
cannot be determined only from the initial data. Indeed, the sequence of constant func-
tions yk(t) = 0 for all k is a solution of the hierarchy (3.24) and we are going to construct
another solution with the same initial data. Consider the function

y1(t) =

{
exp

(
− 1

t

)
, for t > 0,

0, for t 6 0,

which belongs to C∞(R) as all its derivatives at 0 satisfy y(k)1 (0) = 0. Define recursively a
solution of the hierarchy by

∀k > 1, yk+1(t) =
1
k

ẏk(t) with initial data yk+1(0) = 0. (3.25)

This sequence is also a solution of (3.24) with initial data y0
k = 0 for all k, but it is not

real-analytic. Thus additional conditions on the growth of the solutions are required to
recover the uniqueness.

We are going to look for solutions {yk(t)}k > 1 of (3.24) in the time interval [0, T] satis-
fying the growth condition

sup
t∈[0,T]

sup
k > 1

∣∣yk(t)
∣∣1/k

< ∞. (3.26)

In the spirit of Cauchy-Kovalevsky theory, we consider the series associated with a solu-
tion of (3.24)

U(t, z) =
∞

∑
k=1

yk(t)zk−1,
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which are well defined for z in a neighborhood of 0 under the growth condition (3.26).
Differentiating in t, we get that

∂tU(t, z) =
∞

∑
k=1

ẏk(t)zk−1 =
∞

∑
k=1

kyk+1(t)zk−1 = ∂zU(t, z).

Thus the sequence of functions {yk(t)}k > 1 is a solution of (3.24) if and only if U solves
the partial differential equation

∂tU(t, z) = ∂zU(t, z). (3.27)

Given an initial data such that

sup
k > 1

∣∣y0
k

∣∣1/k
=

1
R

< ∞,

an explicit solution of (3.27) can be built as follows. Define

∀|z| < R, U0(z) =
∞

∑
k=1

y0
k zk−1,

then the unique solution real analytic on the domain {(t, z) ∈ R2, |z| + |r| < R} is
given by U(t, z) = U0(t + z). The solution of (3.24) can then be obtained as the Taylor
coefficients of the series. The solution of the Riccati equation (3.23) can also be recovered
in this way. The growth condition (3.26) is essential to ensure the uniqueness of the
solution.

3.3.2 Estimates on the BBGKY hierarchy

This section is devoted to the derivation of uniform estimates on the collision operators
of the BBGKY hierarchy. We first start by defining an appropriate functional setting.

Proposition 2.7 implies that the marginals of the initial data are uniformly controlled
by product measures

∀k 6 N,
∣∣∣ ( f (k)N (0)− f⊗k

0 M⊗k
β

)
1Dk

ε

∣∣∣ 6 Ck αε M⊗k
β .

We are going to require that a (weaker) uniform bound holds also at positive times (at
least for short times)

∀k 6 N, f (k)N (t, Zk) 6 exp(γk) M⊗k
λ (Vk) for almost all Zk in Dk

ε , (3.28)

where λ and γ are parameters to be determined. This growth condition is reminiscent of
the condition (3.26) and it provides a control on the velocities (thanks to the parameter
λ) as well as on the local density of the particles (thanks to the parameter γ). We are
going to show that uniform bounds of the type (3.28) are enough to estimate the collision
operators.
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We start by introducing a functional setting with weighted norms compatible with
(3.28). For λ > 0 and k > 1, let Xε,k,λ be the space of measurable functions fk defined
almost everywhere on Dk

ε such that

‖ fk‖ε,k,λ :=
∥∥∥ fk exp

(
λHk

)∥∥∥
L∞(Dk

ε )
< ∞, (3.29)

where the Hamiltonian Hk(Zk) = Hk(Vk) =
1
2 ∑k

i=1 |vi|2 was introduced in (2.8).
Neglecting the cancellations between the gain and the loss part of the collision oper-

ators as in (3.22), we denote by |Q|s,s+n the operator obtained by summing the absolute
values of all elementary contributions

|Q|s,s+n(t) =
∫ t

0

∫ t1

0
. . .
∫ tn−1

0
Ss(t− t1) |Cs,s+1|Ss+1(t1 − t2) |Cs+1,s+2| . . . Ss+n(tn)dtn . . . dt1

(3.30)

where the operator |Cs,s+1| is defined for any regular function fs+1 in Ds+1
ε(

|Cs,s+1| fs+1
)
(Zs) (3.31)

:=
(N − s)εd−1

α

(
s

∑
i=1

∫
Sd−1×Rd

fs+1(. . . , xi, v′i, . . . , xi + εν, v′s+1)
(
(vs+1 − vi) · ν

)
+

dνdvs+1

+
s

∑
i=1

∫
Sd−1×Rd

fs+1(. . . , xi, vi, . . . , xi + εν, vs+1)
(
(vs+1 − vi) · ν

)
−

dνdvs+1

)
.

The proposition below provides controls on the norms of the collision operators.

Proposition 3.4. There is a constant C depending only on the dimension d such that for all
s, n > 1 and all t > 0, the operators |Q|s,s+n(t) satisfy the following continuity estimates. For
all fs+n in Xε,s+n,λ then |Q|s,s+n(t) fs+n belongs to Xε,s, λ

2
and

∥∥∥|Q|s,s+n(t) fs+n

∥∥∥
ε,s, λ

2

6 exp(s)
(

Ct

λ
d+1

2

)n

‖ fs+n‖ε,s+n,λ . (3.32)

Note that these estimates involve a loss in the parameter λ > 0 and that they deterio-
rate with time.

Proof. We start by estimating the norm of a single collision operator. Let fk+1 be a function
in Xε,k+1,λ, we are going to prove that for almost all time τ and k 6 s + n

∥∥ ∣∣Ck,k+1
∣∣Sk+1(τ) fk+1

∥∥
ε,k+1,(1− 1

2n )λ
6

C

λ
d+1

2
(s + n)‖ fk+1‖ε,k+1,λ. (3.33)

The loss in the norm weight has been chosen of order λ
2n in order to iterate n times this

estimate.
The collision operator |Ck,k+1| defined in (3.31) is made of two parts which will be

evaluated separately. Since Nεd−1 = α, the part |C+
k,k+1| with the scattering is bounded
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from above by(∣∣C+
k,k+1

∣∣Sk+1(τ) fk+1
)
(Zk)

:=
(N − k)εd−1

α

k

∑
i=1

∫
Sd−1×Rd

dνdvk+1

(
(vk+1 − vi) · ν

)
+

Sk+1(τ) fk+1(Z′k+1)

6 ‖ fk+1‖ε,k+1,λ

k

∑
i=1

∫
Sd−1×Rd

dνdvk+1

(
(vk+1 − vi) · ν

)
+

Sk+1(τ) exp
(
− λHk+1(V ′k+1)

)
,

where Z′k+1 stands for the pre-collisional configuration (x1, v1, . . . , xi, v′i, . . . , xi + εν, v′k+1)
and V ′k+1 for the corresponding velocities.

Using successively, the conservation of the kinetic energy by scattering Hk+1(V ′k+1) =
Hk+1(Vk+1) and by the hard-sphere flow, we get the following upper bounds(∣∣C+

k,k+1

∣∣Sk+1(τ) fk+1
)
(Zk)

6 ‖ fk+1‖ε,k+1,λ

k

∑
i=1

∫
Sd−1×Rd

dνdvk+1

(
(vk+1 − vi) · ν

)
+

exp
(
− λHk+1(Vk+1)

)
6 C‖ fk+1‖ε,k+1,λ

∫
Rd

dvk+1

(
k|vk+1|+

k

∑
i=1
|vi|
)

exp
(
− λHk+1(Vk+1)

)
6 C λ−

d
2

(
kλ−

1
2 +

k

∑
i=1
|vi|
)

exp (−λHk(Zk)) ‖ fk+1‖ε,k+1,λ , (3.34)

where the last term is obtained by integrating the velocity vk+1. This upper bound holds
for almost all time τ and the configuration Zk.

As the velocities ∑k
i=1 |vi| are not bounded, the norm in Xε,k,λ of the operator above

is infinite. However, by loosing a factor λ
2n on the exponential weight, the sum over the

velocities in (3.34) can be controlled thanks to Cauchy-Schwarz estimate

k

∑
i=1
|vi| exp

(
− λ

4n ∑
1 6 j 6 k

|vj|2
)

6
(

k
2n
λ

) 1
2
(

k

∑
i=1

λ

2n
|vi|2 exp

(
− λ

2n

k

∑
j=1
|vj|2

))1/2

6

√
2nk
eλ

6

√
2

eλ
(s + n) ,

where we used that ‖x exp(−x)‖∞ 6 e−1 and that k 6 s + n in the last inequality. Plug-
ging this inequality in (3.34), we deduce the upper bound (3.33).

The operator |Q|s,s+n(t) can be estimated by applying iteratively the upper bound
(3.33) on the n collision operators. Each collision operator induces a loss λ

2n on the expo-
nential weight, thus the final estimate is with respect to the norm

∥∥ · ∥∥
ε,k+1, λ

2
. This leads

to an upper of the form Cn

λ
(d+1)n

2
(s + n)n uniformly over the collision times t1 > · · · > tn.

Integrating then over the times provides an additional factor∫ t

0

∫ t1

0
. . .
∫ tn−1

0
dtn . . . dt1 =

tn

n!
.
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Finally, we deduce that∥∥∥|Q|s,s+n(t) fs+n

∥∥∥
ε,s, λ

2

6
(s + n)n

n!

(
Ct

λ
d+1

2

)n

‖ fs+n‖ε,s+n,λ .

Stirling’s formula implies that

(s + n)n

n!
6 exp

(
n log

n + s
n

+ n
)

6 exp(s + n).

This completes the upper bound (3.32) on the operator |Q|s,s+n(t).

The marginals of the BBGKY hierarchy are represented by the iterated Duhamel for-
mula (3.11) in terms on the initial data

∀s 6 N, f (s)N (t) =
N−s

∑
n=0

αnQs,s+n(t) f (s+n)
N (0) .

For sufficiently small times, Proposition 3.4 leads to uniform controls in N of each term
in this sum.

Proposition 3.5. There exists T∗ > 0 and a constant C > 0 such that the following upper bound
holds uniformly in N and t ∈ [0, T∗

α ]∥∥∥αnQs,s+n(t) f (s+n)
N (0)

∥∥∥
ε,s, β

2

6
∥∥∥αn∣∣Q∣∣s,s+n(t) f (s+n)

N (0)
∥∥∥

ε,s, β
2

6
Cs

2n , (3.35)

for any s > 1 and n > 0 such that s + n 6 N. Both constants T∗, C depend on ‖ f0‖∞ and β.

Proof. Recall that the marginals of the initial data are uniformly controlled in Proposition
2.7. In particular, the following bound holds for any s > 1

∀Zs ∈ Ds
ε, f (s)N (0, Zs) 6 cs

s

∏
i=1

f0(zi) Mβ(vi),

for some c > 1. By Assumption (3.1), the function f0 is bounded from above so that∥∥∥ f (s)N (0)
∥∥∥

ε,s,β
6 Cs

1 exp(−sµ),

for some constant C1. Combined with Estimate (3.32) of Proposition 3.4 , this implies that

∥∥∥αn|Q|s,s+n(t) f (s+n)
N (0)

∥∥∥
ε,s, β

2

6 αn exp(s)

(
Ct

β
d+1

2

)n

Cs+n
1 exp(−(s + n)µ).

Thus (3.35) holds for t ∈ [0, T∗
α ] with

T∗ =
β

d+1
2

C C1
exp(µ). (3.36)
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3.3.3 Estimates on the Boltzmann hierarchy

We introduce now the counterpart of the norm (3.29) for the Boltzmann hierarchy. Let
X0,k,λ be the space of continuous functions gk defined on Tdk ×Rdk such that

‖gk‖0,k,λ := sup
Zk∈Tdk×Rdk

∣∣∣gk(Zk) exp
(
λHk(Zk)

)∣∣∣ < ∞.

The absolute value of the collision operator is denoted by

|Q0|s,s+n(t) =
∫ t

0

∫ t1

0
. . .
∫ tn−1

0
S0

s (t− t1) |C0
s,s+1|S0

s+1(t1 − t2) |C0
s+1,s+2|

. . . S0
s+n(tn) dtn . . . dt1

with(
|C0

s,s+1|gs+1
)
(Zs) :=

s

∑
i=1

∫
Sd−1×Rd

gs+1(. . . , xi, v′i, . . . , xi, v′s+1)
(
(vs+1 − vi) · ν

)
+

dνdvs+1

+
s

∑
i=1

∫
Sd−1×Rd

gs+1(. . . , xi, vi, . . . , xi, vs+1)
(
(vs+1 − vi) · ν

)
−

dνdvs+1 .

The structure of the operators |Q|s,s+n(t) and |Q0|s,s+n(t) is similar so that the conti-
nuity estimates of Proposition 3.4 and 3.5 hold also for the Boltzmann hierarchy.

Proposition 3.6. There is a constant C depending only on the dimension d such that for all
s, n > 1 and all t > 0, the operators |Q0|s,s+n(t) satisfy the following continuity estimates. For
all gs+n in X0,s+n,λ, then |Q0|s,s+n(t)gs+n belongs to X0,s, λ

2
and

∥∥∥|Q0|s,s+n(t)gs+n

∥∥∥
0,s, λ

2

6 exp(s)
(

Ct

λ
d+1

2

)n

‖gs+n‖0,s+n,λ. (3.37)

Furthermore, there exists T∗ > 0 and a constant C > 0 such that uniformly in s > 1, n > 0 and
t ∈ [0, T∗

α ], one has∥∥∥αnQ0
s,s+n(t)g(s+n)

α (0)
∥∥∥

ε,s, β
2

6
∥∥∥αn∣∣Q0∣∣

s,s+n(t)g(s+n)
α (0)

∥∥∥
ε,s, β

2

6
Cs

2n . (3.38)

To investigate the uniqueness of the solutions of the Boltzmann hierarchy, we are
going to introduce an appropriate functional setting which takes into account a growth
condition as in (3.26). For γ ∈ R, we define a norm on the whole sequence G = {gk}k > 1
of continuous functions gk in X0,k,λ

‖G‖0,λ,γ := sup
k > 1

(
‖gk‖0,k,λ exp(kγ)

)
and denote by X̂0,λ,γ the Banach space of functions such that ‖G‖0,λ,γ < ∞. Given T > 0
and two functions λ and γ in [0, T], we also define X̂0,λ,γ,T the space of time continuous
functions

G : t ∈ [0, T] 7→ G(t) = {gk(t)}k > 1 ∈ X̂0,λ(t),γ(t)
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endowed with the norm

|||G|||0,λ,γ,T = sup
t∈[0,T]

‖G(t)‖0,λ(t),γ(t) . (3.39)

Existence and uniqueness of a solution of the Boltzmann hierarchy follows from the
proposition below.

Proposition 3.7. Consider the Boltzmann hierarchy (3.17) starting from the initial data G(0) =
{g(s)(0)}s > 1 in X̂0,λ0,γ0 with λ0 > 0. Then there exists a time T∗ > 0 and two decreasing
functions λ > 0 and γ in the time interval [0, T∗

α ] such that the Boltzmann hierarchy gives rise
to a unique solution in X̂0,λ,γ, T∗

α
.

Note that an explicit solution of the Boltzmann hierarchy was given in (3.21) when
the initial data is a product (3.18).

Proof. The derivation follows the argument devised in [44] and [14] which is based on
Cauchy-Kovalevsky type estimates.

Let T∗ > 0 be a parameter to be tuned later and consider the time dependent weights
defined in [0, T∗

α ] by

λ(t) = λ0 − ct >
λ0

2
and γ(t) = γ0 − ct > γ0 −

λ0

2
with c =

α

T∗
λ0

2
. (3.40)

Mild solutions G = {gk}k > 1 of the Boltzmann hierarchy are defined for t in [0, T∗
α ] by

G(t) = S0(t)g(0) + α
∫ t

0
dt1 S0(t− t1)C0G(t1) dt1, (3.41)

where the transport and the collision operators are acting on each coordinates

∀s > 1,
(
S0(t)G

)
s = S0

s (t)gs and
(
C0G

)
s = C0

s,s+1 gs+1.

Proposition 3.7 will follow from a fixed-point theorem. Define the map on X̂0,λ,γ, T∗
α

as

F (G) : t ∈
[

0,
T∗

α

]
7→ α

∫ t

0
dt1 S0(t− t1)C0G(t1) dt1.

We are going to check that for some value of T∗ > 0 (which will be determined in (3.43))
then F is a contraction in X̂0,λ,γ, T∗

α

|||F (G)|||0,λ,γ, T∗
α
6

1
2
|||G|||0,λ,γ, T∗

α
. (3.42)

As a consequence, there exists a unique fixed point in X̂0,λ,γ, T∗
α

which solves (3.41). This
completes Proposition 3.7.



52 CHAPTER 3. CONVERGENCE TO THE BOLTZMANN EQUATION

We turn now to the proof of (3.42). Fix t in [0, T∗
α ]. As the free transport preserves the

L∞ norm, we get∥∥∥∥∫ t

0
dt1 S0

k(t− t1)
∣∣C0

k,k+1

∣∣ gk+1(t1)

∥∥∥∥
0,k,λ(t)

6 sup
Zk

∫ t

0
dt1 exp

(
λ(t)Hk(Zk)

) ∣∣C0
k,k+1

∣∣ ∣∣gk+1(t1)
∣∣(Zk)

6 sup
Zk

∫ t

0
dt1 exp

((
λ(t)− λ(t1)

)
Hk(Zk)

) C

λ(t1)
d
2

( k

λ(t1)
1
2
+

k

∑
i=1
|vi|
)
‖gk+1‖0,k+1,λ(t1),

where the last inequality is derived as in (3.34).
Using the norm (3.39) defined on the whole sequence G(t) = {gk(t)}k > 1, the follow-

ing holds for any t1 in [0, T∗
α ]

‖gk+1‖0,k+1,λ(t1) 6 exp
(
− γ(t1)(k + 1)

)
|||G|||0,λ,γ, T∗

α
.

This implies∥∥∥∥∫ t

0
dt1 Sk(t− t1)

∣∣C0
k,k+1

∣∣ gk+1(t1)

∥∥∥∥
0,k,λ(t)

6 |||G|||0,λ,γ, T∗
α

exp (−γ(t)(k + 1))
C

λ(t)
d
2

sup
Zk

∫ t

0
dt1 exp

(
− c(t− t1)k

)( k

λ(t)
1
2
+

k

∑
i=1
|vi|
)

exp
(
− c(t− t1)Hk(Zk)

)
,

where we used that the functions λ and γ, defined in (3.40), are linear and decreasing.
Noticing that λ(t) > λ0

2 and integrating over t1 leads to the uniform estimate∥∥∥∥∫ t

0
dt1 Sk(t− t1)

∣∣C0
k,k+1

∣∣ gk+1(t1)

∥∥∥∥
0,λ(t),γ(t)

6 |||G|||0,λ,γ, T∗
α

C exp (−γ(t))

(λ0/2)
d
2

( 1

(λ0/2)
1
2
+ 1
) 1

c
.

Replacing c by its value, we deduce that

|||F (G)|||0,λ,γ, T∗
α
6

C exp (−γ0 − λ0/2)

(λ0/2)
d
2 λ0

( 1

(λ0/2)
1
2
+ 1
)

T∗ |||G|||0,λ,γ, T∗
α

.

This implies (3.42) when

T∗ =
(λ0/2)

d+3
2

C
(
1 + (λ0/2)

1
2
) exp (γ0 + λ0/2) . (3.43)
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3.4 Convergence to the Boltzmann equation

In this section, we are going to derive the first part of Theorem 3.1, i.e. that the typi-
cal distribution of a gas particle follows the Boltzmann equation in the Boltzmann-Grad
limit. The strategy is to show that the Duhamel series obtained from the BBGKY hier-
archy converges to the Duhamel series associated with the Boltzmann hierarchy. The
tails of both series can be controlled by the bounds on the collision operators obtained
in Section 3.3, but the convergence of the first terms of the series (namely the dominant
contribution) requires a more careful analysis. This will be achieved by first interpreting
the collision operators in terms of branching processes and then coupling the branching
processes associated with both hierarchies.

3.4.1 Collision trees viewed as branching processes

The Duhamel representation (3.11) of the marginal f (1)N has an analytic flavor but it can
also be interpreted as a branching process of particles evolving according to the hard-
sphere dynamics. This is reminiscent of the derivation of Proposition 2.5 where the first
order of the Duhamel representation was identified as a collision between two particles.

We will analyze separately each terms in the sum (3.11) of the representation of f (1)N (t)
We start with the term of order n

Q1,n+1(t) f (n+1)
N (0) =

∫
Tn

dTn S1(t− t1)C1,2S2(t1 − t2)C2,3 . . . Sn(tn) f (n+1)
N (0), (3.44)

where the time integral is over the ordered collision times Tn = (t1, . . . , tn) taking values
in the set

Tn :=
{

Tn = (t1, . . . , tn); 0 < tn < · · · < t2 < t1 < t
}

. (3.45)

The root of the collision tree is associated with the coordinates z1 = (x1, v1) ∈ Td ×Rd of
the first particle at time t. The operator S1(t− t1) is interpreted as the motion of the first
particle following the backward flow up to time t1 where a collision takes place

∀u ∈ [t1, t], z1(u) = Tu−t(z1).

As in the proof of Proposition 2.5, the collision operator C1,2 is interpreted as the adjunc-
tion at time t1 of a new particle at position x1(t1) + εν2 with a deflection angle ν2 ∈ Sd−1

and with a velocity v2 ∈ Rd. The new configuration Z2(t1) depends on the type of the
collision (see Figure 2.4):

• In the pre-collisional case, i.e. if (v2 − v1(t+1 )) · ν2 < 0, then the pair of particles is

Z2(t1) =
(
(x1(t1), v1), (x1(t1) + εν2, v2)

)
. (3.46)

This corresponds to the loss part of the operator C1,2.

• In the post-collisional case, i.e. if (v2 − v1(t+1 )) · ν2 > 0, then the pair of particles is
defined as the pre-collisional configuration

Z2(t1) =
(
(x1(t1), v′1), (x1(t1) + εν2, v′2)

)
, (3.47)

by using the scattering (2.28). Note that the velocity t 7→ v1(t) is discontinuous at
time t1. This corresponds to the gain part of the operator C1,2.
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Once created, the new pair of particles evolves according to the backward 2-particle flow
during the time interval [t2, t1]

∀u ∈ [t2, t1], Z2(u) = Tt1−u(Z2(t1)).

Iterating this procedure, a branching process is built inductively by adding, at time ti,
a particle labelled i + 1 to the particle with label a(i) 6 i chosen randomly among the
already existing i particles. Given a deflection angle νi+1 and a velocity vi+1, the velocity
of the particle a(i) and of the new particle i + 1 at time ti are updated according to the
pre-collisional (3.46) or post-collisional (3.47) rule

Zi+1(ti) =
(
{zj(ti)}j 6=a(i), (xa(i)(ti), va(i)(ti)), (xa(i)(ti) + ενi+1, vi+1)

)
,

in the pre-collisional case, i.e. if (vi+1 − va(i)(ti)) · νi+1 < 0,
Zi+1(ti) =

(
{zj(ti)}j 6=a(i), (xa(i)(ti), v′a(i)(t

+
i )), (xa(i)(ti) + ενi+1, v′i+1)

)
,

in the post-collisional case, i.e. if (vi+1 − va(i)(t
+
i )) · νi+1 > 0 .

The velocities of the other particles are unchanged. It may happen that the new particle
created at position xa(i)(ti) + ενi+1 overlaps with another particle with label in {1, . . . , i}.
In this case, the creation is cancelled and the pseudo-trajectory keeps evolving back-
ward with only i particles. Otherwise, the new configuration follows the backward hard-
sphere flow starting from Zi+1(ti)

∀u ∈ [ti+1, ti], Zi+1(u) = Tu−ti

(
Zi+1(ti)

)
.

The marginal f (n+1)
N (0) at time 0 will then be evaluated on the configuration Zn+1(0)

which represents the coordinates of the leaves of the tree.
In between two branching times, the particles in the tree follow the backward hard-

sphere flow so that they rebound elastically when they meet. We will call recollision these
events and the name collision will only refer to the creation of a particle at a branching
time.

In this way, the operator Q1,n+1(t) is interpreted in terms of collision trees with n col-
lisions and the corresponding random process is described by the pseudo-trajectories (see
Figure 3.1). The pseudo-trajectories are not physical trajectories of the gas particles. They
are a geometric interpretation of the iterated Duhamel formula in terms of a branching
process flowing backward in time and determined by

• the coordinates z1 of the initial particle at time t,
• the collision times Tn = (t1, . . . , tn) ∈ Tn which are interpreted as branching times,
• the labels of the colliding particles a =

(
a(1), . . . , a(n)

)
from which the branchings

occur and which take values in the set

An :=
{

a =
(
a(1), . . . , a(n)

)
, 1 6 a(i) 6 i

}
,

• the velocities V2,n+1 = {v2, . . . , vn+1} in Rdn and deflection angles Θ2,n+1 = {ν2, . . . , νn+1}
in S(d−1)n for each additional particle.
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t z1

v1

v2

v′2v′1

t1

t2

recollision

Figure 3.1: A pseudo-trajectory in a collision tree of the BBGKY hierarchy is depicted. The
branching process is initialized at time t with the coordinates z1 = (x1, v1) of the first particle
and then it evolves backwards. At time t1 the velocity of particle 1 has been changed after the
creation of particle 2. Particle 2 has then generated a third particle at time t2 in a collision without
scattering. This third particle recollides with particle 1 and both velocities are modified according
to the scattering rule of the hard-sphere dynamics.

For a given collision tree a in An, the variables associated with a pseudo-trajectory will
be denoted by

Ωn = {Tn, V2,n+1, Θ2,n+1} ∈ Tn ×Rdn × S(d−1)n, (3.48)

in order to simplify the notation. We stress the fact that Ωn cannot take any value in
Tn ×Rdn × S(d−1)n : the parameters Ωn leading to an overlap between two particles at
a creation time have to be discarded. Indeed, the corresponding pseudo-trajectories are
ill-defined.

The contribution (3.44) for n collisions during [0, t] can be computed by integrating
f (n+1)
N (0) on the value of the pseudo-trajectories Zn+1(0) at time 0

Q1,n+1(t) f (n+1)
N (0) =

[
ε(d−1)n

αn

n

∏
i=1

(N − i)

]
∑

a∈An

∫
dΩn C(z1, Ωn) f (n+1)

N (0, Zn+1(0)),

(3.49)
where the contribution of the cross sections involved in each collision is denoted by

C(z1, Ωn) =
n

∏
k=1

(vk+1 − va(k)(t
+
k )) · νk+1. (3.50)

Note that the contributions of the gain and loss terms in the collision operator Ck,k+1 are
taken into account by the sign of (vk+1 − vmk(t

+
k )) · νk+1.

We turn now to the branching process associated with the Boltzmann hierarchy (3.20)
and start with the geometric interpretation of the term representing the occurence of n
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collisions

Q0
1,n+1(t)g(n+1)(0) =

∫
Tn

dTnS0
s (t− t1)C0

1,2S0
2(t1 − t2)C0

2,3 . . . S0
n+1(tn)g(n+1)(0), (3.51)

where we used the previous notation Tn = (t1, . . . , tn) ∈ Tn.
The operator Q0

1,n+1(t) can be represented by collision trees indexed by the coordi-
nates z0

1 = (x0
1, v0

1) of the first particle at time t, a collection of branching times Tn =
(t1, . . . , tn), the labels of the colliding particles a =

(
a(1), . . . , a(n)

)
∈ An as well as a

collection of velocities V2,n+1 = {v2, . . . , vn+1} in Rdn and deflection angles Θ2,n+1 =
{ν2, . . . , νn+1} in S(d−1)n. If a tree has been built up to time tk, then the (k + 1)th particle
with coordinates z0

k+1 is added at time tk at the same position x0
a(k)(tk) of the particle a(k)

and their velocities are updated according to the type of the collision:

• if (vk+1 − va(k)(tk)) · νk+1 < 0, then the new configuration is

Z0
k+1(ti) =

(
{z0

j (tk)}j 6=a(k), (x0
a(k)(tk), va(k)(tk)), (x0

a(k)(tk), vk+1)
)
,

• if (vk+1 − va(k)(t
+
k )) · νk+1 > 0, then the new configuration is

Z0
k+1(ti) =

(
{zj(tk)}j 6=a(k), (x0

a(k)(tk), v′a(k)(t
+
k )), (x0

a(k)(tk), v′k+1)
)
,

the velocity of a(k) is also updated.

During the time interval [tk+1, tk], the corresponding pseudo-trajectory Z0
k+1 evolves ac-

cording to the backward free flow denoted by T0
−u until the next particle creation. The

collision tree is built backward starting from time t up to the configuration Z0
n+1(0) at

time 0. We stress the fact that the particles are represented by points which never rec-
ollide (almost surely) during the backward evolution. This is a key difference with the
pseudo-trajectories in the BBGKY hierarchy. Notice also that when a new particle is cre-
ated, there is no constraint due to a possible overlap with another particle. Thus the
pseudo-trajectories can be parametrized by the variable Ωn, introduced in (3.48), which
can take any value in Tn ×Rdn × S(d−1)n.

The contribution of Q0
1,n+1(t) can be computed by integrating g(n+1)(0) on the values

of the pseudo-trajectories Z0
n+1(0) at time 0

Q0
1,n+1(t)g(n+1)(0) = ∑

a∈An

∫
dΩn C0(z1, Ωn) g(n+1)(0, Z0

n+1(0)), (3.52)

where the contribution of the cross sections involved in each collision is denoted by

C0(z1, Ωn) =
n

∏
k=1

(vk+1 − va(k)(t
+
k )) · νk+1. (3.53)

Once again the signs of the gain and loss terms in the collision operator C0
k,k+1 are taken

into account by the sign of (vk+1 − va(k)(t
+
k )) · νk+1. Note that C and C0 have an identical

structure, except that C is evaluated on the BBGKY hierarchy pseudo-trajectories and C0

on the Boltzmann hierarchy pseudo-trajectories.
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3.4.2 Coupling the pseudo-trajectories

The collision trees associated with each hierarchy are constructed in a very similar way,
and they are encoded by the same set of parameters {z1, a, Ωn}. However there are two
important differences between these trees :

• In the Boltzmann hierarchy, particles are created at the same position of their parent,
instead in the BBGKY hierarchy, they are created with a shift of order ενi which
depends on the deflection angle.
• In the Boltzmann hierarchy, particles are points transported by the free flow, thus

no recollision occurs. The particles in the pseudo-trajectories of the BBGKY hier-
archy bounce elastically when they touch so that the recollisions may modify their
trajectories.
• The creation of a particle in the BBGKY hierarchy is discarded if it leads to an over-

lap with another particle. The overlaps are not a constraint for point particles,
so that the occurence of an overlap induces a discrepancy between the pseudo-
trajectories of the two hierarchies.

The discrepancy due to the shifts occuring at each branching times is very small, as the
shifts are of order ε. A recollision may have much stronger consequences as it can lead to
an important modification of the pseudo-trajectory (see Figure 3.2). The overlaps can be
treated as local recollisions.

t
t1

v1

(ν2, v2)

t2

ε

Figure 3.2: The first stages of both pseudo-trajectories are depicted up to the occurence of a
recollision. The BBGKY pseudo-trajectories are represented with plain arrows, whereas the Boltz-
mann pseudo-trajectories correspond to the dashed arrows. At time t, the particle with label 1 in
the BBGKY hierarchy is a ball of radius ε centered at position x1 and the particle in the Boltzmann
hierarchy is depicted as a point located at x0

1 = x1. At time t1 the second particle is added and at
time t2 the third. Both hierarchies are coupled, but a small error in the particle positions of order
ε can occur at each collision. In this figure, a recollision between the first and the second particle
of the BBGKY pseudo-trajectories occurs and after this recollision the Boltzmann and the BBGKY
pseudo-trajectories are no longer close to each other. Indeed the BBGKY trajectories are deflected
after the recollision, instead the point particles do not collide and follow a straight line (see the
dashed arrows). Note that before the recollision, the trajectories of z1 and z0

1 are identical and
therefore the plain and the dashed arrows overlap.

In the following proposition, we will show that the iterated Duhamel series of both
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hierarchies converge term by term. To do this, it will be enough to check that the recol-
lisions are extremely rare when ε tends to 0, so that the two types of pseudo-trajectories
can be coupled in order to remain close to each other.

Proposition 3.8. For any time t > 0 and any integer n, the following convergence holds in the
Boltzmann-Grad limit

∀z1 ∈ Td ×Rd, lim
N→∞

(
Q1,n+1(t) f (n+1)

N (0)
)
(z1) =

(
Q0

1,n+1(t)g(n+1)(0)
)
(z1). (3.54)

This proposition will be derived by following the approach from [10, 28] and its proof
is postponed to Section 3.4.4. Note that a quantitative version of Proposition 3.8 was
derived in [14]. We will first use Proposition 3.8 to show the convergence (3.3) of the first
marginal towards the solution of the Boltzmann equation.

3.4.3 Proof of Theorem 3.1 : convergence to the Boltzmann equation

Recall that from (3.11) and (3.20), the first marginals in the Boltzmann and the BBGKY
hierarchies can be rewritten

f (1)N (t) =
N−1

∑
n=0

αnQs,s+n(t) f (s+n)
N (0),

g(1)(t) = ∑
n > 0

αnQ0
s,s+n(t)g(s+n)(0).

Furthermore by Proposition 3.7, the solution of the Boltzmann hierarchy is unique in
the time interval [0, T∗

α ] and it coincides with the solution of the Boltzmann equation

g(1)(t, z1) = g(t, z1) thanks to Lemma 3.3. Thus it is enough to show that f (1)N (t) con-
verges to g(1)(t) in order to prove that it converges to the solution of the Boltzmann
equation.

For any δ > 0, one can find an integer K, thanks to Propositions 3.5 and 3.6, such that
for any t ∈ [0, T∗

α ] and uniformly in N > K

N−1

∑
n=K

∥∥∥αnQ1,n+1(t) f (n+1)
N (0)

∥∥∥
ε,1, β

2

+
∞

∑
n=K

∥∥∥αnQ0
1,n+1(t)g(n+1)(0)

∥∥∥
0,1, β

2

6 δ. (3.55)

Using (3.11) and (3.20), we deduce

f (1)N (t)− g(1)(t) =
K

∑
n=0

αn
(

Q1,n+1(t) f (n+1)
N (0)−Q0

1,n+1(t)g(n+1)(0)
)
+ O(δ).

Thus the convergence of the first marginal for any t ∈ [0, T∗
α ] and z1 in Td ×Rd

lim
N→∞

f (1)N (t, z1) = g(1)(t, z1)

follows from the convergence of the first K terms proved in Proposition 3.8 (and then by
letting δ tend to 0). This completes the first part of Theorem 3.1.
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3.4.4 Proof of Proposition 3.8

We first check that instead of Q1,n+1(t) f (n+1)
N (0) introduced in (3.49), it is enough to con-

sider
Q̂1,n+1(t) f (n+1)

N (0) = ∑
a∈An

∫
dΩn C(z1, Ωn) f (n+1)

N (0, Zn+1(0)), (3.56)

as the prefactor

ε(d−1)n

αn

n

∏
i=1

(N − i) =
n

∏
i=1

(
1− i

N

)
= 1 + O

(n2

N

)
, (3.57)

is asymptotically close to 1 thanks to the Boltzmann-Grad scaling Nε(d−1) = α.
Using the representations (3.52) and (3.56) in terms of the pseudo-trajectories, the

difference can be decomposed as

Q̂1,n+1(t) f (n+1)
N (0)−Q0

1,n+1(t)g(n+1)(0) (3.58)

= ∑
a∈An

[∫
dΩn

(
C(z1, Ωn) g(n+1)(0, Zn+1(0))− C0(z1, Ωn) g(n+1)(0, Z0

n+1(0))
)

+
∫

dΩn C(z1, Ωn)
(

f (n+1)
N (0, Zn+1(0))− g(n+1)(0, Zn+1(0))

)]
,

where the pseudo-trajectories in each integral are evaluated with the same branching
structure given by the collision tree a. Note that overlaps may occur in the BBGKY hier-
archy, in this case the pseudo-trajectories are discarded and the corresponding terms in
the integrals are set equal to 0.

Using the definition (3.18) of g(n+1)(0), the last term in (3.58) can be easily estimated
by Proposition 2.7 which implies that the initial densities are close∣∣∣ ∫ dΩn C(z1, Ωn)

(
f (n+1)
N (0, Zn+1(0))− g(n+1)(0, Zn+1(0))

) ∣∣∣
6 Cn αε

∫
dΩn

∣∣∣C(z1, Ωn)
∣∣∣ M⊗(n+1)

β (Zn+1(0))

6 Cn αε
(∣∣Q∣∣1,1+n(t)M⊗(n+1)

β

)
(z1).

Given z1 and n, the last term is linear in ε. Thus when ε tends to 0, the last term in (3.58)
vanishes.

We turn now to the estimation of the difference of the first two terms in (3.58). This is
a key point of the proof as it boils down to controlling the recollisions and the overlaps
which may occur in the pseudo-trajectories. Indeed, two pseudo-trajectories Zn+1, Z0

n+1
encoded by the same parameters {z1, Ωn} are close if the BBGKY pseudo-trajectory has
no recollision and no overlap :

∀i 6 n + 1, ∀t ∈ [0, ti−1], |xi(t)− x0
i (t)| 6 (i− 1)ε and vi(t) = v0

i (t), (3.59)

with the notation t0 = t. When there are no recollisions, the velocities are updated only
at the collision times and besides the shift of the positions by ε at the creation times, both
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pseudo-trajectories evolve exactly in the same way. At the creation time of particle i the
cumulated error of these shifts is at most (i− 1)ε.

If (3.59) holds, we deduce from the expression (3.18) of the initial data that∣∣∣g(n+1)(0, Zn+1(0))− g(n+1)(0, Z0
n+1(0))

∣∣∣ = M⊗n+1
β (Vn+1)

∣∣∣ n+1

∏
i=1

f0(zi)−
n+1

∏
i=1

f0(z0
i )
∣∣∣ (3.60)

6 ‖∇x f0‖∞ ‖ f0‖n
∞ M⊗n+1

β (Vn+1)(n + 1)2ε,

where we used that ∇x f0 is bounded to estimate from above the small shifts of the po-
sitions of the pseudo-trajectories. Therefore, for the collision parameters Ωn such that
the pseudo-trajectories have no overlap and no recollisions, the right hand side of (3.58)
tends to 0. It remains to show that the occurence of the recollisions and of the overlaps
are so rare that they do not contribute to the difference in (3.58).

For a given collision tree a and an initial data z1, we are going to compare the pseudo-
trajectories from both hierarchies associated with the same collection of parameters Ωn
introduced in (3.48). In probabilistic terms, both pseudo-trajectories are coupled with the
same source of randomness. We define below Gε a set of good parameters for which there
will be no recollisions or overlaps

Gε =
{

Ωn = {Tn, V2,n+1, Θ2,n+1}, (3.61)

∀i, j ∈ {1, . . . , n + 1}, i 6∼ j, ∀u ∈ [0, t],
∣∣x0

i (u)− x0
j (u)

∣∣ > 4nε,

∀i ∈ {2, . . . , n + 1}, ∀u ∈
[

0, ti−1 −
4nε

|vi+1(ti−1)− va(i)(ti−1)|

]
,
∣∣x0

i (u)− x0
a(i)(u)

∣∣ > 4nε,

∀i ∈ {1, . . . , n− 1}, ti+1 < ti −
4nε

|vi+1(ti)− va(i)(ti)|
}

,

where the symbol i 6∼ j means that i is different from j and that i and j are not related by a
branching (i.e i 6= a(j) or j 6= a(i)). Note that Gε depends on z1 which is fixed throughout
the proof.

The set Gε is indexed by the pseudo-trajectories of the Boltzmann hierarchy and the
Lebesgue measure of its complement Gc

ε will be shown to converge to 0. We are first going
to check that a parameter Ωn in Gε generates a BBGKY pseudo-trajectory without recolli-
sion or overlap. The idea is that if the particles in a Boltzmann pseudo-trajectory remain
far apart from each other then the corresponding BBGKY pseudo-trajectories cannot have
any recollision because both trajectories have to be close thanks to (3.59).

Given Ωn a set of parameters in Gε, we are going to build the BBGKY and Boltzmann
pseudo-trajectories inductively. Suppose that both pseudo-trajectories have evolved dur-
ing the time interval [s, t] and that no recollisions or overlaps have occurred so far. We are
going to check that the conditions on the parameters in Gε implies that the next creations
will not lead to a recollision or an overlap:

• The first condition in (3.61) implies that particles in a Boltzmann pseudo-trajectory
with labels i 6∼ j are at distance at least 4nε thus the corresponding particles in the
Boltzmann pseudo-trajectories will remain at distance 2nε thanks to (3.59). Notice
also that when particles are far enough, then no overlap can occur when a new
particle is created.
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• When a particle is created, it is close to its parent for some time (depending on their
relative velocity), but then both particles depart from each other. However, due to a
future collision (which would deflect the trajectory) or due to the periodicity of Td,
a particle and its parents might get closer at a later time and the second condition
in (3.61) has been added to forbid this eventuality.

• Finally the third condition in (3.61) implies that two particle creations do not oc-
cur in a very short amount of time. Indeed when a new particle i is created, it is
very close to its parent a(i), thus if a third particle is created, by i or a(i), immedi-
ately after then it may lead to an overlap or a recollision between these 3 particles.
The third condition implies that particles i and a(i) drift at distance 4nε before any
creation of a new particle.

As the pseudo-trajectories of the BBGKY hierarchy indexed by parameters in Gε have
no recollisions, the difference in (3.58) can be decomposed as∫

dΩn

(
C(z1, Ωn) g(n+1)(0, Zn+1(0))− C0(z1, Ωn) g(n+1)(0, Z0

n+1(0))
)

=
∫

dΩn 1{Ωn 6∈Gε}
(
C(z1, Ωn) g(n+1)(0, Zn+1(0))− C0(z1, Ωn) g(n+1)(0, Z0

n+1(0))
)

+
∫

dΩn 1{Ωn∈Gε} C(z1, Ωn)
(

g(n+1)(0, Zn+1(0))− g(n+1)(0, Z0
n+1(0))

)
,

where we used the fact that for Ωn ∈ Gε, there is no recollision or overlap and the veloci-
ties of both pseudo-trajectories coincide so that C(z1, Ωn) = C0(z1, Ωn).

Applying inequality (3.60) to control the trajectory without recollisions, we get∣∣∣∣∫ dΩn

(
C(z1, Ωn) g(n+1)(0, Zn+1(0))− C0(z1, Ωn) g(n+1)(0, Z0

n+1(0))
)∣∣∣∣

6 ‖ f0‖n+1
∞

∫
dΩn 1{Ωn 6∈Gε}

(∣∣C(z1, Ωn)
∣∣M⊗n+1

β (Vn+1) +
∣∣C0(z1, Ωn)

∣∣M⊗n+1
β (V0

n+1)
)

+ ‖∇x f0‖∞ ‖ f0‖n
∞ (n + 1)2ε

∫
dΩn 1{Ωn∈Gε}

∣∣C(z1, Ωn)
∣∣M⊗n+1

β (Vn+1). (3.62)

When ε tends to 0, the sets Gc
ε are going to converge to

N0 =
{

Ωn ={Tn, V2,n+1, Θ2,n+1}, (3.63)

∃i, j ∈ {1, . . . , n + 1}, i 6∼ j, ∃u ∈ [0, t],
∣∣x0

i (u)− x0
j (u)

∣∣ = 0,

∃i ∈ {2, . . . , n + 1}, ∃u < ti−1,
∣∣x0

i (u)− x0
a(i)(u)

∣∣ = 0,

tn < tn−1 < · · · < t2 < t1

}
.

For any fixed z1, N0 has measure 0. Indeed, suppose that x0
i (u) = x0

j (u) at some time
u and denote by u′ ∈ [u, t] the time of the last deflection of the particle i or j. Then
the constraint x0

i (u) = x0
j (u) forces the collision parameters at time u′ to be in a set of

measure 0. Thus we deduce that for almost all Ωn

lim
ε→0

1Gc
ε
(Ωn) = 1N0(Ωn) = 0.
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The dominated convergence theorem implies the following convergence for any z1

lim
ε→0

∫
dΩn 1{Ωn 6∈Gε}

(∣∣C(z1, Ωn)
∣∣M⊗n+1

β (Vn+1) +
∣∣C0(z1, Ωn)

∣∣M⊗n+1
β (V0

n+1)
)
= 0,

(3.64)
where the domination relies on the comparison of the term in parenthesis with the colli-
sion operators which are both finite (Propositions 3.4 and 3.6)∣∣Q∣∣1,1+n(t)M⊗(n+1)

β (z1) < ∞ and
∣∣Q0∣∣

1,1+n(t)M⊗(n+1)
β (z1) < ∞.

The last term in (3.62) can be bounded in the same way.

ε
∫

dΩn 1{Ωn∈Gε}
∣∣C(z1, Ωn)

∣∣M⊗n+1
β (Vn+1) 6 ε

∣∣Q∣∣1,1+n(t)M⊗(n+1)
β (z1).

Thus this term also tends to 0 and this concludes the proof of Proposition 3.8.

3.5 The molecular chaos assumption

3.5.1 Convergence of the marginals

In this section, we complete the derivation of Theorem 3.1 and show that the marginals
asymptotically factorize (3.4). Using the explicit solution of the Boltzmann hierarchy
derived in Lemma 3.3, this boils down to checking that for any time t in [0, T∗/α] and for
almost all configurations Zs in Tds ×Rds

lim
N→∞

f (s)N (t, Zs) = g(s)(t, Zs). (3.65)

As for the convergence of the first marginal, the proof is based on the comparison of
the Duhamel series (3.11) and (3.20)

f (s)N (t)− g(s)(t) =
N−s

∑
n=0

αnQs,s+n(t) f (s+n)
N (0)−

∞

∑
n=0

αnQ0
s,s+n(t)g(s+n)(0).

Using Propositions 3.5 and 3.6, one can show as in (3.55) that for any δ > 0, there is K
large enough such that for any t ∈ [0, T∗

α ] and uniformly in N > s + K

N−s

∑
n=K

∥∥∥αnQs,n+s(t) f (n+s)
N (0)

∥∥∥
ε,s, β

2

+
∞

∑
n=K

∥∥∥αnQ0
s,n+s(t)g(n+s)(0)

∥∥∥
0,s, β

2

6 δ. (3.66)

Thus it is enough to generalize Proposition 3.8 and to show that for any time t > 0
and any integer n, then the following convergence holds for almost all initial data Zs in
Tds ×Rds

∀t ∈
[

0,
T∗

α

]
, lim

N→∞

(
Qs,n+s(t) f (n+s)

N (0)
)
(Zs) =

(
Q0

s,n+s(t)g(n+s)(0)
)
(Zs). (3.67)

The convergence (3.65) can then be deduced by combining (3.66) and (3.67).
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t z1

v1

t1

t3

recollision

z2

v2

t2

x1x2

v2
v1

εa

Figure 3.3: Computing the marginal f (2)N (t, z1, z2) boils down to controlling the pseudo-
trajectories with 2 roots at time t (see the figure on the left). The collision tree associated with the
second particle is in dashed lines to distinguish it from the tree associated with the first particle.
The correlations between the two particles are related to the recollisions between the two collision
trees. The configuration (z1, z2), depicted on the right, belongs to the set B2

0 as the trajectories in-
tersect in the past. The enlarged set of pathological configurations B2

ε should be understood as the
set of configurations such that the tubes of width εa around the backward trajectories intersect.

The proof of (3.67) follows the same pattern as the argument of Proposition 3.8, nev-
ertheless there is an important twist as the convergence does not hold for all configura-
tions Zs. The main steps of the derivation are described below. The operators Qs,s+n(t)
and Q0

s,s+n(t) can be also represented by collision trees. The main difference is that the
pseudo-hierarchies are now encoded by s trees with roots at time t indexed by the coor-
dinates of each of the s particles Zs or Z0

s . These trees are built inductively by evolving
backward in time and new particles are created at each branching time. Once again a
major difference between both hierarchies comes from the recollisions. In the Boltzmann
hierarchy, the particles evolve according to the free flow and therefore do not interact
with each other except possibly at the creation of a new particle. Thus the collision trees
associated with the configuration Z0

s are the union of the s non-interacting collision trees
starting from the roots z0

1, z0
2, . . . , z0

s at time t. For the BBGKY hierarchy the s trees are no
longer independent as the pseudo-trajectories can be modified by the recollisions either
between particles belonging to the same collision tree or between particles belonging to
collision trees generated at time t by different roots (see Figure 3.3). To control the rec-
ollisions, one has to show that the pseudo-trajectories encoded by the parameters Ωn in
the set Gc

ε (3.61) have a vanishing contribution when ε tends to 0. We stress the fact that
Gc

ε depends on the configuration Zs at time t. Contrary to the case s = 1, this will have
important consequences. Indeed for s = 1, the limiting set N0 introduced in (3.63) has
measure 0 for any given configuration z1. This is no longer the case for s > 1 if the
configuration Zs belongs to the set

Bs
0 =

{
Zs ∈ Tds ×Rds, ∃i 6= j, ∃u ∈ [0, t] ,

∣∣(xi − uvi)− (xj − uvj)
∣∣ = 0

}
(3.68)

such that two particles will encounter along the backward free flow starting from Zs
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(see Figure 3.3). Indeed, for any configuration Zs in Bs
0 there is a set of parameters Ωn of

positive measure such that the pseudo-trajectories starting from Zs will have a recollision
for any ε > 0. Nevertheless, one can check that, for Zs outside Bs

0, the limiting set

N s
0 =

{
Ωn ={Tn, V2,n+1, Θ2,n+1},

∃i, j ∈ {1, . . . , n + s}, i 6∼ j, ∃u ∈ [0, t],
∣∣x0

i (u)− x0
j (u)

∣∣ = 0,

∃i ∈ {s + 1, . . . , n + s}, ∃u < ti−s,
∣∣x0

i (u)− x0
a(i)(u)

∣∣ = 0,

tn < tn−1 < · · · < t2 < t1

}
.

has measure 0 and the dominated convergence theorem can be applied as in (3.64). This
completes the convergence (3.67) for any configuration Zs outside Bs

0. Since Bs
0 has mea-

sure 0 in Tds ×Rds, the convergence (3.65) of the s marginal holds for almost all configu-
rations Zs in Tds ×Rds.

3.5.2 Quantitative estimates

The convergence in Theorem 3.1 can be improved in order to quantify the distance be-
tween the marginal f (s)N and its limit g(s). This was first initiated in [14] and developed in
[28, 29, 11, 6].

Before stating the convergence result, we introduce the sets which can lead to recol-
lisions in the pseudo-trajectories starting from configurations with s particles. This boils
down to enlarging the set Bs

0 introduced in (3.68). Given a ∈ (0, 1) and T∗, we set

Bs
ε =

{
Zs ∈ Tds ×Rds, ∃i 6= j, ∃u ∈

[
0,

T∗

α

]
,
∣∣(xi − uvi)− (xj − uvj)

∣∣ 6 εa
}

.

(3.69)
The following theorem summarizes the results derived in [14, 11, 6]. An extension of this
result to soft potentials has been proven in [14, 28].

Theorem 3.9. Under the assumptions of Theorem 3.1 on the initial data, the marginal f (s)N con-
verges, in the Boltzmann-Grad limit, to g(s) uniformly on the configurations Zs in Ds

ε \ Bs
ε , i.e.

there exists T∗ > 0 such that

∀t ∈
[

0,
T∗

α

]
,

∣∣∣( f (s)N (t, Zs)− g(s)(t, Zs)
)
1{Zs 6∈Bs

ε}
∣∣∣ 6 Cs M⊗s

β
2
(Vs) γ(ε) ,

where the function γ(ε) converges to 0 as ε tends to 0. The rate of convergence depends on the
parameter a which controls the set of initial data (3.69).

For any given ε, the configurations in the set Bs
ε are excluded as they could potentially

lead to recollisions. When ε tends to 0, these sets shrink to the set Bs
0 defined in (3.68) and

therefore Theorem 3.9 implies the factorization (3.4).

Let us briefly review the new ideas involved in the proof of Theorem 3.9. In the
derivation of Theorem 3.1, all the estimates were explicit in ε with the exception of the
control on the recollisions in Proposition 3.8 which relied on the dominated convergence



3.5. THE MOLECULAR CHAOS ASSUMPTION 65

theorem. Thus the key step is to estimate the size of Nε (3.61) in terms of ε. Restricting to
configurations Zs in the complement of Bs

ε means that the particles remains at distance
εa � ε from each other when they evolve according to backward transport. When a new
particle is created, one has to prove that the probability that a recollision occurs with
another particle is small. Indeed, a recollision requires to aim, at the creation time, very
precisely at a small ball of size ε at distance at least εa and this imposes strong constraints
on the collision parameters at the creation time of a particle. By evaluating at each new
collision the range of the parameters which would lead to a recollision, upper bounds on
the measure of Nε can be obtained [14, 28].

We will not derive Theorem 3.9, nevertheless the ideas mentioned previously will be
key for the study of the large time asymptotics and they will be detailed in Chapters 4
and ??.

The function γ(ε), introduced in Theorem 3.9, can be estimated and one can show that
γ(ε) decays to 0 as εa′ for some a′ < 1. Thus Theorem 3.9 implies the convergence of all
the marginals of order s � log N. By studying the cumulants instead of the marginals,
Pulvirenti and Simonella [29] were able to prove that the correlations of much higher
order tend to 0. Let {ϕk}k > 1 be a sequence of smooth functions in Td ×Rd uniformly
bounded and define the empirical averages at time t of these functions as well as their
limits by

∀k > 1, Fk
(
ZN(t)

)
=

1
N

N

∑
i=1

ϕk(zi(t)), ϕ̂k(t) =
∫

Td×Rd
dz ϕk(z)gα(t, z),

where gα is the solution of the Boltzmann equation. The idea is to consider the correla-
tions for some p > 0

sup
j<ε−p

EN

(
j

∏
k=1

(
Fk
(
ZN(t)

)
− ϕ̂k(t)

))
, (3.70)

which take into account many cancelations. In a slightly different setting than the one
presented here (i.e. under a grand-canonical initial measure and with the hard-sphere
dynamics in Rd) it is proven in [29], that there exists p > 0 and a time T∗ > 0 such that
(3.70) convergences to 0 when ε tends to 0.

3.5.3 Time reversal and propagation of chaos

The Boltzmann equation was derived heuristically under the molecular chaos assump-
tion stated in (2.42) which requires a very quantitative version of the factorization when
two particles are in contact with each other

f (2)N (t, x1, v1, x1 − εν, v2) ≈ f (1)N (t, x1, v′1) f (1)N (t, x1, v′2). (3.71)

Lanford’s strategy does not rely on the molecular chaos assumption and the proof of the
convergence does not provide any clue for closing directly the equations of the BBGKY
hierarchy : the convergence holds for the whole hierarchy. The factorization of the
marginals is only recovered in the limit (3.65) by using the fact that the solution of the
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Boltzmann hierarchy is itself factorized

lim
N→∞

f (s)N (t, Zs) = g(s)(t, Zs) =
s

∏
i=1

g(t, zi). (3.72)

In fact, this convergence does not hold for all the configurations Zs. In particular, the
configurations in the set Bs

0 (3.68) have been excluded as they lead to recollisions. Fur-
thermore, the propagation of chaos (3.72) is valid only for fixed Zs in the limit N → ∞ and
more quantitative bounds on the factorization would be needed to be used in the proof of
the convergence towards the Boltzmann equation. For a given ε, the convergence could
not be proved in Theorem 3.9 for the configurations in the set Bs

ε . This shows that the
convergence derived in Theorem 3.9 is very far from establishing the kind of estimate
required by the molecular chaos assumption (3.71). In fact, excluding the configurations
leading to recollisions is not a technical necessity, but a necessary condition to prove the
convergence towards an irreversible equation.

Theorem 3.9 implies the convergence of the marginals on the time interval [0, T∗
α ].

The microscopic hard-sphere dynamics is reversible, thus if all the velocities are flipped
at the intermediate time τ = T∗

2α then the particle system returns to its initial state. As the
Boltzmann equation is not reversible, the reversed equation is the backward Boltzmann
equation and Lanford’s strategy cannot apply to the microscopic dynamics starting from
the density at time τ with the reversed velocities, i.e. from the distribution

f̂N(0, ZN) = fN(τ,R(ZN)).

The iterated Duhamel formula (3.11) applied to this initial data implies that for t ∈ [0, τ]

f̂ (1)N (t) =
N−1

∑
n=0

αnQ1,n+1(t) f̂ (n+1)
N (0). (3.73)

By the reversibility of the microscopic dynamics

f̂ (1)N (t, x, v) = f (1)N (τ − t, x,−v).

Evaluating the term Q1,n+1(t) f̂ (n+1)
N (0) in (3.73) amounts to integrate f̂ (n+1)

N (0, Zn+1) over
the configurations Zn+1 of the pseudo-trajectories. Reversing the velocities, one has

f̂ (n+1)
N (0, Zn+1) = f (n+1)

N
(
τ,R(Zn+1)

)
.

By construction of the pseudo-trajectories (see Figure 3.4), the configuration R(Zn+1)
arises from a branching process thus it belongs to the set Bs

ε (with a = 1) as the particles
have to recollide in the backward hard-sphere flow. Therefore, the configurations needed
to compute the reverse dynamics are exactly those which were discarded in Theorem 3.9.
This means that the molecular chaos assumption cannot hold for the configurations Zs in
Bs

ε (with a = 1)
f (s)N (τ, Zs) 6' g(s)(τ, Zs),

otherwise the system would converge towards the Boltzmann equation and not the back-
ward Boltzmann equation. The marginal f (s)N (t) is almost factorized, but it lacks regular-
ity on very specific sets which have a vanishing measure with ε. Once the rare events
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leading to recollisions have been neglected, some information on the reversibility has
been lost so that the initial state cannot be recovered by running the dynamics backward.
Thus the irreversibility of the limiting process comes from this loss of memory. The key
role of the recollision and the importance of the sets Bs

0 defined in (3.68) has been first
emphasized in [45] and a more quantitative discussion on the size of the pathological
sets Bs

ε can be found in [6].

τ − t τ

Zn+1

Figure 3.4: At time τ, all the velocities are flipped and the system restarts from the den-
sity f̂N(0, ZN) = fN(τ,R(ZN)). The pseudo-trajectory associated with the reversed evolution
f̂ (1)N (t, x, v) form a branching process with final configurations Zn+1 in the set Bs

ε .
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Chapter 4

Tagged particle

4.1 Introduction

The main goal of this chapter is to show that a stochastic process can arise from purely
deterministic dynamics.

4.2 The ideal gas

4.2.1 A Markov chain representation

The simplest model of a tagged particle in an ideal gas is a stochastic process such that
the particle moves in a straight line and at random times changes its direction according
to random kicks. In this setting, the gas molecules do not interact which each other and
they simply act on the tagged particle as a thermal bath at a given temperature 1/β.

The tagged particle velocity {v(t)}t > 0 is then a Markov chain evolving according
to the following stochastic rule. If the tagged particle has a velocity v, it will keep this
velocity up to an exponential time T with rate αa(v) defined as

P(T > u) = exp
(
− αa(v)

)
and a(v) =

∫
Sd−1×Rd

(
(w− v) · ν

)
+

Mβ(w)dwdν,

then at time T , the velocity is updated to

v′ = v−
(
(v− w) · ν

)
ν,

where the parameters w and ν are chosen according to the probability density(
(w− v) · ν

)
+

Mβ(w)

a(v)
dwdν.

This amounts to say that a particle with velocity w, chosen randomly according to the
Maxwellian distribution Mβ, collides with the tagged particle according to a law depend-
ing on the relative velocity w− v and on a random impact parameter ν.

This procedure is then iterated to build the random sequence of collisions and the
path of the Markov chain {v(t)}t > 0. The ideal gas is uniformly distributed therefore the

69
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collision mechanism is independent of the position of the tagged particle which evolves
simply according to

x(t) =
∫ t

0
ds v(s). (4.1)

This stochastic evolution mimics the collisions encountered by a tagged particle in a di-
lute gas. Nevertheless contrary to the deterministic gas dynamics, the spatial structure
is neglected and the Markov chain is memoryless. This means that the trajectory of an
incoming particle at velocity w will not influence the tagged particle beyond the collision.
As a consequence, the outgoing velocity w′ plays no role in the evolution of the tagged
particle : the momentum and the energy are no longer conserved by the stochastic pro-
cess which is dissipative.

Rephrasing the previous discussion, we say that the Markov chain {v(t)}t > 0 has a
generator given by αL with

Lϕ(v) :=
∫

Sd−1×Rd

(
ϕ(v′)− ϕ(v)

) (
(w− v) · ν

)
+

Mβ(w)dwdν, (4.2)

and L is known as the linear Boltzmann operator. The proposition below summarizes some
properties of L.

Proposition 4.1. The operator L is self-adjoint in L2(Mβ), which amounts to say that the
stochastic process {v(t)}t > 0 is reversible with respect to its invariant measure Mβ. Further-
more, −L has a spectral gap, i.e. that there exists c > 0 such that for any ϕ in L2(Mβ)

EMβ

(
ϕ2)− (EMβ

(
ϕ
))2

6 − cEMβ

(
ϕLϕ

)
, (4.3)

for some c > 0.

Proof. Recall that the map J : (v, w, ν) 7→ (v′, w′,−ν) introduced in (2.5) is an involution
and preserves the Lebesgue measure. Noticing that

M⊗2
β (v′, w′) = M⊗2

β (v, w) and
(
(w− v) · ν

)
+
=
(
(w′ − v′) · ν

)
− ,

we get, for any functions ψ and ϕ in L2(Mβ), that∫
Sd−1×R2d

dνdvdw M⊗2
β (v, w) ψ(v)ϕ(v′)

(
(w− v) · ν

)
+

(4.4)

=
∫

Sd−1×R2d
dνdvdw M⊗2

β (v′, w′) ψ(v)ϕ(v′)
(
(w′ − v′) · ν

)
− (4.5)

=
∫

Sd−1×R2d
dνdvdw M⊗2

β (v, w) ψ(v′)ϕ(v)
(
(w− v) · ν

)
+

, (4.6)

where second equality is obtained by the change of variables J . Identity (4.4) implies
that L is self-adjoint in L2(Mβ)

EMβ

(
ψLϕ

)
=
∫

M⊗2
β (v, w)ψ(v)

(
ϕ(v′)− ϕ(v)

) (
(w− v) · ν

)
+
= EMβ

(
ϕLψ

)
.
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Thus the stochastic process is reversible with respect to the measure Mβ and Mβ is the
invariant measure.

Using the identity (4.4), we get also that L has a negative spectrum

EMβ

(
ϕLϕ

)
= −1

2

∫
M⊗2

β (v, w)
(

ϕ(v′)− ϕ(v)
)2 (

(w− v) · ν
)
+
6 0.

We refer to [35] for a proof of the spectral gap.

The semigroup of the Markov process is denoted by

Pt = exp(tαL). (4.7)

The number of random kicks per unit of time is of order 1/α. We stress that the prefactor
α plays a role similar to the factor α in the Boltzmann-Grad scaling α = Nεd−1. When
α tends to infinity, the collision frequency increases which boils down to saying that the
density of the particles in the bath is increasing.

1
α

Figure 4.1: The typical time between two collisions in the stochastic process is 1/α. Thus in a time
t = ατ, the position is the sum of roughly α2τ random displacements of size 1/α. A Brownian
path is depicted on the right.

The density gα(t, x, v) = ϕα(t, x, v)Mβ(v) of the tagged particle is given in terms of
ϕα, the solution of the linear Boltzmann equation

∂t ϕα + v · ∇x ϕα = αLϕα, (4.8)

with initial data ϕ0(x, v). We stress the fact that the structure of the linear Boltzmann
equation is reminiscent to the one of the Boltzmann equation. We refer to [8, 26] for a
survey on the probabilist representations of the Boltzmann equation.

We are interested in the large time behavior of the position of the tagged particle x(t)
(4.1). After an appropriate space/time rescaling, the process is expected to converge to a
Brownian motion. Instead of rescaling space, it will be more convenient to consider the
limit α→ ∞ of the following processes

∀α > 0, χα(τ) = x(ατ) (4.9)

starting at χα(0) = 0 with initial velocity distributed according to Mβ. In this limit, τ
stands for the macroscopic time and the number of random kicks scales as αt = α2τ and
each increment is of order 1

α . Thus this is the correct scaling in α to observe a central limit
theorem and it is not necessary to rescale the position (see Figure 4.1).
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Theorem 4.2. The sequence of processes {χα}α>0 converges in law to a Brownian motion in Rd

with diagonal diffusion matrix D Id where the diffusion coefficient is given by

D =
1
d

EMβ

(
v · (−L)−1v

)
. (4.10)

The proof is standard and the main arguments are sketched in Section 4.2.2.

In the rest of this section, we justify the form of the diffusion coefficient D and check
that it is given in terms of the limiting variance of the process. Given an orthonormal
basis {e1, . . . , ed}, the coordinates of the process in Rd are denoted by

∀i 6 d, xei(t) = x(t) · ei, vei(t) = v(t) · ei.

We are going to show that for any τ > 0

lim
α→∞

EMβ

(
xe1(ατ)2

)
= 2Dτ. (4.11)

The other covariances can be computed in the same way.
To prove (4.11), we first use the fact that Mβ is the invariant measure in order to

rewrite

EMβ

(
xe1(ατ)2

)
= EMβ

(∫ ατ

0
ds
∫ ατ

0
ds′ ve1(s)ve1(s

′)
)

= 2
∫ ατ

0
ds
∫ ατ

s
ds′EMβ

(
ve1(0)ve1(s

′ − s)
)

.

Changing variables and integrating by parts, we deduce that

EMβ

(
xe1(ατ)2

)
= 2

∫ ατ

0
ds
∫ ατ−s

0
du EMβ

(ve1(0)ve1(u))

= 2ατ
∫ ατ

0
ds

s
ατ

EMβ
(ve1(0)ve1(ατ − s))

= 2ατ
∫ ∞

0
ds
(

1− s
ατ

)
+

EMβ
(ve1(0)ve1(s)) .

This can be rephrased in terms of the semigroup Ps = exp(αsL)

EMβ

(
xe1(ατ)2

)
= 2ατ

∫ ∞

0
ds
(

1− s
ατ

)
+

EMβ
(ve1 Psve1)

= 2τ
∫ ∞

0
du
(

1− u
α2τ

)
+

EMβ
(ve1 exp(uL)ve1) , (4.12)

where the scaling of the generator has been absorbed in the change of variable u = αs.
As the process is reversible, the right hand side of the identity is nonnegative

EMβ

(
ve1 exp(uL)ve1

)
= EMβ

((
exp(

u
2
L)ve1

)2
)

> 0.

By the monotone convergence theorem, the limiting variance converges to

EMβ

(
xe1(ατ)2

)
= 2τ

∫ ∞

0
duEMβ

(
ve1 exp(uL)ve1

)
= 2τEMβ

(
ve1(−L)−1ve1

)
. (4.13)

Recall, from Proposition 4.1, that −L has a spectral gap so that the inverse (−L)−1ve1 is
well defined. This completes the proof of (4.11).
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4.2.2 Proof of Theorem 4.2

Fix T > 0. To prove the convergence, in Theorem 4.2, of the processes χα in the time
interval [0, T ] towards a Brownian motion B with variance D Id, it is enough (see [4],
Chapter 2) to check that

• the convergence of the marginals at different times τ1 < τ2 < · · · < τ` 6 T

lim
α→∞

EMβ

(
h1
(
χα(τ1)

)
. . . h`

(
χα(τ`)

))
= E

(
h1
(

B(τ1)
)

. . . h`
(

B(τ`)
))

, (4.14)

where {h1, . . . , h`} is a collection of continuous functions in Rd.

• the tightness of the sequence, that is for any τ ∈ [0, T ]

∀δ > 0, lim
η→0

lim
α→∞

PMβ

(
sup

τ<σ<τ+η

∣∣χα(σ)− χα(τ)
∣∣ > δ

)
= 0 . (4.15)

The main ingredients for deriving Theorem 4.2 are recalled below and a complete proof
can be found in [21].

For simplicity, we are going to focus on one of the position coordinates, say the one
along the axis e1, and derive the invariance principle in this case. From Proposition 4.1,
the operator L is invertible on the space L2(Mβ) of functions of mean 0, thus there exists
a unique solution to the Poisson equation associated with the velocity

−Lψ(v) = ve1 with EMβ
(ψ) = 0. (4.16)

The stochastic process

Mt = ψ
(
v(t)

)
− ψ

(
v(0)

)
− α

∫ t

0
dsLψ

(
v(s)

)
is a martingale. Since ψ is a solution of the Poisson equation, the invariance principle
for the position xe1(ατ) will be deduced from the invariance principle for the martingale
τ →Mατ

xe1(ατ) =
∫ ατ

0
ds ve1(s) =

1
α
Mατ −

1
α

(
ψ
(
v(ατ)

)
− ψ

(
v(0)

))
. (4.17)

Indeed, the second term can be neglected as it converges to 0 in L2 by (4.16)

1
α2 EMβ

(
ψ2) = 1

α2 EMβ

((
L−1ve1

)2
)
−−−→
α→∞

0.

The inequality
∀r ∈ R, | exp(ir)− 1− ir| 6 r2

implies that the characteristic function of xe1(ατ) is well approximated by the one of
1
αMατ.

The square of the martingale can be decomposed as

M2
t = α

∫ t

0
ds
(
Lψ2(v(s))− 2ψ

(
v(s)

)
Lψ
(
v(s)

))
+ Nt,
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where Nt is another martingale. Thus the variance (4.11) can be recovered by computing
the variance of the martingale term in (4.17)

EMβ

(M2
ατ

α2

)
= −2

α2τ

α2 EMβ

(
ψLψ

)
= 2τEMβ

(
ve1(−L)−1ve1

)
= 2Dτ, (4.18)

where we used (4.16) in the last equality. More precisely, the ergodic theorem implies the
convergence of the quadratic variation almost surely and in L1(Mβ)

1
α

∫ ατ

0
ds
(
Lψ2 − 2ψLψ

)(
v(s)

)
=

1
α

∫ ατ

0
ds
(
L
(
L−1ve1

)2 − 2ve1 L−1ve1

)(
v(s)

) L1

−−−→
α→∞

2Dτ.

Thus the assumptions of Theorem 2.1 in [21] are satisfied and this leads to the conver-
gence in law of xe1(ατ) to a Gaussian variable. A similar approach (see Theorem 2.32 in
[21]) can be implemented to derive the joint convergence in law (4.14) of the marginals.

It remains to justify the tightness criterion (4.15) which will be a consequence of the
following lemma.

Lemma 4.3. Fix η > 0 then

EMβ

(
sup

0<σ<η

(∫ ασ

0
ve1(s)ds

)2
)

6 18η EMβ

(
ve1(−L)−1ve1

)
.

This is Lemma 2.4 from [21] and its proof is derived at the end of this section for the
sake of completness. As the measure Mβ is invariant, it is enough to prove (4.15) for
τ = 0. Lemma 4.3 implies a uniform upper bound in α

PMβ

(
sup

0<σ<η

∣∣ ∫ ασ

0
ve1(s) ds

∣∣ > δ

)
6

18η

δ2 EMβ

(
ve1(−L)−1ve1

)
. (4.19)

Letting η tend to 0, this completes (4.15) for the coordinate ve1 . By symmetry of the
coordinates of the velocity, the tightness criterion (4.15) follows.

Proof of Lemma 4.3. Recall that in (4.17), the additive process has been rewritten in terms
of a martingale

α
∫ ασ

0
ve1(s) ds =Mατ −

(
ψ
(
v(ασ)

)
− ψ

(
v(0)

))
,

and the martingale fluctuations can be estimated by Doob’s Theorem. To control the
fluctuations of the second term with ψ, we are going also to replace it by a martingale.

Let T = αη and define the backward filtration {F−t ; t ∈ [0, T]} generated by the
backward process {v(T − t); t ∈ [0, T]}. The Markov chain is reversible, so that the
generator of the backward process is also αL. Thus the following process is also a mar-
tingale

M−
t = ψ

(
v(T − t)

)
− ψ

(
v(T)

)
− α

∫ t

0
Lψ
(
v(T − s)

)
ds.

In particular, using the Poisson equation (4.16), we get

M−
αη −M−

α(η−σ)
= ψ

(
v(0)

)
− ψ

(
v(ασ)

)
+ α

∫ ασ

0
ve1(s) ds.
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Combined with (4.17), we deduce that

2α
∫ ασ

0
ve1(s) ds =Mασ +M−

αη −M−
α(η−σ)

.

Thus the derivation of Lemma 4.3 boils down to controlling the martingale fluctuations
by Doob’s inequality

EMβ

(
sup

0<σ<η

(∫ ασ

0
ve1(s)ds

)2
)

=
3

4α2

(
EMβ

(
sup

0<σ<η

M2
ασ

)
+ EMβ

(
sup

0<σ<η

(
M−

α(η−σ)

)2
)
+ EMβ

((
M−

αη

)2
))

6
3
α2

(
EMβ

(
M2

αη

)
+ 2EMβ

((
M−

αη

)2
))

= 18ηEMβ

(
ve1(−L)−1ve1

)
,

where we used the computation (4.18) of the variance.

4.3 Hard-sphere dynamics

We are going to study the asymptotic behavior of a tagged particle in the hard-sphere dy-
namics at equilibrium and show that after rescaling its trajectory converges to a Brownian
motion.

4.3.1 The convergence result

In the hard-sphere gas, all the particles are exchangeable and we are going to break this
symmetry in order to follow the evolution of a given particle which will play a specific
role. This tagged particle will be labelled by 1 with coordinates z1 = (x1, v1). The initial
data is a perturbation of the equilibrium density (2.18) with respect to the position x1 of
the tagged particle

∀ZN ∈ DN
ε , fN(0, ZN) := ρ0(x1) MN,β(ZN), (4.20)

where ρ0 ∈ C0(Td) is a continuous density of probability on Td. Note that the distribu-
tion fN(0) is normalized by 1 in L1(TdN ×RdN) thanks to the translation invariance of

Td and that
∫

Td
ρ0(x)dx = 1.

In the macroscopic limit α→ ∞, the trajectory of the tagged particle is rescaled as

χ̂α(τ) := x1
(
ατ
)
∈ Td, (4.21)

where τ stands for the macroscopic time scale. The distribution of χ̂α(τ) is given by the
first marginal f (1)N (ατ, x, v) of the particle system. The following theorem, derived in [5],
describes the macroscopic behavior of the tagged particle and of its density.
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Theorem 4.4 ([5]). Consider a tagged particle in a hard-sphere gas initially distributed according
to the density defined in (4.20). Then, in the limit

N → ∞, ε→ 0, α→ ∞ with α = Nεd−1 and α�
√

log log N, (4.22)

the process {χ̂α(τ)}τ≥0 associated with the tagged particle (4.21) converges in law towards a
Brownian motion initially distributed under the measure ρ0 and with variance 2D given by (4.10).

In particular, the distribution f (1)N (ατ, x, v) of χ̂α(τ) is well approximated, in the limit (4.22),
by ∥∥ f (1)N (ατ, x, v)− ρ(τ, x)Mβ(v)

∥∥
L∞([0,T]×Td×Rd)

→ 0, (4.23)

where ρ(τ, x) is the solution of the linear heat equation

∂τρ−D∆xρ = 0 in Td with ρ|τ=0 = ρ0. (4.24)

The heat equation should be understood as a (simple) hydrodynamic limit because it
arises in a regime such that the tagged particle undergoes a diverging number of colli-
sions per unit time. The derivation of this hydrodynamic equation relies on the kinetic
approximation of the microscopic dynamics, however contrary to the strategy described
in Section 1.3, the hydrodynamic equation is not obtained in a two-step limit but in the
joint limit N, α→ ∞ (4.22).

The invariance principle will be proved by coupling the process {χ̂α(τ)}τ≥0 with the
rescaled Markov chain {χ̂α(τ)}τ≥0 introduced in (4.9). The probability that both pro-
cesses coincide in the coupling is shown to converge to 1 with an explicit error depend-
ing on N, ε, α. Then the invariance principle for the Markov chain (Theorem 4.2) implies,
in the limit (4.22), the convergence of the tagged particle in the mechanical process to a
Brownian motion. The following theorem is a simplified version of this coupling show-
ing that the distance between the densities at time t of both processes can be estimated
quantitatively in terms of N, α, t.

Theorem 4.5. The distribution f (1)N (t, x, v) of the tagged particle is close to Mβ(v)ϕα(t, x, v),
where ϕα(t, x, v) is the solution of the linear Boltzmann equation (4.8) with initial data ρ0. More
precisely, for all t > 0 and all α > 1, in the limit N → ∞, with Nεd−1 = α, one has

∥∥ f (1)N (t, x, v)−Mβ(v)ϕα(t, x, v)
∥∥

L∞(Td×Rd)
6 C

[
tα

(log log N)
A−1

A

] A2
A−1

, (4.25)

where A > 2 can be taken arbitrarily large, and C depends on A, β, d and ‖ρ0‖L∞ .

A proof can be found in [5] ...
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