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Abstract

Facts and ideas presented in this short review concern some recent developments at the
interface between sequence analysis, gene expression prediction and genome comparison
carried on in our group. The guiding line to all results presented here is to derive biolog-
ical information from genome sequences by means of a purely statistical analysis and an
appropriate design of algorithms.

1 Some background and motivation
Proteins are formed out of 20 amino-acids which are coded in triplets of nucleotides, called
codons. The four nucleotides (A, T, C, G) define 64 codons used in the cell. Codons are not
uniformly employed in the cell, but at the contrary, certain codons are preferred and we speak
about codon bias. There are several kinds of codon biases and some of them are linked to spe-
cific biological functions. Statistical analysis of DNA sequences and in particular of codon bias
were performed from the moment that long chunks of DNA sequences were publicly available
in the early eighties (Grantham et al. 1980; Wada et al. 1990), and the roots for these stud-
ies can be traced back to the sixties (Sueoka 1962; Zuckerkandl and Pauling 1965). However
with the increasing number of bacterial genome sequences from a broad diversity of species,
this field of research has been revivified in the last few years (Koonin and Galperin 1997; Lin
and Gerstein 2000; Radomski and Slonimski 2001; Knight et al. 2001; Sicheritz-Ponten and
Andersson 2001; Daubin et al. 2002; Lin et al. 2002; Lobry and Chessel 2003; Sandberg et al.
2003; Jansen et al. 2003).
Biased codon usage may result from a diversity of factors: GC-content, preference for codons
with G or C at the third nucleotide position (Lafay et al. 1999), a leading strand richer in G+T
than a lagging strand (Lafay et al. 1999), horizontal gene transfer which induces chromosome
segments of unusual base composition (Moszer et al. 1999), and in particular, translational bias
which has been frequently noticed in fast growing prokaryotes and eukaryotes (Sharp and Li
1987; Sharp et al. 1986; Medigue et al. 1991; Shields and Sharp 1987; Sharp et al. 1988;
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Stenico et al. 1994). Three main facts support the idea of ”translational impact”: highly
expressed genes tend to use only a limited number of codons and display a high codon bias
(Grantham et al. 1980; Sharp and Li 1987), preferred codons and isoacceptor tRNA content
exhibit a strong positive correlation (Ikemura 1985; Bennetzen and Hall 1982; Bulmer 1987;
Gouy and Gautier 1982), and tRNA isoacceptor pools affect the rate of polypeptide chain elon-
gation (Varenne et al. 1984; Buckingham and Grosjean 1986).

To study the eect of translational bias on gene expression, Sharp & Li (Sharp and Li 1987)
proposed to associate to each gene of a given genome a numerical value, called Codon Adapta-
tion Index or CAI for short, which expresses its synonymous codon bias (see appendix for the
definition). The idea is to compute a weight (representing relative adaptiveness) for each codon
from its frequency within a chosen small pool of highly expressed genes S, and combine these
weights to define the CAI(g) value of each gene g in the genome. For Sharp et al., the hypoth-
esis driving the choice of S is that, for certain organisms, highly expressed genes in the cell
have highest codon bias, and these genes, made out of frequent codons, are representative for
the bias. Based on this rationale, one can select a pool of ribosomal proteins, elongation factors,
proteins involved in glycolysis, possibly histone proteins (in eukaryotes) and outer membrane
proteins (in prokaryotes) or other selections from known highly expressed genes, to form the
representative set S. Then, CAI values are computed and are checked to be compatible with
genes known to be highly or lowly expressed in the cell. If this is the case, then predictions
are drawn with some confidence on expression levels for genes and open reading frames, even
with no known homologues. Even if conceptually clear, this framework has been misused sev-
eral times in the literature and incorrect biological consequences have been derived for gene
expression levels of organisms which do not display a dominant translational bias, as discussed
in (Grocock and Sharp 2002). This confusion motivated us to search for a methodology based
on a precise mathematical formulation of the problem to detect the existence of translational
bias.

But the main motivation for us came from the recognition that an increasing number of
genome sequences will be available for organisms for which biological knowledge consists
merely of a sketched morphological and ecological description. For these organisms, it might
not be evident how to define the reference set S, nor how to identify a reliable testing set which
can ensure that predictions meet a satisfiable confidence level. Still, one would like to detect
if translational bias holds for these genomes and if so, to predict their gene expression levels.
If not, one would like to know the origin of their dominating bias and use this information for
genome comparison.

2 An automatic detection of codon bias
We proposed a simple algorithm to detect dominating synonymous codon usage bias in genomes
(Carbone et al. 2003). The algorithm is based on a precise mathematical formulation of the
problem that leads to use the Codon Adaptation Index (CAI) as a universal measure of codon
bias, that is a measure for biases of possibly dierent origins (and not only for translational bias,
as it was originally introduced for). With the set of coding sequences as a sole source of biologi-
cal information, the algorithm provides a reference set S of genes which is highly representative
of the bias. This set is then used to compute the Codon Adaptation Index of genes of prokary-
otic and eukaryotic organisms, including those whose functional annotation is not yet available.
An important application concerns the detection of a reference set characterizing translational
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bias which is known to correlate to expression levels in many bacteria and small eukaryotes;
it detects also leading-lagging strands bias, GC-content bias, GC3 bias, and horizontal gene
transfer. In general, the algorithm becomes a key tool to predict gene expression levels, to
guide regulatory circuit reconstruction, and to compare species. The approach is validated on
96 slow-growing and fast-growing bacteria and archaeal genomes, Saccharomyces cerevisiae,
Plasmodium falciparum, Caenorhabditis elegans and Drosophila melanogaster.

3 Genomic signatures and a space of genomes for genome
comparison

Based on this analysis, we propose a novel formal framework to interpret genomic relationships
derived from entire genome sequences rather than individual loci. This space allows to analyse
sets of organisms related by a common codon bias signature (at times, more than one kind of
bias influences the same genomic sequence and the ensemble of these overlapped biases defines
what we call the signature of a genome) (Carbone et al. 2003b). We give a number of numerical
criteria to infer content bias, translational bias and strand bias for genome sequences. We show
in a uniform framework that genomes of quite dierent phylogenetic relationship share similar
codon bias; other genomes grouped together by various phylogenetic methods, appear to be
subdivided in finer subgroups sharing dierent codon bias characteristics; Archaea and Eubacte-
ria share the same codon preferences when AT3 or GC3 bias is their dominant bias; archaeal
genomes satisfying translational bias use a sharply distinguished set of preferred codons than
bacterial genomes. Our analysis, based on 96 eubacterial and archaeal genomes, opens the
possibility that this space might reflect the geometry of a prokaryotic “physiology space”. If
this turns out to be the case, the combination of the upcoming sequencing of entire genomes
and the detection of codon bias signatures will become a valuable tool to infer information on
the physiology, ecology and possibly on the ecological conditions under which bacterial and
archaeal organisms evolved. For many organisms, this information would be impossible to be
detected otherwise. Study of metabolic networks through sequence analysis and transcriptomic
data Genes with high codon bias describe in meaningful ways the biological characteristics of
the organism and are representative of specific metabolic usage (Carbone and Madden 2003c).
In silico methods exploiting this basic principle are expected to become important in learning
about the lifestyle of an organism and explain its evolution in the wild. We demonstrate that
besides high expressivity during fast growth or glycolytic activities which have been very of-
ten reported, the necessity for survival under specific biological conditions has its traces in the
genetic coding (Carbone and Madden 2003c). This observation opens the possibility to predict
rare but necessary metabolic activities from genome analysis.

As discussed above, high expression of certain classes of genes, like those constituting
the translational machinery or those involved in glycolysis, are correlated particularly well in
the case of fast growing organisms. By shifting the paradigm towards metabolic pathways, we
notice that several energy metabolism pathways are correlated with high codon bias in organ-
isms known to be driven by very different physiologies, which are not necessarily fast growing
and whose genomes might be very homogeneous. More generally, we derive a classification of
metabolic pathways induced by codon analysis, show that genetic coding for different organ-
isms is tuned on specific pathways and that this is a universal fact. The codon composition of
enzymes involved in glycolysis for instance, often required to be rapidly translated, is highly
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biased by dominant codon composition across species (this is indicated by the high CAI value
of these enzymes). In fast growers, the numerical evidence is definitely far more striking than
for other organisms (that is, the absolute difference between the CAI value of these enzymes
and the average CAI value for genes in the genome is ”large”), but even for Helicobacter pylori,
a genome of rather homogeneous codon composition, enzymes involved in glycolytic pathways
happen to be biased above average. In the same manner, one detects the crucial role of photo-
synthetic pathways for Synechocystis or of methane metabolism for Methanobacterium.

mRNA transcriptional levels collected during the Saccharomices cerevisiae cell cycle un-
der diauxic shift (deRisi et al. 1997) (here, glucose quantities decrease in the media during
cell cycle and yeast goes from fermentation to aerobic respiration), have been used to analyze
the yeast metabolic network in a similar spirit as done with codon analysis. A classification
of metabolic pathways based on transcriptomic data has been proposed, and we show that the
metabolic classification obtained through codon analysis essentially ”coincides” with the one
based on (a large and differentiated pool of) transcriptomic data. Such a result opens the way
to explaining evolutionary pressure and natural selection for organisms grown in the wild, and
hopefully, to explain metabolism for slow-growing bacteria, as well as to suggest best condi-
tions of growth in the laboratory.

Appendix: some comments on the mathematical methods
In this text, a coding sequence is represented by a 64-dimensional vector, whose entries cor-
respond to the 64 relative codon frequencies in the sequence. Recall that the frequency of a
codon i in a sequence g is the number of occurrences of i in g (where g is intended to be split
in consecutive non-overlapping triplets corresponding to amino-acid decomposition), and that
the relative frequency of i in g is the frequency of i in g divided by the number of codons in g.
For each vector representing a coding sequence, the sum of its entries must equal 1. Hence, a
coding sequence is a point in the 64-dimensional space [0 · · · 1]64, where no special assumption
is made on the space nor on the coordinate system.

For each genome sequence G and some set of coding sequences S in G, codon bias is
measured with respect to its synonymous codon usage. Given an amino-acid j, its synonymous
codons might have different frequencies in S; if xi,j is the number of times that the codon i
for the amino-acid j occurs in S, then one associates to i a weight wi,j relative to its sibling of
maximal frequency yi in S

wi,j =
xi,j

yj

.

A codon with maximal frequency in S is called preferred among its sibling codons. Codon
Adaptation Index (CAI) associated by Sharp & Li (Sharp and Li 1987) to g in G, is a value in
[0, 1], defined as

CAI(g) = (ΠL
k=1wk)1/L

where L is the number of codons in the gene, and wk is the weight of the k-th codon gene
sequence. Genes with CAI value close to 1 are made by highly frequent codons.

All results cited here are obtained using very simple mathematical and algorithmic which
are fully described in (Carbone et al. 2003; Carbone et al. 2003b; Carbone Madden 2003c).
The statistical analysis and numerical thresholds we propose are the 64-dimensional codon
space. Multivariance statistical methods have been employed visualisation tools, but none of
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the formal results nor the biological conclusions from the 3 dimensional projections. Both space
of genes and space of organisms in 64 dimensions, and distances between organisms are defined
as `1-distances.
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