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Summary. We examine hypotheses coming from the physical world and address new math-
ematical issues on tiling. We hope to bring to the attention of mathematicians the way that
chemists use tiling in nanotechnology, where the aim is to propose building blocks and exper-
imental protocols suitable for the construction of 1D, 2D and 3D macromolecular assembly.
We shall especially concentrate on DNA nanotechnology, which has been demonstrated in
recent years to be the most effective programmable self-assembly system. Here, the controlled
construction of supramolecular assemblies containing components of fixed sizes and shapes
is the principal objective. We shall spell out the algorithmic properties and combinatorial
constraints of ”physical protocols”, to bring the working hypotheses of chemists closer to a
mathematical formulation.
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1 Introduction to molecular self-assembly

Molecular self-assembly is the spontaneous organisation of molecules under thermo-
dynamic equilibrium conditions into a structurally well-defined and rather stable ar-
rangement through a number of non-covalent interactions [26, 52, 5]. It should not be
forgotten that periodic self-assemblies of molecules lead to crystals in one, two or three
dimensions; we often do not understand the interactions between the constituents of
a crystal, but their presence in our world was an existence-proof for 3D self-assembly
long before the notion was voiced. By a non-covalent interaction, we mean the for-
mation of several non-covalent weak chemical bonds between molecules, including
hydrogen bonds, ionic bonds and van der Waals interactions. These interactions (of
the order of 1-5 kcal/mol) can be considered reversible at normal temperatures, while
covalent interactions (typically > 50 kcal/mol) are regarded as irreversible.

The self-association process leads the molecules to form stable hierarchical macro-
scopic structures. Even if the bonds themselves are rather weak, their collective inter-
action often results in very stable assemblies; think, for example, of an ice cube, held
together by hydrogen bonds. Two important elements of molecular self-assembly are
complementarity and self-stability, where both the size and the correct orientation of
the molecules are crucial in order to have a complementary and compatible fitting.

The key engineering principle for molecular self-assembly is to design molecular
building blocks that are able to undergo spontaneous stepwise interactions so that
they self-assemble via weak bonding. This design is a type of ”chemical programming”,
where the instructions are incorporated into the covalent structural framework of each
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molecular component, and where the running of the algorithm is based on the specific
interaction patterns taking place among the molecules, their environment, and the
intermediate stages of the assembly. The aim of the game is to induce and direct a
controlled process.

Molecular self-assembly design is an art and to select from the vast virtual com-
binatorial library of alternatives is far from being an automatic task [19]. There are
principles though, that could be mathematically analyzed and one of the purposes
of this paper is to lead the reader towards such possibilities. We shall talk mainly
about self-assembly from branched DNA-molecules, which in the last few years have
produced considerable advances in the suggestion of potential biological materials for
a wide range of applications [39]. Other directions using peptides and phospholipids
have been also pursued successfully [57, 35, 4].

We shall start with an abstract overview of some of the principles governing self-
assembly which have been investigated by chemists (for an introduction see also [27]),
with a special emphasis on DNA self-assembly. With the desire to formalise in an ap-
propriate mathematical language such principles and develop a combinatorial theory
of self-assembly, we try to suggest mathematical structures that arise naturally from
physical examples. All through the paper, we support our formalistic choices with
experimental observations. A number of combinatorial and algorithmic problems are
proposed. The word ”tile” is used throughout the paper in a broad sense, as a synonym
of ”molecule” or of ”combinatorial building block” leading to some assembly.

2 Examples of molecular self-assembly and scales

Self-assembled entities may be either discrete constructions, or extended assemblies,
potentially infinite, and in practice may reach very large sizes. These assemblies in-
clude such species as 1-dimensional polymolecular chains and fibers, or 2-dimensional
layers and membranes, or 3-dimensional solids. Due to the exceptionally complicated
cellular environment, the interplay of the different ligand affinities and the inherent
complexity of the building blocks, it is not easy to predict, control and re-program
cellular components. Proteins can in principle be engineered but to predict protein
conformation is far from our grasp nowadays. At the other extreme lie chemical as-
semblies, such as organic or inorganic crystals, which are constituted by much sim-
pler structural components that are not easily programmed. Within this spectrum
of assembly possibilities, DNA self-assembly has revealed itself as the most tractable
example of programmable molecular assembly, due to the high specificity of inter-
molecular Watson-Crick base-pairing, combined with the known structure formed by
the components when they associate [31]. This has been demonstrated in recent years
both theoretically and experimentally as we shall discuss later.

3 Molecular self-assembly processes

There are three basic steps that define a process of molecular self-assembly:

1. molecular recognition: elementary molecules selectively bind to others;
2. growth: elementary molecules or intermediate assemblies are the building blocks

that bind to each other following a sequential or hierarchical assembly; coopera-
tivity and non-linear behavior often characterize this process;
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3. termination: a built-in halting feature is required to specify the completion of the
assembly. Without it, assemblies can potentially grow infinitely; in practice, their
growth is interrupted by physical and/or environmental constraints.

Molecular self-assembly is a time-dependent process and because of this, temporal
information and kinetic control may play a role in the process, before thermodynamic
stability is reached. For example, in a recent algorithmic self-assembly simulating
a circuit constituted by a sequence of XOR gates [30], a template describing the
input for the circuit, assembled first from DNA tiles as the temperature was lowered,
because these tiles were programmed to have stronger interactions; the individual tiles
that performed the gating functions, i.e. the actual computation of each XOR gate,
assembled on the template later (at a lower temperature), because they interacted
more weakly. If, as in this example, the kinetic product is an intermediate located on
the pathway towards the final product, such a process is sequential. If not, then the
process is said to bifurcate.

Molecular self-assembly is also a highly parallel process, where many copies of
different molecules bind simultaneously to form intermediate complexes. One might
be seeking to construct many copies of the same complex at the same time, as in the
assembly of periodic 1D or 2D arrays; alternatively, one might wish to assemble in
parallel different molecules, as in DNA-based computation, where different assemblies
are sought to test out the combinatorics of the problem [1, 22]. A sequential (or
deterministic) process is defined as a sequence of highly parallel instruction steps.

Programming a system that induces strictly sequential assembly might be achieved,
depending on the sensitivity of the program to perturbations. In a robust system,
the instructions (that is the coding of the molecular interactions) are strong enough
to ensure the stability of the process against interfering interactions or against the
modification of parameters. Sensitivity to perturbations limits the operational range,
but on the other hand, it ensures control on the assembly.

An example of strong instructions is the “perfect” pairing of strands of different
length in the assembly of DNA-tiles due to Watson-Crick interacting sequences. The
drawback in sequential assembly of DNA-tiles is due to the complex combinatorics
of sequences which are needed to construct objects with discrete asymmetric shapes,
or aperiodic assemblies. The search for multiple sequences which pair in a controlled
way and avoid unwanted interactions is far from being an obvious task. Alternative
approaches concern besides tile design, self-assembly algorithms and protocols (Sec-
tion 7).

A sequential process might either be commutative, if the order of the assembly steps
can be interchanged along the pathway leading to the final assembly, or it might be
non-commutative, if the intermediates need to interact in a fixed consecutive manner.
DNA-based computations, such as the assembly of graphs [34] are commutative: a
series of branched junctions can come together in any order to yield the final product
(as discussed in Section 6 for 3-color graphs). An example of a non-commutative
process is the construction of DNA tiles along the assembly of a periodic 2D array:
single stranded DNA sequences are put in a pot at once, and since the tiles melt at
a temperature higher than the intermolecular interactions, tiles are “prepared” first,
before the 2D assembly takes place. Even if indirectly, these physical conditions imply
non-commutativity. Later on, the 2D lattice can assemble with gaps that can later
be filled in from the 3rd direction. Commutativity, in this latter step, may create
irregularities when 3D arrays are considered instead, since gaps might get sealed in
as a defect. Any hierarchical construction, such as solid-support-based DNA object
synthesis [58] is non-commutative . Another example of a non-commutative assembly
is a frame-based construction [32], wherein an assembly is templated by a “frame”
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that surrounds it: tiles assemble within the boundaries of the frame and they are
guided by the code of the tiles forming the frame. It is non-commutative, in that the
frame has to be available first.

Fig. 1. Protocol for the Synthesis of a Quadrilateral. The intermolecular additions of corners
is repetitive, but a different route leads to intramolecular closure.

Fig. 2. Triplet junctions GPV , JRV , JGS and PSR can combine in different configurations.
The two smallest ones are a tetrahedron and a cube.

Another characteristic of a molecular self-assembly is that the hierarchical build-
up of complex assemblies, allows one to intervene at each step, either to suppress the
following one, or to orient the system towards a different pathway. For example, the
construction of a square from identical units using the solid-support method entailed
the same procedures to produce an object with 2, 3, or 4 corners. Once the fourth
corner was in place, a different pathway was taken to close the square [58], as shown
in Figure 1. A pentagon, hexagon or higher polygon could have been made by the
same procedure, just by choosing to close it after adding more units.

Instructions might be strong but still allow for different objects to appear. The
same set of tiles might assemble into objects with different geometrical shapes and
different sizes, that satisfy the same designed combinatorial coding. For instance,
consider chemical “three-arm junction nodes” (name them GPV , JRV , JGS, PSR)
accepting 6 kinds of “rods”, called G, P , V , J , S and R. Several geometrical shapes
can be generated from these junctions and rods, in such a way that all junctions
in a node are occupied by some rod. Two such shapes are illustrated in Figure 2. In
general, there is no way to prevent a given set of strands from forming dimers, trimers,
etc. Dimers are bigger than monomers, trimers bigger than dimers, and so on, and
size is an easy property for which to screen. However, as a practical matter, entropy
will favor the species with the smallest number of components, such as the tetrahedral
graph in Figure 2; it can be selected by decreasing the concentration of the solution.
If, under convenient conditions, a variety of products results from a non-covalent self-
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assembly, it is possible to obtain only one of them by converting the non-covalent
self-assembly to a covalent process (e.g., [16]). Selecting for specific shapes having the
same number of monomers though, might be difficult. It is a combinatorial question to
design a coding for a set of tiles of fixed shape, that gives rise to an easily screenable
solution set.

4 Molecular tiling: a mathematical formulation

Attempts to describe molecular assembly, and in particular DNA self-assembly, in
mathematical terms have been made in [2, 6]. Here, we discuss some algorithmic and
combinatorial aspects of self-assembly keeping in mind the physics behind the process.

Fig. 3. A Variety of Complements to a Single Strand. Panel (a) illustrates a conventional
Watson-Crick duplex, where strand 2 complements strand 1. Panels (b-e) illustrates a variety
of complements to strand 1.

Tiles and self-assembly. Consider a connected subset T (tile) in R3, for example a
convex polyhedron, with a distinguishable subset of mutually complementary (possi-
bly overlapping) non-empty domains on the boundary, denoted Db, D

′
b ⊂ ∂T , where

b runs over a (possibly infinite) set B. We are interested in assemblies generated by
T , that are subsets A in the Euclidean space, decomposed into a union of congruent
copies of T , where two copies may intersect only at their boundaries and have a ”ten-
dency” to meet across complementary domains on the boundary. It is important to
recognize that in the case of DNA, there are many forms of complementarity, as a
function of motif structure [41]. Figure 3 illustrates a DNA strand (named 1) comple-
mentary to a variety of other DNA strands; more complex types of complementarity
exist, such as complementarity in the PX sense [60, 46] or in the anti-junction sense
[12, 60].

We want to consider a biological macromolecule T (e.g., a protein or a nucleic acid
motif), with complementary binding sites Db, D

′
b such that different copies of T bind

along complementary domains and self-assemble into complexes. In the geometric
context we specify the binding properties by introducing (binding) isometries b :
R3 → R3 to each b ∈ B such that T and b(T ) intersect only at the boundary, and
b(Db) = D′

b. From now on B is understood as a subset in the Euclidean isometry
group Iso(R3).

Accordingly, we define an assembly A associated with (T,B) by the following data:

1. a connected graph G = GA with the vertex set 1 . . . N ,
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2. subsets Ti in R3, where i = 1 . . . N , which may mutually intersect only at their
boundaries,

3. an isometry bk,l : R3 → R3 moving Tk onto Tl, for each edge (k, l) in G, such that
there exists an isometry ak,l which moves Tk to T and conjugates bk,l to some
binding isometry b in B. Notice that this b is uniquely determined by bk,l up to
conjugation.

Fig. 4. Four copies of the same tile are arranged in two different assemblies that correspond
to the same graph GA. The labels a, ā, b, b̄ correspond to codes for edges.

Given a graph GA and a tile T , the assemblies described by GA and T might not
be unique. The assembly is unambiguously described by the isometries associated to
the edges of GA (i.e. condition (3) above). See Figure 4 for an example.

Several tiles. If we start with several different tiles T 1, . . . , Tn rather than with a
single T , we consider the sets of pairs of binding isometries Bi,j ⊂ Iso(R3)× Iso(R3)
such that bi,j

1 (T i) and bi,j
2 (T j) intersect only at their boundaries and their intersec-

tion is non-empty. The definition of an assembly associated to ({T i}, {Bi,j}) goes
as above with the following modifications: the graph G has vertices colored by the
index set 1 . . . n, the corresponding subsets in R3 are denoted T i

k where i = 1 . . . n
and k = 1 . . . Ni, and finally, we forfeit the isometries bk,l and for each edge (ki, lj)
we emphasize an isometry of R3 which moves T i

k to bi,j
1 (T i) and T j

l to bi,j
2 (T j).

In what follows, we refer to the union of tiles defined above, as an assembly.

Qualities of an assembly. The tightness of the tiling is one quality that chemists appre-
ciate. This can be measured by the number of cycles in the graph G, or equivalently
by the negative Euler characteristic of the graph.

The imperfection of a tiling is measured by the ”unused” areas of the boundaries of
the tiles. First define the active domain ∂act(T ) ⊂ ∂T as the union of the intersections
of ∂T with b(T ) for all b ∈ B. Then define the “unused boundary” ∂un(A = ∪Ti) as
the union ∪N

i=1∂act(Ti) minus the union of the pairwise intersections ∪(k,l)∈GTk ∩ Tl.
An assembly is called perfect if the area of the imperfection equals zero. We say that
an assembly contained in a given subset X ⊂ R3 is perfect with respect to ∂X, if
∂un(A) ⊂ ∂X.

The uniqueness refers to the uniqueness of an assembly subject to some additional
constraints. For example, given an X ⊂ R3, one asks first if X can be tiled by (T,B)
and then asks for the uniqueness of such a tiling. We say that (T, B) generates an
unconditionally unique assembly if every imperfect assembly uniquely extends to a
perfect assembly.
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The essential problem of tiling engineering is designing a relatively simple tile or
a few such tiles which assemble with high quality into large and complicated subsets
in R3. Here is a specific example for the unit sphere S2 rather than S3, where one
uses the obvious extension of the notion of tilings to homogeneous spaces. Given
ε, δ > 0, consider triangulations of the sphere into triangles ∆ with Diam(∆) ≤ ε and
area(∆) ≥ δDiam2(∆). It is easy to see that the number of mutually non-congruent
triangles in such a triangulation, call it n(ε, δ), goes to ∞ for ε → 0 and every fixed
δ > 0. The problem is to evaluate the asymptotic behavior of n(ε, δ) for ε → 0 and
either a fixed δ or δ → 0.

Complementarity of the domains. Two tiles T1 and T2 have complementary sites, D1
b ,

D2
b , when they can bind along their boundaries to each other forming a connected

subset of R3. In physical terms, the two overlapping parts D1
b , D2

b can have comple-
mentary geometrical shape (e.g. think of the concave surface of a protein and of the
convex surface of a ligand binding to it, much as a classical ’lock and key’), but might
also correspond to Watson-Crick complementary sequences (e.g. 5′ − ATTCGA− 3′

and 3′ − TAAGCT − 5′, where A is complementary to T and C to G as discussed
before; see Figure 3).

Fig. 5. Left: Rodlike tiles differing in length form an assembly that grows until the ends ex-
actly match. Right: polymeric structure growing until the energy required to fit new subunits
becomes too large.

assembly

template

 binding sites

Fig. 6. A tile is stable in the assembly only if it binds at two adjacent binding sites. The
stability of the whole assembly is insured by the enforced stability of the template. The
formal description of this example is not completely captured by our model.

Real life examples. It remains unclear, in general, how cells control the size of (imper-
fect, with some unused boundary) assemblies, but certain mechanisms are understood.
For example, out of two rod-like molecules of length three and five, one gets a double
rod of length 15 as illustrated in Figure 5 (left). Another strategy is starting an as-
sembly from a given template (see Figure 6 for a specific design). Sometimes, tiling is
non-isometric: tiles distort slightly in order to fit, and the assembly terminates when
the bending energy becomes too costly or when the accumulated distortion deforms
and deactivates the binding sites (see Figure 5 (right)). Also, the binding of a ligand
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new binding site

Fig. 7. Tiles which differ in shape and binding sites. Their binding generates a new con-
tiguous binding site.

to an active site might change the shape of the molecule and thus influence the bind-
ing activity of other sites. Another possibility is the creation of a new binding site
distributed over two or more tiles bound together at an earlier stage of the assembly
(see Figure 7). These mechanisms may produce a non-trivial dynamics in the space
of assemblies in the presence of free-energy. In particular, one may try to design a
system which induces a periodic motion of a tile over a template, something in the
spirit of RNA-polymerase cycling around a circle of DNA [11].

Fig. 8. Key Motifs in Structural DNA Nanotechnology. On the left is a Holliday junction
(HJ), a 4-arm junction that results from a single reciprocal exchange between double helices.
To its right is a double crossover (DX) molecule, resulting from a double exchange. To the
right of the DX is a triple crossover (TX) molecule, that results from two successive double
reciprocal exchanges. The HJ , the DX and the TX molecules all contain exchanges between
strands of opposite polarity. To the right of the TX molecule are a pair of DNA parallel-
ograms, DNA-P -N [29], constructed from normal DNA, and DNA-P -B [43], constructed
from Bowtie junctions, containing 5’, 5’ and 3’, 3’ linkages in their crossover strands.

DNA tiles and tensegrity. Molecules of some nanometer size, made out of DNA
strands, have been proposed in a variety of different shapes. See Figure 8 for a repre-
sentative collection of shapes. Algorithms have been developed successfully to produce
that self-assemble into these and other motifs [36]. Branched molecules are tiles con-
stituted by several single strands which self-assemble along their coding sequences in a
“star-like” configuration, where a tip of the star is a branch [36, 51, 38] (Figure 3a,c,e
illustrate 2, 3 and 4-arm branched molecules). Theoretically, one might think to con-
struct k-armed branched molecules, for any k > 2, where each strand is paired with
two other strands to form a pair of double-helical arms; in practice, molecules with 6
arms have been reported, but larger ones are under construction. The angles between
the arms are known to be flexible in most cases. If one adds sticky ends to a branched
molecule, i.e. single stranded extensions of a double helix, a cluster is created that
contains specifically addressable ends [36]. This idea is illustrated in Figure 9, where a
4-arm branched junction with two complementary pairs of sticky ends self-assembles
to produce a quadrilateral.
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Fig. 9. Formation of a 2-dimensional lattice (right) from a 4-arm branched junction (left).
X is a sticky end and X ′ is its complement. The same relationship holds for Y and Y ′. X
and Y are different from each other.

The search for motifs based on DNA branched junctions that behave as though
they are “rigid” while in the test tube, led to the design of several DNA-molecules,
and some are illustrated in Figure 8. Rigid shapes impose strong limitations on the
design of suitable molecular tiles; roughly speaking, a rigid, or tense, object is a 3-
dimensional solid that does not undergo deformations: we ask that if its 1-dimensional
faces do not undergo deformation, then no deformation exists. For a tetrahedron or
any convex deltahedron, it is easy to see that no change of the angles between edges
(edges are 1-dimensional faces for the tetrahedron) can take place without the edges
be deformed. On the other hand, a cube is an example of a non-tense object since we
can fix the edges (1-faces) of the cube not to undergo any deformation and still be
able to deform the angles between them.

Geometry of the boundaries: smooth deformations of tiles. It might be appropriate to
consider assemblies which are affected by an ε-deformation in the shape of the tiles
after binding. More precisely, a tile T ⊆ R3 is mapped in R3 by some ε-deformation
as follows: there is an embedding ε : T ⊆ R3 7→ T ′ ⊆ R3 such that for all points
x ∈ T there is a point y ∈ T ′ such that the Euclidean distance d(x, y) < ε. The
definitions of isometry and binding site given at the beginning of Section 4 need
to be adjusted accordingly into new notions of ε-isometry and ε-binding site, which
intuitively correspond to the original notions up to some ε-variation. One needs to
establish whether an ε-deformation affects a binding site or not, and give thresholds
on the amount of deformation which is accepted to affect non-empty domains of the
boundary.

The growth of the assembly affected by ε-deformation asks for the estimation
of bounds in the size of the construction. The instability of the system comes from
a narrow range of conditions on which the assembly takes place. The formation of
singularities and of bifurcation points between different assemblies, might lead to the
disruption of the assembly, but might also lead to variety in the complexity.

Physical considerations on the shape of tiles. In addition to the need to observe ap-
propriate solution conditions that encourage self-assembly, it is important to realize
that there are physical constraints on the assembly of real tiles that do not affect
virtual tiles. For example, the helicity of random-sequence DNA is ≈ 10.5 nucleotide
pairs per turn in solution. This value makes it easy to make TX molecules (Figure 8)
whose three helix axes form an angle of 120◦, but 90◦ is much harder, unless one is
able (perhaps through sequence variation) to change the repeat to 10.4 nucleotide
pairs per turn [45].

In a similar vein, a likely form of shaped 3D arrays will entail polyhedra whose
edges contain DX molecules (Figure 8) [40]. It might appear that a tetrahedron would
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be a good polyhedron to use as the basis of such a 3D tile. However, although the
edges of a tetrahedron obviously span 3-space, there is no group of three edges to
which one can attach a single extra helix (i.e. to make those edges DX molecules
instead of single DNA helices, with the extra helices outside the helices defining the
tetrahedron) to produce the needed vectors: their diameters would cause them to clash
stereochemically when extended beyond the boundaries of the tetrahedron. Notice
that extra-hedral domains on adjacent edges inherently clash, and there is no group
of three edges in a tetrahedron that does not include an adjacent pair.

5 An abstract model to describe the dynamics of self-assembly

A formal description of the dynamics of a self-assembly on a space S, where S can
be either R, R2, R3 or any discrete approximation of those, can be formulated by
a simple iterative process as follows. Consider n tiles T1, . . . , Tn, and take a finite
number of copies of each Ti, for all i = 1 . . . n. At stage 1, randomly assign to each
physical tile a specific position in S in such a way that no two tiles overlap and
that only tiles lying side-by-side and having complementary boundary stuck together.
The set of complexes containing more than one tile with their position in S, define a
configuration on S; single tiles are removed from S and used to re-iterate the random
assignment on the next stage: the configuration of tiles lying in S which one reaches
at stage i, is filled up further by new non-overlapping complementary adjacent tiles
at stage i + 1. The process is repeated until all tiles are used or when a sufficiently
large connected area in S is filled (e.g. area > N , for some large N).

Different outputs might result from this random process: they go from very tight
assemblies, to assemblies with several unfilled regions, to disconnected surfaces, and
so on. The resulting configurations and the time for reaching a configuration strongly
depend on the coding hypothesis, e.g. whether new binding sites can appear or not
by the combination of several tiles, whether ”holes” can be filled or not, how many
different competing boundary sites are in the system, how many tiles are in the system,
whether connected regions can undergo translations in S while the process takes place,
whether connected tiles might become disconnected, etc.

The process could start from a specific configuration of S instead of using the
first iteration step to set a random configuration. Such an initial configuration, if
connected, would play the role of a template for the random process described by the
iteration steps. Figure 6 illustrates an example of templating, where a 1-dimensional
array of n molecules disposed in a row is expected to play the role of a template and
interact with single molecules following a schema coded by the boundary of the tiles.
Another example is the “nano-frame” proposed in [32], a border template constraining
the region of the tiling assemblies.

6 Closed assemblies and covering graphs

Closed tiling systems are assemblies whose binding sites have been all used. More
formally, this amounts to saying that the graph GA underlying the assembly A is
such that all tiles Ti corresponding to its vertices, where i = 1 . . . N , intersect on all
their boundary sites Ti. This means also that the degree of connection of each node
i of GA corresponds to the number of available interaction sites of Ti, and that each
edge (i, l) departing from i corresponds to an isometry bi,l moving Ti onto Tl which
fixes some binding site. Many graphs might be locally embeddable in GA, and we call
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them covering graphs of GA: a graph G is a covering graph of GA if there is a map
p : G → GA such that

1. p is surjective, i.e. for all nodes y ∈ GA there is a node x ∈ G such that p(x) = y,
2. if x → y in G then p(x) → p(y) in GA,
3. degree(x) = degree(p(x)), for all nodes x in G,
4. bx,y = bp(x),p(y), for each edge x → y ∈ G,
5. {bx,y : x → y ∈ G} = {bp(x),z : p(x) → z ∈ GA}, for each node x ∈ G.

Fig. 10. Given a set of six distinct tiles whose binding sites are specific to each pair of tile
interaction described by edges in the graph GA (left), notice that G (right) is not a covering
graph for GA since it satisfies conditions (1)−(3) but it does not satisfy (5) (see text). To see
this, consider the mapping p between nodes of G and GA which is suggested by the labels of
the nodes. We want to think of f in GA as representing a tile Tf with two distinct binding
sites, one interacting with Tc and the other with Td. Node f1 is linked to two copies of c and
node f2 is linked to two copies of d; this means that Tf1 (Tf2), having the same binding sites
as Tf , should bind to Tc1 , Tc2 (Td1 , Td2). But this is impossible because the binding would
require the existence of two identical sites in Tf1 (Tf2).

Condition (4), saying that the binding site between Tx and Ty is the same as the
binding site between Tp(x) and Tp(y), and condition (5), saying that the binding sites
of Tx are the same as the binding sites of Tp(x), ensure that G and GA underly tiling
systems for the same set of tiles. The graph on the left hand side of Figure 10 does
not satisfy (5) and provides a counterexample. If GA represents a closed tiling system
for a set of tiles S, then each covering graph of GA represents a closed tiling system
for S also.

Given a set of tiles one would like to characterize the family of closed assemblies,
or equivalently, of covering graphs, if any. An important application is in the solution
of combinatorial problems.

Example [22]. A graph G = (V,E) is said to be 3-colorable if there is a surjective
function f : V → {a, b, c} such that if v → w ∈ E, then f(v) 6= f(w). Imagine
constructing the graph G with two kinds of molecules, one coding for the nodes and one
for the edges. Node-molecules are branched molecules, where the number of branches is
the degree of the node, and edge-molecules are two-branched molecules. Each branch
of a node-molecule has a sticky end whose code contains information on the node of
the graph that connects to it and on a color for the node. The n branches of a same
node-molecule are assumed to have the same code. Edge-molecules have two sticky
ends and their code contains information on the origin and target nodes as well as on
the colors of such nodes. The two colors are supposed to be different.
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To consider three colors in the physical realization of the graph G, one constructs a
node-molecule for each one of the three colors, together with all possible combinations
of pairs of different colors for edge-molecules.

By combining several identical copies of these molecules and ligating them, open
and possibly closed assemblies will form. Open assemblies are discharged (this can
be done with the help of exonuclease enzymes that digest molecules with free ends)
and closed assemblies, if any, ensure that the graph is 3-colorable. The only closed
assemblies that can be formed in the test tube are covering graphs.

7 A random model for sequential assembly

The random model introduced in Section 5 needs to be adjusted slightly to simulate
sequential assembly. Sequentiality presupposes the formation of specific intermediates,
i.e. complexes, at specific moments along the assembly process. This means that one
can start from a random configuration in S, let the input tiles form complexes at
random, remove from S isolated tiles and use them as input tiles to re-iterate the
process until a sufficiently large number of specific intermediates is formed. This will
provide one step of the sequential assembly, and in the simplest case, this step will
be re-iterated to model the next steps of the sequential process, until all steps are
realized. Different types of tiles might be used as input tiles to perform different steps
of the sequential process.

In more complicated cases, the above model, might need to integrate new kinds
of steps. It might be that some of the steps of the sequential process require the
intervention of specific enzymes, cleaving or ligating DNA tiles. Such operations are
random and their effect on tiles and complexes can be described rigorously. Also, one
might need to consider that tiles forming a complex at step i, disassemble in step i+1
because of the interaction with new molecular tiles. This process is also random and
can be formally described.

As mentioned in Section 3, the difficulty in inducing a sequential assembly comes
from the complex combinatorics needed to realize objects of irregular but well-defined
shape or aperiodic assemblies. A number of solutions have been proposed to overcome
these combinatorial difficulties; they concern tile design (1)-(2), the algorithm for self-
assembly (3)-(4) and the engineering protocol (5):

1. a variety of different forms of cohesion have been proposed, such as sticky ended co-
hesion, where single-stranded overhangs cohere between molecules [10]; PX cohe-
sion, where topologically closed molecules cohere in a double-stranded interaction
[60]; edge-sharing, where the interactions are characterized by lateral interactions
[46]; tecto-RNA, where RNA domains pair laterally through loop osculations [21];

2. one can allow different forms of coding within the same molecule, which can
involve the Watson-Crick sequences as well as the geometry of the molecule [9];

3. one can use ”instructed gluing” elements together with DNA-tiles [7]. The idea
is to add structural sub-units, as gluing elements between tiles, along the self-
assembly process. In many cases, the use of such sub-units decreases the complex-
ity of the protocol: the number of elementary molecules becomes smaller and the
assembly algorithms becomes more specific;

4. the use of protecting groups, through which some of the potential interaction sites
of the molecules are momentarily inhibited, is inherently a sequential protocol,
applicable both to DNA objects [58] and to fractal assemblies [9];

5. the solid-support methodology in DNA nanotechnology [58] is an example of se-
quential assembly; it was used to construct the most complex DNA object to date,
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a truncated octahedron [59]. The step-wise synthesis of a square is illustrated in
Figure 1. Here, enzymes intervene in some of the sequential steps.

8 Hierarchical tiling

A set of tiles {T1, . . . , Tn} is self-consistent if for each Ti with binding site Di there
is a tile Tj with binding site Dj such that b(Di) = Dj , for some isometry b. Notice
that i need not be different from j. In particular, a single tile T is self-consistent with
itself if it has at least two binding sites which are complementary to each other.

Let {T1, . . . , Tn} be basic elementary tiles which assemble in a variety of tile com-
plexes S1, . . . , Sl, i.e. finite assemblies Si with unused binding sites. A set of tile
complexes is self-consistent if for each Si with binding site Di there is a tile complex
Sj with binding site Dj such that b(Di) = Dj , for some isometry b defined on tile
complexes. New binding sites Di generated from the assembly of a tile complex (as
in Figure 7) are allowed.

A hierarchical tiling is an assembly X of tiles {T1, . . . , Tn} that is obtained by
successive steps of assembly generating intermediary sets of tile complexes F0, . . . ,Fm

such that:

1. F0 = {T1, . . . , Tn};
2. Fi = {Si,1, , Si,li}, for i = 1 . . .m, where each Si,j is a tile complex in Fi−1;
3. Fi is a self-consistent set of tile complexes;
4. X is an assembly of Sm,1, . . . , Sm,lm .

The value of m is called order of the hierarchical tiling. A hierarchical tiling is
non-trivial if for each family Fi there is at least one tile complex Si,j which is not in
Fi−1 already. Notice that not all assemblies can be defined as hierarchical assemblies
of order m, for m > 1.

A dynamical model of hierarchical tiling. It can be defined by a repeated iteration of
the random model for self-assembly presented in Section 5, where the tile complexes
used as input tiles at step i + 1 are the complexes formed in S at the end of step
i. In general, a hierarchical assembly is not a sequential assembly. It might happen
though, that certain assembly processes are defined by a combination of sequential
steps during the hierarchical self-assembly.

Some concrete examples of hierarchical assembly. Suitable selection of structural units
allows the design of molecular entities undergoing self-organisation into well-defined
architectures, which subsequently may self-assemble into supramolecular fibrils and
networks. The assembly of “infinite” tubes and spheres has been realized many times
and in many laboratories with different kinds of molecules. A basic approach is to
design a rod-like molecule with an hydrophobic end and a hydrophilic one. Then,
one puts the molecules in different media and observes the formation of spheres,
where the hydrophilic side of the molecules lies either inside or outside the sphere,
depending on the properties of the medium. Alternatively, one might observe the
formation of a long tube where, again, on the surface one finds sides with identical
hydrophilic/hydrophobic properties. The formation of spheres and tubes leads us to
ask how these shapes might assemble among themselves into supramolecular periodic
or aperiodic structures. What other shapes do allow for the assembly of 1D, 2D and
3D arrays of such tile complexes?

Besides spheres, tubes and networks, chemists work on the design of synthetic
molecules which lead to helical architectures of both molecular and supramolecular
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nature by hierarchical self-organization, or again to the formation of mushroom-like
shapes and to a consequent assembly of such complexes into 3D arrays [18] (these
arrangements are not regular, in the sense that they are not crystals). Mimicking
nucleic-acid sequences, specific sequences of hydrogen bonding residues are led to act
as structure-inducing codons, and such structural coding allows for the spontaneous
but controlled generation of organized materials, e.g. [18].

Fig. 11. A variety of two-dimensional arrays that have been formed from DNA tiles. Panels
(a) and (b) illustrate 2D arrays composed of DX and DX + J molecules. Panel (c) illus-
trates patterns obtained from TX molecules. Panel (d) illustrates an array made of DNA
parallelograms.

At a different scale, for nanoscale molecules, like DNA, a broader range of possi-
bilities can be explored since all of the contacts can be forced to be of a Watson-Crick
form, although many other types of interaction are possible (e.g., [60]). The different
shapes of tiles introduced at the end of Section 4, enabled the assembly of several
different kinds of periodic 1D and 2D arrays (see Figure 11). These hierarchical as-
semblies have order 2: single strands make the starting set of tiles, which assemble
into specific intermediary molecular tiles (described in Section 4), and finally these
molecular tiles self-assemble into a 2D array.

Periodic assemblies in 3 dimensions are still an open problem. Protocols for the
assembly have been proposed, but highly ordered programmed 3D arrangements have
not yet been realized to resolutions below 1 nm in the laboratory for DNA tiles.
Aperiodic arrangements, typically harder to assemble and analyze than periodic as-
semblies, present an even greater challenge, because their characterization cannot rely
on diffraction analysis in a simple fashion.
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Example: fractal assemblies [8, 9]. Fractal constructions are a special case of aperiodic
assemblies. The algorithm here is simple: from a starting molecular shape, which
can look like a square or a triangle, and is designed to interact with copies of itself,
one constructs a molecule with the same shape but a larger size, and re-iterates the
process to get larger and larger assemblies of the given shape. The difficulty lies in the
design of a set of basic shapes which can self-assemble into new self-similar shapes of
larger sizes, and whose binding sites are coded by self-similar coding. An appropriate
coding is important to ensure that tile complexes will self-assemble and that undesired
binding is avoided. The order of this hierarchical tiling, corresponding to the number
of iterations of the algorithm, is m, for potentially any value of m. In practice, a
chemist would be happy with m = 4, 5.

These examples lead to some questions: within the set of feasible shapes and
interactions, can we classify potential complexes? Once a complex is formed, can it
be used as a building block to construct larger 1D, 2D or 3D arrays?

9 Size of the assembly

How can the size of an assembly be controlled?
Rough termination is easy to induce. An obvious way is to limit the number of

molecules in the solution. Another way is to use protecting groups, i.e. DNA molecules,
which might be single strands for instance, whose binding sites are complementary
to the binding sites of the tiles used in the assembly. The idea being that protecting
groups might be added to the solution during the process of self-assembly to prevent
new tiles from binding to available sites.

Exact termination is a consequence of the coding for the termination. If a synthesis
or an assembly is templated, it is always possible to limit growth, by leaving out
the constituent that is coded at the terminal position, for instance. The algorithmic
synthesis of triangular circuits illustrated in Figure 6, provides another example where
this is done [7]. In general, exact size control of a DNA self-assembly is hard to achieve.
A few protocols have been presented so far.

In theory, DNA tiles can be used to “count” by creating boundaries with pro-
grammable sizes for 1D, 2D and possibly 3D periodic assemblies. The idea is to build
periodic arrays of size n × m by generating repeatedly the Boolean truth table for
n entries until m rows of the table have been filled [54, 56]. If this schema can be
physically implemented, then self-assembly of precisely-sized nanoscale arrays will be
possible.

Fractal assemblies [8, 9] can be thought of as a way to generate fixed geometrical
shapes of controlled size. Besides the rectangular shapes of n×m arrays, one would
like to have a way to grow assemblies with other shapes such as triangles, hexagons,
etc. Fractal assembly allows us to do so by constructing objects with fixed sizes that
are powers of some value: for instance, for the Sierpinski fractal, the size of the squares
is 3k, where k is the dimension.

10 Algorithmic assembly

The combination of different instructions in a “molecular program” has been used to
design self-assembly systems which follow specific assembly pathways. This idea has
its mathematical analogue in the work of Wang [48, 49, 50], who proposed a finite set
of tiles mimicking the behavior of any Turing Machine.
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Wang tiles are squared tiles in R2 whose binding sites are the four sides of the
square, and whose interaction is possible on binding sites labelled by the same color. If
T1, T2, . . . , Tn are Wang tiles, then one asks that {T1, T2, . . . , Tn} be a self-consistent
set. Once a set of Wang tiles is given, one asks whether the plane can be tiled with it,
and what are the properties of the tiling, namely if the set generates periodic tiling
only, or both periodic and non-periodic tiling, or aperiodic tiling only.

The molecular realization of Wang tiles (where a square becomes a 4-arm branched
molecule with Watson-Crick complementary sticky ends as binding sites) can, theo-
retically, be used to make computations [54]. This notion has not yet been realized
experimentally in more than one dimension [30]. A three-dimensional framework for
computing 2D circuits and constructing DNA-objects with given shapes, has been
suggested [7], where again, DNA tiles mimic Wang tiles. It is important to stress that
molecular tiles are not conceived to generate only uniform tiling of the plane, but on
the contrary, they can be used to induce the assembly of objects of arbitrary shapes.

Combinatorial optimisation problems: fixing a single shape. Two combinatorial prob-
lems have been stated in [3]. The first concerns minimum tile sets, i.e. given a shape,
find the tile system with the minimum number of tile types that can uniquely self-
assemble into this shape. The second concerns tile concentration, i.e. given a shape
and a tile system that uniquely produces the given shape, assign concentrations to
each tile-type so that the expected assembly time for the shape is minimized. The first
combinatorial problem is NP-complete and the second is conjectured to be #P [3].
These problems have been formulated for any given shape even though only square
tiles, i.e. Wang tiles, have been studied until now.

Templates and fixed shapes. Can one find a small set of relatively simple tiles such
that, starting from a template supporting a linear code (that may be a DNA or RNA
molecule incorporated into a macromolecular complex), the assembly process will
create a given three dimensional shape in the space? We think here of interacting tiles
performing a transformation from labeled templates into three dimensional structures
and we ask what kind of transformations can be realized in this way [7]. Also, one
wants to understand how much the complexity of the construction depends on the
complexity of the tiles, where the latter can be measured by the number of the binding
sites of the tiles, the size of the sets Bi,j , etc.

Combinatorial optimisation problems: fixing a “family” of shapes. Fractal assembly
provides an example of an iterative algorithm for self-assembly which generates frac-
tals of arbitrary dimension and not just a single shape with a given size. For each
dimension, the building blocks necessary to build the corresponding fractal shape need
to satisfy the same self-similar properties, and the design of a tile set which satisfies
these properties is not obvious. For instance, given a Sierpinski square fractal and
an iterative algorithm that produces arbitrarily large instances of this shape, is there
a set of Wang tiles that can uniquely assemble into any fractal size? It is not at all
clear that a set of Wang tiles with self-similar coding exists. In [9] a set of tiles, whose
boundaries are characterized by both a coding sequence and a geometrical shape, is
proposed. Does geometry have to be included in the coding of the tile boundaries to
impose extra control on the assembly? What is the minimum number of tiles necessary
to generate a family of shapes?

In general, let an algorithm for self-assembly be fixed. What are the properties of
the tiles which are necessary to realize the algorithm?

Dynamic tiling. A molecular feature that has been used in algorithmic self-assembly
is the possibility to program and change the status of a molecule. This means that the
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molecule passes in time through several possible physical conformations, i.e. geometri-
cal shapes. In DNA nanotechnology, this has been done by using ”template” molecules
(programmable tiles) that interact with DNA single strands [47, 46]: the pairing of
the single stranded DNA present in the solution to a single strand subsequence of the
tile induces this latter to change its conformation. Because of these conformational
changes, tiles get a different status during the assembly, with the effect that one is
able to control the dynamics of the algorithm and the direction of the assembly. As a
result, one can generate different architectures out of the same set of tiles by varying
their conformations.

Example. One can imagine a basic molecular system that is fundamentally a layer
of programmable tiles which can guide the assembly of multiple layers of tiles above
it [7]. In the 2-dimensional case this device can compute tree-like boolean circuits,
and in 3D, it can induce finite regular and less regular shapes. Multiple regular layers
are obtained by completely filling up the template board: a new layer of tiles will
cover-up the old one and will play the role of a new board in allowing the creation of
a third layer, and so on. “Walls” with specified “height”, or discrete irregular shapes
are obtained by partially filling-up the board, and this can be achieved by inserting
appropriate coding in the programmable tiles that form the template board. The
coding will discriminate what are the tiles that will interact with new ones and what
are those that will avoid interaction.

In the example, a change in the programming of the board induces the formation
of different shapes out of the same input set. This suggests that a formal notion of
complexity describing self-assembly of molecular systems cannot be based merely on
the variety of shapes that potentially can be assembled, but rather on the much larger
variety of algorithms that allow their assembly.

DNA computing. Last, we want to mention the effort in designing algorithms for DNA-
computation. The landmark step is in [1], where DNA is used to solve an instance of
the Hamiltonian Path problem, asking to establish whether there is a path between
two cities, given an incomplete set of available roads. A set of strands of DNA is used
to represent cities and roads (similar to the description of the 3-coloring problem in
Section 6), and the coding is such that a strand representing a road would connect
(according to the rules of base-pairing) to any two strands representing a city. By
mixing together strands, joining the cities connected by roads, and weeding out any
wrong answers, it has been shown that the strands could self-assemble to solve the
problem.

The first link between DNA-nanotechnology and DNA-computation was estab-
lished in [54] with the suggestion that short branched DNA-molecules could be “pro-
grammed” to undergo algorithmic self-assembly and thus serve as the basis of com-
putation. Other work has followed as [30, 34, 25].

11 Discussion

Most examples in this paper were based on Watson-Crick interactions of DNA
molecules. Other kinds of interaction, usually referred to as tertiary interactions,
can be used to lead a controlled behavior in the assembly of DNA molecules, for
example, DNA triplexes [15], tecto-RNA [21] and G-quartet formation [42]. In the
combinatorial DNA constructions that we presented, tertiary interactions were care-
fully avoided with the goal of maximizing control on the dynamics of the assembly.
Tertiary interactions are not as readily controlled as Watson-Crick interactions. The
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next generation of structural DNA nanotechnologists will be likely to exploit this
wider range of structural possibilities and it appears possible that new combinatorics
might arise from these options.
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