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Abstract

Cyclic structures underlie formal mathematical reasoning, and repli-
cation and folding play a crucial role in the complexity of proofs. These
two aspects of the geometry of proofs are discussed.

1 Deductions, foldings and the brain

Different models of various regions of the brain have been proposed and they
stimulated the discussion on the way our mind works. The essential feature
of most of these models is the hierarchical structure which is underlying
the organization. What we “see” is nevertheless not necessarily the basic
mechanism. Recent studies in computational complexity and proof theory
reveal that hierarchical organizations, even though structurally appealing,
are computationally inefficient. In fact, our brain seems to be “fast” in
performing certain tasks (such as perceiving the presence of an animal in
the landscape, or intuitively grasping a complicated mathematical idea) and
extremely “slow” in performing others (as the construction of a mathematical
proof). No hierarchical structure conceived by man displays similar features.

In this paper we would like to show how the usual hierarchical approach
to the construction of formal mathematical proofs (introduced with the work
of Frege and established through the work in logic until this last decade) is
inappropriate to reveal the intricate structures underlying proofs.
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There are two basic operations which one finds in every complex system:
replication and folding (or cancellation). (Based on these two operations one
can suggest a formal definition of complexity.) Replication and folding arise
in many forms, going from a more abstract to a more concrete nature. On
the abstract side, it has been and remains a challenge to study the effect of
replication and folding on mathematical structures. For example, the folding
in the combinatorial group theory corresponds to word cancellation and it is
encoded in the 2-dimensional language of the van Kampen diagrams.

On the concrete side, these two operations underly many biological sys-
tems, where the perfection and the symmetry of a mathematical structure
is broken. Yet “pseudo-structures” seem to be preserved and one looks for
mathematical tools to handle them.

Replication and folding manifest themselves in vastly different situations
where they are governed by different laws. In molecular biology for instance,
one observes the replication in the production of thousands of copies of the
same RNA strand, followed by the physical folding of those. This kind of
folding constraints the dynamics of the cell and may interfere with the rate
of production of RNA (via the network of protein-DNA interaction).

DNA also folds, but for different purposes. For example, the 2 meters
of human DNA must fit into the cell nucleus of 10 microns. This folding is
organized (in chromosomes) along very specific structural patterns serving
several biological functions.

One more example involves proteins. They fold in the course of transla-
tion into a compact 3-dimensional conformation where the geometry of the
specific active sites on the boundary determines their bio-chemical activity.

Summing up:

- folding allows a large object to fit into a small space,

- the complexity of the functions performed by the object depend on the
complexity of the folding, and

- these two properties go along, since reducing the space necessarily pro-
duces complicated foldings. Possibly the evolution first folded “primor-
dial DNA” in order to save space and then as a bonus came up with
more complicated behavior.

Folding and size reduction make possible to control the object but some-
times make the manipulation of the object a slow process, in particular if
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a local unfolding needs to be realized (as in the transcription of RNA from
DNA). Biologists are searching for rules of folding and unfolding and it re-
mains unclear, for example, in how many ways a (natural) protein can fold.
Do foldings follow specific pathways?

Amazingly, this pure biological (and superficial) discussion remains mean-
ingful in the context of formal proofs. In proofs, and as we believe in most
complex systems, replication and folding play a crucial role, and the analysis
of the interaction of these operations in proofs is the main object of this
paper. The biology will remain in the background, to contrast what hap-
pens in formal proofs. In proofs the folding and the replication are tide up
in intricate ways (the unfolding induces replication and the folding induces
identification) while biological systems tend to separate folding and repli-
cation in order to operate efficiently. As a result, the dynamics of proofs
turns out to be very different (at least to a casual eye) from the dynamics of
biological systems.

Dynamics in proofs underlies a process of computation. We are after
the structure of this dynamics, or if one prefers, of the computation behind
proofs, where we shall see that short proofs need to contain cycles and that
the elimination of these cycles might enlarge the proof in such a way that no
human mind could possibly embrace the details.

A proof, as understood in this article, represents a finite computation de-
spite the presence of cycles which might create an illusion of infinite computa-
tions hidden behind. (There are proofs that might describe infinite processes
but we shall not consider them here.) This will be clarified in Section 6 where
we shall show that infinite iterations (intrinsic, for instance, to autonomous
dynamical systems) are not present in proofs. The absence of infinite itera-
tions becomes apparent if one introduces possibilities of parallel computation
in a proof (see Section 6), otherwise one necessarily has cycles which bias our
perspective towards a dynamical view.

Why do we look at proof theory and at the notion of formal deduction
instead of considering the notion of “truth”? Here is a basic fact which
might give a clear picture of the reason to the non-logician: if we extend
our mathematical theory with an inconsistent axiom, we might end-up with
a new theory for which there is a k > 0 such that all proofs of length (i.e.
the number of formal deductive steps) smaller than k are proofs of true
statements. This means that even if we work in an inconsistent setting we
can still deduce interesting results. Proof theory allows us to speak about
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what is going on in the stretch of computational time < k and permits an
analysis of the structure of the computation when resources are bounded
(e.g. with respect to time and space).

I would like to acknowledge the numerous conversations I have with Misha
Gromov in the subjects touched in this paper. This work was partly written
during my visit at the Institut des Hautes Études Scientifiques.

2 A formal language to describe proofs

In the thirties, Gentzen introduced a logical system (i.e. a finite set of rules
for the manipulation of logical formulas) which, nowadays, is used at large
in the study of formal proofs. Its success is due to the useful combinatorial
properties concerning the formulas appearing in the proofs as well as the
graph-theoretical features of the structure of the proofs. This logical system
allows the manipulation of sequences of formulas which, for our purposes, will
be simply chains of symbols that one can combine through controlled trans-
formations of the sub-chains as described below. The alphabet out of which
the chains are constructed is the logical language containing variables, con-
stant, function and relation symbols, as well as logical connectives ∧ (and),
∨ (or) and logical quantifiers ∀ (for all), ∃ (there exists). Some extra symbols
are used as separators, that is (, ) (parenthesis) and , (comma). For each re-
lation symbol R there is a unique complement R⊥ that represents the logical
negation of R (often written ¬R). The symbols ∧, ∀ are complementary to
∨,∃, and the complement of a chain of symbols is the chain obtained by com-
plementing all relation symbols and logical symbols in it. For instance the
complement of the formula p∨ (q⊥ ∧ r) is p⊥ ∧ (q ∨ r⊥), and the complement
of (A⊥(c)∧B(d))∨∃x C(x) is (A(c)∨B⊥(d))∧∀x C⊥(x). For convenience,
if A is a formula then we shall denote with the symbol A⊥ its complement.
(The reader might notice the analogy with the Watson-Crick complementar-
ity in DNA for which the complement of the sequence ACGGGGTTTCC is
TGCCCCAAAGG, where the letters A,C are complementary to T, G. One
might entertain herself by looking at other examples of duality and parity in
mathematics and physics.)

An example of sequence of formulas is A⊥(c),∀y B(y, d) ∧ C(d), B⊥(a),
where A⊥(c), ∀y B(y, d)∧C(d) and B⊥(a) are formulas. An example of rule
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is

Γ, A ∆, B

Γ, ∆, A ∧B

to the effect that given two sequences of formulas Γ, A and ∆, B one can
construct a new sequence containing both collections of formulas Γ and ∆
(which might be empty) and the formula A ∧ B. (The logical meaning of
the rule should not worry the reader.) Similar rules are defined for the other
logical connectives and quantifiers.

Together with those rules allowing the construction of new formulas lying
in a sequence, there are two extra rules:

∆, A, A Γ, A ∆, A⊥

∆, A Γ, ∆

contraction cut

The contraction rule says that if two copies of a formula A lie in the
same sequence, then they can be identified and only one remains. The cut
rule says that if two sequences contain complementary formulas then the two
formulas cancel out. In logic, the cut rule is a generalization of the well-
known rule of modus ponens, saying that if the lemma A has been derived,
then the sequence of formulas ∆ is derivable from the sequence ∆, A⊥. The
occurrences A and A⊥ in the two sequences considered in the cut rule, are
called cut-formulas or lemmas.

The set of rules which we described, together with sequences of the form
Γ, A, A⊥ (called axioms), define the so-called predicate logic. If quantifiers
are not allowed to occur in the formulas, the logic is called propositional.

A formal proof is a manipulation of sequences of formulas by means of
the rules above, which starts from axioms, creates new sequences which can
be combined with any of the previously derived sequences and any of the
axioms, and which ends with a sequence called theorem. An example of
formal proof is illustrated on the left hand side of Fig. 2.

The use of the cut rule in formal proofs allows the construction of compact
deductive arguments. We give two intuitive examples of the use of cuts in
proofs. They illustrate the power of lemmas in deductions.
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Figure 1: Triangles with inscribed circles.

Example 1 We take an “isoscele” triangle and we inscribe a circle in it as
illustrated in Fig. 1. Repeatedly, we inscribe a smaller circle on the top of the
previous one and so on. We shall obtain an infinite number of such circles,
one on the top of the other. To compute the sum of the radiuses of such
circles (see Fig. 1 on the left), we can calculate the radius of each circle and
then sum up the values, but this sum is infinite. This approach produces an
explicit computation in the sense that each radius is explicitly considered in
the reasoning and contributes to the sum. A finite but implicit solution, is
illustrated in the picture on the right of Fig. 1, where one can see that the
sum of the radiuses coincides with half of the height of the triangle. (Infinity
is present in this solution but suppressed by the implicitness.) The short
cut we used to pass from an argument involving an infinite computation to
a finite argument corresponds to the presence of lemmas in a formal proof.
(For all apparent simplicity, no known automatic deduction system is able
to come up with this short cut.)

Example 2 To avoid the explicit calculation of 20+19+18+ . . .+3+2+1,
at the age of seven, Gauss observed that if we add by columns the following
additions

20 + 19 + 18 + . . . + 2 + 1
1 + 2 + 3 + . . . + 19 + 20

the result will be 10 times 21. By using the lemma

n + m = p → (n− 1) + (m + 1) = p
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one can even avoid the addition by columns: one computes 20+1, and applies
20 times the lemma. The lemma allows to codify the explicit calculation and
to deduce the solution faster.

The reader might have a sense now of the shortening induced by certain
mathematical arguments contrapposed to the length of the constructions that
one would generate if lemmas were not allowed to be used. These are toy
examples, but in the next section we discuss some concrete mathematical
ones.

3 Unfolding

A precise statement concerning explicit and implicit constructions, that is
constructions allowing or not the use of lemmas, was proved by Gentzen

Theorem 3 (The Cut Elimination Theorem - Gentzen) If Π is a formal
proof (with cuts) of a statement S, then there is an effective way to transform
Π into a formal proof Π′ of S which does not make use of the cut rule. This
holds for both propositional and predicate logic.

The transformation is possible by means of local manipulations which
unfold the proof Π into the proof Π′, usually much larger than Π. The price
to pay for the elimination of cuts may be exponential for propositional logic,
and multi-exponential (i.e. a tower of 2’s) for predicate logic. From these
values, it is clear that there are situations where one might find a small proof
with cuts, even though one might never be able to look at the cut-free form
because too huge.

But why would we like to look at the cut-free form of a proof? Roughly
speaking this form corresponds to the combinatorial version of the original
proof. In a proof free of cuts, the construction of an “object” in the proof
is done “piece by piece” and we might be interested to know how large this
object is, or in how many steps we can build it, etc. (We shall comment on a
concrete example of such construction in Section 5.) Since the complexity of
the object and the length of the proof are related, one hopes to extract bounds
from formalized proofs by analysing cut elimination. This is a direction of
research proposed by Kreisel.
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In mathematical practice proofs with “large” cuts are regarded as less
elementary than those with “smaller” ones. For instance, the Prime Number
Theorem was originally proven with the cutting edge of the Riemann zeta
function while the elementary proof was found much later and with a great ef-
fort. On the other hand, it took a long time to furnish a short non-elementary
proof of the van der Waerden Theorem on arithmetic progressions.

The beauty of the van der Waerden Theorem resides in the simplicity of
its formulation

given a finite set of points in a finitely colored (partitioned) plane,
there is a parallel translation followed by a dilation which moves
the set into a monochromatic position.

Amazingly, there is still no logically simple proof of the result. In 1987,
Girard showed that one can formally recover (by cut elimination) the elemen-
tary combinatorial argument used by van der Waerden from the dynamical
system proof of Furstenberg and Weiss (where the key transcendental ingre-
dient is the fact that the intersection of a decreasing sequence of non-empty
compact sets is non-empty). This transformation consists of purely local
combinatorial manipulations of formulas (together with some finitarisation
of compactness). Thus the proof based on dynamical systems contains, in
some codified form, all information needed for the combinatorial proof.

Girard’s theorem is a single result of this kind, and in most significant
cases in number theory and algebraic geometry there is no elementary coun-
terpart to analytical proofs. In no single case there is a formal derivation of
one kind of proofs from the other.

4 A geometrical view of the unfolding

This section and the following one represent a condensed survey of the subject
and the reader should not be surprised if they turn out to be hard to follow
in detail.

A formal proof is usually visualized as a “finite tree” of rules (growing
downwards), whose root is the theorem, the leaves are axioms, and the in-
ternal nodes are intermediate sequences of formulas derived from one or two
sequences (which label the antecedents of the node in the tree) through the
formal rules. An example is illustrated in Fig. 2.
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Figure 2: A formal proof and its associated tree of derivation. Each node of
the tree corresponds to a sequence of formulas in the proof. There are three
axioms and three leaves of the tree, three intermediate sequences and three
internal nodes of the tree. The theorem corresponds to the root.

     ,     

 ,  

( (

 ,  

C

C )C     )  

C 

C 

C

P

P

P, ,

,

,

, ,

C , C , P

, CC

C

C

C

C

P

C       P

P

P

P

P C
,,

, ,

,

C,

C,

C,

C

C,

C

C

C,

C C,

C ,

C ,C

C C

C

C

C

C

C C

C C

C

C C

Figure 3: Logical paths between formula occurrences in formal proofs. The
proof on the left displays a splitting point of the graph correspondent to the
contraction of the formula C; the figure on the right displays a proof whose
logical flow graph contains an oriented cycle. (In both pictures, only parts
of the logical flow graphs are traced.)
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focusing defocusing

Figure 4: Branching points. When lying in a logical flow graph, they corre-
spond to the use of contractions.

Figure 5: A defocusing point follows a focusing one. Between the two branch-
ing points there is a path linking them. This configuration corresponds to
the presence in the proof of two contractions, and of a cut in between them.

There is another kind of graph, not necessarily a tree anymore, that can be
associated to a formal proof. It represents the “flow of formulas” in the proof,
and it is called the logical flow graph. This graph carries more information
than the tree derivation (for instance, it distinguishes proofs with cuts from
those without cuts) and the process of cut elimination can be adequately
expressed in terms of combinatorial operations over this graph.

Two examples of logical flow graphs are illustrated in Fig. 3. They show
the occurrences of the formula C logically linked within the proof. The left
hand side diagram in Fig. 3, displays a proof with links for P as well as for
C. By looking at the pictures one observes that contractions correspond to
branching points in the graphs. We distinguish the branching points where
a directed edge forks in two edges by calling them defocusing points, while
vertices where two directed edges come together and are followed by a single
edge are called focusing points (see Fig. 4).

A logical flow graph might be arbitrarily complicated. In fact, every
(non-oriented) graph with degree of the vertices ≤ 3 can be topologically
embedded into the logical flow graph of some proof.

The more complicated the graph is, the more logical information the
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Figure 6: A subgraph H of the logical flow graph G is duplicated. The
branching points below the nodes b, c and above the nodes e, f disappear
with the duplication. Some new branching point is introduced: one below
the node a and the other above the node d.

Figure 7: A graph where several directed paths share common parts (left)
and its unfolding (right). The number of paths is exponential in the number
of diamonds in the graph. Observe that the folding plays the role of the
universal covering in the category of oriented graphs.

11



graph carries. A good combinatorial way to understand this point is to
count the number of different paths encoded in a logical flow graph. Let
us consider for instance the graph in Fig. 5. It is easy to count 4 different
oriented paths coded in it. Each one of the paths shares with the others,
some part which might be constituted by a very long chain of nodes. It is
the sharing of nodes that reduces the complexity of the representation. In
Fig. 7 we can see how an exponential number of paths can be coded in a
small graph.

During the process of elimination of cuts, the logical flow graph of a
proof undergoes significant topological changes and with this, its size blows
up. The key idea is to transform a graph which contains paths starting from
a focusing branching point and arriving to a defocusing one (see Fig 5) into
a graph free of such configurations. The branching points where the graph
splits or recombines are locally disrupted and this induces global effects in the
topology of the graph (for instance cycles might be disrupted as illustrated
in the second diagram on the right of Fig. 9).

The combinatorial idea which underlies the cut elimination procedure is
the following. Given the logical graph of the proof, the procedure chooses
a subgraph of it and resolves some of the focusing or defocusing points by
duplicating the subgraph, as illustrated in Fig. 6. By doing this, some of
the branching points are eliminated but some new ones might be introduced.
All in all, one moves around branching points and pushes them towards
the boundary of the graph, until they are absorbed by the boundary and
eliminated. Gentzen Cut Elimination Theorem ensures that this can be
always done with a finite number of duplications.

Among the effects that the operation of duplication might generate, one
can see Fig. 8 and Fig. 9.

5 Cyclic structures

Proofs without cuts are acyclic as well as proofs with cuts and no contrac-
tions. This means that cycles are built through the interaction between cuts
and contractions.

As a side effect of the rules for the manipulation of sequences of formulas,
cycles in a proof organize following an interesting geometric pattern. In fact,
any cyclic structure (i.e. any group of cycles nested together, as illustrated
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c d c d

a b a ba b

c d

Figure 8: Duplication of a path. This kind of duplication might give two
different connections between the nodes a, b and c, d. (This is reminiscent
to how the enzyme recombinase alters DNA strands by switching one of the
connections above (on the right) into the other.)

c d c d

a ba b

c d

a b

or

Figure 9: The duplication of a path might induce the splitting of a cycle.

Figure 10: A cyclic structure lying in the logical flow graph of a proof,
together with a path going in and a path going out the cyclic structure.
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in Fig. 10) is linked to the rest of the graph in such a way that

- there is a point in the graph, which is external to the cyclic structure,
and from which it starts a path that arrives to any point lying in the
cyclic structure, and

- there is another point in the graph, which is again external to the cyclic
structure, and to which it arrives a path that starts from any point lying
in the cyclic structure.

This means that for each cyclic structure, there is (at least) a path going
in the structure and a path going out from it (as in Fig. 10). In other words,
cyclic structures in proofs behave essentially as “open systems”.

The existence of ways in and of ways out in a cyclic structure can be
proved by observing that if no way in or no way out was present in a cyclic
structure, then the operation of duplication illustrated in Fig. 6 could not
split (some) cycles and therefore reduce the logical flow graph of the proof
to a cycle-free graph. Since we know that cycles can always be eliminated
by applying the procedure of cut elimination, the above hypothesis leads to
a contradiction.

The elimination of cycles through duplication is done at great expense of
the proof size. Hence, it is useful to ask, whether cycles are relevant for a
proof to be short.

When one considers a logic with quantifiers the answer is positive. This
can be shown by proving in a few steps of deduction, that large integers
exist. It turns out that not only one can prove in a very few steps that n,

2n, 22n
exist, but that also 222n

and e(2, n) (i.e. a tower of n 2’s) can be

constructed with essentially n steps of formal deduction. To construct 222n

and e(2, n) with such a small complexity of derivation, one needs cycles, and
it can be shown that any cycle-free proof of size n can construct only objects

of size much smaller than 222n

. These short proofs codify in a small space the
complete description of the object of large size. This codification exploits the
high symmetry of the object and this latter is reflected in the argument of the
proof by a logical description of a repeated substitution of logical “terms”
(in essence, given a chain of symbols, some of these symbols are substituted
with the chain itself, and this operation is allowed to repeat). In the logical
flow graph, this repeated substitution corresponds to the presence of cycles.
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Figure 11: The projection of the spiral back down to the circle. Observe that
the spiral is the universal covering of the circle and that the map represented
in the figure is the canonical projection.

Are cycles necessary to short cuts in propositional logic? Surprisingly the
answer is negative. In fact, there is a fine procedure for the manipulation
of lemmas in proofs that allows to transform locally the structure of the
proof until cycles are eliminated (but cut-formulas will still be present). The
resulting proof is of polynomial size in the size of the original proof, and the
degree of the polynomial is the number of cycles of the original proof.

We do not know whether all true propositional formulas have polynomial
size proof in the logical system described in Section 2. If this were the case
then NP would be equal to co-NP . This problem is a brother to the famous
P = NP question. We believe that an understanding of the folding and
unfolding of propositional proofs might turn out to be crucial for complexity
issues and possibly shade some light on P =?NP .

6 Cycles and spirals

Cycles cannot be eliminated silently when quantifiers are involved in the
deduction (as seen in Section 5) since an explosive blow up in the size of the
proof might occur. Also, cycles suggest a codification of an infinite process
while we know, by the Theorem of Cut Elimination, that this codification
represents only a finite number of iterations. Therefore the “intuition” of
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infinity is an illusion, and one wonders why cycles appear at all in our formal
representation of proofs.

There is a set of rules for the manipulation of chains of formulas that
creates different geometric structures in proofs, where cycles do not appear
but spirals replace them instead. A comparison of the two deductive systems
shows that cycles are projections of spirals, as illustrated in Fig. 11.

Spirals properly represents the dynamics within a proof but the complexity
of this representation is large: if the size of a proof with cycles equals n, then
the size of the corresponding proof where spirals replace cycles is roughly

222n

. Thus the proof with spirals is too big to be handled, and one is obliged
to work in the “projected space”, where spirals turn into cycles.

One might speculate that computational complexity forces the brain to
follow cyclic pathways of deduction, being aware, at the same time, that the
“real” dimension of the space of reasoning is bigger than the “descriptive”
dimension. The interweaving of these two modes of human reasoning underly
the difficulty of our attempts to understand how our mind works. Taking
this view, one starts doubting how often what we call “natural” corresponds
to “reality”.

7 Conclusions

We have seen how proof theory provides a procedure for unfolding a proof
with cuts, e.g. turning the trascendental proof of the van der Waerden theo-
rem into the elementary one. Yet there is no procedure for compactifying a
proof by folding.

Not every proof can be in principle folded. For this, a proof needs to
contain many repetitive patterns, some kind of hidden symmetry. There
are at least two situations where such folding is desirable: the first concerns
real mathematical proofs such as the above van der Waerden theorem where
one has an intuitive feeling for the symmetries but yet the actual process
of folding is by no means automatic. The second concerns automatic proofs
generated by computers where the symmetry, even if present, might be hard
to detect. Moreover, once it is detected, the symmetry does not immediately
yield the pattern of folding. Transforming an automated formal proof into
one acceptable by a human mind remains an open problem.

The difficulty resides in the fact that local relations between formulas may
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be lost during the unfolding (this is due to duplication) and in order to fold
one has to “guess” where to insert these relations. As a comparison, look at
the following geometric picture: start with the universal (infinite) covering
of a compact space and consider a bounded domain in this covering which
projects onto the underlying space. The problem is how to reconstruct this
map of the domain together with the underlying space where it goes, by using
the information encoded in the (partial) local transformation of the domain
which comes from the Deck transformation group of the covering. One should
be aware that the combinatorics of proofs is by far more complicated than
that of the coverings.

8 Bibliographical guide

An introduction to the combinatorics and complexity of cut elimination can
be found in [CS97a]. An exhaustive source (but more technical) is [Gir87b].
For a survey on propositional proof systems and their relations with com-
plexity theory see [Pud96, Kra96].

Gentzen’s original paper on the cut elimination theorem appeared in
[Gen34] and, more recently, in [Sza69]. The bounds on the complexity of cut
elimination are due to Statman, Orevkov and Tseitin [Sta78, Ore79, Tse68].
Some references for the work of Georg Kreisel on the importance of ex-
tracting bounds from proofs using cut elimination as the main tool are
[Kre77, Kre81a, Kre81b].

The original paper of van der Waerden with the combinatorial proof of his
theorem on arithmetic progressions is [VdW27]. The proof by Furstenberg
and Weiss appeared in [FW78]. Girard’s proof of the transformation (through
cut elimination) between the combinatorial proof and the proof in dynamical
systems is included in [Gir87b].

Other examples of formal proofs analysed through cut elimination (and
Kreisel’s counterexample interpretation) can be found in [Bel90, Kol93a,
Kol93b, Kol94].

The notion of a logical flow graph is introduced in [Bus91] and an analysis
of its properties appears in [Car97, Car99a]. The constructions of numbers as

222n

, e(2, n) together with the cyclic structure underlying these constructions
are studied in [Car98a], and the relation of these cyclic structures to group
presentations is developped in [Car99b]; cyclic structures with their ways in
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and ways out are analysed in [Car99a, Car97a]; the evolution of the logical
flow graph during cut elimination is studied in [Car97a, CS97b]; cycles and
their spiral representations are the object of study in [Car98b]. The cost of
the elimination of cycles for predicate logic is computed in [Car98a], and for
propositional logic in [Car97b]. The notion of symmetry and quasi-symmetry
in proofs and mathematical structures in general is the main theme of [CS97b,
CS96a].
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