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ABSTRACT Several studies on large and small
families of proteins proved in a general manner that
hydrophobic amino acids are globally conserved
even if they are subjected to high rate substitution.
Statistical analysis of amino acids evolution within
blocks of hydrophobic amino acids detected in
sequences suggests their usage as a basic structural
pattern to align pairs of proteins of less than 25%
sequence identity, with no need of knowing their 3D
structure. The authors present a new global align-
ment method and an automatic tool for Proteins
with HYdrophobic Blocks ALignment (PHYBAL)
based on the combinatorics of overlapping hydro-
phobic blocks. Two substitution matrices modeling a
different selective pressure inside and outside
hydrophobic blocks are constructed, the Inside
Hydrophobic Blocks Matrix and the Outside Hydro-
phobic Blocks Matrix, and a 4D space of gap values
is explored. PHYBAL performance is evaluated
against Needleman and Wunsch algorithm run with
Blosum 30, Blosum 45, Blosum 62, Gonnet, HSDM,
PAM250, Johnson and Remote Homo matrices.
PHYBAL behavior is analyzed on eight randomly
selected pairs of proteins of <30% sequence identity
that cover a large spectrum of structural properties.
It is also validated on two large datasets, the 127
pairs of the Domingues dataset with <30% sequence
identity, and 181 pairs issued from BAliBASE 2.0 and
ranked by percentage of identity from 7 to 25%.
Results confirm the importance of considering sub-
stitution matrices modeling hydrophobic contexts
and a 4D space of gap values in aligning distantly
related proteins. Two new notions of local and global
stability are defined to assess the robustness of an
alignment algorithm and the accuracy of PHYBAL.
A new notion, the SAD-coefficient, to assess the diffi-
culty of structural alignment is also introduced.
PHYBAL has been compared with Hydrophobic
Cluster Analysis and HMMSUM methods. Proteins
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INTRODUCTION

Proteins sharing more than 30% of sequence identity
have a high probability to also share the same fold.1

Thus, as fold and function of a protein generally have an
intimate relationship, strong sequence homology is
exploited by conventional sequence comparison methods
to detect these similarities, reconstruct families of func-
tionally related proteins, and accomplish annotation of
genomes. Unfortunately, the complete sequencing of sev-
eral organisms differing in physiology, habitat, and
genetics brought to light how weak this approach to
annotation can be: for some genomes, as the malaria
parasite Plasmodium falciparum, more than half of the
genes remain functionally unknown. Alignment of pairs
of sequences with <30% identity is known to be diffi-
cult2: there are several examples of proteins where
widely used methods like BLAST3,4 and CLUSTALW5 to-
gether with suitable choice of score matrices and gap
values do not detect any homology, but possibly issue
lists of pairs of proteins with low scores or high e-values
that once screened with finer approaches might reveal
10–15% of sequence identity, same structure and same
function.6,7

Conventional sequence comparison methods use gen-
eral empirical models of proteins evolution represented
by substitution matrices8–10 and gap penalties. However,
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these models omit two fundamental aspects of evolution
that explain their inefficiency in aligning proteins of low
homology. First, residue positions are not equally impor-
tant in a protein sequence and they are not subject to
the same rate of mutation.11 Second, because of specific
evolutionary pressures, the type of substitution is
strongly related to the functional and structural role of
the residue: evidence of differential evolution has been
shown between residues belonging to either regular sec-
ondary structures (rss) or coil, and also between buried
residues (br) and exposed ones.11–13 Thus, it is essential
that substitution matrices and gap penalties take into
account residues positions and in particular their struc-
tural environment.14,15 Several substitution matrices
have been constructed taking into account residues loca-
tion in rss and exposure to solvent, and have been suc-
cessfully applied to folding recognition.13,16,17 Also, new
pairwise alignment methods as HMMSUM18 are based
on a prediction of conserved structural regions and adapt
their substitution matrices accordingly along the align-
ment. These models support the idea that structural in-
formation helps aligning distantly related proteins.

Clusters of hydrophobic amino acids that are in con-
tact once the protein is folded, appear crucial to the fold-
ing process and to the formation of rss.19–26 On the basis
of this observation, groups of hydrophobic amino acids
definable on a sequence and usually corresponding to
facets of rss lying in the protein internal core27 enabled
to show weak homology (15–25%) of several families of
proteins by manually aligning sequences and their
hydrophobic structures using the Hydrophobic Cluster
Analysis (HCA) method.28,29 The methodology of protein
sequence analysis and alignment of distantly related
proteins that we present here uses blocks of hydrophobic
residues (hb) defined as one-dimensional (1D) variants of
the notion of hydrophobic cluster, by detecting closely
located hydrophobic residues in a sequence and includ-
ing intercalating nonhydrophobic ones. It turns out that
hb are highly correlated to rss and to br and conse-
quently, they can be considered as structural patterns
extracted from sequences, with no need of knowing the
3D structure of the proteins to be aligned.

On the basis of hb, we define a new automatic method,
called Proteins with HYdrophobic Blocks ALignment
[PHYBAL (http://www.ihes.fr/�carbone/data.htm)], for
pairwise sequence alignment. Our tool identifies hb in
one dimension, and integrates this structural informa-
tion in an alignment procedure by imposing to the Nee-
dleman and Wunsch30 global (and global-local) alignment
algorithm further structural conditions suggested by hb.
Two substitution matrices modeling a different selective
pressure within and without hb are constructed, the
Inside Hydrophobic Blocks Matrix (IHBM) and the Out-
side Hydrophobic Blocks Matrix (OHBM), and a 4D
space of gap values is explored.

We analyze in detail eight randomly selected protein
pairs with at most 26% sequence identity and different
structural characteristics, and validate our approach by
testing alignment performance on two large datasets of

protein pairs with less than 30% of sequence identity,
extracted from BAliBASE 2.0 and Domingues datasets.
We show that PHYBAL improves response on both data-
sets compared with its alignment algorithm run with com-
monly used substitution matrices. Results confirm the im-
portance of considering substitution matrices modeling
evolutionary pressure within and without hb and of con-
sidering a 4D space of gap values in aligning distantly
related proteins. In particular, PHYBAL working with
IHBM and OHBM displays a stable behavior of the align-
ment procedure on close variations of gap values. The sta-
bility property is desirable since high divergence implies
exact values of gap penalties to be important for success.5

Two new notions of local and global stability are defined to
assess the robustness of an alignment algorithm and the
accuracy of PHYBAL. A new notion, the Structural Align-
ment Difficulty (SAD)-coefficient, to assess the difficulty
of structural alignment is also introduced.

PHYBAL approach has been compared with two align-
ment methods based on the idea that considering struc-
tural contexts in sequences should help for a better
alignment, the manual HCA method and the automatic
HMMSUM method.

MATERIAL AND METHODS

Definitions of Hydrophobic Blocks

A significative periodic distribution of hydrophobic
amino acids along a protein sequence can be observed in
a-helices and b-sheets. Periods seem to be dependent on
the rss location in the folded protein7: a-helices lying on
the protein surface display contacts among hydrophobic
residues at distance 3 or 4; b-sheets lying on the protein
surface display contacts among hydrophobic residues at
distance 2; and secondary structures lying within an
hydrophobic core display chains of consecutive hydropho-
bic residues, that is at distance 1. On the basis of these
simple combinatorial patterns, one can define formal
rules to detect hydrophobic blocks on a sequence, with-
out the knowledge of the 3D structure, by reading the
periodicity of hydrophobic residues supposed to be adja-
cent in three dimensions.

Hydrophobic blocks

Formally, we define the following combinatorial rule:
reading a sequence from left to right, for each amino-
acid k0, two situations can occur: (a) if k0 is not hydro-
phobic then continue reading; (b) if k0 is hydrophobic
then consider its four consecutive neighbors on the right.
If there is a minimal index 1 � j � 4 such that kj is a
proline, then consider the maximum index 0 � l < j such
that kl is hydrophobic. Otherwise consider the maximum
index 0 � l � 4 such that kl is hydrophobic. If l ¼ 0 then
continue reading the sequence. Otherwise consider the
following two cases: if k0 is not yet in a block, define a
block as being constituted by all aa from k0 to kl
included. If k0 belongs to a block C, then extend C by
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adding to it all aa from k0 to kl included. Continue the
reading of the sequence by setting k0 ¼ kl.

By definition, note that certain hb might be broken by
the presence of a proline sitting between two neighbor-
ing hydrophobic residues.

Hydrophobic amino acids

We consider as hydrophobic the following aa: valine
(V), isoleucine (I), leucine (L), phenylalanine (F), methio-
nine (M), tryptophane (W), and tyrosine (Y).28 Prolines
(P) are considered as ‘‘hydrophobic blocks breakers’’ since
they tend to initiate sudden variations in the direction of
the aa chain in tree dimensions.

Definition of Three Datasets of Structural
Alignments Used to Construct
Substitution Matrices

We considered the database HOMSTRAD31 of protein
families and structural alignments from which we
removed those proteins with undefined rss in their PDB
files. Also, we removed or slightly modified (at most
three residues) sequences from the HOMSTRAD protein
families that differed from the corresponding PDB files.
For each protein family issued from HOMSTRAD, we
retained a subset of proteins such that (1) protein pairs
have less than 30% identity, (2) each family contains at
least three sequences, and (3) are classified to have the
same common ancestor (according to the HOMSTRAD
classification discussed in www-cryst.bioc.cam.ac.uk/
�homstrad/Doc/Info.html). Strictly speaking, we count
sequences instead of proteins since in certain cases,
HOMSTRAD aligns paralogous domains lying in the
same protein. It gives us 144 families with 613 sequen-
ces coming from 523 proteins, with 30 a/b, 37 a þ b, 21
all a, 27 all b, 8 ab-barrel, 11 multidomain, 5 small, 4
small disulphide, 1 membrane bound all b. To reach a
wide variability in residue substitution, we favored a
large number of small families and considered 86 with 3
sequences; 30 with 4, 19 with �5 and �10 sequences,
and only 9 with >10 but �14 sequences. Protein pairs
are 1426. See Supplementary Table I.

Because of the different behavior of structural align-
ment approaches, three datasets of structural alignments
have been constructed from this selected set of protein
families using the alignments proposed in HOMSTRAD
and the server ProSup. One dataset is issued from
HOMSTRAD, which collects alignments of protein families
realized with FUGUE32 together with MNYFIT, COM-
PARER, and STAMP.33 FUGUE is a tool performing struc-
tural alignment based on sequence information and on a
substitution matrix enriched by structural information.
Two other datasets are issued from ProSup34 which struc-
turally aligns protein pairs and proposes two classifica-
tions of the resulting alignments; one satisfies the small-
est RMSD and the other satisfies the largest number of
equivalents. For each selected pair, both alignments have
been considered, and for each alignment, only equivalent
residues have been taken into account. The three datasets

of structural alignments are called SHOM, SRMSD, and
SEQ, respectively. We count 427,579 amino acids pairs in
SHOM, 211, 807 in SRMSD, 214, 525 in SEQ.

Substitution Probability Tables for Distantly
Related Protein Families

We constructed substitution probability tables for pairs
(values in the table give the probability of a substitution
of a residue at the top of a column by all other residues,
with columns that sum to 1) of aa occurring within a-heli-
ces (HOMa, RMSDa, EQa) and b-sheets (HOMb, RMSDb,
EQb) in our three structurally aligned protein families.
We compared them to substitution probability tables for a-
helices (Oa) and b-sheets (Ob) proposed by Overington13

and constructed from families of proteins in a range 25–
80% of homology. We obtained 58%, and 64.6% correlation
between HOMa, Oa and HOMb, Ob respectively. Similar
values are obtained for SRMSD, SEQ. Note that there is
80.3%, 92.3% correlation between HOMa, HOMb and Oa,
Ob. The low correlation found among our matrices and the
Overington’s matrices indicates the importance of con-
structing matrices from protein families with low homol-
ogy. The high correlation of the matrices computed for a-
helices (HOMa, Oa), and similarly for b-sheets (HOMb,
Ob), is an indicator of a limited difference among aa sub-
stitution rates in a-helices and b-sheets. This supports the
usage of structural blocks to align sequences which do not
differentiate between a-helices and b-sheets.

Criteria to Compute Scores for Two
Substitution Matrices

Substitution matrices are symmetric score matrices
that represent the probability of pairs of aa i,j to mutate
one in the other along evolution. To construct our matrices
we followed the approach proposed for Blosum matrices
[sij]

10: a random substitution of i with j corresponds to the
expected frequency of substitution fexp and it has score 0;
a favored substitution f (that is f > fexp) has a positive
score and a disadvantaged substitution f (that is f < fexp)
has a negative score. Scores si,j are computed as follows:

log2

�
fobsij

fexpij

�
with fexpij

¼
fobsi fobsj i ¼ j

2 � fobsi fobsj i 6¼ j

(

where fobsij is the observed frequency substitution of resi-
dues i and j. To adapt the original score formula to pat-
tern evolution, we tested three modified versions of the
original score definition given above. The first version
considers only residues present in a pattern type, and
relates the frequency of the pair i,j observed in the pat-
tern

�
f pat
obsij

�
to the expected frequency

�
f pat
expij

�

log2

f pat
obsij

f pat
expij

 !
ð1Þ

where, for the overlapping hypothesis, f pat
expij

, is defined as
c 3 f pat

obsi
3 f pat

obsj
þ f outpat

obsi
3 f pat

obsj
þ f pat

obsi
3 f outpat

obsj
with
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f outpat
obsi

denoting the frequency of i calculated outside pat-
terns, and for the nonoverlapping hypothesis as c 3 f pat

obsi
3 f pat

obsj
, with c ¼ 2 if i = j, and c ¼ 1 otherwise.

The second proposition introduces a weight xi,j in
Eq. (1) to calibrate pairs distribution. This weight is the
ratio between the number of pairs ij observed in pat-
terns and the number of pairs ij observed in the whole
sequence

log2

f pat
obsij

f pat
expij

3xij

 !
; with xij ¼

f pat
obsij

f seq
obsij

ð2Þ

where f pat
expij

is defined as above.
The third proposition considers the observed frequency

of ij pairs in patterns and compares it with the expected
frequency of ij in the sequence (f seq

expij
)

log2

f pat
obsij

f seq
expij

 !
ð3Þ

where f seq
expij

is defined as fexpij
in the original score.

Corresponding versions of these three propositions,
where frequencies of pairs sitting outside patterns are
considered instead, allow to construct substitution matri-
ces for aa occurring outside a pattern type. Matrices are
multiplied by a scaling factor of 3 and then rounded to
the nearest integer value.

The Algorithm

The combinatorial information relative to blocks of
hydrophobic aa is handled at the algorithmic level dur-
ing alignment by using two substitution matrices and
gap penalties which are dependent on hb overlapping.
PHYBAL analysis is based on two steps: a 1D screening
detecting hb for all input sequences, and a pairwise
alignment algorithm applied to these sequences and
their combinatorial structure of hb.

The basic alignment method

The alignment is based on the dynamic programming
algorithm of Needleman and Wunsch30 and two substitu-
tion matrices (described later), one used to compare
pairs of residues where none of them belongs to a block,
and the other to compare pairs of residues where at least
one of them belongs to a block. This strategy in compar-
ing residues corresponds to the overlapping hypothesis
(see Fig. 2) and fits the statistical conclusions reached in
selecting best matrices. Two kinds of gap penalties are
also used, one for gap introduction in hb (gap opening is
referred to as bGOP, gap extension as bGEP) and the
other outside hb (GOP and GEP) leading to a 4D gap
space. PHYBAL-2D indicates PHYBAL when run within
the 2D space of gap values defined by GOP ¼ bGOP and
GEP ¼ bGEP. A block remains a single entity even if
gaps are inserted. End gap opening is set to 2 and end
gap extension is set to 1, with the idea in mind not to

penalize small insertion/deletion at the sequence
extremes.

Global and global-local alignment

The program performs global alignment, which assu-
mes that the two proteins are comparable over the entire
length of one another, as well as global–local alignment,
which assumes an overlap of the two sequences and does
not penalize insertion/deletion at the end of the alignment
(end gap opening ¼ end gap extension ¼ 0).

Score of a pairwise alignment

It is the sum of scores between pairs of letters in the
columns of the alignment normalized by the length of
the alignment: SðAÞ ¼ 1

N

PN
j¼1 wðx1

j ; x
2
j Þ, where w(x1

j ,x
2
j ) is

either the value of the substitution of residue x1
j with

residue x2
j , or a (opening, extension) gap penalty at

alignment position j, and N is the number of columns in
the pairwise alignment.

Comparison of Various Substitution Matrices
With IHBM and OHBM

PHYBAL and PHYBAL-2D running with IHBM and
OHBM have been compared with PHYBAL-2D run
with several substitution matrices: Gonnet,9 Blosum30,
Blosum45, Blosum62,10 HSDM,35 PAM250,8 Johnson,36

and Remote Homo,37 where the same matrix models the
alignment in and out blocks and the algorithm becomes
Needleman and Wunsch algorithm.30 Blosum30, HSDM,
and Remote Homo have been constructed to align dis-
tantly related proteins. Johnson and HSDM matrices are
originally floating point matrices but we use their discre-
tization.

Three Reference Sets of Protein Pairs Used to
Analyze and Validate PHYBAL

We define three datasets of protein pairs with <30%
sequence identity to analyze PHYBAL performance.

Set of eight randomly selected protein pairs

The structural alignment programs MATRAS38 and
SSM39,40 have been used to align eight pairs of proteins
known to have low homology, varying within the range
5.6–26.4% of amino acids (aa) identity, covering a wide
spectrum of lengths 60–380aa, and classified as a þ b

(1), all a (4), and all b (3). They are Methyl CpG binding
domain (a-chain, 1D9N, H. sapiens, 92aa) and Methyl
CpG binding domain 2 (a-chain, 1QK9, H. sapiens, 74aa)
(pair P1); Hemoglobine (a-chain, 1HGA, H. sapiens,
141aa) and Myoglobine (1MBO, P. catodon, 153aa) (P2);
Hemoglobine (b-chain, 1HGA, H. sapiens, 146aa) and
Leghemoglobine (1GDI, L. luteus, 159aa) (P3); ribosomal
protein L20 (a-chain, 1GYZ, A. aeolicus, 59aa) and
Poly(A) binding protein (a-chain, 1I2T, H. sapiens, 60aa)
(P4); C-phycocyanine (b-chain, 1CPC, F. diplosiphon,
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172aa) and Myoglobine (1MBO, P. catodon, 153aa) (P5);
Plastocyanine (1AG6, S. oleracea, 99aa) and Azurin
(1AZU, P. aeruginosa, 121aa) (P6); Tick-Borne Encepha-
litis (TBE) virus capside protein (1SVB, 395aa) and Sem-
liki Forest virus (SFV) capside protein (a-chain 1RER,
383aa) (P7); V8 protease (a-chain, 1QY6, S. aureus,
216aa) and Trypsine (1SGT, S. griseus, 223aa) (P8).
Because of the different behavior of MATRAS and SSM
on our reference set, alignments have been verified and
modified by hand when necessary, and we defined a
Structural Alignment Difficulty (SAD-)coefficient for
each pair of proteins to be 1�M/N, where M is the num-
ber of amino-acid pairs shared by the two alignments
and N is the average length of the two alignments.

The Domingues dataset

The 127 pairs of proteins constituting the Domingues
dataset41 present <30% sequence identity, at least 35
equivalent residues and share all secondary structural
elements in the hydrophobic core. It provides a complete
list of structural alignments, with RMS errors <3 Å, pro-
duced with PROSUP (possibly several ones for the same
pair of structures). See Supplementary Table III. Com-
parison of predicted alignments (realized with PHYBAL
and PHYBAL-2D) to Domingues reference alignments
only takes into account equivalent residues, i.e., residues
which are �5 Å apart. For each predicted alignment, we
consider the best CAP obtained from the comparison to
all alternatives in the dataset (as suggested in Ref. 41).

Set issued from BAliBASE 2.0

Out of reference set 1 in BAliBASE 2.0,42 we consid-
ered all pairwise alignments of <25% sequence identity
extracted from multiple alignments. We obtained 181
pairs of sequences and divided them into six different
levels of percentage identity: �12% (12), 12–15% (i.e.,
>12% and �15%) (40), 15–17% (29), 17–20% (41), 20–
22% (18), and 22–25% (41). See Supplementary Table IV.
Comparison of predicted alignments (realized with PHY-
BAL, PHYBAL-2D, and HMMSUM) to BAliBASE 2.0
reference alignments only takes into account residues
within core blocks, i.e., regions that can be reliably
aligned.

Overlap of the datasets

The overlap is estimated by comparing pdb names of
proteins in the datasets. HOMSTRAD, BAliBASE 2.0
and Domingues datasets contain 523, 124, and 165 pro-
teins, respectively. Proteins shared by the datasets are
as follows: 25 for HOMSTRAD-Domingues, 17 for
HOMSTRAD-BAliBASE, and 12 for Domingues-BAli-
BASE. No protein within the eight selected pairs belongs
to the datasets.

HMMSUM on BAliBASE 2.0

Five pairs of sequences (1, 3, 1 for tests �12%, 12–
15%, 15–17%, respectively) for BAliBASE 2.0 use the X

character to represent unidentified aa. Since HMMSUM
does not handle the X character, we deleted the sequen-
ces from the corresponding dataset used to compare
PHYBAL and HMMSUM.

Solvent Accessibility

Residues surface solvent accessibility has been calcu-
lated with NACCESS 2.1.143 with a probe size of 1.4 Å.
As indicated in the NACCESS reference manual, relative
accessibilities are calculated for each aa in a protein by
expressing the summed residue accessible surfaces as a
percentage of that observed in a ALA-X-ALA tripeptide.
Tripeptides are built using the QUANTA molecular
graphics package in extended conformations, so as to ex-
pose the central X residue in the tripeptide as much as
would normally be possible in a protein. Because of un-
usual bond angles, bond lengths and distorted geometry
in real proteins, these values can often exceed 100% (as
seen in the x-coordinates in Fig. 1, bottom). A residue
with �30% accessibility is considered as buried.

RESULTS

Properties of Hydrophobic Blocks, Secondary
Structures, and Solvent Accessibility

Hb are highly correlated with rss and low solvent
accessibility: 85.74% of detected hb on the 613 sequences
coming from the HOMSTRAD database, share at least
one residue with a rss, and 89.83% of rss share at least
one residue with a detected hb (86.94% for a-helices and
92.42% for b-sheets). Hb sharing at least one residue
with a rss are called true hydrophobic blocks (thb), and
hb which are not thb are called fhb (f stands for false).
The 70.72% and 76.36% of residues sitting in hb and thb
overlap rss; the 67.28% of residues sitting in rss overlap
hb. The average length of rss, thb, and fhb is 8.1aa (with
r ¼ 5.6), 8.8aa (with r ¼ 6.1), and 4.2aa (with r ¼ 2.6)
(see Fig. 1, top). The average relative solvent accessibil-
ity surface for rss, thb, fhb is 25.3% (with r ¼ 24.8),
23.7% (with r ¼ 24.7), 33.2% (with r ¼ 28.6) per residue
(see Fig. 1, center). In particular, the average relative
solvent accessibility surface for residues sitting outside
rss is 40.5% (with r ¼ 30.4), and for residues sitting out-
side hb is 40.6% (with r ¼ 29.35) (see Fig. 1, bottom).
These values suggest that we can meaningfully distin-
guish two kinds of hb: thb which are closer to rss and
probably involved in the folding stability, and fhb that
we can consider either as false positives or as blocks
undergone a different evolutionary pressure than thb,
and involved in molecular interaction (as indicated
above, fhb tend to appear on the protein surface rather
than in its interior).

Conservation Properties of Structural Patterns

We consider five different structural environments
where to analyze residue evolution: rss, hb, thb, regions
defined by the overlapping between rss and thb
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(rss&thb), and br. Any of these five different environ-
ments is referred to as a pattern. Patterns have been
considered with the idea in mind to determine the most
suitable structures for the treatment of weak homologies

and for describing evolutionary pressure inside and out-
side patterns.

Pattern alignment and the overlapping condition

The alignment of two sequences might present over-
lapping of a given pattern type, as illustrated in Figure 2.
Since the extremes of a pattern in a sequence might
overlap with nonstructural residues of the other se-
quence because of size difference, we can explicitly con-
sider overlapping nonstructural regions to form a pat-
tern or not (Fig. 2). In the first case we speak of overlap-
ping hypothesis and consider certain nonstructural
residues as prone to form a pattern, hence subjected to
the same evolutionary pressure as residues lying in pat-
terns. In the second case we speak of nonoverlapping hy-
pothesis and consider nonstructural residues as resulting
from weaker evolutionary pressures and more likely to
be randomly distributed. The 44% of residues sitting in a
hb, is aligned with a residue which is also sitting within
a hb. The 56% holds for rss. These values support the in-
terest in analyzing the two hypothesis above.

Properties of pairs of residues lying within patterns
of structurally aligned sequences

We analyzed conservation of acidity, basicity, ionizabil-
ity, aromaticity, polarity, apolarity, and hydrophobicity, to-
gether with aa volume conservation within sequences and
patterns. Physico-chemical properties appear more con-
served in patterns than in sequences, as well as sequence
identity. The most conserved properties are hydrophobicity
and aromaticity, where three residues over the four char-
acterizing this latter are hydrophobic. High conservation
among large residues (with volume 185–230 Å3) which are
all hydrophobic shows that hydrophobic residues are likely
to be important for structural reasons. This analysis is in
agreement with the conclusion of Kinjo and Nishikawa.44

See Supplementary Table I. (Values are given for SHOM,
and those obtained for SRMSD and SEQ are comparable;
the three sets of structural alignments SHOM, SRMSD, and
SEQ are defined in Material and Methods.)

Selection of Two Best Fitting Matrices of Amino
Acid Substitution in and out Hydrophobic Blocks

We generated 90 different matrices for aa substitution
within patterns issued by the combination of the following

Fig. 1. Top: profile of hb distribution with respect to protein length
for our 613 protein sequences. Percentage of hb (y-axis) whose length
(intended to be the number of aa, x-axis) is plotted with a composite
bar graph representing thb and fhb proportions. Profiles for rss are
given on top right of bar graphs. Center: profile of hb distribution with
respect to solvent accessibility. Percentage of hb (y-axis) whose aver-
age residue surface accessibility falls within a given range (x-axis) is
plotted. Bottom: solvent accessibility profile in and out hb/rss plotted
with grey and white bars. (Details on solvent accessibility values in
Materials and Methods.)

Fig. 2. Two sequences with patterns of type P (i.e., hb, rss, thb,
hb&rss, br) displaying two distinct readings of overlapping patterns:
NON-OVER where residues occur in a pattern for both sequences,
OVER where at least one residue belongs to a pattern.
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Fig. 3. Top: Inside Hydrophobic Blocks Matrix IHBM. Bottom: Outside Hydrophobic Blocks Matrix OHBM.
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four parameters: (i) a pattern (rss, thb&rss, thb, hb, br), (ii)
a score equation [(1), (2), (3)], (iii) overlapping or nonover-
lapping hypothesis, (iv) a dataset of structural alignments
(SHOM, SRMSD, SEQ). A complementary pool of 90 matrices
has been calculated for aa substitution outside patterns.
For each one of the 90 combinations of parameters, we
tested the behavior of the corresponding pair of matrices
describing substitution rates within and without patterns
using PHYBAL-2D on our reference set constituted by
eight pairs of proteins, with all gap values varying from
0 to 10 for extension and from 0 to 20 for opening.

Matrices behavior is analyzed with respect to average
best Percentage of Correctly Aligned Pairs (PCAP), the
number of Correctly Aligned Pairs (CAP), stability and
gap coherence. PCAP is the number of correctly aligned
pairs (of aa, or gap and aa) calculated on the structural
alignment over the length of the predicted alignment.
PCAP variability is graphically represented by colored
matrices of 11 3 21 entries (corresponding to gap combi-
nations), referred to as PCAP landscapes in Figure 4
and Supplementary Figure 1. CAP is the number of cor-
rectly aligned pairs of aa calculated on the structural
alignment. Stability measures the robustness of the sys-
tem to variability of gap values and corresponds to the
size of monochromatic regions associated to high PCAPs
in the PCAP landscape. Gap coherence tests whether
best PCAPs are obtained on combinations where gap
opening is larger than gap extension, and this corre-
sponds to verify that best PCAPs lie above the PCAP
landscape diagonal GOP ¼ GEP (and bGOP ¼ bGEP
when a 4D gap space is considered). This property
ensures that best PCAPs are not reached with lots of
small insertions, which is intuitively expected for GEP >
GOP (bGEP > bGOP). From the analysis of the 90 pairs

of matrices we concluded that (1) Eq. (2) does not pro-
vide competitive PCAPs, (2) high PCAPs and good stabil-
ity are obtained with Eq. (3) on both the overlapping
and nonoverlapping hypothesis, (3) PCAP and stability
calculated for SHOM are worse than for SRMSD and SEQ,
(4) all PCAP landscapes associated to Eqs. (1) and (3)
present gap coherence. Best PCAP (54.5%), high CAP
(548 over 1196 predicted by PHYBAL-2D, and over 1152
after structural alignment) and high stability (31 over
231 contiguous gap combinations giving >50% PCAP) is
determined for (i) thb, (ii) Eq. (3), (iii) overlapping hy-
pothesis, (iv) SEQ. The two matrices associated to these
four conditions have been selected and their average
PCAP landscape is reported on the top right of Figure 4.
Similar properties are obtained for other sets of condi-
tions: thb, Eq. (3), overlapping hypothesis, and SRMSD;
rss, Eq. (3), nonoverlapping hypothesis, and SRMSD or
SEQ. (See their PCAP landscapes in Supplementary
Fig. 1, together with the full account of the analysis.)

The selected pair of matrices (displayed in Fig. 3) are
called Inside Hydrophobic Blocks Matrix (IHBM) and
Outside Hydrophobic Blocks Matrix (OHBM). In OHBM,
hydrophobic amino acid pairs attain negative scores and
this holds, in some extent, for hydrophobic aa identities
also. A high identity score is found on proline, cysteine,
histidine, and glycine. On the contrary, in IHBM, substi-
tution scores of hydrophobic residues increase and
hydrophobic aa identities are all positive. Proline iden-
tity is negative since no proline belongs to hb.

Comparison of IHBM and OHBM With Other
Matrices on the Eight Selected Protein Pairs

PHYBAL-2D and PHYBAL have been run on the selec-
ted set of eight protein pairs with substitution matrices

TABLE I. Best PCAP and Corresponding CAP (in Parenthesis) Obtained for Alignments of Protein Pairs P1–P8
with Different Alignment Methods (Optimized Gap Values are Determined for Each Pair)

and GEP/bGEP Varying from 0 to 10, GOP/bGOP Varying from 0 to 20

Dataset of eight pairs of proteins

Method P1 P2 P3 P4 P5 P6 P7 P8

PHYBALa 71.6 (53) 96.8 (138) 89.7 (132) 77.3 (42) 34.8 (29) 62.5 (58) 35.1 (124) 48.8 (94)

PHYBAL-2Db þ
IHBM&OHBM 67.0 (48) 92.2 (134) 89.7 (132) 70.8 (38) 22.9 (18) 55.0 (52) 26.8 (91) 46.4 (94)
Gonnet 75.0 (56) 91.5 (133) 88.5 (131) 70.8 (38) 37.0 (33) 49.6 (49) 29.2 (99) 46.1 (94)
HSDM 68.8 (50) 90.8 (131) 89.7 (132) 59.1 (31) 24.4 (9) 58.1 (57) 21.8 (74) 50.4 (94)
Blosum 62 75.0 (56) 91.5 (133) 83.3 (123) 70.8 (38) 41.4 (40) 56.6 (54) 27.7 (92) 41.7 (78)
Blosum 45 75.0 (56) 91.5 (133) 85.3 (127) 70.8 (38) 41.4 (40) 57.3 (58) 16.2 (34) 41.8 (79)
Blosum 30 75.0 (56) 93.5 (134) 72.8 (109) 70.8 (39) 35.4 (39) 49.2 (52) 19.7 (52) 39.5 (72)
PAM250 75.0 (56) 96.1 (137) 88.5 (131) 46.3 (27) 34.8 (29) 46.8 (48) 25.4 (86) 42.0 (83)
Johnson 60.4 (46) 94.8 (137) 88.5 (131) 25.0 (11) 34.6 (29) 54.7 (50) 18.3 (55) 49.2 (94)
Remote Homo 63.8 (48) 89.6 (128) 79.4 (118) 50.7 (28) 34.6 (29) 50.8 (50) 15.9 (46) 59.1 (111)

SAD-coefficientc 0.39 0.06 0.31 0.33 0.26 0.31 0.59 0.1
RMSDc 2.53 2.48 1.47 2.41 2.70 2.44 3.42 1.57
% identityc 24 26 16 13 5 9 9 11

Bold characters represent best performance.
aPHYBAL best PCAP and CAP values.
cPHYBAL-2D best PCAP and CAP are calculated on different matrices.
cPair divergence in sequence (% identity) and structure (SAD-coefficient and RMSD).
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Fig. 5. (a) PCAP landscapes of P5 and P7 obtained with PHYBAL-2D (2D) and PHYBAL [(3D, after
Principal Component Analysis (PCA)] based on a global-local alignment algorithm. Compare with columns
P5 and P7 in Figure 4.

Fig. 4. Left: Alignment performance of PHYBAL-2D obtained on protein pairs P1-P8 (structural classes and percentage of identity are indicated
on column headings) with IHBM and OHBM, HSDM, Gonnet, Blosum 62, Blosum 45. Blosum 30, Johnson, PAM250, and Remote Homo are omitted
because reaching lower average PCAPs. Alignments corresponding to GEP values going from 0 to 10 and GOP values going from 0 to 20 are repre-
sented on a 11 3 21 2D PCAP landscape (with GEP on x-axis and GOP on y-axis): each alignment has been compared with the corresponding
structural alignment and its PCAP is indicated by a suitable color. Right: 2D PCAP landscapes of average PCAPs computed over all eight protein
pairs are represented for each alignment method. Best average PCAPs (top) and CAPs (bottom) are reported.
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Blosum 30, Blosum 45, Blosum 62, HSDM, Gonnet, John-
son, and Remote Homo besides IHBM & OHBM. Substitu-
tions in and out hb are treated by the same matrix. Com-

parison in the 2D gap space leads to observe that using
suitable matrices according to sequence specificity helps to
improve the alignment,15 and comparison in the 4D gap
space confirms that considering structural information in
treating gap weights14 improves alignments further. The
wide spectrum of structural properties covered by the eight
protein pairs is instructive to appreciate these two hypoth-
esis. Validation of them is realized below on two large sets
of proteins.

Analysis in two dimensions

For each matrix, we output 231 alignments, corre-
sponding to the 11 3 21 combinations of gap values.
Each alignment is compared with the corresponding
structural alignment and PCAP is calculated. Results
are reported in Table I and Figure 4. For the eight pairs
of proteins, 54.5% average PCAP is obtained for PHY-
BAL-2D with IHBM&OHBM with a large region of 31
gap combinations reaching 50–55% PCAP and localized
between GOP of 7–17 and GEP of 0–3, thus displaying
the best PCAP, stability and gap coherence (Fig. 4,
right). Gonnet presents good stability for 45–50% PCAP
but an unstable behavior for best PCAPs (50–55%).
Much less stability is shown by the other matrices. In
particular, HSDM presents stable regions on (almost)
each protein pair which are localized on different areas
of the PCAP landscapes, leading to a low average stabil-
ity suggesting a high sensibility of the system to gap
variations (see Fig. 4).

Fig. 5 (Continued). (b) PCAP landscape of average PCAPs obtained
with PHYBAL on the eight protein pairs (after PCA). The yellow area
represents the hot-spot region where PHYBAL performs the best (color
scale as in Fig. 4).

Fig. 6. Alignments of protein pair P6 (Plastocyanin and Azurin, b, 13% identity), obtained manually after
HCA analysis (first row), and automatically with PHYBAL (row 3), and with PHYBAL-2D on several matrices
(rows 4–7). Rss are highlighted in red on structural alignment (row 2). Hydrophobic clusters are highlighted
in the HCA plot by using the same colors highlighting corresponding hb in PHYBAL. Notice the central
region of the structural alignment where a large gap is inserted; PHYBAL recognizes the gap insertion
which is missed by PHYBAL-2D run on all other matrices.

704 BAUSSAND ET AL.

PROTEINS: Structure, Function, and Bioinformatics DOI 10.1002/prot



Ranges 7 � GOP � 17 and 0 � GEP � 3 for PHYBAL-
2D run with IHBM&OHBM confirm that modelling
sequence alignment with expensive gap opening and
cheaper gap extension is appropriate for distantly related
proteins as for proteins with more than 30% homology.45

The PCAP landscape region reaching best PCAP sharply
corresponds to the optimal region previously computed for
highly conserved sequences.45 Gap coherence is less pro-
nounced for PHYBAL-2D run with other matrices.

Analysis in four dimensions

PHYBAL was run by systematically varying the costs
of gaps within the 4D space of coordinates GOP, bGOP,
GEP, and bGEP, modelling variability of gap weights in
and out hb. PHYBAL obtains considerably better align-
ments than those obtained by PHYBAL-2D as illustrated
in Table I, A–B. Except for P3, improvements vary from
2.4% to 11.9%. No matrix successfully approaches PHY-
BAL performance on all pairs. In this respect, notice
that best PCAPs for P1, P5, P8 are obtained on distinct
matrices. The two most difficult cases treated are P5
and P7 which present relatively long insertions/deletions

in sequence endings. CAP and PCAP of both pairs
improved significantly in the 4D gap space: P7 has a
SAD-coefficient of 0.59 demonstrating the difficulty for
alignment, and yet PHYBAL can successfully obtain 35%
PCAP; the same PCAP is obtained for P5 displaying only
5% of sequence identity. We applied PHYBAL based on a
global-local alignment algorithm and ameliorate further
the results with best PCAP of 36.8% for P5 and 35.6%
for P7 (Fig. 5). More information on alignments of P5
and P7 are found in Supplementary Material.

PHYBAL Validation on BAliBASE and
Domingues Datasets

We validated our computational approach to pairwise
alignment of distantly related proteins on two large
datasets of protein pairs. We introduced two new meas-
ures describing global and local stability of a system.
Global stability measures an alignment system perform-
ance with respect to other alignment systems (for
instance, PHYBAL against PHYBAL-2D run with all
other matrices, or PHYBAL against HMMSUM) and it is
tested by counting, for each alignment method, the

TABLE II. Best average PCAP and Corresponding CAP (in Parenthesis) Obtained for Alignments of Protein
Pairs in BAliBASE (A) and Domingues (B) Datasets with Different Alignment

Methods (Optimized Gap Values are Determined for Each Pair)

(A)

Method �12 glo loc 12–15 glo loc 15–17 glo loc 17–20 glo loc 20–22 glo loc 22–25 glo loc

PHYBAL
hot-spot

43.2 (296) 10 3 39.0 (1203) 11 3 40.1 (1289) 80 21 52.8 (2189) 161 41 57.9 (1054) 0 80 75.0 (3737) 120 42

PHYBAL-2D
þ IHBM
&OHBM

41.6 (244) 9 4 37.3 (1018) 5 4 37.7 (1211) 9 4 49.4 (1971) 11 13 57.0 (1048) 0 16 72.1 (3614) 10 16

Gonnet 37.8 (246) 0 3 29.8 (816) 0 20 35.5 (1145) 8 2 51.9 (2025) 10 6 55.5 (1094) 0 2 73.3 (3750) 19 16
HSDM 24.4 (176) 0 4 28.2 (823) 0 7 29.5 (1100) 0 5 48.6 (1934) 1 5 54.8 (986) 0 10 75.9 (3813) 21 3
Blosum 62 33.0 (239) 0 1 31.2 (964) 0 6 34.0 (1260) 0 12 49.8 (1993) 7 7 63.4 (1279) 2 1 74.9 (3852) 18 10
Blosum 45 36.3 (243) 0 7 31.4 (898) 0 3 33.7 (1207) 0 9 49.1 (1917) 8 10 57.1 (1087) 0 6 72.6 (3702) 8 10
Blosum 30 26.8 (197) 0 3 28.4 (830) 0 4 32.0 (1179) 0 5 45.3 (1884) 0 17 54.5 (856) 0 2 71.7 (3676) 7 11
PAM250 22.4 (174) 0 9 26.3 (821) 0 20 27.4 (905) 0 8 42.4 (1629) 0 3 54.0 (1101) 0 2 71.0 (3604) 1 8
Johnson 24.8 (148) 0 14 27.8 (809) 0 7 29.1 (927) 0 29 46.4 (1916) 0 1 55.8 (1092) 0 2 72.0 (3670) 6 8
Remote

Homo
36.1 (233) 0 1 23.4 (658) 0 5 31.9 (965) 0 8 38.5 (1626) 0 7 48.7 (1042) 0 4 66.2 (3372) 0 14

(B)

Method PCAP (CAP) glo loc

PHYBAL hot-spot 43.7 (6461) 324 110
PHYBAL-2D þ IHBM&OHBM 42.6 (6268) 49 21
Gonnet 40.2 (5982) 17 22
HSDM 43.5 (6454) 76 21
Blosum 62 41.4 (6172) 27 19
Blosum 45 41.6 (6259) 34 23
Blosum 30 38.1 (5694) 0 18
PAM250 39.3 (5797) 2 17
Johnson 41.5 (6051) 42 32
Remote Homo 32.5 (4783) 0 61

Bold characters represent the best PCAP over all methods. Alignment local stability is represented by the number of gap combinations provid-
ing a PCAP greater than ‘‘average PCAP - 2%’’ (loc). Alignment global stability is represented by the number of gap combinations providing a
PCAP greater than ‘‘best PCAP - 5%’’ (glo). PHYBAL is run on hot-spot (324 combinations) and PHYBAL-2D on the full 2D gap space (231
combinations).
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number of gap combinations giving a PCAP which is at
most 5% away from the best PCAP obtained over all sys-
tems under evaluation. Local stability measures the
robustness of a system by counting the number of gap
combinations giving a PCAP which is at most 2% away
from the highest obtained by the system itself. Strictly
speaking, these two notions capture some weak form of
stability (as defined for the selection of IHBM&OHBM)
since they count the number of optimal gap combina-
tions without requiring these gap combinations to form a
region in the PCAP landscape; they are easy to compute
and appear sufficient for system comparison. On the ba-
sis of the analysis of the eight pairs of proteins we
defined a hot-spot of gap combinations which is supposed
to capture stability and gap coherence of PHYBAL
behavior. The hot-spot corresponds to 324 gap combina-
tions (out of 53361 gap combinations for the full 4D gap
space), after the intervals 10 � GOP � 15, 1 � GEP � 3,
13 � bGOP � 17, 1 � bGEP � 4, where bGOP � GOP.
The size of the hot-spot makes possible the comparison
between PHYBAL and PHYBAL-2D with 324 versus 231
gap combinations, corresponding to a constant factor 1.4.

Validation on Domingues dataset

PHYBAL obtains the best PCAP and best CAP on the
Domingues dataset, as reported in Table II. In fact, it
performs as well as HSDM, but notice that Domingues
dataset has been used to construct the HSDM matrix35

(out of 122 pairs of proteins selected for the matrix con-
struction, 113 of them belong to the Domingues data-
base) and an optimal performance of this matrix on the
dataset is expected. PHYBAL obtains 324 combinations
(that is all combinations defining the hot-spot) showing a
very good global stability, compared with a few dozens
combinations (over 231) obtained with other methods. It
obtains 110 gap combinations with a PCAP close to the
highest demonstrating alignment reproducibility of best
PCAP under different parametrization.

Validation on BAliBASE 2.0 dataset

We run PHYBAL on the BAliBASE 2.0 dataset and
consistently obtained best average PCAPs for all groups
of proteins with <20% identity, with good global and
local stability (Table II). Blosum 62 on group 20–22%
and HSDM on group 22–25% perform best but with a
very weak stability, followed by PHYBAL displaying a
more stable behavior and best PCAPs on both groups
with respect to all remaining matrices. Difference in per-
formance between PHYBAL and PHYBAL-2D run with
specific substitution matrices consistently increases with
protein pair divergence.

Four-Dimensional Analysis of PHYBAL
With Blosum62&Blosum62

We run PHYBAL with Blosum62&Blosum62 (in
and out hb) on the BAliBASE 2.0 dataset. See Table III.
Performance of PHYBAL-2DþBlosum62 is improved by
calculations in the 4D space, but PHYBAL with IHBM&

OHBM still obtains better results than with Blosum62&
Blosum62 for sequences with <20% identity. This shows
the importance of both hb fitting matrices and 4D gap
space for aligning divergent proteins.

Comparison Between PHYBAL and Other
Alignment Methods

We compare PHYBAL with two alignment methods
which use structural information extracted from sequences.

Comparison with HMMSUM

HMMSUM18 is a local pairwise alignment method that
does not require the structure of the protein to be known
but predicts local structures using HMMSTR46 and
aligns pairs of sequences accordingly to 281 structural
context-based aa substitution matrices. HMMSUM, as
PHYBAL, is based on the idea that structural context in
proteins contributes to the selective pressure and that
context specific substitution matrices should help to bet-
ter align. The comparison on the BAliBASE 2.0 dataset
of the two methods is reported in Table IV. PHYBAL has
been run on the hot-spot of 324 gap combinations and
HMMSUM on the 2D gap space of 231 combinations
using HMMSUM-DNS model.

A fine analysis on the BAliBASE dataset shows that
PHYBAL performs consistently better than HMMSUM
on pairs with <17% sequence identity. For pairs >17%
sequence identity, HMMSUM improves PHYBAL’s
PCAPs of at most 2%, and global and local stability of
the two systems remain comparable. This might be
explained by conservation signals which might be pres-
ent over the whole sequence and that global alignment
can capture and by an appropriate use of matrices and
gap penalties better adapted to regions in the sequence
subjected to different evolutionary pressure.

TABLE III. PHYBAL Run with IHBM&OHBM and
BLOSUM62&BLOSUM62 in Full 4D Gap Space (53361
Combinations) and in Hot-Spot (324 Combinations)

on the BAliBASE 2.0

Method �12 12–15 15–17 17–20 20–22 22–25

PHYBAL
PCAP 45.0 39.3 40.1 53.3 59.9 75.1
CAP 277 1100 1289 2164 1084 3755
glo 570 477 1214 1003 0 282
loc 32 102 327 185 107 132

PHYBAL hot-spot
PCAP 43.2 39.0 40.1 52.8 57.9 75.0
CAP 296 1203 1289 2189 1054 3737
glo 10 11 150 161 0 61
loc 3 3 21 4 80 42

PHYBALþBlosum62&Blosum62
PCAP 33.8 33.2 37.7 52.5 65.7 77.6
CAP 228 1032 1258 2095 1269 3901
glo 0 0 98 1030 58 1808
loc 67 273 26 40 3 114
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Comparison With Hydrophobic Cluster
Analysis Manual Method

Previous studies based on HCA and manual alignment
guided by hydrophobic clusters47–49 demonstrated the
power of using hydrophobic signals to align distantly
related proteins. In Figure 6, we consider the Phycocyanin-
Azurin protein pair (P6). The inadequate alignment pro-
vided by known substitution matrices motivated,27 where
the two proteins have been manually aligned after the
analysis of hydrophobic clusters and phylogenetic relation-
ship has been established. PHYBAL generates a similar
alignment, but in an automatic way: it correctly detects the
large insertion while all other matrices miss it, see Figure
6. (All alignments in Fig. 6 run with gap penalties that
obtained best average PCAP on Domingues dataset; for
PHYBAL, GOP¼ 10, GEP¼ 1, bGOP¼ 17, bGEP¼ 2).

DISCUSSION

The particularly biased distribution of hb residues in a
protein sequence suggests that these residues might con-
tribute crucial structural information, as for instance for
the protein folding. In this respect, we can formulate two
different hypothesis concerning their evolution depend-
ing on whether we consider any hb residues to be mean-
ingful or only those occurring in rss. The first hypothesis
suggests that hb might provide a predisposition for the
sequence to form rss. In this case, hb residues would
evolve accordingly together with a biased evolution of
their local environment. The second hypothesis suggests
that hb residues lying in rss might evolve differently
than any other residue in the protein and that the exis-
tence of hydrophobic aa outside a rss could be justified
by the hydrophobic character of the protein core. The
use of hb for aligning distantly related proteins
has allowed an improvement in alignment accuracy and
stability supporting the idea that hb play a fundamental
role in structural conservation during protein evolution.

Extension to Multiple Alignment and Detection
of Remote Homologues

PHYBAL aligns pairs of aa sequences but the tool has
been designed to easily allow for an extension to progres-
sive multiple alignment. Improvements at the early
stage of pairwise sequence comparison is expected to
contribute to a more appropriate construction of the ini-
tial tree and therefore at an overall improvement on
multiple alignment of protein families. The initial tree is
derived from the matrix of distances between separately
aligned pairs of sequences, and based on experience,5 it
appears that unsuccessful multiple alignments are
strongly dependent on errors made by initial alignments
which produce an incorrect tree topology. Also, if the to-
pology of the tree is correct, it has been remarked that
mismatches among pairs of residues might propagate
along different steps of the multiple alignment process
and produce undesired results, especially for divergent
sequences. PHYBAL good performance on pairs of diver-
gent sequences is expected to allow a definite improve-
ment on difficult pairwise alignment cases leading to the
construction of a more reliable initial tree to be used in
a classical multiple alignment approach.

Finally, the pairwise global alignment proposed by
PHYBAL allows a pertinent comparison of structurally
important regions predicted via hb and could be of great
help for assessing the relationship between distantly
related proteins. It has been shown that homologous pro-
teins, even with < 20% identity, can be identified by esti-
mating the overlap of rss in aligned sequences,50 and
similarly, an indicator of the overlap of hb between
aligned sequences could be envisaged to discriminate
between related and unrelated proteins.
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