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CYCLING IN PROOFS AND FEASIBILITY

A. CARBONE

Abstract. There is a common perception by which small numbers are con-
sidered more concrete and large numbers more abstract. A mathematical
formalization of this idea was introduced by Parikh (1971) through an incon-
sistent theory of feasible numbers in which addition and multiplication are
as usual but for which some very large number is defined to be not feasible.
Parikh shows that sufficiently short proofs in this theory can only prove true
statements of arithmetic. We pursue these topics in light of logical flow graphs
of proofs (Buss, 1991) and show that Parikh’s lower bound for concrete con-
sistency reflects the presence of cycles in the logical graphs of short proofs
of feasibility of large numbers. We discuss two concrete constructions which
show the bound to be optimal and bring out the dynamical aspect of formal
proofs.

For this paper the concept of feasible numbers has two roles, as an idea with
its own life and as a vehicle for exploring general principles on the dynamics
and geometry of proofs. Cycles can be seen as a measure of how complicated
a proof can be. We prove that short proofs must have cycles.

1. Introduction

In philosophical works by Mannoury [21], Poincaré [27] and Wittgenstein [34]
there appears already the idea that there is a genuine difference between our un-
derstanding of, say, the number 10 and the number 67257729

.
In [1], Bernays observes that intuitionism as well as ordinary mathematics con-

tains a strong idealization in the facts that numbers such as 10 and 67257729
are

treated as objects of the same kind, even though arithmetical operations do not
have a concrete meaning for very large numbers. He suggests strict-finitism as a
conceivable position in philosophy of mathematics.1
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1Strict-finitist philosophy of mathematics insists that the meanings of all terms appearing in

mathematical statements must be given in relation to constructions which we can effectively carry
out, and of our capacity to recognize in practice such constructions as providing proofs of those
statements. No construction that is too complex or too lengthy to effect in practice, is accepted by
strict-finitism. In addition to the one discussed in this introduction, several attempts to develop
a formal strict-finitist theory have been made. The most developed is the Alternative Set Theory
by Vopenka [33] and his school in Prague. See also [28], the Predicative Arithmetic by Nelson [22]
and the theory of Vague Predicates by Dummett [13, 12] and Parikh [26]. For a general discussion
on the strict-finitist program see [16] and for its relations with intuitionism see [31].
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In [14], Esenin-Volpin declares his adherence to strict-finitism and starts some
attempts in the reconstruction of mathematics along the new lines (see also [15]).
He refuses the concept that natural numbers are closed under simple arithmetical
operations, such as exponentiation and develops a rich and complicated theory of
‘concrete’ mathematical activity (leading for instance, as he claims, to a ‘concrete’
proof of the consistency of the Zermelo-Fraenkel set theory). He introduces the
concept of a set of feasible numbers closed under a successor but bounded by a given
natural number, say 1012. The notion he introduces appears to be paradoxical and
indeed it is an abstract form of the classical paradoxes of the bald man (adding one
hair at a time can never turn a bald man into a non-bald man) and the heap (by
removing a single grain at a time you will still have a heap).

The first precise proof-theoretical result about the ‘concrete’ correctness of the
notion of feasible numbers was given by Parikh [25] that proves the ‘concrete’
consistency of the theory defined adding to Peano Arithmetic the above mentioned
properties of feasible numbers. Namely, to the language of PA (defined by the
symbols 0, s,+, ∗, <,=) add the symbol F and to PA add the axioms2

(i) F (0),
(ii) F (x)→ F (s(x)),
(iii) F (x) ∧ F (y)→ F (x + y),
(iv) F (x) ∧ F (y)→ F (x ∗ y),
(v) x = y → (F (x)→ F (y)),
(vi) F (x) ∧ y < x→ F (y),
(vii) ¬F (θ),

where θ is some fixed variable-free term in the language of PA. Call this theory
PAF .

The theory PAF is clearly inconsistent (because of the presence of axiom (vii)),
but it can be shown that proofs with a ‘small’ number of formulas cannot prove
inconsistency. In fact, such proofs can only establish truths in the original lan-
guage of PA. Proving this, Parikh gives a precise non-elementary bound on how
small a proof should be. Other bounds were computed by Gavrilenko (unpublished
work) and Dragalin [11] using different techniques. We show that Parikh’s bound
is optimal. Moreover, we will see that from an arbitrary ‘small’ proof in PAF of
an F -free formula, there is no way to ‘extract’ a proof of it in PA. (In fact, one
can formalize in PAF ‘small’ proofs of true inequalities, which use axiom (vii) and
where the structure of the non-feasible term θ is not taken into account. There
is neither explicit nor implicit construction of the term in the proof.) This might
suggest that there is some speed-up of the theory PAF over PA (or intuitively, that
thinking of large numbers induces actual shortcuts in our reasoning). In Section 6
we will indicate how such shortcuts depend on axiom (vi).

All of our results are based on a graph-theoretical analysis of formal proofs. We
make use of the notion of logical flow graph (a directed graph defined from a proof
by tracing the occurrences of logical formulas in it) introduced by Buss3 [3] to study

2 Note that with the symbol PA we indicate the Hilbert style formalization of Peano Arith-
metic, where tautologies are axioms. In particular, observe that axiom (iii) can be derived from
(iv),(vi) and the axioms of PA; axiom (v) can be derived from (ii) and (vi).

3The notion has been introduced by Buss to prove that the k-provability problem (i.e. given
a formula A and an integer k, to determine if A has a proof with k or fewer lines) for a particular
formalization of first order logic is undecidable. Concepts similar to Buss’ definition of logical flow
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how the influence of a formula spreads through a proof. We consider the graph-
theoretical notion of cycle over a directed graph, we show that the logical graph of
‘short’ proofs of the feasibility of large numbers must contain cycles (Theorem 5.1),
and that the elimination of these cycles corresponds to a non-elementary expansion
of a proof in terms of the number of steps.

Although we have stressed so far the historical context of feasible numbers,
the concept of feasibility provides a setting in which dynamics in proofs and the
combinatorics of cut elimination can be seen more clearly ([4, 5]). Our examples of
short proofs of the feasibility of large numbers in Section 4 and the geometry of the
logical graphs, bring to light basic points in this respect. The concept also provides
a tool for linking the combinatorics of proofs with other mathematical structures
(as in [8]).

The plan of this paper is as follows: in Section 2 we review the Gentzen’s Sequent
Calculus and we present the sequent theory of feasible numbers; Section 3 contains
the definition of logical flow graph; in Section 4 we study the graph-theoretical
properties of short proofs, we discuss two constructions of large numbers and we
show that Parikh’s bound is optimal; in Section 5 we show that cycles are needed
to have speed-up in the construction of large numbers; in Section 6 we discuss how
true statements can be obtained in some implicit way through the use of axiom
(vii).

The author thanks Sam Buss, Ehud Hrushovski and Rohit Parikh for comments
on an earlier version of this work, and Stephen Semmes for helpful remarks and
stimulating conversations on this more recent manuscript.

2. The sequent theory of feasible numbers

We work with a formalization of Peano Arithmetic in terms of sequents and
we will denote such theory T . Actually, the following results hold for theories
containing a rather modest portion of T . Namely, it is sufficient that the theory be
strong enough to prove arithmetical equalities and inequalities.

Before introducing axioms and rules of inference for T , let us recall some basic
definitions concerning the sequent calculus, i.e. the formulation of first order logic
due to Gentzen. For a detailed exposition the reader can refer to [30, 17, 19].

The sequent calculus is formulated in a first order language (possibly containing
the equality symbol) with logical symbols ∧,∨,¬,⊃, ∃ and ∀; it has free variables
denoted a, b, c, . . . and bound variables denoted x, y, z, . . . . As usual, terms are
formed from constant symbols, free variables and function symbols; semi-terms
are like terms but may contain bound variables as well. Formulas are defined as
usual with the condition that only bound variables may be quantified and only free
variables may appear free. Semi-formulas are defined as formulas except that both
bound and free variables may appear free in it; one can observe that a sub-formula
of a formula is a semi-formula and in fact a sub-formula of a semi-formula is a
semi-formula.

A sequent is a line of the form

A1, . . . , Ak → B1, . . . , Bl

graphs have been independently and previously introduced by Jean-Yves Girard who discusses
tracing the flow of formulas through Linear Logic proofs ([17]).



2052 A. CARBONE

where the Ai’s and Bj ’s are formulas; its intended meaning is
∧
iAi ⊃

∨
j Bj . We

permit k and l to be zero. A sequence of formulas separated by commas is a cedent ;
in the sequent above, A1, . . . , Ak is the antecedent and B1, . . . , Bl is the succedent .
We will often refer to antecedent and succedent in a sequent using capital letters
of the Greek alphabet. For instance Γ→ ∆ denotes a sequent. In the following we
will intend a sequence A1, . . . , Ak to be a multi-set of formulas, i.e. finite (possibly
empty) set of formulas, in which repetitions of some formulas are admitted; the
order of formulas in a multi-set is not essential but for every member of the multi-
set the number of its occurrences is important. By the symbol Γ,∆ we denote the
sum of the multi-sets Γ and ∆ (i.e. the multi-set containing all formulas in Γ and
∆ so that, if n1 and n2 are the number of occurrences of a formula A in Γ and ∆
respectively, then n1 + n2 is the number of occurrences of A in the union Γ,∆).
The multi-set A,Γ is obtained from Γ by adjoining the formula A. For short we
will denote Γ1,Γ2 as Γ1,2.

It should be pointed out that a proof in the sequent calculus is intended to be a
tree of sequents; each sequent must either be an axiom (in this case the sequent is
labeling a leaf of the tree) or be derived by one of the rules of inference we will give
below (the sequent is a label for an internal node of the tree). In a sequent calculus
proof every occurrence of a sequent in the proof other than the end-sequent is used
exactly once as a premise of an inference. Notice that a proof could be defined as
sequence of sequents; but obviously any proof defined as such can be transformed
into a tree-like proof by duplicating subproofs to derive intermediate results multiple
times.

Let us now formalize the sequent theory of feasible numbers. To the language of
arithmetic (defined by the symbols 0, s,+, ∗, <,=) add the symbol F . To T we add
axioms and rules of inference describing the behavior of the new predicate F . The
theory will be called TF and the formulas containing the symbol F will be referred
to as F -formulas. There are five kinds of axioms

(i) logical axioms of the form A,Γ→ ∆, A, where A is an F -free formula;
(ii) special logical axioms of the form F (t),Γ→ ∆, F (t), where t is some arbitrary

term;
(iii) equality axioms of the form

• Γ→ ∆, t = t;
• t1 = s1, . . . , tk = sk, A(t1, . . . , tk),Γ → ∆, A(s1, . . . , sk) where A is an

atomic F -free formula;
(iv) PA-axioms of the form Γ→ ∆, A, where A is an arbitrary non-logical axiom

of PA (note that the formula A is F -free); without loss of generality, we
assume the axioms Γ → ∆,¬s(x) = x and Γ → ∆,¬s(x) < x be formalized
as s(x) = x,Γ→ ∆ and s(x) < x,Γ→ ∆, respectively;

(v) a special axiom of the form Γ→ ∆, F (0).
The rules of inference are divided into three groups: the logical rules, the struc-

tural rules (note that the cut rule and the contraction rule will be the only structural
rules of the calculus), and the special rules concerning the predicate F .

The logical rules are the following:

¬ : left
Γ→ ∆, A
¬A,Γ→ ∆ ¬ : right

A,Γ→ ∆
Γ→ ∆,¬A,

∧ : right
Γ1 → ∆1, A Γ2 → ∆2, B

Γ1,2 → ∆1,2, A ∧B ,



CYCLING IN PROOFS AND FEASIBILITY 2053

∧ : left
A,B,Γ→ ∆
A ∧B,Γ→ ∆

A,B,Γ→ ∆
B ∧A,Γ→ ∆,

∨ : left
A,Γ1 → ∆1 B,Γ2 → ∆2

A ∨B,Γ1,2 → ∆1,2 ,

∨ : right
Γ→ ∆, A,B

Γ→ ∆, A ∨B
Γ→ ∆, A,B

Γ→ ∆, B ∨A,

⊃: left
Γ1 → ∆1, A B,Γ2 → ∆2

A ⊃ B,Γ1,2 → ∆1,2 ,

⊃: right
A,Γ→ ∆, B

Γ→ ∆, A ⊃ B
B,Γ→ ∆, A

Γ→ ∆, B ⊃ A,

∃ : left
A(b),Γ→ ∆

(∃x)A(x),Γ → ∆ ∃ : right
Γ→ ∆, A(t)

Γ→ ∆, (∃x)A(x),

∀ : left
A(t),Γ→ ∆

(∀x)A(x),Γ → ∆ ∀ : right
Γ→ ∆, A(b)

Γ→ ∆, (∀x)A(x).

In the ∃ : left and ∀ : right inferences the free variable b is called the eigen-
variable and must not appear in the lower sequent. The variable x must be freely
substitutable into A for all four quantifier inferences.

The structural rules are:

Cut
Γ1 → ∆1, A A,Γ2 → ∆2

Γ1,2 → ∆1,2 ,

Contraction
Γ→ ∆, A,A

Γ→ ∆, A
A,A,Γ→ ∆
A,Γ→ ∆ ,

The special rules are:

F : equality
Γ1 → ∆1, r = t Γ2 → ∆2, F (r)

Γ1,2 → ∆1,2, F (t) ,

F : inequality
Γ1 → ∆1, t < r Γ2 → ∆2, F (r)

Γ1,2 → ∆1,2, F (t) ,

F : successor
Γ→ ∆, F (t)

Γ→ ∆, F (s(t)),

F : plus
Γ1 → ∆1, F (r) Γ2 → ∆2, F (t)

Γ1,2 → ∆1,2, F (r + t) ,

F : times
Γ1 → ∆1, F (r) Γ2 → ∆2, F (t)

Γ1,2 → ∆1,2, F (r ∗ t) ,

F : elimination
Γ→ ∆, F (θ)

Γ→ ∆ .

The F :elimination rule plays a special role in the theory, it makes the theory
inconsistent.

In axioms, formulas other than those in Γ,∆ are called distinguished. The for-
mula occurrence, which is introduced explicitly into the lower sequent of a given
rule of inference is called the main formula of the inference, and the formula(s),
which are distinguished in the upper sequent(s) are the auxiliary formula(s). For
example, in the ∨:left rule, the formula A∨B is the main formula and the formulas
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A and B are the auxiliary formulas. The other formulas of a sequent (i.e. the
formulas in Γ,∆) are called side formulas.

The cut rule has no main formula; its auxiliary formulas are also called cut-
formulas. An application of the cut rule will simply be called a cut .

The auxiliary formulas of a contraction rule are also called contraction formulas .
We do not need the usual Weakening and Exchange rules in our calculus (as they

appear in Gentzen’s original formalization), because it uses multi-sets of formulas
instead of sequences. Non-distinguished formulas appearing in the axioms (i.e.
formulas occurring in Γ,∆) play the role of formulas introduced by Weakening. In
Section 5 we will state lemmas about addition and elimination of weak formulas in
proofs.

To measure complexity of proofs we will use in the sequel is the number of lines,
i.e. the number of nodes in the tree-like structure of the proof.

3. Logical flow graphs for TF

In [3], Sam Buss introduces the notion of logical flow graph to study how the
influence of a formula spreads through a proof in LK. Following his introduction,
we present the notion of logical flow graph formulated for our sequent theory. For
an extensive treatment of the notion of logical flow graphs for the propositional
calculus, see [5]; the notion is used to give a new proof of the Craig Interpolation
Theorem, derive results on the complexity of interpolation and study the dynamics
of cut elimination procedures.

Let Π be a proof in TF . An s-formula is an occurrence of a sub-formula of a
formula in Π (here, ‘s-’ stands for ‘semi-’ or ‘sub-’). It has to be emphasized that
an s-formula is an occurrence of a sub-formula in the proof as opposed to the sub-
formula itself which may occur many times in the proof. A formula A is a variant
of B if A can be obtained from B by changing some of the terms in B. The logical
flow graph (formally defined below) is a directed graph whose nodes are s-formulas
in Π; two s-formulas will be connected by an edge only if they are variants of each
other; any two s-formulas connected by an edge will be in (distinct) sequents of
some inference or will both be in an axiom on opposite sides of the sequent arrow.

We define the logical flow graph by specifying the edges.
First, in an axiom A,Γ → ∆, A there is an edge directed from the left-hand A

to the right-hand A. In an equality axiom t1 = s1, . . . , tk = sk, A(t1, . . . , tk),Γ →
∆, A(s1, . . . , sk) , there is an edge directed from A(t1, . . . , tk) to A(s1, . . . , sk).
There is no edge defined for a PA-axiom, a special axiom and an equality axiom
Γ→ ∆, t = t.

Second, in any logical, structural and special inferences listed above, there is an
edge directed from each side formula in the antecedent Γ of the lower sequent to the
corresponding side formula in Γ of the upper sequent(s). There is an edge directed
from each formula in the succedent ∆ in the upper sequent to the corresponding
formula of ∆ in the lower sequent.

Third, in any logical inference or in a contraction rule, if A (or B) is an auxiliary
formula which appears in the succedent of an upper sequent of an inference, then
there is an edge directed from that A (or B) to the corresponding s-formula in the
lower sequent. If A (or B) is an auxiliary formula which appears in the antecedent
of an upper sequent of an inference then there is an edge directed towards that A
(or B) from the corresponding s-formula in the lower sequent.
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Fourth, in any special rule (except the critical rule) there is an edge directed
from each auxiliary F -formula in the upper sequent(s) to the main F -formula in the
lower sequent. There is no outgoing edge from the equality and inequality auxiliary
formulas in the upper sequent of F :equality and F :inequality, respectively.

Fifth, in a cut inference there is an edge directed from the cut formula A in the
succedent of the left-hand upper sequent to the occurrence of A in the antecedent
of the right-hand upper sequent.

Sixth, suppose there is a directed edge from an s-formula A1 to A2 and suppose
B1 is a sub-formula of A1. Since A1 and A2 are variants, there is a sub-formula B2

of A2 which corresponds to the subformula B1 of A1; the s-formulas B1 and B2 are,
of course, variants. If B1 occurs positively in A1, then there is an edge from B1 to
B2. If B1 occurs negatively in A1, then there is an edge from B2 to B1. Recall that
B occurs positively (negatively) in A if B occurs an even (odd) number of times in
the scope of a negation or in the left-hand operand of an implication. Clearly B1

occurs positively in A1 if and only if B2 occurs positively in A2. This concludes
the definition of logical flow graph.

As an example, consider the following proof:

A→ A,B

¬A,A→ B

A→ ¬A ⊃ B
¬A,B → B

B → ¬A ⊃ B
A ∨B → ¬A ⊃ B,¬A ⊃ B

A ∨B → ¬A ⊃ B

with logical flow graph restricted to the formula A (edges for ¬A, B and ¬A ⊃ B
are not indicated)

A formula B occurs positively (negatively) in a sequent Γ → ∆ if B occurs
negatively (positively) in a formula of Γ or positively (negatively) in a formula of
∆. If not otherwise indicated, in the following we will intend a positive or negative
occurrence of a formula to be defined relatively to sequents. Notice that in a logical
flow graph there are four kinds of edges: edges connecting positive occurrences, that
are directed downwards; edges connecting negative occurrences, that are directed
upwards; edges defined on axioms, that are directed from negative occurrences
towards positive occurrences; edges defined on cut-formulas, that are directed from
positive occurrences towards negative occurrences.

If a proof is cut-free, its logical flow graph will contain only three kinds of edges.
From an easy checking of the rules of the calculus, it easily follows that contraction,
F :times and F :plus rules are the only ways in which two distinct edges can be
directed to/from the same node of a logical flow graph. Hence, each node of a
logical flow graph, whenever labeled by a positive (negative) occurrence can have
at most 2 incoming (outgoing) edges and at most 1 outgoing (incoming) edge. From
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this, it follows that each node of a logical flow graph is at most of degree 3, where
the degree of a node is the number of edges which depart or arrive at the node.

A connected subgraph of a logical flow graph in general is not a tree. Take for
instance the following proof

A→ A,B A→ A,C

A,A→ A,A,B ∧ C
A,A→ A,B ∧ C
A→ A,B ∧C

and consider the connected subgraph tracing the logical relations between the oc-
currences of the formula A in it

We call any sequence of consecutive edges in the logical flow graph L of Π : S
a path (two consecutive edges in this sequence should meet in a vertex which is
a source for one and a sink for the other). We call F -paths those paths whose
variants are F -atomic formulas. We call any path starting and ending with two
(distinct) s-formulas occurring in S a bridge. We call direct path a logical path
which passes through either positive or negative occurrences only. Notice that a
direct path cannot cross an axiom or a cut, since this would force the path through
both positive and negative formula occurrences. Moreover, notice that the number
of variants in a direct path is bounded by the height of Π. A cycle is a directed
path with common starting and ending node (or equivalently, a path starting from
an occurrence of a formula and going back to it).

A logical flow graph is acyclic when it does not contain cycles. In [5] it is proved
that cut-free proofs are acyclic (this follows from the fact that cut-free proofs contain
only three types of directed edges). There it is also proved that contraction-free
proofs (possibly containing cuts) are also acyclic. For an analysis of cycles in proofs
see [7].

In the following, we focus on the logical relations between atomic formulas; thus,
whenever we will refer to s-formulas we will intend them to be atomic.

4. Short proofs and cycles

Short proofs can encode large constructions. This is a basic fact which remains
far from being well-understood. The explicit constructions, that we usually call
direct or cut-free constructions, may be much larger than the proofs we actually
make. Short proofs can be transformed effectively into direct constructions through
cut elimination, for instance (this was proved by Gentzen in 1939 [17, 30]; see [9]
for an introduction to the combinatorics and complexity of cut elimination). When
we perform cut elimination, we are basically deforming logical paths in a proof, at
times splitting these paths, as described in [5]. We never add new paths though, to
the contrary we might lose some of them. This means that logical paths occurring
in short proofs may have to wind around in complicated ways, crossing themselves
and making cycles, for instance. This happens because the proof is short and at the
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same time should encode all the paths occurring in a direct construction. It is this
tracing of the direct construction in a small space that leads to interesting dynamics.
In [6] this small space is investigated and it is shown that a proof containing cycles
can be transformed into an acyclic proof containing spirals which is only elementary
larger than the original proof (see also Remark 5.6).

We will see in this section how this idea of ‘small space’ is captured well by the
construction of large numbers in arithmetic. We will start with the usual approach
to proofs through an analysis which is based on logical rules, and we will describe
afterwards the dynamical aspects by looking at logical paths. We will describe a
way to look at a proof which cannot be captured by the usual induction arguments.
A proof for us will be a graph in the plane, and its essential elements will be logical
paths and not logical rules.

Let N(Π) denote the number of sequents in a proof Π. Parikh’s main result can
be formulated as follows:

Theorem 4.1 (Concrete consistency of TF ). Let Π be a proof in TF of the sequent
→ B. The formula B does not contain F . There exists a primitive recursive
function f such that if val(θ) > f(Π), then there is a proof Π′ : → B in T . Here
f(Π) indicates that the arguments of f are parameters in the proof Π.

The lower bound on the value val(θ) of the term θ is computed by Parikh using
the Hilbert-Ackermann’s ε-substitution method and by Dragalin using cut elimina-
tion. Both proofs give a non-elementary primitive recursive lower bound for val(θ).
If we define the function et(0, n) = n, et(i+1, n) = tet(i,n) (for some natural number
t > 1), then

• Parikh’s bound (computed for a Hilbert’s style formalization of TF ) can be
expressed as val(θ) > e2(e2(1

2 · k · (k + 1), r) · n, 1), where k is the number of
axioms of the form A(t) ⊃ ∃xA(x) occurring in the proof and such that A
contains the F symbol, r is the number of quantifiers occurring in formulas A
of the form described above and n is the number of occurrences of the special
axioms of the form (ii) and (v) in Π;4

• Dragalin’s bound is expressed as val(θ) > e2(e4(39 ·N(Π), 39 ·N(Π)), 1).

As one can see, Parikh’s bound depends on the complexity of F -formulas in
the deduction Π and on the number of some special axioms in it, while Dragalin’s
bound depends on the total number of formulas in Π.

We will show that there is no function f sensitive only to the number of occur-
rences of special axioms in the proof, and satisfying Theorem 4.1. To see this, in
section 4.1 we describe how to build a proof of the sequent→ F (n) containing only
three applications of special rules, for any arbitrary representation of the natural
number n in the language of arithmetic. In section 4.2 we give a second example
to illustrate the power of nested quantifications for the construction of short proofs
of the feasibility of large numbers: namely, we give a formalized proof that a term
δn of value e2(n, 2) is feasible in O(2n) number of steps by using formulas with n
nested quantifiers and logical axioms defined on atomic formulas. In case logical
axioms are defined on arbitrary formulas, we obtain a proof of O(n) lines. (Some

4 For the theory of feasible numbers defined as PAF but not containing axioms (iii) and (iv),

Parikh improves the lower bound to val(θ) > n · e2( 1
2
· k · (k + 1), r), while Dragalin obtains

e2(e4(30 ·N(Π), 30 ·N(Π)), 1).
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considerations in this direction were developed in [2]. The power of nested quantifi-
cation in proofs containing cuts was first observed by Tseitin [32]; see also Orevkov
[24] and Statman [29].)

In the examples we see the role of cycles in short proofs of F (n) and F (δn) (for
all n > 1), and we shall see that their elimination corresponds essentially to the
elimination of quantifiers of cut-formulas. We shall give a precise bound for the
cost of the elimination of these cycles in terms of the number of lines in the proofs.

4.1. A first example. Define the term p(0, x) = x, p(n+ 1, x) = p(n, x) ∗ p(n, x)
(for some term x). Clearly val(p(n, x)) = x2n . The aim of this section is to show
that for all n ≥ 1 there exists a TF -proof Π : → F (p(2n, ss0)) containing exactly
one application of the F :times rule and two applications of F :successor, and such
that N(Π) ≤ 10·n+7. In other words, we show that essentially only one application
of the F :times rule is enough to prove the feasibility of any number. This implies
that there is no function f depending only on the number k of F -rules used in the
TF -proof, such that f(k) bounds the value of θ in Theorem 4.1.

The proof we describe contains exactly 2 ·n cycles and it is possible to show that
to eliminate these cycles one pays an exponential price in terms of number of lines of
the proof. More precisely, for all n ≥ 1 there exists a TF -proof Π′ :→ F (p(2n, ss0))
containing exactly n applications of the F :times rule with no cycles and such that
N(Π) is O(2n). Theorem 5.1 will show that one cannot do better.

Notice that, for all n ≥ 1 there exists a TF -proof Π′′ :→ F (p(2n, ss0)) containing
exactly 2n applications of the F :times rule with no cuts (and therefore no cycles)
and such that N(Π) is O(2n). To see this, think of the complete binary tree (or
think of the tree-like proof) of height n having as leaves the derivable sequent
→ F (ss0) and as internal nodes the sequents obtained by applying the F :times
rule.

To simplify the exposition we will give a proof of → F (p(22, ss0)) containing
four cycles. It will be clear that a proof of → F (p(2n, ss0)) containing 2 · n cycles
can be derived similarly. Let us denote the terms p(22, x), p(2, x), p(1, x) with the

symbols x222

, x22
, x2 to remind us of their value (i.e. x24

, x22
, x2)

Π1

→ F (ss0)

Π2

→ F (ss0) ⊃ F ((ss0)222
)

→ F (ss0) ∧ (F (ss0) ⊃ F ((ss0)222
))

Π3

F (ss0) ∧ (F (ss0) ⊃ F ((ss0)222
))→ F ((ss0)222

).

→ F ((ss0)222
)

Subproofs Π1 and Π3 are easy to derive with 3 and 6 sequents, respectively.
The main part of the proof is Π2, which, in fact, contains four cycles. It has the
following form:

F (a)→ F (a) F (a)→ F (a)

F (a), F (a)→ F (a2)
F : times

F (a)→ F (a2)

→ F (a) ⊃ F (a2)

→ (∀x)F (x) ⊃ F (x2)

Π4

(∀x)F (x) ⊃ F (x2)→ F (0) ⊃ F ((ss0)222
)

→ F (0) ⊃ F ((ss0)222
)

cut
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where Π4 has the form
Π5

(∀x)F (x) ⊃ F (x2)→ (∀x)F (x) ⊃ F (x22
)

Π6

(∀x)F (x) ⊃ F (x22
)→ F (ss0) ⊃ F ((ss0)222

)

(∀x)F (x) ⊃ F (x2)→ F (0) ⊃ F ((ss0)222
)

cut

and Π5,Π6 are built respectively as follows
F (b)→ F (b) F (b2)→ F (b2)

F (b) ⊃ F (b2), F (b)→ F (b2)

(∀x)F (x) ⊃ F (x2), F (b)→ F (b2) F (b2
2
)→ F (b2

2
)

(∀x)F (x) ⊃ F (x2), F (b2) ⊃ F (b2
2
), F (b)→ F (b2

2
)

(∀x)F (x) ⊃ F (x2), F (b2) ⊃ F (b2
2
)→ F (b) ⊃ F (b2

2
)

(∀x)F (x) ⊃ F (x2), (∀x)F (x) ⊃ F (x2)→ F (b) ⊃ F (b2
2
)

(∀x)F (x) ⊃ F (x2)→ F (b) ⊃ F (b2
2
)

contraction

(∀x)F (x) ⊃ F (x2)→ (∀x)F (x) ⊃ F (x22
)

F (ss0)→ F (ss0) F ((ss0)22
)→ F ((ss0)22

)

F (ss0) ⊃ F ((ss0)22
), F (ss0)→ F ((ss0)22

)

(∀x)F (x) ⊃ F (x22
), F (ss0)→ F ((ss0)22

) F ((ss0)222
)→ F ((ss0)222

)

(∀x)F (x) ⊃ F (x22
), F ((ss0)22

) ⊃ F ((ss0)222
), F (ss0)→ F ((ss0)222

)

(∀x)F (x) ⊃ F (x22
), (∀x)F (x) ⊃ F (x22

), F (ss0)→ F ((ss0)222
)

(∀x)F (x) ⊃ F (x22
), F (ss0)→ F ((ss0)222

)
contraction

(∀x)F (x) ⊃ F (x22
)→ F (ss0) ⊃ F ((ss0)222

)

Notice that in Π2 there are two paths f2, f3 from F (x) to F (x2) in the sequent
→ (∀x)F (x) ⊃ F (x2). In Π4 there are two paths (say f5, f6), from F (x2) to F (x) in

the end-sequent (∀x)F (x) ⊃ F (x2)→ F (0) ⊃ F ((ss0)222

), one passing through the
axiom F (b2)→ F (b2) (in Π5, and we call it f5) and the other, through the axiom
F ((ss0)22

) → F ((ss0)22
) (in Π6, and we call it f6). Notice that the combinations

f2f5, f3f5 and f2f6, f3f6 form four cycles in Π3.
By counting, the number of sequents occurring in the proof is 7 + 2 · 10.
Using the same idea one builds a proof for p(2n, ss0) by modifying the subproof

Π4 of Π2 so that the sequent (∀x)F (x) ⊃ F (x2)→ F (0) ⊃ F ((ss0)22n

) is derived.
One does this by gluing together n copies of proofs which look like Π5 (as Π6) in
the manner described above. More precisely, one can prove (∀x)F (x) ⊃ F (xk) →
(∀x)F (x) ⊃ F (xk

2
) for any natural number k in the same manner as the proof of

Π5 above. (Basically the proof substitutes xk into the x in xk to get xk
2
.) This

is our basic building block. This proof has three bridges, one from F (xk) to the
F (x) on the left side of the sequent, one from the F (x) on the right to the F (x)
on the left, and one from the F (xk) on the left to the F (xk

2
) on the right. We can

get a proof of → (∀x)F (x) ⊃ F (x22n

) by connecting n of these proofs using cuts
(corresponding to k = 22j , j = 0, . . . , n), and then combining with the proof of
→ (∀x)F (x) ⊃ F (x2) (given in Π2 above) using a cut again. It is easy to see how
the logical flow graphs combine with this series of cuts, and how the 2 · n cycles
arise from the connections of the bridges.
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A proof containing n applications of the F :times rule that does not contain
cycles can be obtained by applying the cut elimination procedure to the quantified
formulas of the above proof until each contraction rule corresponding to a quantified
cut-formula is eliminated. The elimination of these contractions will induce an
exponential expansion of the number of lines in the proof. By observing that
the procedure of cut elimination applied to the above proof does not increase the
number of contractions on (1 of) cut-formulas, one derives that the expanded proof
has O(2n) lines.

Remark 4.2. Since the F :inequality rule establishes that all numbers smaller than
a given one proved to be feasible are feasible, and since the sequent→ F (p(2n, ss0))
(for all n) is provable using only one occurrence of the F :times rule, we derive that
all natural numbers can be proved to be feasible with essentially only one use of
the F :times rule. Moreover, notice that a similar example could have been built by
using either F :successor or F :plus instead of F :times.

As remarked at the beginning of this section, this example is useful for ‘seeing’
geometry and dynamics that can occur in proofs. In this case we have cycles that
go from each of our building blocks (∀x)F (x) ⊃ F (x22j

) → (∀x)F (x) ⊃ F (x22j+1

)
back to the proof of → (∀x)F (x) ⊃ F (x2) which reflect the fact that the actual
multiplication takes place in → (∀x)F (x) ⊃ F (x2) (which contains the only use of
the F :times rule). The logical flow graph arranges these cycles in a kind of linear
series. The picture is more complicated in the next example, for which there is also
much more compression.

4.2. A second example. In this section we show that Parikh’s lower bound can-
not be essentially improved. The example we present points out the role of nested
quantification in proving (with a small number of steps) that large numbers are
feasible. We use a construction due to Solovay.

The idea goes as follows. Let the multi-exponential function be denoted by
ez(0, x) = x, ez(n+ 1, x) = zez(n,x) (for some natural number z > 1). The symbol
ez(1, x) will also be denoted by zx. To prove→ F (e2(n, 2)), we define the predicates
F0, F1, . . . , Fn as follows: F0(x) as F (x) and Fi(x) as (∀z)Fi−1(z) ⊃ Fi−1(zx), for
all i = 1, . . . , n. We can think of the Fi’s as initial segments of the set of natural
numbers, such that Fi ⊃ Fi+1 (for i = 0 . . . n − 1) and where Fi is closed under
exponentiation with respect to numbers in Fi+1. We do not add to the language of
PA either the multi-exponential function or the predicates defined above, but we
suppose to use their definition in Peano Arithmetic. Therefore, to be precise we do
not prove F (e2(n, 2)) but a formula of the form (∃y)(“y = e2(n, 2)”∧F (y)), where
“y = e2(n, 2)” is defined in Peano Arithmetic. A rigorous formalization of what
follows should take care of this fact.

The predicates Fi’s satisfy two properties:

• the sequent Fi(x), Fi(y) → Fi(x · y) is provable, because by definition of Fi
Fi(x · y) is (∀z)Fi−1(z) ⊃ Fi−1(zx·y), and Fi−1(z) ⊃ Fi−1(zx), Fi−1(zx) ⊃
Fi−1((zx)

y

) by definition of Fi(x), Fi(y) respectively (where Fi−1((zx)
y

) is
Fi−1(zx·y));
• the sequent → Fi(2) is provable, as a direct consequence of the first property

and the definition of Fi(2).
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Using these two properties one can quickly show the sequent→ F0(e2(n, 2)) (i.e.
→ F (e2(n, 2))) by first showing

F0(2), F1(2), . . . , Fn(2)→ F0(e2(n, 2))

and then cut the antecedents of this sequent with the provable sequents→ Fi(2). To
simplify the exposition, let us give the formal proof of → F0(e2(2, 2)) and analyze
its logical flow graph. We are interested in seeing the role of cycles in the proof.
Let Π′ be of the form

Π′′

F2(2), F1(2)→ F1(22)

F0(2) ⊃ F0(222
)→ F0(2) ⊃ F0(222

)

F1(22)→ F0(2) ⊃ F0(222
)

F2(2), F1(2)→ F0(2) ⊃ F0(222
)

cut
F0(2)→ F0(2) F0(222

)→ F0(222
)

F0(2), F0(2) ⊃ F0(222
)→ F0(222

)

F2(2), F1(2), F0(2)→ F0(222
)

cut

with Π′′ of the form
F1(2) ⊃ F1(22)→ F1(2) ⊃ F1(22)

F2(2)→ F1(2) ⊃ F1(22)

F1(2)→ F1(2) F1(22)→ F1(22)

F1(2) ⊃ F1(22), F1(2)→ F1(22)

F2(2), F1(2)→ F1(22)
cut

Then, let Π be of the form

Π0

→ F0(2)

Π1

→ F1(2)

Π2

→ F2(2)

Π′

F2(2), F1(2), F0(2)→ F0(222
)

F1(2), F0(2)→ F0(222
)

cut

F0(2)→ F0(222
)

cut

→ F0(222
)

cut

By substituting the predicate symbols with the formulas defining them, notice
that Π′ is a proof of the sequent

(∀x)[((∀z)F (z)∗1 ⊃ F (zx)∗2) ⊃ ((∀z)F (z) ⊃ F (zx
2
))], (∀z)F (z)∗1 ⊃ F (z2)∗2, F (2)→ F (222

)

where the occurrences F (z) marked by ∗1 are linked by a bridge (say f3), as well as
the occurrences F (zx) and F (z2) marked by ∗2 (call this bridge f4). (To see this,
go back to Π′′.) The following proofs of→ F2(2) and→ F1(2) have bridges (say f2

and f1
1 , f

2
1 , respectively) between the formulas marked by ∗1 and ∗2 below:

F (a)→ F (a) F (ax)→ F (ax)

F (a) ⊃ F (ax), F (a)→ F (ax)

(∀z)F (z) ⊃ F (zx), F (a)→ F (ax)

F (ax)→ F (ax) F (ax
2
)→ F (ax

2
)

F (ax) ⊃ F (ax
2
), F (ax)→ F (ax

2
)

(∀z)F (z) ⊃ F (zx), F (ax)→ F (ax
2
)

(∀z)F (z) ⊃ F (zx), (∀z)F (z) ⊃ F (zx), F (a)→ F (ax
2
)

Cut

(∀z)F (z) ⊃ F (zx), F (a)→ F (ax
2
)

Contraction

(∀z)F (z) ⊃ F (zx)→ F (a) ⊃ F (ax
2
)

(∀z)F (z) ⊃ F (zx)→ (∀z)F (z) ⊃ F (zx
2
)

→ ((∀z)F (z) ⊃ F (zx)) ⊃ ((∀z)F (z) ⊃ F (zx
2
))

→ (∀x)[((∀z)F (z)∗1 ⊃ F (zx)∗2) ⊃ ((∀z)F (z) ⊃ F (zx
2
))]

F (b)→ F (b) F (b)→ F (b)

F (b), F (b)→ F (b2)
F: times

F (b)→ F (b2)

→ F (b) ⊃ F (b2)

→ (∀z)F (z)∗1 ⊃ F (z2)∗2
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The compositions of the bridges f2f3f
1
1 f4 and f2f3f

2
1 f4 form two cycles in Π.

These are the only cycles contained in the proof.
With some easy computation5, one can show that there exists a proof of

→ F (e2(n, 2)) with formulas having at most n nested quantifiers, containing 2n−1

cycles (i.e. one cycle for each quantifier occurring in the end-sequent; notice that
we have 2n−1 such quantifiers). (The cases n = 0, 1 are slightly different from the
general case. The proofs associated to F0(2) and F0(22) do not contain cycles.)

The preceding proof of→ F2(2) reflects the general pattern. For i ≥ 1 one proves
→ Fi+1(2) in essentially the same manner. To explain the structure of bridges in
this proof it is helpful to write → Fi+1(2) out as

→ ∀x[(∀z)(Fi−1(z) ⊃ Fi−1(zx)) ⊃ (∀z)(Fi−1(z) ⊃ Fi−1(zx
2
))].

We have two types of bridges coming from our proof. The first type consists of
bridges across the main occurrence of ⊃. We call them top-level bridges. For this
we have bridges from all of the atomic formulas in the Fi−1(z) on the right to their
counterparts in the Fi−1(z) on the left, and bridges from all the atomic formulas
in the occurrence of Fi−1(zx) on the left to their counterparts in Fi−1(zx

2
). Since

Fj contains a total of 2j atomic subformulas, we have 2 · 2i−1 = 2i bridges of this
first type. The second type of bridges cross the connective ⊃ inside (∀z)(Fi−1(z) ⊃
Fi−1(zx)) on the left. We call them down-level bridges. These bridges connect all
atomic formulas inside Fi−1(zx) to their counterparts in Fi−1(z), and there are 2i−1

of these bridges.
Note that the proofs of→ Fi(2) are slightly different when i = 1, 0. In the proof

of → F1(2) (given above) one has the analogues of the top-level bridges, but there
are no bottom-level bridges. The proof of → F0(2) has no bridges at all.

In the proof as a whole the 2i−1 bottom-level bridges in→ Fi+1(2) are combined
with the 2i−1 top-level bridges in → Fi(2) to make 2i−1 cycles when i ≥ 1. These
bridges are connected through the rest of the proof. To understand this it is helpful
to think about the other kind of building block used in the proof, namely proofs
of Fi(w), Fi−1(2)→ Fi−1(2w). This sequent is very easy to prove using the defini-
tions and some logical steps (as for Π′′). If we write out Fi(w) as (∀u)(Fi−1(u) ⊃
Fi−1(uw)), then all of the atomic formulas in Fi−1(uw) inside Fi(w) are connected
by bridges to their counterparts in Fi−1(2w), and all of the atomic formulas in
Fi−1(2) are connected to their counterparts in Fi−1(u) inside Fi(w). These build-
ing blocks are combined using cuts to get F0(2), F1(2), . . . , Fn(2) → F0(e2(n, 2)),
and the whole proof is obtained by combining this with → Fi(2), i = 0, 1, . . . , n
using cuts. One can check that the bridges match up to give cycles as described
above.

To make the nesting of cycles in the global proof more clear, it is helpful to
use a different but equivalent organization of the proof. Think of proving →
Fi(e2(n − i, 2)) successively for i = n, n − 1, . . . , 0. We start with → Fn(2) as
the i = n case. Suppose now that → Fi(e2(n − i, 2)) has been proved for some i,
and we want to reduce this to i − 1. The proof actually gives a structure for the
bridges of → Fi(e2(n− i, 2)) which is just like the structure of bridges for → Fi(2)
discussed above. This is automatic when i = n, and in general it comes from

5Notice that the subproofs of Π : → F0(e2(n, 2)) with end-sequents → Fk(2) (for n > k > 1)
and → F1(2), contain respectively 2k−1 and 2 bridges. Such bridges contribute to form distinct
cycles in Π. Since 2n−2 + 2n−3 + . . .+ 22 + 2 + 1 + 1 = 2n−1 − 1 + 1 = 2n−1, the claim follows.
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the induction. Thus we suppose that we have a proof of → Fi(e2(n − i, 2)) with
the same structure of bridges as for → Fi(2), and we want to produce a proof of
→ Fi−1(e2(n− i + 1, 2)) with the same structure of bridges as for → Fi−1(2).

To prove → Fi−1(e2(n − i + 1, 2)) we first combine → Fi(e2(n − i, 2)) with
Fi(e2(n− i, 2)), Fi−1(2)→ Fi−1(2e2(n−i,2)) using a cut. In saying that→ Fi(e2(n−
i, 2)) has the same kind of bridges as → Fi(2) we have that there are two levels of
bridges, one level that goes across the main occurrence of ⊃ in → Fi(e2(n− i, 2)),
the other level going across the left occurrence of ⊃ within → Fi(e2(n − i, 2)).
(This should be modified slightly when i = 1.) When we use the cut rule to get
Fi−1(2) → Fi−1(2e2(n−i,2)) the top level of bridges in → Fi(e2(n − i, 2)) leads to
bridges which connect all atomic formulas in Fi−1(2) to all atomic formulas in
Fi−1(2e2(n−i,2)). Therefore, when we combine this with → Fi−1(2) we get a proof
of → Fi−1(2e2(n−i,2)) with the same structure of bridges as in → Fi−1(2). The
bottom level of bridges in → Fi(e2(n − i, 2)) (for i ≥ 2) leads to extra bridges
in Fi−1(2) → Fi−1(2e2(n−i,2)) between the atomic formulas inside the two halves
of Fi−1(2). When we combine this with → Fi−1(2) using the cut, these bridges
combine with the top-level bridges from → Fi−1(2) to make cycles, as indicated
above.

Thus we get a proof of → Fi−1(e2(n − i + 1, 2)) with the right kind of bridges,
and so the argument can be repeated. Notice that the number of bridges slowly
disappears, until we get to the proof of → F0(e2(n, 2)), which has no bridges, only
a single atomic formula.

Remark 4.3. The number of steps in the proof of → F (e2(n, 2)) is O(2n). In fact,
notice that the number of steps in a proof of → Fk(2) is O(2k) (in particular,
the sequent → Fk(2) has an exponential number of atomic sub-formulas O(2k))
and of F0(2), F1(2), . . . , Fn(2) → F0(e2(n, 2)) is O(n). By using logical axioms
which are defined on formulas of arbitrary logical complexity other than atomic,
we would be able to obtain proofs of → Fk(2) of O(k) steps and therefore a proof
of → F (e2(n, 2)) of O(n) lines.

Remark 4.4. The construction proposed above explains why the bound found by
Parikh is sensitive to the number of quantified F -formulas and to the number of
nesting of quantifiers in them. From the construction, it follows that such bound
cannot be essentially improved (for Peano Arithmetic) by reducing it to a fixed
iterated exponential function f in the number of quantified F -formulas, the number
of nesting of quantifiers in them and the number of F -formulas applied in the proof.
In fact, the proof of→ F (e2(n, 2)) contains O(2n) quantified F -formulas, at most n
nesting of quantifiers in them and only one F :times application. In the construction
we do not require the exponential function to be total, therefore the bound holds for
all theories in which such a function can be defined. As for the example discussed
in section 4.1, a similar construction would have lead to the same results in case
F :successor or F :plus rules were used instead of F : times.

Remark 4.5. As mentioned already, the construction described above leads pre-
cisely to a proof of a formula (∃y)(“y = e2(n, 2)” ∧ F (y)), where “y = e2(n, 2)”
is defined in Peano Arithmetic. In Peano Arithmetic, one can show the equality
“e2(n, 2) = δ”, for some term δ expressed in the language of arithmetic. Hence, by
using the F :equality rule one can derive F (δ) from (∃y)(“y = e2(n, 2)”∧F (y)) and
“e2(n, 2) = δ” in a constant number of steps. The number of steps involving the F -
formulas remains essentially the same as for the proof of (∃y)(“y = e2(n, 2)”∧F (y)).
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Remark 4.6. Parikh’s bound depends only on the number of steps in proofs involv-
ing F -formulas. Dragalin’s bound takes into account the number of steps formalized
in Peano Arithmetic as well. It remains open if such a bound is in fact optimal or
not.

Intuitively the reader might already be convinced that cycles are necessary for
the compression of proofs of feasibility of very large numbers. We will formally
prove that short proofs need to have cycles in the next section (Theorem 5.1).

To conclude, let us say that this example is again particularly useful for seeing
nontrivial dynamics and geometry in proofs in a concrete way. The structure is
much more complicated here, and this reflects the nesting of a large number of
quantifiers. The intricate structure indicates how short proofs can reflect ‘internal
symmetry’ in their graph (this is investigated in [10]).

5. Shortening needs cycles

We show here that the logical flow graph of short proofs of large numbers has to
contain cycles. Let T−F be defined as TF by dropping the F :elimination rule.

Theorem 5.1. Let Π : → F (m) be a proof in T−F without cycles. Then there is a
proof of at most O(N(Π)2) lines in T , of → m < t ∨m = t where t is a term in
the language of arithmetic 0, s,+, ∗ which contains at most 2O(N(Π)) symbols. In
particular, there is a constant c > 0 so that any proof of → F (m) in TF (T ∗F ) with
≤ c · log log m lines must contain a cycle.

First we need to show a few lemmas on the structure of proofs in the theory T−F
that will be used all along the paper. We say that a weak occurrence of a formula
in a proof Π is a formula A whose direct paths all go to weak formulas A′ which are
variants of A occurring in axioms of Π. We can always add new weak formulas to
an end-sequent without augmenting the complexity of the proof. In other words,
the weakening rule can be simulated by the system.

Lemma 5.2 (Addition of weak occurrences). Let Π : Γ → ∆ be a proof and Λ,Θ
be multi-sets. A proof Π′ : Γ,Λ→ ∆,Θ can be constructed such that N(Π′) = N(Π).

Proof. By induction on the height of Π. If Π is an axiom, then Π′ is an axiom
as well. If Π ends with a rule of inference R, then apply the induction hypothesis
to one of the immediate subproofs of Π whenever R is binary, or to the only one
immediate subproof whenever R is unary; apply again the rule R to the result.
(Special rules behave the same way as ordinary logical rules.) Notice that we may
have to rename variables to handle the cases ∃:left and ∀ : right (but this can be
done as described in [30]). Since the structure of Π′ is essentially the same as the
structure of Π (the only difference lies in the presence of weak occurrences Λ,Θ in
Π′), we have that N(Π′) = N(Π).

Given some weak occurrence in the end-sequent, we can always eliminate it. This
is the content of the next lemma.

Lemma 5.3 (Elimination of weak occurrences). Let Π : S be a proof and A a weak
occurrence of a formula in S. Let S′ be the result of omitting A from S. Then a
proof Π′ : S′ can be constructed such that N(Π′) = N(Π).
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Proof. By induction on the height of Π. If S is an axiom, then S′ is an axiom
as well (since A is a non-distinguished occurrence). The induction step is proved
deleting the weak occurrence A from a premise of the last rule of inference R of
Π and applying R again to the resulting proof(s). If R is a logical rule, then A
cannot be its main formula and we can simply apply the induction hypothesis to
the immediate subproofs of Π where A occurs. In case R is a contraction rule, then
we can apply the induction hypothesis twice to the auxiliary formulas and derive
the claim. If R is a special rule, we apply the induction hypothesis to its immediate
subproofs. It follows that the tree-like structure of Π′ is the same as the tree-like
structure of Π, then N(Π′) = N(Π).

Lemma 5.4. Let Π : S be proof of k lines. Then there is a proof Π′ : S of at
most k lines such that it never happens that an auxiliary formula of a binary rule is
weak, or that all of the auxiliary formulas of a unary logical rule are weak, or that
an auxiliary formula of a contraction rule is weak. Furthermore, if Π is cut-free
then Π′ is cut-free.

Proof. This is proved by induction on the height of the proof Π. Suppose that the
last rule of inference of Π is a binary rule where at least one of the auxiliary formulas
is weak. Suppose a ∧:right rule (similarly for ∨:left, cut, F :equality, F :inequality,
F :plus and F :times rules) is applied to the subproofs Π1 : Γ1 → ∆1, A and Π2 :
Γ2 → ∆2, B, where A is a weak occurrence in Π1. By eliminating A from Π1 (using
Lemma 5.3) and adding (using Lemma 5.2) to the resulting proof weak occurrences
Γ2,∆2, A∧B, we obtain a proof with the same number of lines as Π1 of the sequent
Γ1,2 → ∆1,2, A ∧B. Let Π′ be such a proof.

Now suppose that the last rule of inference of Π is a unary logical rule applied
to two weak auxiliary formulas. Suppose that a ∧:left rule (similarly for ∨:right)
is applied to the subproof Π1 : A,B,Γ1 → ∆1, where A,B are weak occurrences in
Π1. We first eliminate A,B from Π1 (using Lemma 5.3) and then we add the weak
formula A ∧ B (using Lemma 5.2). The proof we obtain has the same number of
lines as Π1. Let it be Π′.

If the last rule of inference is unary and has only one auxiliary formula which
is weak, the treatment is similar. This is the case for ¬:right, ¬:left, ∀:right, ∀:left,
∃:right, ∃:left and F :successor rules. We proceed in a similar manner when the rule
is a contraction.

We are now ready to prove Theorem 5.1.

Proof. (Theorem 5.1). Let Π : → F (m) be a proof in T−F without cycles. We
will show that we can build a term t in the language of arithmetic satisfying the
conditions.

Without loss of generality, we begin by applying Lemma 5.4 to Π. (This is not
crucial for the construction itself but it will be in counting the complexity of the
terms at the end.) We obtain a proof which will still have no cyclic F -paths. Let
us call this proof Π again. We want to consider F -paths and we want to substitute
all occurrences F (t) (where t is an arbitrary term) in Π with formulas of the form
t = u ∨ t < u where u is some closed term. We will perform these substitutions
by induction on the height of the subproofs of Π. During the construction we will
use some auxiliary variables x1, x2, . . . and the symbol ≤ which do not belong to
the current language. The symbol ≤ is used to simplify the exposition but the
auxiliary variables play a more important role. In fact, we cannot a priori perform
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substitutions in special logical axioms of the form F (t),Γ→ ∆, F (t) until we know
which formula to substitute. The auxiliary variables will be used to delay the
substitution until all constraints imposed by the structure of the proof are known.
To simplify the construction we also extend our proof system by adding the axiom

Γ→ ∆, 0 ≤ 0

and the following set of new rules of inference to T ∗F :

≤: equality
Γ1 → ∆1, u = t Γ2 → ∆2, t ≤ s

Γ1,2 → ∆1,2, u ≤ s ,

≤: inequality
Γ1 → ∆1, u ≤ t Γ2 → ∆2, t ≤ s

Γ1,2 → ∆1,2, u ≤ s ,

≤: successor
Γ→ ∆, u ≤ t

Γ→ ∆, s(u) ≤ s(t) ,

≤: plus
Γ1 → ∆1, u ≤ t Γ2 → ∆2, s ≤ r

Γ1,2 → ∆1,2, u+ s ≤ t+ r ,

≤: times
Γ1 → ∆1, u ≤ t Γ2 → ∆2, s ≤ r

Γ1,2 → ∆1,2, u ∗ s ≤ t ∗ r ,

≤: weakening
Γ→ ∆, u ≤ t

Γ→ ∆, u ≤ t+ r

Γ→ ∆, u ≤ t
Γ→ ∆, u ≤ r + t.

The axiom and the rules are consistent with Peano Arithmetic. The axiom and
the first five rules are the obvious counterparts of the special axiom and special rules
of T−F . The last rule will be used to handle contractions on F -formulas. Notice
that in the ≤:weakening rule r is any arbitrary term.

Our argument will proceed in two stages. In the first stage we introduce the
auxiliary variables xi. Each atomic F -formula F (t) will be substituted with t ≤ u
where u is either a closed term or a term whose only variables are the auxiliary
variables xi’s. We will perform the substitutions by induction on the height of the
subproofs of Π′. At each step we will consider a certain subproof Π∗, we will apply
the induction hypothesis to its immediate subproofs and recombine them again
either with the same rule of inference used as the last rule of Π∗ or with one of the
rules for ≤ introduced above. If the last rule of inference in Π∗ is either a contraction
on F -formulas or a cut rule, the treatment will be a bit more complicated. Some
constraints are imposed by these rules on the substitutions, thus at the end of the
induction we only obtain a proof structure instead of a proof. These constraints
will be resolved in the second part of our argument with the special treatment of
the cut rule. The argument there will entail global considerations, and the absence
of cycles will be crucial. During the construction there will be no conflict with
quantified variables. In fact for all inequalities t ≤ u substituted for some F (t), the
term u will contain only variables xi’s which will not be quantified. An important
point is that we do not create new cycles in the first part of the construction.

Let us now begin to describe the induction argument. First suppose that Π∗ is
a special axiom of the form Γ → ∆, F (0). We replace it with the sequent Γ∗ →
∆∗, 0 ≤ 0, where Γ∗,∆∗ are obtained from Γ,∆ by replacing weak occurrences F (t)
with t ≤ xi, using a different variable xi for each occurrence. We also ask the
auxiliary variables to be new for the construction.
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We will substitute special logical axioms of the form F (t),Γ → ∆, F (t) with
axioms t ≤ xi,Γ∗ → ∆∗, t ≤ xi, where the symbol xi has not yet been used in
the construction, and Γ∗,∆∗ are defined as above. For all other axioms in Π∗ we
substitute the side formulas Γ,∆ with Γ∗,∆∗ as defined above (their distinguished
occurrences are F -free).

If the last rule of inference R of our subproof Π∗ is a logical rule, then we apply
to the immediate subproof(s) the induction hypothesis and the rule R again. If
R is one of the special rules F :equality, F :inequality, F :successor, F :plus, F :times,
then we will apply the corresponding ≤:equality, ≤:inequality, ≤:successor, ≤:plus,
≤:times rules instead.

Before we continue the inductive construction let us make some comments about
the way that the auxiliary variables xi are used. When an auxiliary variable xi
appears negatively in our proof, it appears in an atomic formula of the form t ≤ xi,
where t is a term in our original language. In positive occurrences we can have
t ≤ u, where t is a term in our original language and u is a term which can involve
constants and auxiliary variables, but not variables from the original language. It
is easy to see that these restrictions on the way that auxiliary variables appear
are consistent with the part of the construction described above, and they will be
consistent also with the remainder of our inductive procedure.

Continuing the argument we would like to say that there is at most one inequality
which contains xi and occurs negatively in each sequent in the proof structure that
we construct. That is, compatible with the part of the construction that we have
discussed already. For the argument relative to contractions which we will discuss
next, this will not quite work. It is almost true however. We shall see that when
we modify a particular proof, each xi can be contained in exactly one inequality
occurring negatively in the end-sequent and that any two inequalities containing xi
and occurring negatively in a sequent of the new proof structure will eventually go
(by direct paths) into the same occurrence in a contraction formula.

Let us now continue our argument and suppose the last rule of inference in Π∗
to be a contraction rule. In case the contraction formulas are F -free we apply the
induction hypothesis to the immediate subproof of Π∗ and the contraction rule
again.

If the contraction formulas are atomic formulas F (t), then we apply the induction
hypothesis and obtain a pair of formulas t ≤ u and t ≤ s which correspond to
the pair of auxiliary contraction formulas F (t). Here we need to make a case
distinction. The occurrences F (t) (respectively, the inequalities substituted for
them) might appear positively or negatively in the sequent and we will treat these
cases in different ways. If F (t) appears in the right-hand side of the sequent arrow
(i.e. positively), then we apply ≤:weakening rules to both inequalities to obtain a
pair of inequalities t ≤ u + s and afterwards we contract them. If F (t) appears in
the left-hand side of the sequent arrow (i.e. negatively), notice that by construction
both F (t)’s should have been replaced by inequalities t ≤ xi and t ≤ xj for some
i 6= j. We replace all xj ’s in the proof with xi and we contract the inequalities
afterwards.

The case where the contraction formulas are non-atomic F -formulas needs more
attention. Each pair of corresponding atomic F -formulas occurring in the contrac-
tion formulas will be substituted by induction hypothesis with a pair of correspond-
ing inequalities, say t ≤ u and t ≤ s. If they appear positively in the sequent, then
we should like to have them be an inequality of the form t ≤ u + s instead. To
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do this we look at the direct paths going up in the proof from these occurrences
of t ≤ u and t ≤ s towards the axioms. If we start with an occurrence of t ≤ u
(or t ≤ s), then we will reach occurrences of the form t′ ≤ u (t′ ≤ s) until we
possibly go through rules for ≤, with t′ differing from t only through substitutions
that result from the use of quantifier rules. Given a path, consider the first moment
that it reaches an atomic formula in the proof. If there is no such moment, then
it means that the path goes all the way up to a non-atomic formula in an axiom,
and this non-atomic formula cannot be the distinguished formula in the axiom. (In
the original proof, a distinguished F -formula in an axiom must always be atomic.)
Then we simply replace t′ ≤ u (t′ ≤ s) with t′ ≤ u + s in the non-distinguished
formula in the axiom, and also in its successors in later stages of the proof. If we
reach an atomic formula, and if that formula either came from the main formula
of a rule (either a contraction rule or a ≤-rule) or from a distinguished occurrence
in an axiom, then we apply the ≤:weakening rule to it to obtain t′ ≤ u + s, and
afterwards follow the earlier proof. If that first atomic formula did not come from
a rule or a distinguished occurrence of an axiom, then it comes from a single weak
occurrence in an axiom, and we can make a substitution there as before. After
this transformation we obtain two formulas which are the same and we apply a
contraction to them. Notice that these changes cannot interact with the quantifier
rules in a dangerous way, because u and s involve only the new auxiliary variables
and none of the original variables. If we started with negative occurrences, of the
form t ≤ xi and t ≤ xj , say, with i 6= j, then we replace all occurrences of xi with
xj as in the preceding paragraph, and then we perform the contraction.

Notice that, given any pair of contraction formulas, the number of inequalities to
which we apply ≤:weakening rules is bounded by the number of lines in Π∗. Indeed,
when the contraction formula is atomic we applied ≤:weakening rules twice. The
non-atomic case is also not hard to check, because we applied ≤:weakening rules
only to formulas that came from the main formula of a rule, or came straight
from a distinguished positive occurrences in an axiom. Moreover, notice that our
treatment of the contraction rules is compatible with the restrictions on the negative
occurrences of the auxiliary variables described above.

If the last rule of inference R is a cut rule, we apply the induction hypothesis to
the immediate subproofs and again the cut rule. If the cut-formulas are F -formulas
then our construction will lead to a pair of new formulas with the same logical
structure but with sub-formulas t ≤ u and t ≤ s which are supposed to correspond
to each other but which may have u 6= s. If this is the case then we do not get a
proof (since the cut-formulas ought to be identical) but only a proof-structure, i.e.,
a labeled tree of sequents in which a proper substitution of variables may lead to a
proof.

This concludes the first stage of our construction. We have obtained a proof
structure and we would like to replace all occurrences of variables xi with closed
terms to get a proof.

Before we continue let us make some observations about the geometry of this
proof structure. We can define a logical flow graph for it in the same way as usual.
The graph that we get is practically the same as for the original proof. It is the same
for the parts that do not involve F -formulas. For the parts that involve F -formulas
we have, in effect, only added vertices to some of the old edges. These new vertices
correspond to the addition of ≤:weakening rules. Except for these additions we did
not change the logical structure of the proof or its associated graph. We conclude
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that the part of the logical flow graph involving the inequalities (i.e. the part that
corresponds to the old F -formulas) has no cycles either. In the end this lack of
cycles will permit us to make substitutions to reconcile the cut-formulas and get a
proof.

Next, we need to notice that all inequalities which appear negatively and contain
xi (for some i) will have the form t ≤ xi for some t and will have a direct path
starting from some cut-formula. There is only one such cut-formula and there is
exactly one inequality containing xi occurring in it. This is not hard to check, from
the construction. It uses the fact that the auxiliary variables were all chosen to
be different initially, and they were relabeled to be the same only in contractions,
and then only in the case of negative occurrences in contraction formulas. In other
words, if two negative occurrences were relabeled to use the same auxiliary variable
xi, then they were connected below in a contraction.

We should also observe that an inequality containing xi and occurring negatively
in some cut-formula will have direct paths which either end into non-distinguished
formulas or will turn over some special logical axioms and will go down to some
cut-formula, by construction. Some of these paths might be reconnected through
binary rules for ≤, but we do not mind. Some others might go through contrac-
tions, and in the first stage of our construction we might have introduced new
occurrences of the variable xi going up from these contractions. These new oc-
currences are all positive, and they do not cross any axioms (the ‘backtracking’ of
positive occurrences of xi from a contraction do not provide any new connections to
cut-formulas). This describes completely the subgraph of inequalities in our proof
structure which contain xi. It is a connected subgraph. Of course we are using here
the fact that paths of inequalities containing xi cannot cross a cut, because of our
construction with different auxiliary formulas chosen originally. (If an inequality
containing xi occurs only positively in the proof structure, one can again analyze
the corresponding part of the logical flow graph, but we shall not need this.)

These special properties of logical paths in our proof structure will permit us
to substitute variables xi to bridge the gaps across the cuts without having con-
flicts. Here the hypothesis of acyclicity of F -paths plays a crucial role. In fact, we
want to substitute closed terms for the auxiliary variables xi to match cut-formulas
properl, and we will have that positive occurrences of inequalities will establish the
substitution over negative occurrences. We know that once an inequality occur-
ring negatively is considered for substitution, there is no way it will be considered
again. Let us describe with some detail how this substitution of auxiliary variables
is achieved.

Let us call an auxiliary variable xi critical if it has a negative occurrence in the
proof structure that we have constructed, and relaxed if it has only positive occur-
rences. We shall first substitute critical variables with terms which contain only
relaxed variables, and then we shall substitute closed terms for relaxed variables.

Take two corresponding inequalities in a pair of cut-formulas in the proof struc-
ture such that the negative occurrence contains a critical variable xi. As above,
the negative occurrence will be of the form t ≤ xi and it is the unique negative
occurrence of xi in a cut-formula. (Our substitutions will not change these facts,
since critical variables will be removed but not added.) Suppose that the corre-
sponding inequality which occurs positively is of the form t ≤ u, where the term u
contains only relaxed variables if any. Substitute all occurrences of xi with u. Do
this repeatedly until all critical variables have been replaced.
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It is precisely here that we need our assumption concerning the absence of cycles.
This ensures that at each stage there is a critical variable in a cut-formula whose
counterpart u in the dual formula contains only relaxed variables. This observa-
tion uses our earlier discussion of critical variables, which ensures that any time a
critical variable occurs positively in a cut-formula there was an oriented path to
that occurrence from a negative occurrence in another cut-formula. If there were
ever a time in which all the u’s contained critical variables, one could find a cycle
by stringing together a sequence of such paths. The argument is easier to imagine
than to read, and we omit the details.

Thus we can get rid of all the critical variables by substitution. Once we do this
our proof structure becomes a proof, because the cut-formulas match up. We then
replace the relaxed variables with arbitrary closed terms, like 0.

This concludes our construction. To build a proof Π′ in T we only need to
substitute all occurrences of formulas t ≤ u with formulas of the form t = u∨ t < u.
Both axioms and rules for ≤ can be substituted with proper subproofs of T . It is
easy to check that all such subproofs have a constant number of steps. Moreover, for
each contraction rule applied to F -formulas we needed at most N(Π′) applications
of ≤:weakening. Since there are at most N(Π′) such contractions, the bound on
the complexity of Π′ is O(N(Π)2).

To conclude the proof of our statement, we only need to argue that the number
of symbols in t is at most 2O(N(Π)). Let us recall here the main points behind
the proof of the bounds on t. At the base of the construction of t from Π are the
special axioms and positive weak occurrences. With the special axioms one starts
with the term 0, while positive weak occurrences may be associated to more com-
plicated terms, because of substitutions that we made in the proof while treating
contractions. All symbols which appear in t are introduced through the treatment
of F -rules, positive contractions (i.e. those contractions affecting F -atomic formu-
las occurring positively), special axioms and positive weak occurrences, and so are
controlled by the number of lines of Π. (See the next paragraph below concerning
positive weak occurrences.) Cuts and negative contractions (i.e. those contrac-
tions affecting F -atomic formulas occurring negatively) lead to substitutions and
duplication of symbols that we should account for. However, one can check that
the total number of duplications is controlled by the number of auxiliary variables
that were introduced. In fact, only auxiliary variables which have both negative
and positive occurrences matter for this part (the others do not contribute), and
so the total number is bounded by the number of axioms in Π. Duplications lead
to exponential growth which is bounded as claimed above, because the proof has
no cyclic F -paths.

These are the most important points. Let us also mention that the application of
Lemma 5.4 at the beginning of the construction plays a crucial role in the counting
of the positive weak occurrences. Because of Lemma 5.4 we know that positive
weak formulas in Π are never used as auxiliary formulas for F -rules. As a practical
matter this ensures that they do not really participate in the construction of t in
a relevant way. Indeed, we had to make some ‘backtracking’ substitutions from
positive contractions in order to make sure that we had a proof, but the part of
the argument that affected the auxiliary terms was much simpler. It is not too
hard to check that suitable estimates are obtained. (This part is relatively minor
compared to the exponential effects of the substitutions through cuts and negative
contractions.) This shows the first part of our statement.
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Notice now that all terms representing m or values larger than m in the language
of arithmetic should have at least b · log m symbols for some constant b > 0. This
is not hard to check, since multiplication is the most efficient operation for making
large numbers. Using this one can derive easily the second part of the theorem from
the first. In fact, the term t is supposed to represent m or larger values, and so it
should have at least b · logm symbols. If there are no cycles, then it has at most
2O(N(Π)) symbols. If N(Π) is small compared to log log m, then 2O(N(Π)) will be
bounded by a small power of log m. This will be smaller than b logm when m is
large enough, as soon as the small power is 1/2, say. On the other hand, if m is not
too large and we choose c small enough, then N(Π) would have to be < 1, which
is impossible.

The construction in Theorem 5.1 can be only carried out under the hypothesis
that there is no cycling of F -paths in Π. In fact cycles code in the proof a po-
tentially infinite process of substitution and this would not allow a replacement of
the auxiliary variables. One should notice that the procedure of cut elimination
applied to F -formulas would eliminate cycles (as a consequence of the elimination
of F -formulas from the proof) at the cost of an expansion which is finite but in
the worse case is non-elementary in the number of lines of the original proof. This
‘finiteness’, which is coded in the structure of the proof, depends on the fact that a
proof describes both a ‘potentially infinite’ process and the ‘input’ for this process.

Remark 5.5. In Section 4 we have given two examples which illustrate how quan-
tified cut-formulas can efficiently codify large numbers. In general, one can ask
what is the coding power of the quantifiers in a proof. Can we measure it? The
construction used to show Theorem 5.1 furnishes a way to measure the coding
power of quantified cut-formulas when cycles are not present. In fact, arithmetical
terms can explicitly be associated to each node of an F -path in a proof and their
complexity turns out to be elementary bounded on the complexity of the proof.
(It is important to notice here that an F -path can pass several times through the
quantified cut-formulas in the proof and each node of the F -path crossing the cut-
formula might be affected by the action of a different quantifier. This is the case
for our examples of feasibility.) In the case of cyclic paths, the complexity of terms
that can be built following the construction in Theorem 5.1 is unbounded. This
is because terms lying along cycles feed themselves back and a finite measuring is
therefore impossible. One might be interested to associate an infinite measure to
the cycles or to estimate the rate of growth of terms along cyclic paths, but this
point goes behind the aim of this paper even though it deserves investigation.

Remark 5.6. In [6] it is shown that cycles can be transformed into spirals by slightly
modifying the LK calculus. For this purpose a new sequent calculus for classical
logic, ALK (‘acyclic LK’) has been introduced. It is close to Linear Logic [18] in
spirit (the applicability of its rules depends on the life of the formulas in the proof,
their past and their future), enjoys cut-elimination, the logical graphs of its proofs
have no cyclic paths and its proofs are just elementary larger than proofs in LK.
Precise bounds on the complexity of the transformation between the two systems
are given. The proofs in the new calculus can be obtained by a small perturbation
of proofs in LK. The transformation of a proof Π into an ALK-proof can be seen
as the effect of going from a space to its covering. In this view a proof in LK can
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be seen as a projection of a proof in ALK, where the identification of some of the
formulas forces the presence of cycles.

Lower bounds on the complexity of the elimination of spirals from a proof can be
derived from the complexity of the elimination of cycles. Notice that Theorem 5.1
shows that the complexity of the elimination of cycles is non-elementary. This is
because acyclic proofs of large feasible numbers must be long.

Remark 5.7. A nonstandard theory asserting the existence of a non-feasible num-
ber can be defined from PAF by substituting the axiom ¬F (θ) with the axiom
(∃x)¬F (x). In the formalism of the sequent calculus, this is analogous to ask that
the F :elimination rule in TF be substituted with the following:

F : elimination∗
Γ→ ∆, (∀x)F (x)

Γ→ ∆ .

Call T ∗F the new sequent theory (the superscript ∗ indicates that the special rule
does not introduce inconsistency into the basic system T ). The fact that T ∗ is
a consistent extension of T is easily proved using nonstandard models of PA and
interpreting F (x) as ‘x is a standard number’ [25]. This result also follows as a
corollary of the First ε-Theorem or the Cut Elimination Theorem applied to F -
formulas. Here we want to show the following

Theorem 5.8. Let Π : S be a proof in T ∗F . The sequent S does not contain F and
Π does not contain F -paths which are cyclic. Then there is a proof Π′ : S in T such
that N(Π′) is O(N(Π)2).

This result can be proved neither through usual model-theoretic means nor
through the Cut Elimination Theorem or the First ε-Theorem. The proof is a
direct consequence of the construction used to show Theorem 5.1 where the coding
power of the quantifiers in an acyclic proof is measured through the expansion of
terms lying in its F -paths (see Remark 5.5). Here we make use of those expanded
terms to transform acyclic proofs in the theory T ∗F into arithmetical proofs. When
cycles are present one cannot infer the existence of such terms, and a proof of
a general statement (where the acyclicity assumption is dropped) should lie on a
different idea.

Proof (Theorem 5.8). The construction developed to show Theorem 5.1 can be
extended to the theory T ∗F . We only need to handle, in the first stage of the
construction, the presence of F :elimination∗ rules occurring in the proof Π :→
F (m). (We use here the same notation employed in the proof of Theorem 5.1.)
Suppose that the last rule of inference in Π∗ is a F : elimination∗ rule. Then
by induction hypothesis the auxiliary formula will be transformed into a formula
(∀x)x ≤ u where u might either be a closed term or a term whose only variables
are the xi’s. We will cut this formula with a sequent of the form (∀x)x ≤ u → ,
which can be derived in two steps from the sequent s(u) ≤ u→. In particular, the
sequent su < u∨su = u→ is provable in T in a constant number of steps and this
assures that the proof Π′ has bounded complexity.

The construction in the proof of Theorem 5.1 did not use any assumption on the
form of the end-sequent. In particular, it did not use the fact that an F -formula
should appear in the end-sequent at all. Only the acyclicity condition played a
role. Therefore we can apply the construction in Theorem 5.1 (extended to T ∗F as
indicated above) to our proof Π and derive the claim.
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6. The neck of the bottle

The theory TF has historical interest for the study of feasible numbers even
though it does not fit as well with the idea of a proof of feasibility of F (t) as
providing a ‘description’ of t. If one is interested to ‘measure’ the effort in building
large terms, then the theory defined by taking TF and dropping the F :inequality
rule seems to be the most appealing context in which this aim might be carried
out. In fact, in the theory TF it is enough to approach a large value from above (for
instance with a certain power of a power of 2 which is larger than the value) and
by the property of closure from below (expressed by the F :inequality rule) it would
be possible to derive the feasibility of the large value in one step. It is clear though
that in between two large powers of 2 there might be numbers represented by terms
which are very difficult to build. (To be precise, it might still be complicated to
show that the large term is smaller than the large power of 2. The inequality could
be proved in arithmetic using induction for instance, but in this case we would not
be able to trace the ‘effort’ that we want to measure). This choice of dropping
the F :inequality rule is also supported in [8] where the idea of feasibility is applied
to mathematical contexts other than arithmetic for studying the ‘construction’ of
mathematical objects other than natural numbers. One might also think to drop
the F :equality rule since it might help to obtain tricky representations of large
numbers using arithmetical induction, but we shall not discuss this matter here.

Let T̃F be the theory defined as TF but without F :inequality and F :equality rules.
It seems plausible that given a proof Π : S in T̃F , where S is a F -free sequent, then
either there is a T -proof Π′ : S of O(N(Π)2) lines, or there is a T̃F -proof Π′ : → of
O(N(Π)2) lines. The result would say in essence that either we find in Π a proof
of the contradiction (i.e. of the empty sequent → ) or Π ‘contains’ a proof of S
in the language of arithmetic. (Notice that when the size of the proof Π is small
compared to the size of the non-feasible term, both Parikh and Dragalin establish
the existence of a proof in T of the F -free sequent S which turns out to be of very
large complexity. This is due to the fact that both the Hilbert First ε-Theorem and
the Cut Elimination Theorem induce in the worse case a non-elementary growth of
the complexity of the proof.)

As a consequence we would know that short proofs of large numbers (described
in Section 4), cannot influence in some essential way the complexity of proofs
of theorems in the arithmetical theory T̃F . In fact, either inconsistency would be
explicitly derived in a proof, or the proof already would know how to derive quickly,
in the language of arithmetic, a true statement. The next example points out that
for the theory TF instead, true atomic statements can be obtained in some implicit
way.

Let Π be of the form

θ < p(2n, ss0)→ θ < p(2n, ss0)
Π′

→ F (p(2n, ss0))
θ < p(2n, ss0)→ F (θ)
θ < p(2n, ss0)→
→ ¬θ < p(2n, ss0)

where val(p(2n, ss0)) = 22n , val(θ) > e2(e4(39 · N(Π), 39 · N(Π)), 1) (for some
suitable choice of n) and Π′ is the proof described in section 4.1.
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Notice that with O(n) lines we proved that the non-feasible number θ is larger
than p(2n, ss0). It is clear that such proof does not contain enough information
on which any proof in Peano Arithmetic of the inequality ¬θ < p(2n, ss0) can be
based (in fact, no property of the structure of θ has been taken into account).
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Gaulle, 94010 Créteil Cedex, France

E-mail address: ale@gauss.math.jussieu.fr, ale@univ-paris12.fr

http://www.ams.org/mathscinet-getitem?mr=46:3287
http://www.ams.org/mathscinet-getitem?mr=81c:03049
http://www.ams.org/mathscinet-getitem?mr=58:27366a
http://www.ams.org/mathscinet-getitem?mr=43:6098
http://www.ams.org/mathscinet-getitem?mr=83f:03051
http://www.ams.org/mathscinet-getitem?mr=80f:00009

	1. Introduction
	2. The sequent theory of feasible numbers
	3. Logical flow graphs for TF
	4. Short proofs and cycles
	4.1. A first example
	4.2. A second example

	5. Shortening needs cycles
	6. The neck of the bottle
	References

