NORTHWESTERN MASTERCLASS HEEGAARD FLOER LECTURE SERIES HOMEWORK 2

- (1) Prove that $|H_1(Y)| = |T_{\alpha} \cdot T_{\beta}|$ (if the left hand side is finite), where \cdot denotes the algebraic intersection number.
- (2) Let K be a knot in S^3 . Show that the following procedure produces a Heegaard diagram for (some) surgery on K:
 - (a) Start with a doubly-pointed Heegaard diagram $(\Sigma, \boldsymbol{\alpha}, \boldsymbol{\beta}, z, w)$ for $K \subset S^3$.
 - (b) Add a handle to Σ connecting z and w.
 - (c) Add a new α -circle running through the handle once.
 - (d) Add a new β -circle running through the handle once.

(The framing of the surgery depends on how you add the α - and β -curves. How can you produce a framing of your choice?)

(3) Show that $\operatorname{Sym}^{n}(\mathbb{C}) \cong \mathbb{C}^{n}$. (Hint: given *n* unordered points in \mathbb{C} , there is a unique monic, degree *n* polynomial with these points as roots. Consider the coefficients of this polynomial.)

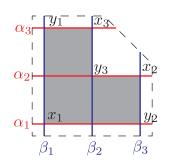
Show that for Σ an orientable surface, $\operatorname{Sym}^{n}(\Sigma)$ is a smooth manifold.

(4) We asserted: let S be a surface with boundary and $u_{\Sigma} \colon S \to \Sigma, u_D \colon S \to \mathbb{D}^2$ holomorphic maps. Suppose that u_D is a g-fold branched cover. Then the map

$$\mathbb{D}^2 \to \operatorname{Sym}^g(\Sigma)$$
$$p \mapsto u_{\Sigma}(u_D^{-1}(p))$$

is $\operatorname{Sym}^{g}(j)$ -holomorphic. Prove this. (As a consequence, this map is continuous.)

- (5) As we discussed in the lecture, if you see a rectangle in a Heegaard diagram (with all four edges lying on different circles) then there is a corresponding holomorphic curve in $\operatorname{Sym}^{g}(\Sigma)$. The analogous fact holds for 2n-gons, for any n. Prove it.
- (6) Consider the following element of $\pi_2(\{x_1, x_2, x_3\}, \{y_1, y_2, y_3\})$:



(This is a piece of a Heegaard diagram; for instance, you can find pieces like this inside grid diagrams.) There is a corresponding 1-parameter family of holomorphic disks. Describe it. (Hint: the family comes from making a slit in the domain along either an α - or β -curve.) This corresponds to a cancellation in $\partial^2 \{x_1, x_2, x_3\}$; which one?

 $E\text{-}mail\ address: \texttt{lipshitz@math.columbia.edu}$