## NORTHWESTERN MASTERCLASS HEEGAARD FLOER LECTURE SERIES HOMEWORK 3

(1) Verify that $\partial^{2}=0$ for the toy model of $\widehat{C F D}$ for each of the domains in Figure 1. (I've done the first one for you, so you see what I mean.)
(2) Verify that $\widehat{C F A}$ is a differential module for each of the domains in Figure 2. (Again, I've done the first one for you, so you see what I mean.)
(3) There is a unique pointed matched circle $\mathcal{Z}_{1}$ for the torus. The corresponding algebra $\mathcal{A}\left(\mathcal{Z}_{1}\right)$ is 8 -dimensional (over $\mathbb{F}_{2}$ ). Describe it explicitly in terms of generators and relations and/or as a path algebra with relations.
(4) Figure 3 gives three bordered Heegaard diagrams for solid tori. Compute the invariant $\widehat{C F D}(\mathcal{H})$ (which is a differential module over the algebra from Problem 3) for each of these diagrams $\mathcal{H}$.
Remark. Solutions to Problems (1) and (2) can be found in [2], and solutions to Problems 3 and 4 can be found in [1, Section 11.2].

## References

[1] Robert Lipshitz, Peter S. Ozsváth, and Dylan P. Thurston, Bordered Heegaard Floer homology: Invariance and pairing, 2008, arXiv:0810.0687.
[2] _, Slicing planar grid diagrams: a gentle introduction to bordered Heegaard Floer homology, Proceedings of Gökova Geometry-Topology Conference 2008, Gökova Geometry/Topology Conference (GGT), Gökova, 2009, pp. 91-119, arXiv:0810.0695.
E-mail address: lipshitz@math.columbia.edu

(a)

(b)

(c)

(d)

(e)

Figure 1. Examples illustrating $\partial^{2}=0$ for $\widehat{C F D}$. In part (a), for instance, $\partial^{2}(\{a, c\})=\partial\left(a\left(\rho_{\ell, m}\right)\{b, c\}+a\left(\rho_{j, i}\right)\{a, d\}\right)=$ $a\left(\rho_{\ell, m}\right) a\left(\rho_{i, j}\right)\{b, d\}+a\left(\rho_{i, j}\right) a\left(\rho_{\ell, m}\right)\{b, d\}=0$. The darker shading indicates regions involved with multiplicity 2 . This figure is drawn from [2].

(a)

(b)

(c)

(d)

Figure 2. Examples illustrating that $\widehat{C F A}$ respects the relations on the algebra. In part (a), for instance, $m_{2}\left(m_{2}\left(\{a, c\}, a\left(\rho_{i, j}\right)\right), a\left(\rho_{\ell, m}\right)\right)=m_{2}\left(\{b, c\}, a\left(\rho_{\ell, m}\right)\right)=\{b, d\}=$ $m_{2}\left(\{a, d\}, a\left(\rho_{i, j}\right)\right)=m_{2}\left(m_{2}\left(\{a, c\}, \rho_{\ell, m}\right), \rho_{i, j}\right)$. Again, this figure is drawn from [2].


Figure 3. Heegaard diagrams for solid tori. Each diagram lives on a torus minus a disk, and each diagram is draw in two ways. The arrows indicate edge identifications; the circles labeled by $A$ denote handles; delete the interiors and identify the boundaries of these circles.

