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Conformal Invariance of Lattice Models

Hugo Duminil-Copin and Stanislav Smirnov

ABsTRACT. These lecture notes provide an (almost) self-contained account on con-
formal invariance of the planar critical Ising and FK-Ising models. They present the
theory of discrete holomorphic functions and its applications to planar statistical
physics (more precisely to the convergence of fermionic observables). Convergence
to SLE is discussed briefly. Many open questions are included.
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1. Introduction

The celebrated Lenz-Ising model is one of the simplest models of statistical physics
exhibiting an order-disorder transition. It was introduced by Lenz in [Len20| as an
attempt to explain Curie’s temperature for ferromagnets. In the model, iron is modeled
as a collection of atoms with fixed positions on a crystalline lattice. Each atom has a
magnetic spin, pointing in one of two possible directions. We will set the spin to be equal
to 1 or —1. Each configuration of spins has an intrinsic energy, which takes into account
the fact that neighboring sites prefer to be aligned (meaning that they have the same
spin), exactly like magnets tend to attract or repel each other. Fix a box A c 7?2 of size
n. Let 0 € {~1,1}" be a configuration of spins 1 or —1. The energy of the configuration
o is given by the Hamiltonian

Epr(o) = - ZUny

-~y

where x ~ y means that x and y are neighbors in A. The energy is, up to an additive
constant, twice the number of disagreeing neighbors. Following a fundamental principle
of physics, the spin-configuration is sampled proportionally to its Boltzmann weight: at
an inverse-temperature /3, the probability pg s of a configuration o satisfies

e~ BEA(0)
npa(o) = Zon
where
ZgA = Z e B )
ge{-1,1}7

is the so-called partition function defined in such a way that the sum of the weights over
all possible configurations equals 1. Above a certain critical inverse-temperature (.,
the model has a spontaneous magnetization while below . does not (this phenomenon
will be described in more detail in the next section). When f,. lies strictly between 0
and oo, the Ising model is said to undergo a phase transition between an ordered and
a disordered phase. The fundamental question is to study the phase transition between
the two regimes.

Lenz’s student Ising proved the absence of phase transition in dimension one (mean-
ing B. = oo0) in his PhD thesis [Isi25], wrongly conjecturing the same picture in
higher dimensions. This belief was widely shared, and motivated Heisenberg to in-
troduce his famous model [Hei28]. However, some years later Peierls [Pei36] used
estimates on the length of interfaces between spin clusters to disprove the conjecture,
showing a phase transition in the two-dimensional case. Later, Kramers and Wannier
[KW41a, KW41b] derived nonrigorously the value of the critical temperature.
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F1cURE 1. Ising configurations at 8 < 3., at 5 = 3., and > 3. respectively.

In 1944, Onsager [Ons44| computed the partition function of the model, followed
by further computations with Kaufman, see [KO50] for instance!. In the physical
approach to statistical models, the computation of the partition function is the first
step towards a deep understanding of the model, enabling for instance the computation
of the free energy. The formula provided by Onsager led to an explosion in the number of
results on the 2D Ising model (papers published on the Ising model can now be counted
in the thousands). Among the most noteworthy results, Yang derived rigorously the
spontaneous magnetization [Yan52| (the result was derived nonrigorously by Onsager
himself). McCoy and Wu [MW73] computed many important quantities of the Ising
model, including several critical exponents, culminating with the derivation of two-point
correlations between sites (0,0) and (n,n) in the whole plane. See the more recent book
of Palmer for an exposition of these and other results [Pal07].

The computation of the partition function was accomplished later by several other
methods and the model became the most prominent example of an exactly solvable
model. The most classical techniques include the transfer-matrices technique devel-
oped by Lieb and Baxter [Lie67, Bax89|, the Pfaffian method, initiated by Fisher
and Kasteleyn, using a connection with dimer models [Fis66, Kas61|, and the com-
binatorial approach to the Ising model, initiated by Kac and Ward [KW52] and then
developed by Sherman [She60| and Vdovichenko [Vdo65]; see also the more recent
[DZM*99, Cim10].

Despite the number of results that can be obtained using the partition function,
the impossibility of computing it explicitly enough in finite volume made the geomet-
ric study of the model very hard to perform while using the classical methods. The
lack of understanding of the geometric nature of the model remained mathematically
unsatisfying for years.

The arrival of the renormalization group formalism (see [Fis98| for a histori-
cal exposition) led to a better physical and geometrical understanding, albeit mostly
non-rigorous. It suggests that the block-spin renormalization transformation (coarse-
graining, e.g. replacing a block of neighboring sites by one site having a spin equal to
the dominant spin in the block) corresponds to appropriately changing the scale and the

LThis result represented a shock for the community: it was the first mathematical evidence that
the mean-field behavior was inaccurate in low dimensions.
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temperature of the model. The Kramers-Wannier critical point then arises as the fixed
point of the renormalization transformations. In particular, under simple rescaling the
Ising model at the critical temperature should converge to a scaling limit, a continuous
version of the originally discrete Ising model, corresponding to a quantum field the-
ory. This leads to the idea of universality: the Ising models on different regular lattices
or even more general planar graphs belong to the same renormalization space, with a
unique critical point, and so at criticality the scaling limit and the scaling dimensions
of the Ising model should always be the same (it should be independent of the lattice
whereas the critical temperature depends on it).

Being unique, the scaling limit at the critical point must satisfy translation, rota-
tion and scale invariance, which allows one to deduce some information about correla-
tions [PP66, Kad66|. In seminal papers [BPZ84b, BPZ84a|, Belavin, Polyakov and
Zamolodchikov suggested a much stronger invariance of the model. Since the scaling-
limit quantum field theory is a local field, it should be invariant by any map which is
locally a composition of translation, rotation and homothety. Thus it becomes natural
to postulate full conformal invariance (under all conformal transformations? of subre-
gions). This prediction generated an explosion of activity in conformal field theory,
allowing nonrigorous explanations of many phenomena; see [ISZ88] for a collection of
the original papers of the subject.

To summarize, Conformal Field Theory asserts that the Ising model admits a scaling
limit at criticality, and that this scaling limit is a conformally invariant object. From
a mathematical perspective, this notion of conformal invariance of a model is ill-posed,
since the meaning of scaling limit is not even clear. The following solution to this
problem can be implemented: the scaling limit of the model could simply retain the
information given by interfaces only. There is no reason why all the information of a
model should be encoded into information on interfaces, yet one can hope that most of
the relevant quantities can be recovered from it. The advantage of this approach is that
there exists a mathematical setting for families of continuous curves.

In the Ising model, there is a canonical way to isolate macroscopic interfaces. Con-
sider a simply-connected domain 2 with two points ¢ and b on the boundary and ap-
proximate it by a discrete graph Qs c 6Z2. The boundary of Qs determines two arcs
Oap and Oy, and we can fix the spins to be +1 on the arc d,, and —1 on the arc O,
(this is called Dobrushin boundary conditions). In this case, there exists an interface®
separating +1 and —1 going from a to b and the prediction of Conformal Field Theory
then translates into the following predictions for models: interfaces in 25 converge when
d goes to 0 to a random continuous non-selfcrossing curve (g 4.5) between a and b in
which is conformally invariant in the following way:

For any (2,a,b) and any conformal map 1 : Q — C, the random curve 1 o y(q,q.p)
has the same law as Y(p(Q),p(a) (b))

In 1999, Schramm proposed a natural candidate for the possible conformally invari-
ant families of continuous non-selfcrossing curves. He noticed that interfaces of models
further satisfy the domain Markov property, which, together with the assumption of con-
formal invariance, determine the possible families of curves. In [Sch00], he introduced
the Schramm-Loewner Evolution (SLE for short): for x > 0, the SLE(k) is the ran-
dom Loewner Evolution with driving process \/kB;, where (By) is a standard Brownian
motion (see Beffara’s course in this volume). In our case, it implies that the random
continuous curve 7y(q,q,») described previously should be an SLE.

2i.¢. one-to-one holomorphic maps.
31n fact the interface is not unique. In order to solve this issue, consider the closest interface to
Oap-
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FIGURE 2. An interface between + and — in the Ising model.

Proving convergence of interfaces to an SLE is fundamental. Indeed, SLE processes
are now well-understood and their path properties can be related to fractal properties
of the critical phase. Critical exponents can then be deduced from these properties via
the so-called scaling relations. These notes provide an (almost) self-contained proof of
convergence to SLE for the two-dimensional Ising model and its random-cluster repre-
sentation the FK-Ising model (see Section 3 for a formal definition).

Main result 1 (Theorem 2.10) The law of interfaces of the critical Ising model converges
in the scaling limit to a conformally invariant limit described by the Schramm-Loewner
Evolution of parameter k = 3.

Main result 2 (Theorem 3.13) The law of interfaces of the critical FK-Ising model
converges in the scaling limit to a conformally invariant limit described by the Schramm-
Loewner Evolution of parameter k =16/3.

Even though we now have a mathematical framework for conformal invariance, it
remains difficult to prove convergence of interfaces to SLEs. Observe that working with
interfaces offers a further simplification: properties of these interfaces should also be
conformally invariant. Therefore, one could simply look at a discrete observable of the
model and try to prove that it converges in the scaling limit to a conformally covariant
object. Of course, it is not clear that this observable would tell us anything about critical
exponents, yet it already represents a significant step toward conformal invariance.

In 1994, Langlands, Pouliot and Saint-Aubin [LPSA94| published a number of
numerical values in favor of conformal invariance (in the scaling limit) of crossing prob-
abilities in the percolation model. More precisely, they checked that, taking different
topological rectangles, the probability C5(£2, A, B,C, D) of having a path of adjacent
open edges from AB to C'D converges when § goes to 0 towards a limit which is the
same for (Q,A,B,C,D) and (', A’,B’',C’,D’) if they are images of each other by a
conformal map. The paper [LPSA94]|, while only numerical, attracted many mathe-
maticians to the domain. The same year, Cardy [Car92] proposed an explicit formula for
the limit of percolation crossing probabilities. In 2001, Smirnov proved Cardy’s formula
rigorously for critical site percolation on the triangular lattice [Smi01], hence rigorously
providing a concrete example of a conformally invariant property of the model. A some-
what incredible consequence of this theorem is that the mechanism can be reversed:
even though Cardy’s formula seems much weaker than convergence to SLE, they are
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actually equivalent. In other words, conformal covariance of one well-chosen observable
of the model can be sufficient to prove conformal invariance of interfaces.

It is also possible to find an observable with this property in the Ising case (see
Definition 2.9). This observable, called the fermionic observable, is defined in terms
of the so-called high temperature expansion of the Ising model. Specific combinatorial
properties of the Ising model translate into local relations for the fermionic observable.
In particular, the observable can be proved to converge when taking the scaling limit.
This convergence result (Theorem 2.11) is the main step in the proof of conformal
invariance. Similarly, a fermionic observable can be defined in the FK-Ising case, and
its convergence implies the convergence of interfaces.

Archetypical examples of conformally covariant objects are holomorphic solutions
to boundary value problems such as Dirichlet or Riemann problems. It becomes natural
to expect that discrete observables which are conformally covariant in the scaling limit
are naturally preharmonic or preholomorphic functions, i.e. relevant discretizations of
harmonic and holomorphic functions. Therefore, the proofs of conformal invariance har-
ness discrete complex analysis in a substantial way. The use of discrete holomorphicity
appeared first in the case of dimers [Ken00| and has been extended to several statistical
physics models since then. Other than being interesting in themselves, preholomorphic
functions have found several applications in geometry, analysis, combinatorics, and prob-
ability. We refer the interested reader to the expositions by Lovasz [Lov04], Stephenson
[Ste05]|, Mercat [Mer01], Bobenko and Suris [BS08]. Let us finish by mentioning that
the previous discussion sheds a new light on both approaches described above: combina-
torial properties of the discrete Ising model allow us to prove the convergence of discrete
observables to conformally covariant objects. In other words, exact integrability and
Conformal Field Theory are connected via the proof of the conformal invariance of the
Ising model.
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1.1. Organization of the notes. Section 2 presents the necessary background on
the spin Ising model. In the first subsection, we recall general facts on the Ising model.
In the second subsection, we introduce the low and high temperature expansions, as
well as Kramers-Wannier duality. In the last subsection, we use the high-temperature
expansion in spin Dobrushin domains to define the spin fermionic observable. Via the
Kramers-Wannier duality, we explain how it relates to interfaces of the Ising model at
criticality and we state the conformal invariance result for Ising.

Section 3 introduces the FK-Ising model. We start by defining general FK per-
colation models and we discuss planar duality. Then, we explain the Edwards-Sokal
coupling, an important tool relating the spin Ising and FK-Ising models. Finally, we
introduce the loop representation of the FK-Ising model in FK Dobrushin domains. It
allows us to define the FK fermionic observable and to state the conformal invariance
result for the FK-Ising model.



CONFORMAL INVARIANCE OF LATTICE MODELS 219

Section 4 is a brief survey of discrete complex analysis. We first deal with prehar-
monic functions and a few of their elementary properties. These properties will be used
in Section 6. In the second subsection, we present a brief historic of preholomorphic
functions. The third subsection is the most important, it contains the definition and
several properties of s-holomorphic (or spin-holomorphic) functions. This notion is cru-
cial in the proof of conformal invariance: the fermionic observables will be proved to
be s-holomorphic, a fact which implies their convergence in the scaling limit. We also
include a brief discussion on complex analysis on general graphs.

Section 5 is devoted to the convergence of the fermionic observables. First, we show
that the FK fermionic observable is s-holomorphic and that it converges in the scaling
limit. Second, we deal with the spin fermionic observable. We prove its s-holomorphicity
and sketch the proof of its convergence.

Section 6 shows how to harness the convergence of fermionic observables in order
to prove conformal invariance of interfaces in the spin and FK-Ising models. It mostly
relies on tightness results and certain properties of Loewner chains.

Section 7 is intended to present several other applications of the fermionic ob-
servables. In particular, we provide an elementary derivation of the critical inverse-
temperature.

Section 8 contains a discussion on generalizations of this approach to lattice models.
It includes a subsection on the Ising model on general planar graphs. It also gathers
conjectures regarding models more general than the Ising model.

1.2. Notations.

1.2.1. Primal, dual and medial graphs. We mostly consider the (rotated) square
lattice L with vertex set ¢™/*Z? and edges between nearest neighbors. An edge with
end-points « and y will be denoted by [xy]. If there exists an edge e such that e = [zy],
we write x ~ y. Finite graphs G will always be subgraphs of L. and will be called primal
graphs. The boundary of G, denoted by 0G, will be the set of sites of G with fewer
than four neighbors in G.

The dual graph G* of a planar graph G is defined as follows: sites of G* correspond
to faces of G (for convenience, the infinite face will not correspond to a dual site), edges
of G connect sites corresponding to two adjacent faces of G. The dual lattice of L is
denoted by IL*.

The medial lattice LL° is the graph with vertex set being the centers of edges of L,
and edges connecting nearest vertices, see Fig. 6. The medial graph G° is the subgraph
of IL® composed of all the vertices of IL° corresponding to edges of G. Note that L° is
a rotated and rescaled (by a factor 1/v/2) version of I, and that it is the usual square
lattice. We will often use the connection between the faces of IL® and the sites of I and
L*. We say that a face of the medial lattice is black if it corresponds to a vertex of L,
and white otherwise. Edges of IL° are oriented counterclockwise around black faces.

1.2.2. Approximations of domains. We will be interested in finer and finer graphs
approximating continuous domains. For § > 0, the square lattice \/20LL of mesh-size
V26 will be denoted by Ls. The definitions of dual and medial lattices extend to this
context. Note that the medial lattice L has mesh-size 9.

For a simply connected domain €2 in the plane, we set {25 = 2 nLs. The edges
connecting sites of )5 are those included in 2. The graph 25 should be thought of as
a discretization of Q (we avoid technicalities concerning the regularity of the domain).
More generally, when no continuous domain €2 is specified, )5 stands for a finite simply
connected (meaning that the complement is connected) subgraph of L.

We will be considering sequences of functions on s for J going to 0. In order to
make functions live in the same space, we implicitly perform the following operation:
for a function f on s, we choose for each square a diagonal and extend the function to
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Q in a piecewise linear way on every triangle (any reasonable way would do). Since no
confusion will be possible, we denote the extension by f as well.

1.2.3. Distances and convergence. Points in the plane will be denoted by their com-
plex coordinates, Re(z) and Im(z) will be the real and imaginary parts of z respectively.
The norm will be the usual complex modulus |-|. Unless otherwise stated, distances
between points (even if they belong to a graph) are distances in the plane. The distance
between a point z and a closed set F' is defined by

(1.1) d(z,F) = inf |z -y
yel”

Convergence of random parametrized curves (say with time-parameter in [0,1]) is in
the sense of the weak topology inherited from the following distance on curves:
(1.2) d(v1,72) = inf sup |y () =726 (),

uel0,1]

where the infimum is taken over all reparametrizations (i.e. strictly increasing continu-

ous functions ¢:[0,1] - [0,1] with ¢(0) =0 and ¢(1) = 1).

2. Two-dimensional Ising model

2.1. Boundary conditions, infinite-volume measures and phase transition.
The (spin) Ising model can be defined on any graph. However, we will restrict ourselves
to the (rotated) square lattice. Let G be a finite subgraph of L, and b € {—1,+1}8G.
The Ising model with boundary conditions b is a random assignment of spins {-1,+1}
(or simply —/+) to vertices of G such that o, = b, on G, where o, denotes the spin at
site . The partition function of the model is denoted by

(2.1) ZEG = exp [6 > O‘ZO’y:| )

ce{-1,1}G: o=b on OG z~y

where  is the inverse-temperature of the model and the second summation is over all
pairs of neighboring sites x,y in G. The probability of a configuration ¢ is then equal

to

(2:2) W) = ch exp [6 > a—may]-

~y

Equivalently, one can define the Ising model without boundary conditions, also
called free boundary conditions (it is the one defined in the introduction). The measure
with free boundary conditions is denoted by :“g,c'

We will not offer a complete exposition on the Ising model and we rather focus on
crucial properties. The following result belongs to the folklore (see [FKG71] for the
original paper). An event is called increasing if it is preserved by switching some spins
from - to +.

THEOREM 2.1 (Positive association at every temperature). The Ising model on a
finite graph G at temperature B > 0 satisfies the following properties:
e FKG inequality: For any boundary conditions b and any increasing events
A, B,
b b b
(2.3) tpc(AnB) > g o(A)wug a(B).

e Comparison between boundary conditions: For boundary conditions by <
by (meaning that spins + in by are also + in ba) and an increasing event A,

(2:4) 1 o (A) < g o (A).
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If (2.4) is satisfied for every increasing event, we say that ,LL%ZG stochastically dom-

inates Ugl,c (denoted by Ugl,c < ug‘:G). Two boundary conditions are extremal for the
stochastic ordering: the measure with all + (resp. all —) boundary conditions, denoted
by pj o (vesp. pg o) is the largest (resp. smallest).

Theorem 2.1 enables us to define infinite-volume measures as follows. Consider the
nested sequence of boxes A, = [-n,n]?>. For any N > 0 and any increasing event A
depending only on spins in Ay, the sequence (ME A, (A))nen is decreasing®. The limit,
denoted by ,uZ;(A), can be defined and verified to be independent on .

In this way, HE is defined for increasing events depending on a finite number of
sites. It can be further extended to a probability measure on the o-algebra spanned
by cylindrical events (events measurable in terms of a finite number of spins). The
resulting measure, denoted by ME, is called the infinite-volume Ising model with +
boundary conditions.

Observe that one could construct (a priori) different infinite-volume measures, for
instance with — boundary conditions (the corresponding measure is denoted by ,ué) If
infinite-volume measures are defined from a property of compatibility with finite volume
measures, then pj and iy are extremal among infinite-volume measures of parameter
5. In particular, if ,u;, = g, there exists a unique infinite volume measure.

The Ising model in infinite-volume exhibits a phase transition at some critical
inverse-temperature [3.:

THEOREM 2.2. Let . = +In(1+ V/2). The magnetization psloo] at the origin is
strictly positive for 5> B. and equal to 0 when 5 < f..

In other words, when 3 > 3., there is long range memory, the phase is ordered. When
8 < B¢, the phase is called disordered. The existence of a critical temperature separating
the ordered from the disordered phase is a relatively easy fact [Pei36] (although at
the time it was quite unexpected). Its computation is more difficult. It was identified
without proof by Kramers and Wannier [KW41a, KW41b| using the duality between
low and high temperature expansions of the Ising model (see the argument in the next
section). The first rigorous derivation is due to Yang [Yan52]. He uses Onsager’s
exact formula for the (infinite-volume) partition function to compute the spontaneous
magnetization of the model. This quantity provides one criterion for localizing the
critical point. The first probabilistic computation of the critical inverse-temperature is
due to Aizenman, Barsky and Ferniandez [ABF87]. In Subsection 7.1, we present a
short alternative proof of Theorem 2.2, using the fermionic observable.

The critical inverse-temperature has also an interpretation in terms of infinite-
volume measures (these measures are called Gibbs measures). For § < . there exists a
unique Gibbs measure, while for 8 > 5. there exist several. The classification of Gibbs
measures in the ordered phase is interesting: in dimension two, any infinite-volume
measure is a convex combination of ,uE and /15 (see [Aiz80, Hig81]| or the recent proof
[CV10]). This result is no longer true in higher dimension: non-translational-invariant
Gibbs measures can be constructed using 3D Dobrushin domains [Dob72].

When 5 > f., spin-correlations HE[UOUI] do not go to 0 when x goes to infinity.
There is long range memory. At (3., spin-correlations decay to 0 following a power law

[Ons44]:

5 [o00s] ~ M

when z - co. When 8 < f3., spin-correlations decay exponentially fast in |z|. More
precisely, we will show the following result first due to [MWT73|:

4Indeed, for any configuration of spins in A, being smaller than all +, the restriction of ,u,zg At
An

to Ay is stochastically dominated by ME,ATL'
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THEOREM 2.3. For < 3., and a = ¢"™/*(z +iy) € C,

1
75(a) = lim ——Inpglogo,qg] = arcsinh(sx) +y arcsinh(sy)

n—oo n

where [na] is the site of L. closest to na, and s solves the equation

V1+ 8222 + \/1 +s2y? =sinh(2p) + (Sinh(Qﬂ))_l :

The quantity 75(z) is called the correlation length in direction z. When getting
closer to the critical point, the correlation length goes to infinity and becomes isotropic
(it does not depend on the direction, thus giving a glimpse of rotational invariance at
criticality):

THEOREM 2.4 (see e.g. [Mes06|). For z € C, the correlation length satisfies the
following equality

(2.5) lim

2.2. Low and high temperature expansions of the Ising model. The low
temperature expansion of the Ising model is a graphical representation on the dual lattice.
Fix a spin configuration o for the Ising model on G with + boundary conditions. The
collection of contours of a spin configuration o is the set of interfaces (edges of the dual
graph) separating + and — clusters. In a collection of contours, an even number of dual
edges automatically emanates from each dual vertex. Reciprocally, any family of dual
edges with an even number of edges emanating from each dual vertex is the collection
of contours of exactly one spin configuration (since we fix + boundary conditions).

The interesting feature of the low temperature expansion is that properties of the
Ising model can be restated in terms of this graphical representation. We only give the
example of the partition function on G but other quantities can be computed similarly.
Let Eg+ be the set of possible collections of contours, and let |w| be the number of edges
of a collection of contours w, then

(2.6) ZE,G _ eB# edges in G* Z (6—2,6’)“*" )
weE gx
The high temperature expansion of the Ising model is a graphical representation on
the primal lattice itself. It is not a geometric representation since one cannot map a spin
configuration ¢ to a subset of configurations in the graphical representation, but rather
a convenient way to represent correlations between spins using statistics of contours. It
is based on the following identity:

(2.7) P79 = cosh(B) + 0,0, sinh(B) = cosh(B) [1 + tanh(B3)o,0]

PROPOSITION 2.5. Let G be a finite graph and a, b be two sites of G. At inverse-
temperature 3 > 0,

(28) Z,g o= 2# vertices G COSh(ﬂ)# edges in G Z tanh(ﬂ)“"‘
UJESG
Zweé’ (a,b) tanh(ﬁ)‘w‘
2.9 ph [oaos] = o )
2.9) p.clo0] Y wee, tanh(B)!

where Eg (resp. Ec(a,b)) is the set of families of edges of G such that an even number
of edges emanates from each vertex (resp. except at a and b, where an odd number of
edges emanates).

The notation Eg coincides with the definition £g+ in the low temperature expansion
for the dual lattice.
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Proof. Let us start with the partition function (2.8). Let E be the set of edges of
G. We know
Z} > [T &7

o [zyleE

cosh(3)# edgesin & > 1 [1+tanh(B)o.0,]

o [zyleE

cosh()# edees in ¢ > tanh(3)! [T oz0y

o wckE e=[zylew

cosh()# edees in ¢ > tanh(3)! > I owoy

wcE o0 e=[zylew

where we used (2.7) in the second equality. Notice that Y, [Te-[2y]ew 020y equals

7 vertices & if , is in g, and 0 otherwise, hence proving (2.8).

Fix a,b € G. By definition,
Y, oqope () Y, oaope PHO)
-BH(o a f ’
Zae (o) Zﬁ,G

(2.10) 1 cloaon] =

where H(o) = -=%,.;0:05. The second identity boils down to proving that the right
hand terms of (2.9) and (2.10) are equal, i.e.

(2.11) Z Uagbe*ﬁH(a) = o vertices G COSh(ﬂ)# edges in G Z tanh(ﬁ)“*"-
o weEq(a,b)

The first lines of the computation for the partition function are the same, and we end
up with

Zaaabe_BH(”) = cosh(ﬁ)# edges in & Z tanh(ﬁ)‘“‘ Zaaab H 030y

wcE o e=[zylew

_ 2# vertices G COSh(ﬂ)# edges in G Z tanh(ﬂ)lwl
we€g (a,b)

since ¥, 005 [Tec(ryew 20y equals 2% YerHices G if iy e £5(a,b), and 0 otherwise. i

The set &g is the set of collections of loops on G when forgetting the way we draw
loops (since some elements of £g, like a figure eight, can be decomposed into loops in
several ways), while £z (a,b) is the set of collections of loops on G together with one
curve from a to b.

PROPOSITION 2.6 (Kramers-Wannier duality). Let 8> 0 and define 5* € (0, 00) such
that tanh(B*) = €2, then for every graph G,

# edges in G* Zf
Br.G

(212) 2 # vertices G* COSh(ﬂ*) # edges in G* ZE G= (eﬁ)

Proof. When writing the contour of connected components for the Ising model with
-+ boundary conditions, the only edges of L* used are those of G*. Indeed, edges between
boundary sites cannot be present since boundary spins are +. Thus, the right and left-
hand side terms of (2.12) both correspond to the sum on g+ of (e72%)l or equivalently

of tanh(8*)“!, implying the equality (see Fig. 3). O

We are now in a position to present the argument of Kramers and Wannier. Physi-
cists expect the partition function to exhibit only one singularity, localized at the critical
point. If 87 # ., there would be at least two singularities, at 5. and 3, thanks to the
previous relation between partition functions at these two temperatures. Thus, S, must
equal 8%, which implies . = %ln(l +1/2). Of course, the assumption that there is a

unique singularity is hard to justify.
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FI1GURE 3. The possible collections of contours for + boundary condi-
tions in the low-temperature expansion do not contain edges between
boundary sites of G. Therefore, they correspond to collections of con-
tours in £g~, which are exactly the collection of contours involved in
the high-temperature expansion of the Ising model on G* with free
boundary conditions.

EXERCISE 2.7. Extend the low and high temperature expansions to free and + bound-
ary conditions respectively. Extend the high-temperature exrpansion to n-point spin cor-
relations.

EXERCISE 2.8 (Peierls argument). Use the low and high temperature expansions to
show that B. € (0,00), and that correlations between spins decay exponentially fast when
B is small enough.

2.3. Spin-Dobrushin domain, fermionic observable and results on the
Ising model. In this section we discuss the scaling limit of a single interface between
+ and — at criticality. We introduce the fundamental notions of Dobrushin domains and
the so-called fermionic observable.

Let (2, a,b) be a simply connected domain with two marked points on the boundary.
Let QF be the medial graph of {25 composed of all the vertices of Lj bordering a black
face associated to (s, see Fig 4. This definition is non-standard since we include medial
vertices not associated to edges of 2s. Let as and bs be two vertices of 995 close to a
and b. We further require that bs is the southeast corner of a black face. We call the
triplet (§25,as,bs5) a spin-Dobrushin domain.

Let z5 € Q5. Mimicking the high-temperature expansion of the Ising model on s,
let £(as, zs) be the set of collections of contours drawn on €25 composed of loops and
one interface from as to zs, see Fig. 4. For a loop configuration w, y(w) denotes the
unique curve from as to zs turning always left when there is an ambiguity. With these
notations, we can define the spin-Ising fermionic observable.

DEFINITION 2.9. On a spin Dobrushin domain (25, as,bs), the spin-Ising fermionic
observable at z5 € QF is defined by

Zweg(a(;,z(;) eiéiW’Y(w) (as25) (\/5 - 1)‘“)‘
Zweg(ag,bg) e_%ivvﬂw(a&bé)(\/5 - 1)‘“)‘ ,

where the winding W, (as,zs) is the (signed) total rotation in radians of the curve
between as and zs.

FQs,asaba (25) =

The complex modulus of the denominator of the fermionic observable is connected
to the partition function of a conditioned critical Ising model. Indeed, fix bs € 0.
Even though &£(as,bs) is not exactly a high-temperature expansion (since there are two
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FIGURE 4. An example of collection of contours in &(as,zs) on the
lattice Q..

> @ @ @

FIGURE 5. A high temperature expansion of an Ising model on the
primal lattice together with the corresponding configuration on the dual
lattice. The constraint that as is connected to bs corresponds to the
partition function of the Ising model with +/- boundary conditions on
the domain.

half-edges starting from as and bs respectively), it is in bijection with the set £(a,b).
Therefore, (2.11) can be used to relate the denominator of the fermionic observable
to the partition function of the Ising model on the primal graph with free boundary
conditions conditioned on the fact that ¢ and b have the same spin. Let us mention that
the numerator of the observable also has an interpretation in terms of disorder operators
of the critical Ising model.
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The weights of edges are critical (since V2-1-= e’QﬁC). Therefore, the Kramers-
Wannier duality has an enlightening interpretation here. The high-temperature expan-
sion can be thought of as the low-temperature expansion of an Ising model on the dual
graph, where the dual graph is constructed by adding one layer of dual vertices around
0G, see Fig. 5. Now, the existence of a curve between as and bs is equivalent to the
existence of an interface between pluses and minuses in this new Ising model. Therefore,
it corresponds to a model with Dobrushin boundary conditions on the dual graph. This
fact is not surprising since the dual boundary conditions of the free boundary conditions
conditioned on o, = 0} are the Dobrushin ones.

From now on, the Ising model on a spin Dobrushin domain is the critical Ising model
on 2§ with Dobrushin boundary conditions. The previous paragraph suggests a connec-
tion between the fermionic observable and the interface in this model. In fact, Section 6
will show that the fermionic observable is crucial in the proof that the unique interface
75 going from as to bs between the + component connected to the arc 97, and the -
component connected to d;, (preserve the convention that the interface turns left every
time there is a choice) is conformally invariant in the scaling limit. Figures 1 (center
picture) and 2 show two interfaces in domains with Dobrushin boundary conditions.

THEOREM 2.10. Let (2,a,b) be a simply connected domain with two marked points
on the boundary. Let s be the interface of the critical Ising model with Dobrushin
boundary conditions on the spin Dobrushin domain (25,as5,bs). Then (y5)ss0 converges
weakly as 6 — 0 to the (chordal) Schramm-Loewner Evolution with parameter k = 3.

The proof of Theorem 2.10 follows the program below, see Section 6:

e Prove that the family of interfaces (v5)ss0 is tight.

e Prove that M/ = FQ§\75[07,5]775(,5)71,5(25) is a martingale for the discrete curve
Vs

e Prove that these martingales are converging when § goes to 0. This provides us
with a continuous martingale (M7 ); for any sub-sequential limit of the family
(75)s50-

e Use the martingales (M7); to identify the possible sub-sequential limits. Ac-
tually, we will prove that the (chordal) Schramm-Loewner Evolution with pa-
rameter x = 3 is the only possible limit, thus proving the convergence.

The third step (convergence of the observable) will be crucial for the success of this
program. We state it as a theorem on its own. The connection with the other steps will
be explained in detail in Section 6.

THEOREM 2.11 ([CS09]). Let Q be a simply connected domain and a,b two marked
points on its boundary, assuming that the boundary is smooth in a neighborhood of b.

We have that
Y'()
P'(b)

uniformly on every compact subset of ), where 1 is any conformal map from € to the
upper half-plane H, mapping a to co and b to 0.

(2.13) Fosasps() — when 6 - 0

The fermionic observable is a powerful tool to prove conformal invariance, yet it
is also interesting in itself. Being defined in terms of the high-temperature expansion
of the Ising model, it expresses directly quantities of the model. For instance, we will
explain in Section 6 how a more general convergence result for the observable enables
us to compute the energy density.
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THEOREM 2.12 ([HS10]). Let Q be a simply connected domain and a € Q. If es =
[xy] denotes the edge of QN 672 closest to a, then the following equality holds:

20 5 o),

where uéc Q; 18 the Ising measure at criticality and ¢, is the unique conformal map from
QO to the disk D sending a to 0 and such that ¢! (a) > 0.

“éc,nnam [020y] =

3. Two-dimensional FK-Ising model

In this section, another graphical representation of the Ising model, called the FK-
Ising model, is presented in detail. Its properties will be used to describe properties of
the Ising model in the following sections.

3.1. FK percolation. We refer to [Gri06] for a complete study on FK percolation
(invented by Fortuin and Kasteleyn [FK72|). A configuration w on G is a random
subgraph of GG, composed of the same sites and a subset of its edges. The edges belonging
to w are called open, the others closed. Two sites x and y are said to be connected
(denoted by x < y), if there is an open path — a path composed of open edges —
connecting them. The maximal connected components are called clusters.

Boundary conditions & are given by a partition of 0G. Let o(w) (resp. ¢(w)) denote
the number of open (resp. closed) edges of w and k(w,&) the number of connected
components of the graph obtained from w by identifying (or wiring) the vertices in &
that belong to the same class of .

The FK percolation ‘bg,q,c on a finite graph G with parameters p € [0,1], and

€ (0,00) and boundary conditions & is defined by
PO (1 = p)el@) gh(w.£)
(3.1) 5 o) = D ,

,¢,G

for any subgraph w of G, where Z G isa normalizing constant called the partition
function for the FK percolation. Here and in the following, we drop the dependence on
¢ in k(w,§).

The FK percolations with parameter ¢ < 1 and ¢ > 1 behave very differently. For
now, we restrict ourselves to the second case. When ¢ > 1, the FK percolation is positively
correlated: an event is called increasing if it is preserved by addition of open edges.

THEOREM 3.1. For g > 1 and p € [0,1], the FK percolation on G satisfies the
following two properties:
e FKG inequality: For any boundary conditions & and any increasing events

A, B,
(3.2) qu(AﬂB) qu(A)¢f?7q7G(B)'

e Comparison between boundary conditions: for any & refinement of 1
and any increasing event A,

(3.3) oY c(A) 2 ¢ o(A).

The previous result is very similar to Theorem 2.1. As in the Ising model case, one
can define a notion of stochastic domination. Two boundary conditions play a special
role in the study of FK percolation: the wired boundary conditions, denoted by & =1,
are specified by the fact that all the vertices on the boundary are pairwise connected.
The free boundary conditions, denoted by £ = 0, are specified by the absence of wirings
between boundary sites. The free and wired boundary conditions are extremal among
all boundary conditions for stochastic ordering.
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Infinite-volume measures can be defined as limits of measures on nested boxes. In
particular, we set gb}w for the infinite-volume measure with wired boundary conditions
and qﬁgﬂ for the infinite-volume measure with free boundary conditions. Like the Ising
model, the model exhibits a phase transition in the infinite-volume limit.

THEOREM 3.2. For any q > 1, there exists p.(q) € (0,1) such that for any infinite
volume measure ¢y 4,

e if p<pc(q), there is almost surely no infinite cluster under ¢y 4,
e if p>pc(q), there is almost surely a unique infinite cluster under ¢, 4.

Note that ¢ = 1 is simply bond percolation. In this case, the existence of a phase
transition is a well-known fact. The existence of a critical point in the general case ¢ > 1
is not much harder to prove: a coupling between two measures ¢, 4,¢ and ¢y, 4, can
be constructed in such a way that ¢,, 4.¢ stochastically dominates ¢y, q.¢ if p1 > p2
(this coupling is not as straightforward as in the percolation case, see e.g. [Gri06]).
The determination of the critical value is a much harder task.

A natural notion of duality also exists for the FK percolation on the square lattice
(and more generally on any planar graph). We present duality in the simplest case of
wired boundary conditions. Construct a model on G* by declaring any edge of the dual
graph to be open (resp. closed) if the corresponding edge of the primal graph is closed
(resp. open) for the initial FK percolation model.

PROPOSITION 3.3. The dual model of the FK percolation with parameters (p,q)
with wired boundary conditions is the FK percolation with parameters (p*,q) and free
boundary conditions on G*, where

* * L (1 B p)q
(34) P =p"(p.q) 0= p)a+p

Proof. Note that the state of edges between two sites of OG is not relevant when
boundary conditions are wired. Indeed, sites on the boundary are connected via bound-
ary conditions anyway, so that the state of each boundary edge does not alter the
connectivity properties of the subgraph, and is independent of other edges. For this
reason, forget about edges between boundary sites and consider only inner edges (which
correspond to edges of G*): o(w) and ¢(w) then denote the number of open and closed
inner edges.

Set e* for the dual edge of G* associated to the (inner) edge e. From the definition of
the dual configuration w* of w, we have o(w*) = a—o(w) where a is the number of edges
in G* and o(w") is the number of open dual edges. Moreover, connected components of
w* correspond exactly to faces of w, so that f(w) =k(w*), where f(w) is the number of
faces (counting the infinite face). Using Euler’s formula

# edges + # connected components + 1 = #sites + # faces,
which is valid for any planar graph, we obtain, with s being the number of sites in G,

E(w) = s-1+f(w)-olw) = s—=1+k(w")—a+o(w”).
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The probability of w* is equal to the probability of w under gbaﬂ g e
1

(bé,p,q(w) = 1 po(w)(l_p)c(w)qk(w)
G.p.q
1_p “ o(w w
= ol 1y
Z
G.p.q

(1 1_p)a [p/(l _p)]a—o(w*)qs—lfaJrk(w*)+o(w*)

G.p.aq
a, s—1-a
p q (o] UJ* UJ* *
— a1 -p)/p] RV R NN ()
G.pq
since ¢(1 —p)/p=p* /(1 -p*), which is exactly the statement. O

It is then natural to define the self-dual point psq = psa(q) solving the equation
p;d = psd, which gives
V4

- 1+ \/(_1

Note that, mimicking the Kramers-Wannier argument, one can give a simple heuristic
justification in favor of p.(¢) = psa(q). Recently, the computation of p.(q) was performed
for every ¢ > 1:

Psad = psd(Q) :

THEOREM 3.4 (|[BDC10]|). The critical parameter p.(q) of the FK percolation on
the square lattice equals psa(q) = \/q/(1 +/q) for every q > 1.

EXERCISE 3.5. Describe the dual of a FK percolation with parameters (p,q) and free
boundary conditions. What is the dual model of the FK percolation in infinite-volume
with wired boundary conditions?

EXERCISE 3.6 (Zhang’s argument for FK percolation, [Gri06]). Consider the FK
percolation with parameters ¢ > 1 and p = psa(q). We suppose known the fact that infinite
clusters are unique, and that the probability that there is an infinite cluster is 0 or 1.

Assume that there is a.s. an infinite cluster for the measure ¢gsd7q.

1) Let € < 1/100. Show that there exists n > 0 such that the gbgsd,q—probability that
the infinite cluster touches [-n,n]? is larger than 1 —¢. Using the FKG inequality for
decreasing events (one can check that the FKG inequality holds for decreasing events as

well), show that the ¢) . -probability that the infinite cluster touches {n} x [-n,n] from

the outside of [-n,n]? is larger than 1 - et

2) Using the uniqueness of the infinite cluster and the fact that the probability that
there exists an infinite cluster equals 0 or 1 (can you prove these facts?), show that a.s.
there is mo infinite cluster for the FK percolation with free boundary conditions at the
self-dual point.

3) Is the previous result necessarily true for the FK percolation with wired boundary
conditions at the self-dual point? What can be said about p.(q)?

EXERCISE 3.7. Prove Euler’s formula.

3.2. FK-Ising model and Edwards-Sokal coupling. The Ising model can be
coupled to the FK percolation with cluster-weight ¢ = 2 [ES88|. For this reason, the ¢ = 2
FK percolation model will be called the FK-Ising model. We now present this coupling,
called the Edwards-Sokal coupling, along with some consequences for the Ising model.

Let G be a finite graph and let w be a configuration of open and closed edges on G.
A spin configuration ¢ can be constructed on the graph G by assigning independently
to each cluster of w a + or — spin with probability 1/2 (note that all the sites of a cluster
receive the same spin).
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PROPOSITION 3.8. Let p € (0,1) and G a finite graph. If the configuration w is
distributed according to a FK measure with parameters (p,2) and free boundary condi-
tions, then the spin configuration o is distributed according to an Ising measure with
inverse-temperature 3 = —% In(1-p) and free boundary conditions.

Proof. Consider a finite graph G, let p € (0,1). Consider a measure P on pairs (w, o),
where w is a FK configuration with free boundary conditions and o is the corresponding
random spin configuration, constructed as explained above. Then, for (w, o), we have:

1 - w
P[(w,0)] = Zo—po(w)(l _p)c(w)Qk(w) L9 k(W) _
,2,G

1

o(w) c(w)
— P> (1=-p).
Zpaa

Now, we construct another measure P on pairs of percolation configurations and spin
configurations as follows. Let 6 be a spin configuration distributed according to an Ising
model with inverse-temperature § satisfying e=2% = 1 — p and free boundary conditions.
We deduce w from ¢ by closing all edges between neighboring sites with different spins,
and by independently opening with probability p edges between neighboring sites with
same spins. Then, for any (@, 5),
P g e—2ﬁr(6’)po(&))(1 _p)a—o(&))—r(&) B po(&))(l _p)c(&))
[(@,6)] = 7 = 7
Z Z
B,p B.p

where « is the number of edges of G and r(&) the number of edges between sites with
different spins.

Note that the two previous measures are in fact defined on the same set of compatible
pairs of configurations: if o has been obtained from w, then w can be obtained from o
via the second procedure described above, and the same is true in the reverse direction
for @ and &. Therefore, P = P and the marginals of P are the FK percolation with
parameters (p,2) and the Ising model at inverse-temperature (3, which is the claim. O

The coupling gives a randomized procedure to obtain a spin-Ising configuration
from a FK-Ising configuration (it suffices to assign random spins). The proof of Propo-
sition 3.8 provides a randomized procedure to obtain a FK-Ising configuration from a
spin-Ising configuration.

If one considers wired boundary conditions for the FK percolation, the Edwards-
Sokal coupling provides us with an Ising configuration with + boundary conditions (or
—, the two cases being symmetric). We do not enter into details, since the generalization
is straightforward.

An important consequence of the Edwards-Sokal coupling is the relation between
Ising correlations and FK connectivity properties. Indeed, two sites which are connected
in the FK percolation configuration must have the same spin, while sites which are not
have independent spins. This implies:

COROLLARY 3.9. For pe (0,1), G a finite graph and 3 = —% In(1 - p), we obtain

Hég[gwgy] = ¢>g,2,c($ < y),
pscloe] = ¢,1,,2,G($ < 0G).
In particular, 8. = —% In[1-p.(2)].

Proof. We leave the proof as an exercise. O

The uniqueness of Ising infinite-volume measures was discussed in the previous sec-
tion. The same question can be asked in the case of the FK-Ising model. First, it can be
proved that gbéz and (bgﬁg are extremal among all infinite-volume measures. Therefore,
it is sufficient to prove that qbzl,ﬁg = ¢272 to prove uniqueness. Second, the absence of
an infinite cluster for qﬁ;ﬂ can be shown to imply the uniqueness of the infinite-volume
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measure. Using the equality p. = psq, the measure is necessarily unique whenever p < psq
since gbéz has no infinite cluster. Planar duality shows that the only value of p for which
uniqueness could eventually fail is the (critical) self-dual point /2/(1 ++/2). It turns
out that even for this value, there exists a unique infinite volume measure. Since this
fact will play a role in the proof of conformal invariance, we now sketch an elementary
proof due to W. Werner (the complete proof can be found in [Wer09]).

ProproSITION 3.10. There exists a unique infinite-volume FK-Ising measure with
parameter p. = /2/(1 +/2) and there is almost surely no infinite cluster under this
measure. Correspondingly, there exists a unique infinite-volume spin Ising measure at

Be-

Proof. As described above, it is sufficient to prove that (2525 22 = 11)5 4.2+ First note

that there is no infinite cluster for ¢2sd,2 thanks to Exercise 3.6. Via the Edwards-Sokal
coupling, the infinite-volume Ising measure with free boundary conditions, denoted by
uéc, can be constructed by coloring clusters of the measure ¢23 4.2+ Since there is no
infinite cluster, this measure is obviously symmetric by global exchange of +/-. In
particular, the argument of Exercise 3.6 can be applied to prove that there are neither
+ nor — infinite clusters. Therefore, fixing a box, there exists a + star-connected circuit
surrounding the box with probability one (two vertices  and y are said to be star-
connected if y is one of the eight closest neighbors to z).

One can then argue that the configuration inside the box stochastically dominates
the Ising configuration for the infinite-volume measure with + boundary conditions
(roughly speaking, the circuit of spin + behaves like + boundary conditions). We deduce
that ,ugc restricted to the box (in fact to any box) stochastically dominates ps, - This
implies that uéc > MEC. Since the other inequality is obvious, M;;C and “Ec are equal.

0
Dsd,2

at criticality. Moreover, pg = uéc = “Ec and there is a unique infinite-volume Ising
measure at criticality. O

Via Edwards-Sokal’s coupling again, ¢ = gbés .2 and there is no infinite cluster

REMARK 3.11. More generally, the FK percolation with integer parameter q > 2
can be coupled with Potts models. Many properties of Potts models are derived using
FK percolation, since we have the FKG inequality at our disposal, while there is no
equivalent of the spin-Ising FKG inequality for Potts models.

3.3. Loop representation of the FK-Ising model and fermionic observable.
Let (©,a,b) be a simply connected domain with two marked points on the boundary.
Let Q4 be an approximation of €, and let d,, and 9, denote the counterclockwise arcs
in the boundary 9Qs joining a to b (resp. b to a). We consider a FK-Ising measure
with wired boundary conditions on 0y, — all the edges are pairwise connected — and
free boundary conditions on the arc J,,. These boundary conditions are called the
Dobrushin boundary conditions. We denote by qb?z’ébyp the associated FK-Ising measure
with parameter p.

The dual boundary arc 0}, is the set of sites of {25 adjacent to Oy, while the dual
boundary arc 0}, is the set of sites of Lj \Q} adjacent to Ou, see Fig. 6. A FK-Dobrushin
domain (€25, as,bs) is given by

e a medial graph 5 defined as the set of medial vertices associated to edges of
s and to dual edges of 9,

e medial sites as,bs € 2§ between arcs Oy an 07, see Fig. 6 again,

with the additional condition that bs is the southeast corner of a black face belonging
to the domain.
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do not belong
to Q3

FIGURE 6. A domain 5 with Dobrushin boundary conditions: the
vertices of the primal graph are black, the vertices of the dual graph 2}
are white, and between them lies the medial graph Q. The arcs Oy,
and 0}, are the two outermost arcs. Moreover, arcs J;, and Oy are the
arcs bordering 0y, and 07, from the inside. The arcs 9,5 and Oy, (resp.
07, and Oy,) are drawn in solid lines (resp. dashed lines)

REMARK 3.12. Note that the definition of 2§ is not the same as in Section 1.2.1
since we added medial vertices associated to dual edges of 0,. We chose this definition
to make sites of the dual and the primal lattices play symmetric roles. The condition that
bs is the south corner of a black face belonging to the domain is a technical condition.

Let (Q5,as5,b5) be a FK-Dobrushin domain. For any FK-Ising configuration with
Dobrushin boundary conditions on 25, we construct a loop configuration on 25 as
follows: The interfaces between the primal clusters and the dual clusters (i.e clusters in
the dual model) form a family of loops together with a path from as to bs. The loops are
drawn as shown in Figure 7 following the edges of the medial lattice. The orientation
of the medial lattice naturally gives an orientation to the loops, so that we are working
with a model of oriented loops on the medial lattice.

The curve from as to bs is called the exploration path and denoted by v = v(w).
It is the interface between the open cluster connected to 0y, and the dual-open cluster
connected to 9. As in the Ising model case, one can study its scaling limit when the
mesh size goes to 0:
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F1GURE 7. A FK percolation configuration in the Dobrushin domain
(Qs,as,bs), together with the corresponding interfaces on the medial
lattice: the loops are grey, and the exploration path ~ from as to by is
black. Note that the exploration path is the interface between the open
cluster connected to the wired arc and the dual-open cluster connected
to the white faces of the free arc.

THEOREM 3.13 (Conformal invariance of the FK-Ising model, [KS10, CDHKS12]).
Let Q be a simply connected domain with two marked points a,b on the boundary.
Let 5 be the interface of the critical FK-Ising with Dobrushin boundary conditions on
(Qs,as,b5). Then the law of v5 converges weakly, when § — 0, to the chordal Schramm-
Loewner Evolution with k = 16/3.

As in the Ising model case, the proof of this theorem also involves a discrete observ-
able, which converges to a conformally invariant object. We define it now.

DEFINITION 3.14. The edge FK fermionic observable is defined on edges of 25 by
as,b 1 e,b
(3.5) Fag a5 b p(€) = Bgy p [e3 ™40 1y,

where W (e, bs) denotes the winding between the center of e and bs.
The vertex FK fermionic observable is defined on vertices of Q2§ \ 0825 by

1
(3.6) Fos 05550 (V) = 3 > Fao asbs.p(€)

e~v

where the sum is over the four medial edges having v as an endpoint.
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When we consider the observable at criticality (which will be almost always the
case), we drop the dependence on p in the notation. More generally, if (£2,a,b) is fixed,
we simply denote the observable on (QS,as,bs, psa) by Fs.

The quantity Fs(e) is a complexified version of the probability that e belongs to
the exploration path. The complex weight makes the link between Fs and probabilistic
properties less explicit. Nevertheless, the vertex fermionic observable Fs converges when
0 goes to 0:

THEOREM 3.15. [SmilOa] Let (Q,a,b) be a simply connected domain with two
marked points on the boundary. Let Fj be the vertex fermionic observable in (£, as,bs).
Then, we have

1
(3.7) EF(;() - /() when d—0

uniformly on any compact subset of 2, where ¢ is any conformal map from € to the
strip R x (0,1) mapping a to —oo and b to oo.

As in the case of the spin Ising model, this statement is the heart of the proof of
conformal invariance. Yet, the observable itself can be helpful for the understanding of
other properties of the FK-Ising model. For instance, it enables us to prove a statement
equivalent to the celebrated Russo-Seymour-Welsh Theorem for percolation. This result
will be central for the proof of compactness of exploration paths (an important step in
the proof of Theorems 2.10 and 3.13).

THEOREM 3.16 (RSW-type crossing bounds, [DCHN10|). There ezists a constant
¢ >0 such that for any rectangle R of size 4n x n, one has

(3.8) gsd&R(there exists an open path from left to right) > c.

Before ending this section, we present a simple yet crucial result: we show that it
is possible to compute rather explicitly the distribution of the loop representation. In
particular, at criticality, the weight of a loop configuration depends only on the number
of loops.

PROPOSITION 3.17. Let p € (0,1) and let (QF,as,bs5) be ¢ FK Dobrushin domain,
then for any configuration w,

a 1 o(w Z(w)
(3.9) inf;s(w) -~ 2°@) /2

where z = p/[\/2(1-p)], £(w) is the number of loops in the loop configuration associated
to w, o(w) is the number of open edges, and Z is the normalization constant.

Proof. Recall that

a 1 o\w w
@) = Sl p)) 2,

bs,as
Q5 ,p*
(in this sense, Dobrushin boundary conditions are self-dual). With w* being the dual

Using arguments similar to Proposition 3.3, the dual of gb?fs’l;“ can be proved to be ¢
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configuration of w, we find

as,b a ,b b ,a
‘759‘;, ( \/Qbszipé 95* (@)
o(w) k(w) o(w™) k(w™)
ﬁ\/p/(l—p) V2 Vpr/(1-p*) V2
o(w)

1 p(1-p*) o(w)ro(w) ~ k(w)+k(w")
= Vpr/(1-p*) V2
VZz+ \ (1-p)p* /

o(w)+o(w™)
V2t [(1-p) o) /3 Hek()1
N %

where the definition of p* was used to prove that 1(051;)02 = 22, Note that f(w) =
k(w) +k(w*) -1 and

Z7*

o(w)+o(w*)
V2y/p*[(1-p*)

does not depend on the configuration (the sum o(w) + o(w*) being equal to the total
number of edges). Altogether, this implies the claim. O

Z~:

4. Discrete complex analysis on graphs

Complex analysis is the study of harmonic and holomorphic functions in complex
domains. In this section, we shall discuss how to discretize harmonic and holomorphic
functions, and what are the properties of these discretizations.

There are many ways to introduce discrete structures on graphs which can be de-
veloped in parallel to the usual complex analysis. We need to consider scaling limits (as
the mesh of the lattice tends to zero), so we want to deal with discrete structures which
converge to the continuous complex analysis as finer and finer graphs are taken.

4.1. Preharmonic functions.

4.1.1. Definition and connection with random walks. Introduce the (non-normalized)
discretization of the Laplacian operator A := i(@iw + 8§y) in the case of the square
lattice Ls. For uw € ILs and f:ILs — C, define

Asf(u) = = Z (f(0) = f(w)).
The definition extends to rescaled square lattices in a straightforward way (for instance
to Lg).

DEFINITION 4.1. A function h: Qs — C is preharmonic (resp. pre-superharmonic,
pre-subharmonic) if Ash(z) =0 (resp. <0, >0) for every x € Qs.

One fundamental tool in the study of preharmonic functions is the classical relation
between preharmonic functions and simple random walks:

Let (X,) be a simple random walk killed at the first time it exits Qs; then h is
preharmonic on Qs if and only if (h(X,,)) is a martingale.

Using this fact, one can prove that harmonic functions are determined by their value
on 09, that they satisfy Harnack’s principle, etc. We refer to [Law91] for a deeper
study on preharmonic functions and their link to random walks. Also note that the set
of preharmonic functions is a complex vector space. As in the continuum, it is easy to
see that preharmonic functions satisfy the maximum and minimum principles.
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4.1.2. Derivative estimates and compactness criteria. For general functions, a con-
trol on the gradient provides regularity estimates on the function itself. It is a well-known
fact that harmonic functions satisfy the reverse property: controlling the function al-
lows us to control the gradient. The following lemma shows that the same is true for
preharmonic functions.

PROPOSITION 4.2. There exists C > 0 such that, for any preharmonic function
h:Qs — C and any two neighboring sites x,y € s,

SUp..eq, |P(2))

)
© d(x,°)

(4.1) h(x) = h(y)|

IA

Proof. Let x,y € 5. The preharmonicity of h translates to the fact that h(X,,) is
a martingale (where X,, is a simple random walk killed at the first time it exits €Qj).
Therefore, for x,y two neighboring sites of {25, we have

(4.2) h(x) - h(y) = E[A(X,) - h(¥;")]

where under E, X and Y are two simple random walks starting respectively at z and
y, and 7, 7' are any stopping times. Let 2r = d(x,Q¢) > 0, so that U = z + [-r,7]? is
included in Q. Fix 7 and 7’ to be the hitting times of 9Us and consider the following
coupling of X and Y (one has complete freedom in the choice of the joint law in (4.2)):

(X,,) is a simple random walk and Y, is constructed as follows,

e if X1 =y, thenY,, = X,,1 for n>0,

o if X; #y, thenY,, = 0(X,+1), where o is the orthogonal symmetry with respect
to the perpendicular bisector £ of [ X1, y], whenever X, 1 does not reach £. As
soon as it does, set Y,, = X, ;1.

It is easy to check that Y is also a simple random walk. Moreover, we have

|h(z) = h(y)| < E[|h(X:) - h(Y7)|1x, 2y, | <2 (;‘;E |h(z)|) P(X, #Yy)

Using the definition of the coupling, the probability on the right is known: it is equal
to the probability that X does not touch ¢ before exiting the ball and is smaller than
%5 (with C" a universal constant), since Uy is of radius r/d for the graph distance. We
deduce that

Ih(z) - h(w)| < 2( sup |h(z)|) s <o (Sup |h(z)|) o

2€Qs

Recall that functions on €)s are implicitly extended to 2.

PROPOSITION 4.3. A family (hs)sso of preharmonic functions on the graphs Qs is
precompact for the uniform topology on compact subsets of € if one of the following
properties holds:

(1) (hs)sso is uniformly bounded on any compact subset of €2,
or

(2) for any compact subset K of Q, there exists M = M(K) > 0 such that for any
0>0,

52 Z |h5(1‘)|2 <M.

reKs
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Proof. Let us prove that the proposition holds under the first hypothesis and then
that the second hypothesis implies the first one.

We are faced with a family of continuous maps hs : 2 - C and we aim to apply
the Arzela-Ascoli theorem. It is sufficient to prove that the functions hs are uniformly
Lipschitz on any compact subset since they are uniformly bounded on any compact
subset of Q. Let K be a compact subset of 2. Proposition 4.2 shows that |hs(z)-hs(y)| <
Ck 6 for any two neighbors x,y € K5, where

SUPs>0 SUPgeQ:d(z,K)<r/2 |h5($)|

d(K,Qe) ’
implying that |hs(z) = hs(y)| < 2Ck|x - y| for any x,y € K5 (not necessarily neighbors).
The Arzela-Ascoli theorem concludes the proof.

Now assume that the second hypothesis holds, and let us prove that (hs)sso is
bounded on any compact subset of Q. Take K c £ compact, let 2r = d(K,Q¢) > 0 and
consider = € K. Using the second hypothesis, there exists & := k() such that 55 <k < %
and

(13) 55 )P < 2M)r
y€QUgs

Cx = C

where Uys = o + [0k, k]? is the box of size k (for the graph distance) around z and
M = M(y+ [-r,7]?). Exercise 4.4 implies

(44) h(;(.%') = Z hé(y)HUks(xay)
y€QUgs

for every z € Usg. Using the Cauchy-Schwarz inequality, we find

h&(z)Q = ( Z hzi(y)HUka(xvy))

y€QUys

< (6- > |ha<y>|2)(§~ > HUk5<x,y>2) < 2M/r-C

yedUys y€OUgs

where C' is a uniform constant. The last inequality used Exercise 4.5 to affirm that
Hy,,(z,y) < C0 for some C =C(r) > 0. O

EXERCISE 4.4. The discrete harmonic measure Hq, (-, y) of y € 0s is the unique
harmonic function on Qs \ 05 vanishing on the boundary 0S)s, except at y, where it
equals 1. Equivalently, Hq,(x,y) is the probability that a simple random walk starting
from x exits Qs \ 0Qs through y. Show that for any harmonic function h: Qs — C,

h = > h(y)Ha,(-y)-
yEBQg

EXERCISE 4.5. Prove that there exists C > 0 such that Hg,(0,y) < Co for every
§>0 and y € 0Qs, where Q =[-1,1]?.

4.1.3. Discrete Dirichlet problem and convergence in the scaling limit. Preharmonic
functions on square lattices of smaller and smaller mesh size were studied in a number of
papers in the early twentieth century (see e.g. [PW23, Bou26, Lus26|), culminating
in the seminal work of Courant, Friedrichs and Lewy. It was shown in [CFL28]| that
solutions to the Dirichlet problem for a discretization of an elliptic operator converge to
the solution of the analogous continuous problem as the mesh of the lattice tends to zero.
A first interesting fact is that the limit of preharmonic functions is indeed harmonic.

PROPOSITION 4.6. Any limit of a sequence of preharmonic functions on s converg-
ing uniformly on any compact subset of Q is harmonic in 2.
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Proof. Let (hs) be a sequence of preharmonic functions on 25 converging to h.
Via Propositions 4.2 and 4.3, (3[hs(- + 6) = hs])s>0 is precompact. Since dyh is the
only possible sub-sequential limit of the sequence, (ﬁ[h(s( +0) — hs])ss0 converges
(indeed its discrete primitive converges to h). Similarly, one can prove convergence of
discrete derivatives of any order. In particular, 0 = #Aah(s converges to i[amh+0yyh].
Therefore, h is harmonic. O

In particular, preharmonic functions with a given boundary value problem converge
in the scaling limit to a harmonic function with the same boundary value problem in a
rather strong sense, including convergence of all partial derivatives. The finest result of
convergence of discrete Dirichlet problems to the continuous ones will not be necessary
in our setting and we state the minimal required result:

THEOREM 4.7. Let Q) be a simply connected domain with two marked points a and
b on the boundary, and f a bounded continuous function on the boundary of Q2. Let
f5: 0Qs = C be a sequence of uniformly bounded functions converging uniformly away
from a and b to f. Let hs be the unique preharmonic map on Qs such that (hs)po, = fs-
Then

hs — h when 6 -0

uniformly on compact subsets of S, where h is the unique harmonic function on 2,
continuous on (2, satisfying hjpq = f.

Proof. Since (fs)s>o is uniformly bounded by some constant M, the minimum and
maximum principles imply that (hs)sso is bounded by M. Therefore, the family (hs) is
precompact (Proposition 4.3). Let hbe a sub-sequential limit. Necessarily, h is harmonic
inside the domain (Proposition 4.6) and bounded. To prove that h = h, it suffices to
show that h can be continuously extended to the boundary by f.

Let x € 92\ {a,b} and € > 0. There exists R > 0 such that for 6 small enough,

|fs(2") = fs(x)| <e for every ' € QN Q(x, R),
where Q(x, R) =+ [-R, R]?. For r < R and y € Q(z,7), we have
lhs(y) = fs(@)] = Ey[fs(X7) - f5(x)]

for X a random walk starting at y, and 7 its hitting time of the boundary. Decomposing
between walks exiting the domain inside Q(x, R) and others, we find

hs(y) = fs(@)| < e + 2MPy[X- ¢ Q(z, R)]

Exercise 4.8 guarantees that P, [ X, ¢ Q(z,R)] < (r/R)“ for some independent constant
o > 0. Taking 7 = R(g/2M)" and letting § go to 0, we obtain |h(y) — f(x)| < 2¢ for
every y € Q(z,r). ]

EXERCISE 4.8. Show that there exists a > 0 such that for any 1> 1r>6 >0 and any
curve v inside D := {z : |z] < 1} from C ={z:|z| =1} to {z:|z]| = r}, the probability for a
random walk on Dy starting at 0 to exit (D\v)s through C is smaller than r®. To prove
this, one can show that in any annulus {z : x < |z| < 2x}, the random walk trajectory has
a uniformly positive probability to close a loop around the origin.

4.1.4. Discrete Green functions. This paragraph concludes the section by mention-
ing the important example of discrete Green functions. For y € Q5 \ 9Qs, let Go, (-, y)
be the discrete Green function in the domain s with singularity at y, i.e. the unique
function on Qs such that

e its Laplacian on Qs \ 005 equals 0 except at y, where it equals 1,
e G,(-,y) vanishes on the boundary 9.
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The quantity -G, (z,y) is the number of visits at = of a random walk started at y and
stopped at the first time it reaches the boundary. Equivalently, it is also the number of
visits at y of a random walk started at x stopped at the first time it reaches the boundary.
Green functions are very convenient, in particular because of the Riesz representation
formula for (not necessarily harmonic) functions:

PROPOSITION 4.9 (Riesz representation formula). Let f : Qs — C be a function
vanishing on 0Qs. We have

f= > Asf(y)Ga;s ().

yefds
Proof. Note that f -, .o, Asf(y)Ga, (-, y) is harmonic and vanishes on the bound-
ary. Hence, it equals 0 everywhere. O

Finally, a regularity estimate on discrete Green functions will be needed. This
proposition is slightly technical. In the following, aQs = [~a,a]? nLs and V,f(z) =

(f(z+0) = f(2), f(z +i0) - f(x)).
PROPOSITION 4.10. There exists C >0 such that for any 6 >0 and y € 9Q5,

Y IVaGog, (z,y)| < C6 Y, Gog,(,y).
zeQs T€Qs

Proof. In the proof, C1,...,Cs denote universal constants. First assume y € 9Qs~3Qs.

Using random walks, one can easily show that there exists C7 > 0 such that
1
Cy
for every x, 2’ € 2Q)s (this is a special application of Harnack’s principle). Using Propo-
sition 4.2, we deduce
> IVaGogs (w,y) < 30 C20 max Gog,(,y) < C1C20 Y Gog,(w.y)
7€Qs 7€Qs 2€2Qs zeQs

which is the claim for y € 9Qs \ 3Qs.

Assume now that y € 3Q0s. Using the fact that Gog, (x,y) is the number of visits of
z for a random walk starting at y (and stopped on the boundary), we find

3 Gog,(z,y) = C3/8°.
zeQs

Therefore, it suffices to prove ¥, [VGoq, (z,y)| < C4/d. Let Gr, be the Green function
in the whole plane, i.e. the function with Laplacian equal to d; ,, normalized so that
G, (y,y) =0, and with sublinear growth. This function has been widely studied, it was
proved in [MW40] that

1 - 5
G]L&(z,y):;ln(|z6y|)+05+0(|x_y|).

Now, Gr, (-, y) - Gog, (y) - =In (%) is harmonic and has bounded boundary conditions
on 09Q)s. Therefore, Proposition 4.2 implies

> [ValGry(2,y) — Gog, (x,9))| < Cod-1/6% = Cg/é.
T€Qs
Moreover, the asymptotic of G, (-,y) leads to
Z |szL5('r7y)| < 07/5
T€Qs
Summing the two inequalities, the result follows readily. O

G9Q5 (za y) < G9Q5 (:L", y) <Ch G9Q5 (:L', y)
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4.2. Preholomorphic functions.

4.2.1. Historical introduction. Preholomorphic functions appeared implicitly in Kirch-
hoff’s work [Kir47], in which a graph is modeled as an electric network. Assume every
edge of the graph is a unit resistor and for u ~ v, let F(uv) be the current from u to v.
The first and the second Kirchhoff’s laws of electricity can be restated:

e the sum of currents flowing from a vertex is zero:
(4.5) > F(uv) =0,
v~U
e the sum of the currents around any oriented closed contour 7 is zero:
(4.6) > F(uv) =0.
[uv]ey

Different resistances amount to putting weights into (4.5) and (4.6). The second
law is equivalent to saying that F' is given by the gradient of a potential function H,
and the first equivalent to H being preharmonic.

Besides the original work of Kirchhoff, the first notable application of preholomor-
phic functions is perhaps the famous article [BSST40] of Brooks, Smith, Stone and
Tutte, where preholomorphic functions were used to construct tilings of rectangles by
squares.

Preholomorphic functions distinctively appeared for the first time in the papers
[Isa41, Isa52] of Isaacs, where he proposed two definitions (and called such functions
mono-diffric). Both definitions ask for a discrete version of the Cauchy-Riemann equa-
tions O;o I = 104 F' or equivalently that the z-derivative is 0. In the first definition, the
equation that the function must satisfy is

ilf ()= (9] = fF(W)-[f(5)

while in the second, it is

ilf(E)-fW)] = fF(N)=F(9),
where N, E, S and W are the four corners of a face. A few papers of his and other
mathematicians followed, studying the first definition, which is asymmetric on the square
lattice. The second (symmetric) definition was reintroduced by Ferrand, who also dis-
cussed the passage to the scaling limit and gave new proofs of Riemann uniformization
and the Courant-Friedrichs-Lewy theorems [Fer44, LF55|. This was followed by ex-
tensive studies of Duffin and others, starting with [Duf56|.

4.3. Isaacs’s definition of preholomorphic functions. We will be working
with Isaacs’s second definition (although the theories based on both definitions are
almost the same). The definition involves the following discretization of the d = 0, + i,
operator. For a complex valued function f on Ls (or on a finite subgraph of it), and
x €L, define
i

05f(@) = L) -FON] + ZIF(N) -1 ()]

where N, E, S and W denote the four vertices adjacent to the dual vertex x indexed in
the obvious way.

REMARK 4.11. When defining derivation, one uses duality between a graph and its
dual. Quantities related to the derivative of a function on G are defined on the dual
graph G*. Similarly, notions related to the second derivative are defined on the graph G
again, whereas a primitive would be defined on G*.

DEFINITION 4.12. A function f: Qs — C is called preholomorphic if ds f(x) =0 for
every x € Q5. For x € Qf, 05 f(x) =0 is called the discrete Cauchy-Riemann equation at
x.
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FIGURE 8. Lines /(e) for medial edges around a white face.

The theory of preholomorphic functions starts much like the usual complex analysis.
Sums of preholomorphic functions are also preholomorphic, discrete contour integrals
vanish, primitive (in a simply-connected domain) and derivative are well-defined and are
preholomorphic functions on the dual square lattice, etc. In particular, the (discrete)
gradient of a preharmonic function is preholomorphic (this property has been proposed
as a suitable generalization in higher dimensions).

EXERCISE 4.13. Prove that the restriction of a continuous holomorphic function to
Ls satisfies discrete Cauchy-Riemann equations up to O(5%).

EXERCISE 4.14. Prove that any preholomorphic function is preharmonic for a
slightly modified Laplacian (the average over edges at distance /26 minus the value at
the point). Prove that the (discrete) gradient of a preharmonic function is preholomor-
phic (this property has been proposed as a suitable generalization in higher dimensions).
Prove that the limit of preholomorphic functions is holomorphic.

EXERCISE 4.15. Prove that the integral of a preholomorphic function along a dis-
crete contour vanishes. Prove that the primitive and the differential of preholomorphic
functions are preholomorphic.

EXERCISE 4.16. Prove that ﬁ&; and #Ag converge (when 6 —0) to 9, 0 and A

in the sense of distributions.

4.4. s-holomorphic functions. As explained in the previous sections, the theory
of preholomorphic functions starts like the continuum theory. Unfortunately, problems
arrive quickly. For instance, the square of a preholomorphic function is no longer pre-
holomorphic in general. This makes the theory of preholomorphic functions significantly
harder than the usual complex analysis, since one cannot transpose proofs from contin-
uum to discrete in a straightforward way. In order to partially overcome this difficulty,
we introduce s-holomorphic functions (for spin-holomorphic), a notion that will be cen-
tral in the study of the spin and FK fermionic observables.

4.4.1. Definition of s-holomorphic functions. To any edge of the medial lattice e,
we associate a line /(e) passing through the origin and /€ (the choice of the square root
is not important, and recall that e being oriented, it can be thought of as a complex
number). The different lines associated with medial edges on L§ are R, ™R, iR and
e¥m/AR see Fig. 8.

DEFINITION 4.17. A function f: Q5 — C is s-holomorphic if for any edge e of Qg,
we have

Pl(e) [f(x)] = Pé(e) [f(y)]

where x,y are the endpoints of e and P, is the orthogonal projection on £.
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The definition of s-holomorphicity is not rotationally invariant. Nevertheless, f is
s-holomorphic if and only if e™/* f(i-) (resp. if(--)) is s-holomorphic.

PROPOSITION 4.18. Any s-holomorphic function f : Q5 — C is preholomorphic on
Q5.

Proof. Let f:Q§ — C be a s-holomorphic function. Let v be a vertex of Ls u L}
(this is the vertex set of the dual of the medial lattice). Assume that v € Q5, the other
case is similar. We aim to show that 9sf(v) = 0. Let NW, NE, SE and SW be the
four vertices around v as illustrated in Fig. 8. Next, let us write relations provided by
the s-holomorphicity, for instance

Pr[f(NW)] = Pr[f(NE)].

Expressed in terms of f and its complex conjugate f only, we obtain

FINW)+ f(NW) = f(NE)+ f(NE).
Doing the same with the other edges, we find

f(NE)+if(NE)

f(SE) - f(SE) f(SW) = f(SW)

F(SW) —if(SW) F(NW) —if(NW)

Multiplying the second identity by —i, the third by —1, the fourth by 4, and then summing
the four identities, we obtain

0=(1-i) [f(NW) - f(SE) +if(SW) - if(NE)] = 2(1 - )95 (v)

which is exactly the discrete Cauchy-Riemann equation in the medial lattice. O

f(SE)+if(SE)

4.4.2. Discrete primitive of F2. One might wonder why s-holomorphicity is an in-
teresting concept, since it is more restrictive than preholomorphicity. The answer
comes from the fact that a relevant discretization of %Im ( /- f2) can be defined for
s-holomorphic functions f.

THEOREM 4.19. Let f: Q5 — C be an s-holomorphic function on the discrete simply
connected domain §25, and bg € Q5. Then, there exists a unique function H : Q5005 — C
such that

H(by) = 1 and
2 2
Hp)-Hw) = 6 [Polf@) (= 0 [Polf@])
for every edge e = [xy] of Q1§ bordered by a black face b e Qs and a white face w € Q5.

An elementary computation shows that for two neighboring sites by, by € 5, with v
being the medial vertex at the center of [b1bs],

H(b) - H(b) = 5Im [0 (b1 - )]

the same relation holding for sites of Q5. This legitimizes the fact that H is a discrete
analogue of Im (fz 7).

Proof. The uniqueness of H is straightforward since €f is simply connected. To
obtain the existence, construct the value at some point by summing increments along
an arbitrary path from by to this point. The only thing to check is that the value
obtained does not depend on the path chosen to define it. Equivalently, we must check
the second Kirchhoff’s law. Since the domain is simply connected, it is sufficient to check
it for elementary square contours around each medial vertex v (these are the simplest
closed contours). Therefore, we need to prove that
(4.7) |Pg(n) [f(v)]|2 - |Pl(e) [f(v)]|2 + |PZ(5) [f(v)]|2 - |P4(w)[f(v)]|2 =0,
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FIGURE 9. Arrows corresponding to contributions to 2AH*®. Note that
arrows from black to white contribute negatively, those from white to
black positively.

where n, e, s and w are the four medial edges with endpoint v, indexed in the obvious
way. Note that £(n) and ¢(s) (resp. £(e) and ¢(w)) are orthogonal. Hence, (4.7) follows
from

@8)  |PumylF ] + [Pusy LF@I[* = 1f@)F = [Puey LF @) + |Poguny LF ][

O

Even if the primitive of f is preholomorphic and thus preharmonic, this is not
the case for H in general®. Nonetheless, H satisfies subharmonic and superharmonic
properties. Denote by H*® and H* the restrictions of H : Qs uj — C to Q5 (black faces)
and Qf (white faces).

PRroPOSITION 4.20. If f: Q5 — C is s-holomorphic, then H® and H° are respectively
subharmonic and superharmonic.

Proof. Let B be a vertex of Qs \ 9Qs5. We aim to show that the sum of increments
of H® between B and its four neighbors is positive. In other words, we need to prove
that the sum of increments along the sixteen arrows drawn in Fig. 9 is positive. Let a,
b, ¢ and d be the four values of \/SPZ(E) [f(y)] for every vertex y € Q25 around B and any
edge e = [yz] bordering B (there are only four different values thanks to the definition
of s-holomorphicity). An easy computation shows that the eight interior increments are
thus —a?, —-b?, —c?, —d? (each appearing twice). Using the s-holomorphicity of f on
vertices of Q5 around B, we can compute the eight exterior increments in terms of a, b,
c and d: we obtain (av/2-b)2, (bv/2-a)?, (bvV/2-¢)?, (cv/2-0)2, (ev/2-d)?, (d\/2-¢)?,

(dv/2+a)?, (av/2 +d)?. Hence, the sum S of increments equals

(4.9) S = 4(a®+b*+ A +d?) - 4V2(ab+be+ ed - da)
(4.10) = 4|e_i”/4a — b+ e/ - id|2 > 0.
The proof for H® follows along the same lines. O

REMARK 4.21. A subharmonic function in a domain is smaller than the harmonic
function with the same boundary conditions. Therefore, H® is smaller than the harmonic
function solving the same boundary value problem while H® is bigger than the harmonic
function solving the same boundary value problem. Moreover, H®(b) is larger than
H°(w) for two neighboring faces. Hence, if H® and H° are close to each other on the
boundary, then they are sandwiched between two harmonic functions with roughly the

5H is roughly (the imaginary part of) the primitive of the square of f.
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F1GURE 10. The black graph is the isoradial graph. Grey vertices are
the vertices on the dual graph. There exists a radius r > 0 such that all
faces can be put into an incircle of radius r. Dual vertices have been
drawn in such a way that they are the centers of these circles.

same boundary conditions. In this case, they are almost harmonic. This fact will be
central in the proof of conformal invariance.

4.5. Isoradial graphs and circle packings. Duffin [Duf68] extended the defini-
tion of preholomorphic functions to isoradial graphs. Isoradial graphs are planar graphs
that can be embedded in such a way that there exists » > 0 so that each face has a
circumcircle of same radius 7 > 0, see Fig. 10. When the embedding satisfies this prop-
erty, it is said to be an isoradial embedding. We would like to point out that isoradial
graphs form a rather large family of graphs. While not every topological quadrangula-
tion (graph all of whose faces are quadrangles) admits a isoradial embedding, Kenyon
and Schlenker [KS05] gave a simple necessary and sufficient topological condition for
its existence. It seems that the first appearance of a related family of graphs in the
probabilistic context was in the work of Baxter [Bax89], where the eight-vertex model
and the Ising model were considered on Z-invariant graphs, arising from planar line ar-
rangements. These graphs are topologically the same as the isoradial ones, and though
they are embedded differently into the plane, by [KS05] they always admit isoradial
embeddings. In [Bax89|, Baxter was not considering scaling limits, and so the actual
choice of embedding was immaterial for his results. However, weights in his models
would suggest an isoradial embedding, and the Ising model was so considered by Mercat
[Mer01], Boutilier and de Tiliére [BdT11, BdT10|, Chelkak and Smirnov [CS08] (see
the last section for more details). Additionally, the dimer and the uniform spanning
tree models on such graphs also have nice properties, see e.g. [Ken02|. Today, isoradial
graphs seem to be the largest family of graphs for which certain lattice models, including
the Ising model, have nice integrability properties (for instance, the star-triangle relation
works nicely). A second reason to study isoradial graphs is that it is perhaps the largest
family of graphs for which the Cauchy-Riemann operator admits a nice discretization.
In particular, restrictions of holomorphic functions to such graphs are preholomorphic
to higher orders. The fact that isoradial graphs are natural graphs both for discrete
analysis and statistical physics sheds yet another light on the connection between the
two domains.
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In [Thu86|, Thurston proposed circle packings as another discretization of complex
analysis. Some beautiful applications were found, including yet another proof of the Rie-
mann uniformization theorem by Rodin and Sullivan [RS87|. More interestingly, circle
packings were used by He and Schramm [HS93] in the best result so far on the Koebe
uniformization conjecture, stating that any domain can be conformally uniformized to
a domain bounded by circles and points. In particular, they established the conjecture
for domains with countably many boundary components. More about circle packings
can be learned from Stephenson’s book [Ste05]. Note that unlike the discretizations
discussed above, the circle packings lead to non-linear versions of the Cauchy-Riemann
equations, see e.g. the discussion in [BMSO05].

5. Convergence of fermionic observables

In this section, we prove the convergence of fermionic observables at criticality (The-
orems 2.11 and 3.15). We start with the easier case of the FK-Ising model. We present
the complete proof of the convergence, the main tool being the discrete complex analysis
that we developed in the previous section. We also sketch the proof of the convergence
for the spin Ising model.

5.1. Convergence of the FK fermionic observable. In this section, fix a sim-
ply connected domain (2, a,b) with two points on the boundary. For ¢ > 0, always con-
sider a discrete FK Dobrushin domain (2§, as,bs) and the critical FK-Ising model with
Dobrushin boundary conditions on it. Since the domain is fixed, set Fj = Foo
for the FK fermionic observable.

The proof of convergence is in three steps:

,a5,b5,Psd

e First, prove the s-holomorphicity of the observable.

e Second, prove the convergence of the function Hys naturally associated to the
s-holomorphic functions Fs/ V/26.

e Third, prove that F5/\/28 converges to \/¢'.

5.1.1. s-holomorphicity of the (vertex) fermionic observable for FK-Ising. The next
two lemmata deal with the edge fermionic observable. They are the key steps of the
proof of the s-holomorphicity of the vertex fermionic observable.

LEMMA 5.1. For an edge e € 25, Fs(e) belongs to {(e).

Proof. The winding at an edge e can only take its value in the set W +27Z where W
is the winding at e of an arbitrary interface passing through e. Therefore, the winding
weight involved in the definition of Fj(e) is always proportional to e/? with a real
coefficient, thus Fs(e) is proportional to €V/2. In any FK Dobrushin domain, bs is the
southeast corner and the last edge is thus going to the right. Therefore ¢/"V/? belongs
to £(e) for any e and so does Fs(e). |

Even though the proof is finished, we make a short parenthetical remark: the defi-
nition of s-holomorphicity is not rotationally invariant, nor is the definition of FK Do-
brushin domains, since the medial edge pointing to bs has to be oriented southeast. The
latter condition has been introduced in such a way that this lemma holds true. Even
though this condition seems arbitrary, it has no influence on the convergence result,
meaning that one could perform a (slightly modified) proof with another orientation.

LeEMMA 5.2. Consider a medial vertex v in 5 \ 0Q25. We have
(5.1) F5(N) - F5(8) =i[F5(E) - Fs(W)]

where N, E, S and W are the adjacent edges indezed in clockwise order.
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FIGURE 11. Two associated configurations, one with one exploration
path and a loop, one without the loop. One can go from one to the
other by switching the state of the edge.

Proof. Let us assume that v corresponds to a primal edge pointing SE to NW, see
Fig. 11. The case NE to SW is similar.

We consider the involution s (on the space of configurations) which switches the
state (open or closed) of the edge of the primal lattice corresponding to v. Let e be an
edge of the medial graph and set

TW, (eb
Cw = ¢Q§7a67b67psd(w)e2 v(e 5)1667

the contribution of the configuration w to Fs(e). Since s is an involution, the following

relation holds:
1
Fs(e)=Y e, = 5 > [ew + es(w)].

w

In order to prove (5.1), it suffices to prove the following for any configuration w:
(5.2) N, + Ns(w) - S, - Ss(w) = i[Ew + Es(w) -W, - Ws(w)].

There are three possibilities:

Case 1: the exploration path v(w) does not go through any of the edges adjacent to v.
It is easy to see that neither does y(s(w)). All the terms then vanish and (5.2) trivially
holds.

Case 2: v(w) goes through two edges around v. Note that it follows the orientation of
the medial graph, and thus enters v through either W or E and leaves through N or S.
We assume that v(w) enters through the edge W and leaves through the edge S (i.e.
that the primal edge corresponding to v is open). The other cases are treated similarly.
It is then possible to compute the contributions of all the edges adjacent to v of w and
s(w) in terms of W,,. Indeed,

e The probability of s(w) is equal to 1/1/2 times the probability of w (due to the
fact that there is one less open edge of weight 1 — we are at the self-dual point
— and one less loop of weight \/2, see Proposition 3.17);
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o Windings of the curve can be expressed using the winding of W. For instance,
the winding of N in the configuration w is equal to the winding of W minus a
/2 turn.

The contributions are given as:
configuration W E N S
w W, 0 0 AW,
s(w) Wo/V2 | ™PW, V2 | e W, V2 | ™AW, V2

Using the identity e'™/* — e7™/* = \/2, we deduce (5.2) by summing (with the right

weight) the contributions of all the edges around v.

Case 3: v(w) goes through the four medial edges around v. Then the exploration path

of s(w) goes through only two, and the computation is the same as in the second case.
In conclusion, (5.2) is always satisfied and the claim is proved. O

Recall that the FK fermionic observable is defined on medial edges as well as on
medial vertices. Convergence of the observable means convergence of the vertex observ-
able. The edge observable is just a very convenient tool in the proof. The two previous
properties of the edge fermionic observable translate into the following result for the
vertex fermionic observable.

PROPOSITION 5.3. The vertex fermionic observable Fy is s-holomorphic.

Proof. Let v be a medial vertex and let N, E, S and W be the four medial edges
around it. Using Lemmata 5.1 and 5.2, one can see that (5.1) can be rewritten (by
taking the complex conjugate) as:

Fg(N) + Fg(S) = Fg(E) + Fg(W)

In particular, from (3.6),

1
Fg(’U) = = Z Fg(e) = Fg(N)-FFg(S) = Fg(E)+F5(W).
e adjacent
Using Lemma 5.1 again, F5(N) and Fs5(S) are orthogonal, so that Fs(N) is the pro-
jection of Fs(v) on ¢(N) (and similarly for other edges). Therefore, for a medial edge
e = [xy], Fs(e) is the projection of Fs(x) and Fs(y) with respect to £(e), which proves
that the vertex fermionic observable is s-holomorphic. O

The function Fg/\/ﬁ is preholomorphic for every § > 0. Moreover, Lemma 5.1
identifies the boundary conditions of F5/\/26 (its argument is determined) so that this
function solves a discrete Riemann-Hilbert boundary value problem. These problems
are significantly harder to handle than the Dirichlet problems. Therefore, it is more
convenient to work with a discrete analogue of Im ([ “[F5(2)/v/20]?dz), which should
solve an approximate Dirichlet problem.

5.1.2. Convergence of (Hs)sso. Let A be the black face (vertex of Qs) bordering as,
see Fig. 6. Since the FK fermionic observable Fj/ V/26 is s-holomorphic, Theorem 4.19
defines a function Hs: Qs U Q; - R such that

Hs(A) = 1 and
Hs(B)-Hs(W) = |Pe(e)[F5(iE)]|2 = |Pe(e)[F5(y)]|2

for the edge e = [xy] of Qf bordered by a black face B € 5 and a white face W €
25. Note that its restriction H® to €5 is subharmonic and its restriction Hy to € is
superharmonic.

Let us start with two lemmata addressing the question of boundary conditions for
Hs.
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J

FIGURE 12. Two adjacent sites B and B’ on 0y, together with the
notation needed in the proof of Lemma 5.4.

LEMMA 5.4. The function Hj is equal to 1 on the arc Opa. The function Hy is equal
to 0 on the arc J},.

Proof. We first prove that HJ is constant on Jp,. Let B and B’ be two adjacent
consecutive sites of dp,. They are both adjacent to the same dual vertex W e Qf, see
Fig. 12. Let e (resp. €’) be the edge of the medial lattice between W and B (resp. B’).
We deduce
(5.3) Hj(B) - H§(B') = [Fs(e)* - [Fs(e")[ = 0
The second equality is due to |Fs(e)| = gb?l‘i’l;f N S 0%,) (see Lemma 7.3). Hence, Hj

5:Ps
is constant along the arc. Since Hj(A) =1, the result follows readily.

Similarly, Hy is constant on the arc 97,. Moreover, the dual white face A* € 0},

bordering as (see Fig. 6) satisfies

(5.4) H3(A*) = Hy(A)-|Fs(e) = 1-1 =0
where e is the edge separating A and A*, which necessarily belongs to . Therefore
H§=0o0n0d;,. O

LeMMA 5.5. The function H§ converges to 0 on the arc Ou uniformly away from a
and b, Hy converges to 1 on the arc 0y, uniformly away from a and b.

Proof. Once again, we prove the result for H3. The same reasoning then holds for
Hj. Let B be a site of 0y at distance r of Jp, (and therefore at graph distance r/d of
Ope in Qs). Let W be an adjacent site of B on 07,. Lemma 5.4 implies Hg(W) = 0.
From the definition of Hy, we find

° o 2 2 as,b
H3(B) = H;(W)+|Pyoy[Fs(e)]|” = [Pue)[F5(e)]]” = ¢ (ee)?.

Note that e €« if and only if B is connected to the wired arc Op,. Therefore, qﬁg‘z’l;“ d(e €

7v) is equal to the probability that there exists an open path from B to 0y, (the winding
is deterministic, see Lemma 7.3 for details). Since the boundary conditions on 9, are
free, the comparison between boundary conditions shows that the latter probability
is smaller than the probability that there exists a path from B to dUs in the box
Us = (B +[-r,7]?) nLs with wired boundary conditions. Therefore,

H3(B) = o3 (eev)? < o, (B 0Us)*.
Proposition 3.10 implies that the right hand side converges to 0 (there is no infinite

cluster for qﬁés ,.2); which gives a uniform bound for B away from a and b. O
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The two previous lemmata assert that the boundary conditions for Hj and Hj
are roughly 0 on the arc dq and 1 on the arc dy,. Moreover, Hy and Hj are almost
harmonic. This should imply that (Hs)sso converges to the solution of the Dirichlet
problem, which is the subject of the next proposition.

PROPOSITION 5.6. Let (2,a,b) be a simply connected domain with two points on
the boundary. Then, (Hs)sso converges to Im(d) uniformly on any compact subsets of
Q when & goes to 0, where ¢ is any conformal map from Q to T =R x (0,1) sending a
to —oo and b to oo.

Before starting, note that Im(¢) is the solution of the Dirichlet problem on (2, a,b)
with boundary conditions 1 on 0y, and 0 on Og.

Proof. From the definition of H, Hj is subharmonic, let h§ be the preharmonic
function with same boundary conditions as H§ on 025. Note that H§ < h§. Similarly,
hy is defined to be the preharmonic function with same boundary conditions as Hj on
095. If K c Q is fixed, where K is compact, let b5 € K5 and ws € Kj any neighbor of
bs, we have

(5.5) By(ws) < H3(ws) < H3(bs) < h3(bs).

Using Lemmata 5.4 and 5.5, boundary conditions for Hy (and therefore h$) are uniformly
converging to 0 on dq and 1 on Oy, away from a and b. Moreover, |hj| is bounded
by 1 everywhere. This is sufficient to apply Theorem 4.7: hj converges to Im(¢) on
any compact subset of € when ¢ goes to 0. The same reasoning applies to hj. The
convergence for Hj and Hj follows easily since they are sandwiched between h§ and
hy. ]

5.1.3. Convergence of FK fermionic observables (F5/\/26)ss0. This section contains
the proof of Theorem 3.15. The strategy is straightforward: (Fjs/v/26)ss0 is proved to
be a precompact family for the uniform convergence on compact subsets of €2. Then,
the possible sub-sequential limits are identified using H.

Proof of Theorem 3.15. First assume that the precompactness of the family
(F(;/\/%)(bo has been proved. Let (Fs,/\/20,)nen be a convergent subsequence and
denote its limit by f. Note that f is holomorphic as it is a limit of preholomorphic
functions. For two points x,y € €, we have:

H; (y) - Hs, (z) = %Im(/:’ éan(z)dz)

(for simplicity, also denote the closest points of z,y in s, by z,y). On the one hand,
the convergence of (Fs, /\/25, )nen being uniform on any compact subset of €2, the right
hand side converges to Im ( [xy f (z)2dz). On the other hand, the left-hand side converges
to Im(é(y) — ¢(x)). Since both quantities are holomorphic functions of y, there exists
C e R such that ¢(y) —¢(z) = C+ [V f(2)*dz for every z,y € Q. Therefore f equals \/¢'.
Since this is true for any converging subsequence, the result follows.

Therefore, the proof boils down to the precompactness of (Fs/\/26)s50. We will use
the second criterion in Proposition 4.3. Note that it is sufficient to prove this result for
squares ) c € such that a bigger square 9Q) (with same center) is contained in ).

Fix § > 0. When jumping diagonally over a medial vertex v, the function Hs changes
by Re(FZ(v)) or Im(FZ(v)) depending on the direction, so that
(6 Y R@NB[ =6 3 VH @) + 8 Y [VH (@)

veQ$ z€Qs zeQj
where VH} (z) = (Hy(z+0) - Hy(x), Hy(x +16) — Hy(x)), and VHj is defined similarly
for Hy. It follows that it is enough to prove uniform boundedness of the right hand side
n (5.6). We only treat the sum involving Hj. The other sum can be handled similarly.
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Write H; = S5 + Rs where S5 is a harmonic function with the same boundary
conditions on 09Q)s as Hy. Note that Rs <0 is automatically subharmonic. In order to
prove that the sum of [VHj| on Qs is bounded by C/§, we deal separately with |V.Ss]|
and |V Rs|. First,

Z |V55(x)| < %~026( sup |S’5(ac)|) < %( sup |Hg(ac)|) < %,

r€Qs zedQs z€9Q 5
where in the first inequality we used Proposition 4.2 and the maximum principle for
Ss, and in the second the fact that Ss and Hj share the same boundary conditions on
9Qs. The last inequality comes from the fact that Hj converges, hence remains bounded
uniformly in 6.

Second, recall that Ggg,(-,y) is the Green function in 9Qs with singularity at y.
Since R;s equals 0 on the boundary, Proposition 4.9 implies

(57) R5($) = ZQ ARé(y)GQQa (xay)a
ye9Qs

thus giving

VRs(z) = > ARs(y)V.Goq,(z,y)
y€9Qs

Therefore,

Y VRs@)| = ¥ | % ARs(y)V.Gog,(w.)|
2€Qs 7€Qs ye9IQs

ye9Qs T€Qs

> ARs(y) Cs6 Y. Gog,(z,y)
ye9Qs zeQs

= C50 Z Z ARS(y)GQQa(zay)
2€Qs ye9Qs

= Cs50 ), Rs(x) = Ce/s
zeQs

IA

IA

The second line uses the fact that ARs >0, the third Proposition 4.10, the fifth Propo-
sition 4.9 again, and the last inequality the facts that Qs contains of order 1/6% sites
and that Rs is bounded uniformly in ¢ (since Hs and Sj are).

Thus, 6 Y ,cq, IVH;| is uniformly bounded. Since the same result holds for Hg,
(F5/7/26) 550 is precompact on @ (and more generally on any compact subset of ) and
the proof is completed. O

5.2. Convergence of the spin fermionic observable. We now turn to the proof
of convergence for the spin fermionic observable. Fix a simply connected domain (€2, a,b)
with two points on the boundary. For ¢ > 0, always consider the spin fermionic observable
on the discrete spin Dobrushin domain (€23, as,bs). Since the domain is fixed, we set Fj =
nggya s.bs- We follow the same three steps as before, beginning with the s-holomorphicity.
The other two steps are only sketched, since they are more technical than in the FK-Ising
case, see [CS09].

PROPOSITION 5.7. For § >0, F5 is s-holomorphic on €25.
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FiGURE 13. The different possible cases in the proof of Proposition 5.7:
w is depicted on the top, and w’ on the bottom.

Proof. Let x,y two adjacent medial vertices connected by the edge e = [xy]. Let v
be the vertex of Q5 bordering the (medial) edge e. As before, set x,, (resp. y.) for the
contribution of w to F5(z) (resp. Fs(y)). We wish to prove that

(5.8) Y Puey(@w) = Y. Pogey(yu)-

Note that the curve v(w) finishes at x,, or at ., so that w cannot contribute to Fs(x)
and Fs(y) at the same time. Thus, it is sufficient to partition the set of configurations
into pairs of configurations (w,w’), one contributing to y, the other one to x, such that
PZ(e)('Tw) = Pé(e) (yw’)~

Without loss of generality, assume that e is pointing southeast, thus £(e) = R (other
cases can be done similarly). First note that

Ty = %e*i%[Wy(w)(aayxé)*Wwf(aéyb(s)](\/§_1)|w|7

where y(w) is the interface in the configuration w, 4" is any curve from as to bs (re-
call that W,/ (as,bs) does not depend on '), and Z is a normalizing real number not
depending on the configuration. There are six types of pairs that one can create, see
Fig. 13 depicting the four main cases. Case 1 corresponds to the case where the interface
reaches x or y and then extends by one step to reach the other vertex. In Case 2, ~
reaches v before = and y, and makes an additional step to x or y. In Case 3, v reaches x
or y and sees a loop preventing it from being extended to the other vertex (in contrast
to Case 1). In Case 4, v reaches x or y, then goes away from v and comes back to the
other vertex. Recall that the curve must always go to the left: in cases 1(a), 1(b), and
2 there can be a loop or even the past of v passing through v. However, this does not
change the computation.

We obtain the following table for z,, and y,. (we always express vy, in terms of
Zw). Moreover, one can compute the argument modulo 7 of contributions x,, since the
orientation of e is known. When upon projecting on R, the result follows.

configuration Case 1(a) Case 1(b) | Case 2 | Case 3(a) | Case 3(b) Case 4
T T Tw Tw Tw Tw Lw
Yeor (\/5 _ 1)ei7\'/4xw el;r:; 2o e—iﬂ'/4xw eSi‘ir/4:EW eSi‘ir/4:EW e—5i7\'/4xw

arg. x, mod 7 57/8 /8 /8 5m/8 57/8 57/8
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O

Proof of Theorem 2.11 (Sketch). The proof is roughly sketched. We refer to [CS09]
for a complete proof.

Since Fy is s-harmonic, one can define the observable Hy as in Theorem 4.19, with
the requirement that it is equal to 0 on the white face adjacent to b. Then, Hj is constant
equal to 0 on the boundary as in the FK-Ising case. Note that Hs should not converge
to 0, even if boundary conditions are 0 away from a. Firstly, H§ is superharmonic and
not harmonic, even though it is expected to be almost harmonic (away from a, Hj and
Hj are close), this will not be true near a. Actually, Hs should not remain bounded
around a.

The main difference compared to the previous section is indeed the unboundedness
of Hs near ag which prevents us from the immediate use of Proposition 4.3. It is actually
possible to prove that away from a, Hs remains bounded, see [CS09]|. This uses more
sophisticated tools, among which are the boundary modification trick (see [DCHN10]
for a quick description in the FK-Ising case, and [CS09] for the Ising original case). As
before, boundedness implies precompactness (and thus boundedness) of (Fs)s-0 away
from a via Proposition 4.3. Since Hj can be expressed in terms of Fy, it is easy to
deduce that Hy is also precompact.

Now consider a convergent subsequence (fs,,Hs,) converging to (f,H). One can
check that H is equal to 0 on 9\ {a}. Moreover, the fact that Hy equals 0 on the
boundary and is superharmonic implies that Hy is greater than or equal to 0 everywhere,
implying H > 0 in 2. This property of harmonic functions in a domain almost determines
them. There is only a one-parameter family of positive harmonic functions equal to 0
on the boundary. These functions are exactly the imaginary parts of conformal maps
from €2 to the upper half-plane H mapping a to co. We can further assume that b is
mapped to 0, since we are interested only in the imaginary part of these functions.

Fix one conformal map 1 from € to H, mapping a to oo and b to 0. There exists
A > 0 such that H = AIme. As in the case of the FK-Ising model, one can prove that
Im (/7 f?) = H, implying that f? = A¢’. Since f(b) =1 (it is obvious from the definition

that Fs(bs) =1), A equals m. In conclusion, f(z)=+/¢'(z)/¢'(b) for every z € Q. O

Note that some regularity hypotheses on the boundary near b are needed to ensure
that the sequence (f5, , Hs, ) also converges near b. This is the reason for assuming that
the boundary near b is smooth. We also mention that there is no normalization here.
The normalization from the point of view of b was already present in the definition of
the observable.

6. Convergence to chordal SLE(3) and chordal SLE(16/3)

The strategy to prove that a family of parametrized curves converges to SLE(k)
follows three steps:

e First, prove that the family of curves is tight.

e Then, show that any sub-sequential limit is a time-changed Loewner chain
with a continuous driving process (see Beffara’s course for details on Loewner
chains and driving processes).

e Finally, show that the only possible driving processes for the sub-sequential
limits is \/kB; where B; is a standard Brownian motion.

The conceptual step is the third one. In order to identify the Brownian motion as
being the only possible driving process for the curve, we find computable martingales
expressed in terms of the limiting curve. These martingales will be the limits of fermionic
observables. The fact that these (explicit) functions are martingales allows us to deduce
martingale properties of the driving process. More precisely, we aim to use Lévy’s
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FIGURE 14. Left: The event Ag(z,r, R). In the case of exploration
paths, it implies the existence of alternating open and closed paths.
Right: Rectangles R, Rr, Rp and Ry, crossed by closed paths in the
longer direction. The combination of these closed paths prevents the
existence of a crossing from the inner to the outer boundary of the
annulus.

theorem: a continuous real-valued process X such that X; and X7 - at are martingales
is necessarily \/aB;.

6.1. Tightness of interfaces for the FK-Ising model. In this section, we prove
the following theorem:

THEOREM 6.1. Fiz a domain (2,a,b). The family (vs)ss0 of random interfaces for
the critical FK-Ising model in (Q,a,b) is tight for the topology associated to the curve
distance.

The question of tightness for curves in the plane has been studied in the ground-
breaking paper [AB99]|. In that paper, it is proved that a sufficient condition for
tightness is the absence, at every scale, of annuli crossed back and forth an unbounded
number of times.

More precisely, for x € Q and r < R, let S, g(z) = (z+[-R, R]*) ~ (x + [-r,7]?) and
define Ag(z;7, R) to be the event that there exist k crossings of the curve 75 between
outer and inner boundaries of S, r(z).

THEOREM 6.2 (Aizenman-Burchard [AB99]). Let 2 be a simply connected domain
and let a and b be two marked points on its boundary. Denote by Ps the law of a random
curve 45 on s from as to bs. If there exist k € N, Cj, < oo and Ay > 2 such that for all
0<r<R andx €,

r 2k
Ps(Ac(air, R) < Ci( )
then the family of curves (3s) is tight.

We now show how to exploit this theorem in order to prove Theorem 6.1. The main
tool is Theorem 3.16.

LEMMA 6.3 (Circuits in annuli). Let E(xz,n,N) be the probability that there exists
an open path connecting the boundaries of Sp n(x). There exists a constant ¢ <1 such
that for all n >0,

¢;3d75n,2n(m) ((‘:(;E’ n, 2”)) <c.

Note that the boundary conditions on the boundary of the annulus are wired. Via
comparison between boundary conditions, this implies that the probability of an open
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path from the inner to the outer boundary is bounded uniformly on the configuration
outside of the annulus. This uniform bound allows us to decouple what is happening
inside the annulus with what is happening outside of it.

Proof. Assume z = 0. The result follows from Theorem 3.16 (proved in Section 7.2)
applied in the four rectangles Rp = [-2n,2n] x [-n,-2n], Ry = [-2n,-n] x [-2n,2n],
Ry =[-2n,2n] x [n,2n] and Rp = [n,2n] x [-2n,2n], see Fig. 14. Indeed, if there exists
a closed path crossing each of these rectangles in the longer direction, one can construct
from them a closed circuit in Sy 2,. Now, consider any of these rectangles, Rp for
instance. Its aspect ratio is 4, so that Theorem 3.16 implies that there is a closed path
crossing in the longer direction with probability at least ¢; > 0 (the wired boundary
conditions are the dual of the free boundary conditions). The FKG inequality (3.2)
implies that the probability of a circuit is larger than ¢ > 0. Therefore, the probability
of a crossing is at most ¢=1-¢f < 1. O

We are now in a position to prove Theorem 6.1.

Proof of Theorem 6.1. Fix z € Q, § < r < R and recall that we are on a lattice of
mesh size §. Let k to be fixed later. We first prove that
(6.1) ¢ (Aak(w;r,2r)) <

Qs,psd

for some constant ¢ < 1 uniform in z, k,r,¢ and the configuration outside of Sy 2, ().

If Aok (27, 2r) holds, then there are (at least) k open paths, alternating with & dual
paths, connecting the inner boundary of the annulus to its outer boundary. Since the
paths are alternating, one can deduce that there are k open crossings, each one being
surrounded by closed crossings. Hence, using successive conditionings and the compar-
ison between boundary conditions, the probability for each crossing is smaller than the
probability that there is a crossing in the annulus with wired boundary conditions (since
these boundary conditions maximize the probability of £(x;r,2r)). We obtain

k
o (Ao (57,20) < [0}, 5, 0,y (Eair20)]

Using Lemma 6.3, (b;lgsd,& 2T(z)(é’(gc;r, 2r)) <c< 1 and and (6.1) follows.
’ 1

One can further fix k large enough so that ¢* < 5. Now, one can decompose the
annulus S, g(x) into roughly Ins(R/r) annuli of the form S, o.(x), so that for the
previous k,

3
(6.2) i (Agi(a;r,R)) < (%) .

Hence, Theorem 6.2 implies that the family (vs) is tight. O

6.2. sub-sequential limits of FK-Ising interfaces are Loewner chains. This
subsection requires basic knowledge of Loewner chains and we refer to Beffara’s course
in this volume for an overview on the subject. In the previous subsection, traces of inter-
faces in Dobrushin domains were shown to be tight. The natural discrete parametriza-
tion does not lead to a suitable continuous parametrization. We would prefer our sub-
sequential limits to be parametrized as Loewner chains. In other words, we would like
to parametrize the curve by its so-called h-capacity. In this case, we say that the curve
is a time-changed Loewner chain.

THEOREM 6.4. Any sub-sequential limit of the family (vs)sso of FK-Ising interfaces
1s a time-changed Loewner chain.
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a

FIGURE 15. Left: An example of a fjord. Seen from b, the h-capacity
(roughly speaking, the size) of the hull does not grow much while the
curve is in the fjord. The event involves six alternating open and closed
crossings of the annulus. Right: Conditionally on the beginning of the
curve, the crossing of the annulus is unforced on the left, while it is
forced on the right (it must go ultimately to b).

Not every continuous curve is a time-changed Loewner chain. In the case of FK
interfaces, the limiting curve is fractal-like and has many double points, so that the fol-
lowing theorem is not a trivial statement. A general characterization for a parametrized
non-selfcrossing curve in (£, a,b) to be a time-changed Loewner chain is the following:

e its h-capacity must be continuous,

e its h-capacity must be strictly increasing.

e the curve grows locally seen from infinity in the following sense: for any ¢ >0
and for any € > 0, there exists 6 > 0 such that for any s < ¢, the diameter
of gs(Qs ~ Ns45) is smaller than e, where € is the connected component of
QN ~[0, s] containing b and g5 is the conformal map from Q, to H with hydro-
dynamical renormalization (see Beffara’s course).

The first condition is automatically satisfied by continuous curves. The third one usually
follows from the two others when the curve is continuous, so that the crucial condition
to check is the second one. This condition can be understood as being the fact that the
tip of the curve is visible from b at every time. In other words, the family of hulls created
by the curve (i.e. the complement of the connected component of Q \ 7; containing b)
is strictly increasing. This is the case if the curve does not enter long fjords created by
its past at every scale, see Fig. 15.

In the case of FK interfaces, this corresponds to so-called six arm event, and it
boils down to proving that Ag > 2. A general belief in statistical physics is that many
exponents, called universal exponents, do not depend on the model. For instance, the
so-called 5-arm exponent should equal 2. This would imply that Ag > A5 = 2. In
general, proving that the 5-arm exponent equals 2 is very hard. Therefore, we need to
invoke a stronger structural theorem to prove that sub-sequential limits are Loewner
chains. Recently, Kemppainen and the second author proved the required theorem, and
we describe it now.

For a family of parametrized curves (7s)ss0, define Condition (*) by:

Condition (*): There exist C' > 1 and A >0 such that for any 0 < § <r < R/C, for
any stopping time T and for any annulus Sy r(x) not containing v,, the probability that
~s crosses the annulus Sy g(z) (from the outside to the inside) after time T while it is
not forced to enter S, p(x) again is smaller than C(r/R)>, see Fig. 15.

Roughly speaking, the previous condition is a uniform bound on unforced crossings.
Note that it is necessary to assume the fact that the crossing is unforced.
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THEOREM 6.5 ([KS10]). If a family of curves (vs) satisfies Condition (x), then it
is tight for the topology associated to the curve distance. Moreover, any sub-sequential
limit (vs,) is to a time-changed Loewner chain.

Tightness is almost obvious, since Condition (*) implies the hypothesis in Aizenman-
Burchard’s theorem. The hard part is the proof that Condition (*) guarantees that the
h-capacity of sub-sequential limits is strictly increasing and that they create Loewner
chains. The reader is referred to [KS10] for a proof of this statement. We are now in a
position to prove Theorem 6.4:

Proof of Theorem 6.4. Lemma 6.3 allows us to prove Condition (*) without difficulty.
O

6.3. Convergence of FK-Ising interfaces to SLE(16/3). The FK fermionic
observable is now proved to be a martingale for the discrete curves and to identify the
driving process of any sub-sequential limit of FK-Ising interfaces.

LEMMA 6.6. Let 6 > 0. The FK fermionic observable M3(z) = FosaA[0,n],7m,b5 (2)
is a martingale with respect to (F,), where F, is the o-algebra generated by the FK
interface v[0,n].

Proof. For a Dobrushin domain (2§, as,bs), the slit domain created by "removing"
the first n steps of the exploration path is again a Dobrushin domain. Conditionally on
~[0,n], the law of the FK-Ising model in this new domain is exactly ;Yzﬁ’\bji (0] This

s 0,
observation implies that M?2(z) is the random variable 1zewe%iwﬂi (:9) conditionally on
Fn, therefore it is automatically a martingale. O

PROPOSITION 6.7. Any sub-sequential limit of (7s)ss0 which is a Loewner chain is
the (chordal) Schramm-Loewner Evolution with parameter k = 16/3.

Proof. Consider a sub-sequential limit + in the domain (€2, a,b) which is a Loewner
chain. Let ¢ be a map from (£2,a,b) to (H,0,00). Our goal is to prove that 5 = ¢(v) is
a chordal SLE(16/3) in the upper half-plane.

Since v is assumed to be a Loewner chain, ¥ is a growing hull from 0 to oo
parametrized by its h-capacity. Let W; be its continuous driving process. Also, de-
fine g; to be the conformal map from H~7[0,#] to H such that g;(z) = z+2t/2 +O(1/z?)
when z goes to oo.

Fix 2z’ € Q. For § > 0, recall that M2 (2') is a martingale for v5. Since the martingale
is bounded, Mft(z' ) is a martingale with respect to F,,, where 7; is the first time
at which ¢(vs) has an h-capacity larger than ¢. Since the convergence is uniform,
M;(z") = lims_o M2 (2') is a martingale with respect to G;, where G, is the o-algebra
generated by the curve 4 up to the first time its h-capacity exceeds t. By definition, this
time is ¢, and G; is the o-algebra generated by [0, ¢].

Recall that M;(z") is related to ¢(z’) via the conformal map from H \ F[0,¢] to
Rx(0,1), normalized to send 4; to —co and oo to co. This last map is exactly % In(ge—We).
Setting z = ¢(z"), we obtain that

63)  VAME = VM) = VIR WY = |-

is a martingale. Recall that, when z goes to infinity,

2t 1 2t 1
(6.4) g(z) = z+;+0(z—2) and g/(2) = 1—Z—2+o(z—3)
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For s <1,

&=

) ) 1-2t/22+0(1/23)
Vr-E[M{|G.] = Nz Wt+2t/z+0<1/z2>‘ ]

E [1 + —Wt/z .z (3Wt2 ~16t) /22 + 0(1/5°) | gs]

=51~

(1+ —E[Wi|Gs]/z + = E[3W2 16t|gs]/2:2+0(1/z3)).

Taking s =t yields

2 L + = 2 s)/2? z
V- M ‘\/z(“ —Ws/z (3W -16s)/2%+0O(1/ 3)).

Since E[MF|Gs] = MZ, terms in the previous asymptotic development can be matched
together so that E[W;|G,] = W, and E[W? - 33t|G,] = W2 - L5, Since W, is continuous,

S

Lévy’s theorem implies that Wy =/ ?Bt where By is a standard Brownian motion.

In conclusion, v is the image by ¢ ' of the chordal Schramm-Loewner Evolution
with parameter = 16/3 in the upper half-plane. This is exactly the definition of the
chordal Schramm-Loewner Evolution with parameter x = 16/3 in the domain (£, a,b).
O

Proof of Theorem 3.13. By Theorem 4.3, the family of curves is tight. Using The-
orem 6.4, any sub-sequential limit is a time-changed Loewner chain. Consider such a
sub-sequential limit and parametrize it by its h-capacity. Proposition 6.7 then implies
that it is the Schramm-Loewner Evolution with parameter x = 16/3. The possible limit
being unique, the claim is proved. O

6.4. Convergence to SLE(3) for spin Ising interfaces. The proof of Theo-
rem 2.10 is very similar to the proof of Theorem 3.13, except that we work with the spin
Ising fermionic observable instead of the FK-Ising model one. The only point differing
from the previous section is the proof that the spin fermionic observable is a martingale
for the curve. We prove this fact now and leave the remainder of the proof as an exercise.
Let v be the interface in the critical Ising model with Dobrushin boundary conditions.

LEMMA 6.8. Let § >0, the spin fermionic observable M?(z) = Fﬂg\'y[o,n],'y(n),bg(z) is
a martingale with respect to (F, ), where F,, is the o-algebra generated by the exploration
process y[0,n].

Proof. It is sufficient to check that F5(z) has the martingale property when v = v(w)
makes one step ;. In this case Fy is the trivial o-algebra, so that we wish to prove
(6.5) '“Bc [Fm asmlonbs(2)] = Fos ag.05(2):
where HZLbQ is the critical Ising measure with Dobrushin boundary conditions in §2.
Write Zag 45,65 (resp.  Zqge\[asa],zbs) fOr the partition function of the Ising model
with Dobrushin boundary conditions on (€25,as,b5) (resp. (Q° ~ [asz], z,b5)), i.e
Zgo\[asa],wbs = Y., (/2 -1). Note that Zgo\[asa],z,bs 15 almost the denominator of
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Fgg\[aw],m,bé(m). By definition,

a,b
ZQg,ag,bg :uﬁmﬂ (’yl = 1") = (\/5_ 1)ZQ°\[G5$],Z,I)5
—ilW,Y T,z w
Zwegno\[asm](myzé)e 2 ( 5)(\/5—1)‘ ‘
FQg\[agm],z,bg(zé)

it as,z w
Zwegng(ag,zg)e Wy (as, 6)(\/5_1)‘ ‘1{71=x}

FQg\[agm],z,bg (25)

_ (\/5_ 1)ei%W.y(z,b5)

— ei%W'y(aéabé)

In the second equality, we used the fact that 592\[,1 s21(%, 25) is in bijection with config-

urations of Eqe (as, 25) such that y1 = z (there is still a difference of weight of V2-1
between two associated configurations). This gives

—id as,z w
Zweg(ag,zg)e ZW‘Y( > 6)(\/5_1)‘ ‘1{’)’1:13}
e’i%Wv(aayba)Zgg '

b
:u’aﬁmg (’71 = :C) Fﬂg\[agz],z,bg(zts) =
,as,bs
The same holds for all possible first steps. Summing over all possibilities, we obtain the
expectation on one side of the equality and Fggﬁa 5.bs (25) on the other side, thus proving
(6.5). ]

EXERCISE 6.9. Prove that spin Ising interfaces converge to SLE(3). For tightness
and the fact that sub-sequential limits are Loewner chains, it is sufficient to check Con-
dition (). To do so, try to use Theorem 3.16 and the Edwards-Sokal coupling to prove
an intermediate result similar to Lemma 6.35.

7. Other results on the Ising and FK-Ising models

7.1. Massive harmonicity away from criticality. In this subsection, we con-
sider the fermionic observable F' for the FK-Ising model away from criticality. The Ising
model is still solvable and the observable becomes massive harmonic (i.e. Af = A\2f).
We refer to [BDC11] for details on this paragraph. We start with a lemma which
extends Lemma 5.2 to p # psaq = vV2/(1 +V/2).

LEMMA 7.1. Let pe (0,1). Consider a vertex v e Q° \ 90°,
(7.1) F(A)-F(C) = i [F(B)-F(D)]

where A is an adjacent (to v) medial edge pointing towards v and B, C' and D are
indezed in such a way that A, B, C and D are found in counterclockwise order. The
parameter « is defined by

o _ € (1-p)V2+p
e = — )
e im/Ap + (1-p)V/2

The proof of this statement follows along the same lines as the proof of Lemma 5.2.

PROPOSITION 7.2. For p <\/2/(1+/2), there exists € = £(p) > 0 such that for every
n,

(7.2) ¢p(0 <> in) < e,
where the mesh size of the lattice L is 1.

In this proof, the lattices are rotated by an angle 7/4. We will be able to estimate
the connectivity probabilities using the FK fermionic observable. Indeed, the observable
on the free boundary is related to the probability that sites are connected to the wired
arc. More precisely:
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LEMMA 7.3. Fiz (G,a,b) a Dobrushin domain and p € (0,1). Let u € G be a site on
the free arc, and e be a side of the black diamond associated to u which borders a white
diamond of the free arc. Then,

(7.3) |[F(e)| = qbg:lé(u < wired arc).

Proof. Let u be a site of the free arc and recall that the exploration path is the
interface between the open cluster connected to the wired arc and the dual open cluster
connected to the free arc. Since u belongs to the free arc, u is connected to the wired
arc if and only if e is on the exploration path, so that

(bg:lé(u < wired arc) = gb;:g(e €7).
The edge e being on the boundary, the exploration path cannot wind around it, so that
the winding (denoted W7) of the curve is deterministic (and easy to write in terms of
that of the boundary itself). We deduce from this remark that

,b i i b
[F(e)] = 16063V ey )] = [e2 ™ g0y (e € 7)]
- ¢Z’Z(e €)= ¢Z’g(u < wired arc).

O

We are now in a position to prove Proposition 7.2. We first prove exponential decay
in a strip with Dobrushin boundary conditions, using the observable. Then, we use
classical arguments of FK percolation to deduce exponential decay in the bulk. We
present the proof quickly (see [BDC11] for a complete proof).

Proof. Let p < psq, and consider the FK-Ising model of parameter p in the strip of
height ¢, with free boundary conditions on the top and wired boundary conditions on
the bottom (the measure is denoted by gb;};w). It is easy to check that one can define
the FK fermionic observable F in this case, by using the unique interface from —oo to
co. This observable is the limit of finite volume observables, therefore it also satisfies
Lemma 7.1.

Let ey, be the medial edge with center ik + 1—\};, see Fig. 16. A simple computation
using Lemmata 7.1 and 5.1 plus symmetries of the strip (via translation and horizontal
reflection) implies
[1+cos(m/4 - «)]cos(m/4 - «)

F (ek) .
[1+ cos(m/4+ a)]cos(m/4+ )
Using the previous equality inductively, we find for every ¢ > 0,

[F(e0)| = e |F (eo)| <&

(7.4) F(ep) =

with

(7.5) €= —In [1 +COS(7T/4_04)]COS(7T/4—04)'
[1+cos(m/4+a)]cos(m/4 + )
Since ey is adjacent to the free arc, Lemma 7.3 implies

¢r5 [l o 2] = [F(er)| <%

Now, let N € N and recall that ¢ , := ¢272,[_ N, w2 converges to the infinite-volume
measure with free boundary conditions qﬁg when N goes to infinity.

Consider a configuration in the box [N, N]?, and let A, be the site of the cluster
of the origin which maximizes the ¢*°-norm max{|z1|, |z2|} (it could be equal to N). If
there is more than one such site, we consider the greatest one in lexicographical order.
Assume that Apax equals a = ay +iaz with ag > |a1| (the other cases can be treated the
same way by symmetry, using the rotational invariance of the lattice).
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FIGURE 16. Left: Edges e, and epy1. Right: A dual circuit surround-
ing an open path in the box [-az,a2]?. Conditioning on to the most
exterior such circuit gives no information on the state of the edges inside
it.

By definition, if Ap,.x equals a, a is connected to 0 in [~as,as]?. In addition to this,
because of our choice of the free boundary conditions, there exists a dual circuit starting
from a +i/2 in the dual of [~a2,az]? (which is the same as L* n [-az — 1/2, a2 + 1/2]?)
and surrounding both a and 0. Let I' be the outermost such dual circuit: we get

(7.6) g,N(Amax =a)= Z ¢2,N(a < 0l'= 7)¢2,N(F = 7)7
¥

where the sum is over contours 7 in the dual of [-as, a2]2 that surround both a and 0.

The event {I" = v} is measurable in terms of edges outside or on ~. In addition,
conditioning on this event implies that the edges of v are dual-open. Therefore, from the
domain Markov property, the conditional distribution of the configuration inside = is a
FK percolation model with free boundary conditions. Comparison between boundary
conditions implies that the probability of {a <> 0} conditionally on {I' = v} is smaller
than the probability of {a < 0} in the strip S,, with free boundary conditions on the
top and wired boundary conditions on the bottom. Hence, for any such v, we get

o (a0l =7) <6775 (a = 0) = 67757 (a > Z) <™

(observe that for the second measure, Z is wired, so that {a < 0} and {a <> Z} have the
same probability). Plugging this into (7.6), we obtain

¢2 N(Amax _ a) < Ze—gmax{al,ag} ¢2 N(F _ ’7) < e—&az _ e—&max{ahaz}-
P

Fix n < N. We deduce from the previous inequality that there exists a constant
0 < ¢ < oo such that

g,N(O < 22\ [-n,n]?) < > g,N(Amax =a) < cne™t".
ae[-N,N]?\[-n,n]?

Since the estimate is uniform in N, we deduce that

(7.7) ¢ (0 <> in) < 9(0 < Z* \ [-n,n]?) < cne™®".

THEOREM 7.4. The critical parameter for the FK-Ising model is \/2/(1+/2). The
critical inverse-temperature for the Ising model is %ln(l +V2).
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Proof. The inequality p. > v/2/(1 + \/2) follows from Proposition 7.2 since there is
no infinite cluster for (bgﬁg when p < psq (the probability that 0 and in are connected
converges to 0). In order to prove that p. < v/2/(1 +/2), we harness the following
standard reasoning.

Let A, be the event that the point n € N is in an open circuit which surrounds
the origin. Notice that this event is included in the event that the point n € N is in a
cluster of radius larger than n. For p < v/2/(1++/2), a modification of (7.7) implies that
the probability of A, decays exponentially fast. The Borel-Cantelli lemma shows that
there is almost surely a finite number of n such that A,, occurs. In other words, there
is a.s. only a finite number of open circuits surrounding the origin, which enforces the
existence of an infinite dual cluster whenever p < \/2/(1++/2). Using duality, the primal
model is supercritical whenever p > +/2/(1 +/2), which implies p. < v/2/(1+2). O

In fact, the FK fermionic observable Fs in a Dobrushin domain (€25, as, bs) is massive
harmonic when p # psq. More precisely,

PROPOSITION 7.5. Let p # psd,
(7.8) AgFg(v) = (COS 200 — l)Fg(’U)

for every v e Q5 N 005, where As is the average on sites at distance /26 minus the value
at the point.

When 6 goes to 0, one can perform two scaling limits. If p = psq(1-Ad) goes to psq as
§ goes to 0, 35 (As +[1—cos2a]l) converges to A+ A*I. Then Fs (properly normalized)
should converge to a function f satisfying Af + A2f = 0 inside the domain. Except for
A =0, the limit will not be holomorphic, but massive harmonic. Discrete curves should
converge to a limit which is not absolutely continuous with respect to SLE(16/3). The
study of this regime, connected to massive SLEs, is a very interesting subject.

If we fix p < psq, one can interpret massive harmonicity in terms of killed random
walks. Roughly speaking, F5(v) is the probability that a killed random walk starting at
v visits the wired arc Jp,. Large deviation estimates on random walks allow to compute
the asymptotic of Fs inside the domain. In [BDC11], a surprising link (first noticed by
Messikh [Mes06]) between correlation lengths of the Ising model and large deviations
estimates of random walks is presented. We state the result in the following theorem:

THEOREM 7.6. Fiz B < . (and o associated to it) and set
m(p) := cos(2a).

For any x e L,

1 1
(7.9) - lim —Inpglogo(nz)] = - lim —In G,y (0, nx).
n—oo N, n—oon
Above, G, (0,2) := E*[mT] for any x € L and m < 1, where 7 is the hitting time of the
origin and P* is the law of a simple random walk starting at x.

The massive Green function G, (0,2) on the right of (7.9) has been widely studied.
In particular, we can compute the rate of decay in any direction and deduce Theorem 2.3
and Theorem 2.4 (see e.g. [Mes06]).

EXERCISE 7.7. Prove Lemma 7.1 and the fact that F is massive harmonic inside
the domain.
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7.2. Russo-Seymour-Welsh Theorem for FK-Ising. In this section, we sketch
the proof of Theorem 3.16; see [DCHN10]| for details. This theorem was improved in
[CDH12|. We would like to emphasize that this result does not make use of scaling
limits. Therefore, it is mostly independent of Sections 5 and 6.

We start by presenting a link between discrete harmonic measures and the proba-
bility for a point on the free arc d, of a FK Dobrushin domain to be connected to the
wired arc Opq.

Let us first define a notion of discrete harmonic measure in a FK Dobrushin domain
{25 which is slightly different from the usual one. First extend {25 U {25 by adding two
extra layers of vertices: one layer of white faces adjacent to 97, and one layer of black
faces adjacent to Op,. We denote the extended domains by Q(; and Qg.

Define (X}),,, to be the continuous-time random walk on the black faces that jumps
with rate 1 on neighbors, except for the faces on the extra layer adjacent to d,, onto
which it jumps with rate p := 2/(v/2+1). For B € Qs, we denote by H*(B) the probability
that the random walk X} starting at B hits Qs on the wired arc (in other words, if
the random walk hits dy, before hitting the extra layer adjacent to 9,). This quantity
is called the (modified) harmonic measure of d, seen from B. Similarly, one can define
a modified random walk X; and the associated harmonic measure of 97, seen from w.
We denote it by H°(w).

PROPOSITION 7.8. Consider a FK Dobrushin domain (Qs,as,bs), for any site B on
the free arc Oqp,

(7.10) VH (W) < 6% [B < 0] < \JH(B),

where W is any dual neighbor of B not on 0y, .

This proposition raises a connection between harmonic measure and connectivity
properties of the FK-Ising model. To study connectivity probabilities for the FK-Ising
model, it suffices to estimate events for simple random walks (slightly repelled on the
boundary). The proof makes use of a variant of the "boundary modification trick".
This trick was introduced in [CS09] to prove Theorem 2.11. It can be summarized as
follows: one can extend the function H by 0 or 1 on the two extra layers, then H* (resp.
H®) is subharmonic (resp. superharmonic) for the Laplacian associated to the random
walk X (resp. X°). Interestingly, H® is not subharmonic for the usual Laplacian. This
trick allows us to fix the boundary conditions (0 or 1), at the cost of a slightly modified
notion of harmonicity.

We can now give the idea of the proof of Theorem 3.16 (we refer to [DCHN10] for
details). The proof is a second moment estimate on the number of pairs of connected
sites on opposite edges of the rectangle. We mention that another road to Theorem 3.16
has been proposed in [KS10].

Proof of Theorem 3.16 (Sketch). Let R, = [0,4n]x[0,n] be a rectangle and let N be
the number of pairs (x,y), z € {0} x[0,n] and y € {4n} x [0,n] such that z is connected
to y by an open path. The expectation of N is easy to obtain using the previous
proposition. Indeed, it is the sum over all pairs x,y of the probability of {z < y} when
the boundary conditions are free. Free boundary conditions can be thought of as a
degenerate case of a Dobrushin domain, where a = b = y. In other words, we want to
estimate the probability that 2 is connected to the wired arc dy, = {y}. Except when z
and y are close to the corners, the harmonic measure of y seen from x is of order 1/n?,
so that the probability of {x <> y} is of order 1/n. Therefore, there exists a universal
constant ¢ > 0 such that ¢£Sd7Rn [N] > en.

The second moment estimate is harder to obtain, as usual. Nevertheless, it can be
proved, using successive conditioning and Proposition 7.8, that ¢£ R [N 2] < Cn? for
some universal C' > 0; see [DCHN10] for a complete proof. Using the Cauchy-Schwarz
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inequality, we find

(7.11) O, IN>010) 5 [N*] 2 6 o [NT?

which implies

(7.12) gb{zmpsd[ﬂ open crossing] = (b{%mpsd [N>0] > &/C

uniformly in n. O

We have already seen that Theorem 3.16 is central for proving tightness of interfaces.
We would also like to mention an elementary consequence of Theorem 3.16.

PROPOSITION 7.9. There exist constants 0 < ¢,C,d, A < oo such that for any sites
z,yel,

c C

7.13 < pg.lozoy] £ ——x
( ) B [ y] |$_y|A

|z = yl°
where g, is the unique infinite-volume measure at criticality.

Proof. Using the Edwards-Sokal coupling, (7.13) can be rephrased as

c C
< fpa2lroyl < EES

where ¢,,_, 2 is the unique FK-Ising infinite-volume measure at criticality. In order to
get the upper bound, it suffices to prove that ¢,,, 2(0 < 9Ag) decays polynomially
fast, where Ay is the box of size k = |x — y| centered at z. We consider the annuli
A, = Son-1 9n () for n <Ing k, and £(A,) the event that there is an open path crossing
A,, from the inner to the outer boundary. We know from Corollary 6.3 (which is a direct
application of Theorem 3.16) that there exists a constant ¢ < 1 such that

O, poa2(E(AR)) <

for all n > 1. By successive conditionings, we then obtain
Ins k&

¢psd12(0 > aAk) < H ¢114n,p5d,2(£(‘4n)) < CN7
n=1

[z —y|°

and the desired result follows. The lower bound can be done following the same kind of
arguments (we leave it as an exercise). |

Therefore, the behavior at criticality (power law decay of correlations) is very differ-
ent from the subcritical phase (exponential decay of correlations). Actually, the previous
result is far from optimal. One can compute correlations between spins of a domain very
explicitly. In particular, pg, [0,0,] behaves like |z —y|~*, where o = 1/4. We mention
that « is one example of critical exponent. Even though we did not discuss how compute
critical exponents, we mention that the technology developed in these notes has for its
main purpose their computation.

To conclude this section, we mention that Theorem 3.16 leads to ratio mixing prop-
erties (see Exercise 7.10) of the Ising model. Recently, Lubetzky and Sly [LS10] used
these spatial mixing properties in order to prove an important conjecture on the mixing
time of the Glauber dynamics of the Ising model at criticality.

EXERCISE 7.10 (Spatial mixing). Prove that there exist ¢, A > 0 such that for any
r< R,

A
(114)  [0psa(A0B) = dpsa(bpua(B) < () 0n.0a()6p.a(B)

for any event A (resp. B) depending only on the edges in the box [-r,r]? (resp. outside
[-R,R]?).
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7.3. Discrete singularities and energy density of the Ising model. In this
subsection, we would like to emphasize the fact that slight modifications of the spin
fermionic observable can be used directly to compute interesting quantities of the model.
Now, we briefly present the example of the energy density between two neighboring sites
2 and y (Theorem 2.12).

So far, we considered observables depending on a point a on the boundary of a
domain, but we could allow more flexibility and move a inside the domain: for as € 23,
we define the fermionic observable FS(‘: (25) for z5 + as by

Y (as,zs) 67%2-1/1/7(“))(a(s’Zé)(\/5 - 1)|w|
Zweg(\/i - 1)|w|

where X is a well-chosen explicit complex number. Note that the denominator of the
observable is simply the partition function for free boundary conditions Z ! .G Actually,
using the high-temperature expansion of the Ising model and local rearraﬁé‘ements, the
observable can be related to spin correlations [HS10]:

(7.15) Fai(z) = A

LEMMA 7.11. Let [zy] be an horizontal edge of Q5. Then
N tth0,[020y] = Puao) [FS; ()] + Pagaa) [, (d)]
i - 1+ —q -5l
where a is the center of [xy], ¢ = a+6 % andd=a-07.

If A is chosen carefully, the function Fy* is s-holomorphic on Q5 \ {as}. Moreover,
its complex argument is fixed on the boundary of the domain. Yet, the function is
not s-holomorphic at as (meaning that there is no way of defining FG_(as) so that the
function is s-holomorphic at as). In other words, there is a discrete singularity at a,
whose behavior is related to the spin-correlation.

We briefly explain how one can address the problem of discrete singularities, and
we refer to [HS10] for a complete study of this case. In the continuum, singularities are
removed by subtracting Green functions. In the discrete context, we will do the same.
We thus need to construct a discrete s-holomorphic Green function. Preholomorphic
Green functions® were already constructed in [Ken00|. These functions are not s-
holomorphic but relevant linear combinations of them are, see [HS10]. We mention
that the s-holomorphic Green functions are very explicit and their convergence when
the mesh size goes to 0 can be studied.

Proof of Theorem 2.12 (Sketch). The function F§ /6 converges uniformly on any
compact subset of Q \ {a}. This fact is not helpful, since the interesting values of F}*
are located at neighbors of the singularity. It can be proved that, subtracting a well-
chosen s-holomorphic Green function g?fé , one can erase the singularity at as. More

precisely, one can show that [F” - g?fé /0 converges uniformly on ) towards an explicit
conformal map. The value of this map at a is %gb;(a). Now, 'LL£C7QS [0z0y] can be
expressed in terms of Fy* for neighboring vertices of as. Moreover, values of gg‘; for
neighbors of a5 can be computed explicitly. Using the fact that
1

B =gl 8 S [FE - g )
and Lemma 7.11, the convergence result described above translates into the following
asymptotics for the spin correlation of two neighbors

V2

Mgcagé [O—Io—y] - 2

_ 5 %(b;(a) + o(d).

65.c. satisfying the Cauchy-Riemann equation except at a certain point.
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8. Many questions and a few answers

8.1. Universality of the Ising model. Until now, we considered only the square
lattice Ising model. Nevertheless, normalization group theory predicts that the scaling
limit should be universal. In other words, the limit of critical Ising models on planar
graphs should always be the same. In particular, the scaling limit of interfaces in spin
Dobrushin domains should converge to SLE(3).

Of course, one should be careful about the way the graph is drawn in the plane.
For instance, the isotropic spin Ising model of Section 2, when considered on a stretched
square lattice (every square is replaced by a rectangle), is not conformally invariant (it is
not invariant under rotations). Isoradial graphs form a large family of graphs possessing
a natural embedding on which a critical Ising model is expected to be conformally
invariant. More details are now provided about this fact.

DEFINITION 8.1. A rhombic embedding of a graph G is a planar quadrangulation
satisfying the following properties:
e the vertices of the quadrangulation are the vertices of G and G*,
e the edges connect vertices of G to vertices of G* corresponding to adjacent faces
of G,
o all the edges of the quadrangulation have equal length, see Fig. 10.
A graph which admits a rhombic embedding is called isoradial.

Isoradial graphs are fundamental for two reasons. First, discrete complex analy-
sis on isoradial graphs was extensively studied (see e.g. [Mer01, Ken02, CS08]) as
explained in Section 4. Second, the Ising model on isoradial graphs satisfies very spe-
cific integrability properties and a natural critical point can be defined as follows. Let
Jzy = arctanh[tan (6/2)] where 6 is the half-angle at the corner = (or equivalently y)
made by the rhombus associated to the edge [xy]. One can define the critical Ising
model with Hamiltonian

H(o) = =) Juyos0y.
T~y
This Ising model on isoradial graphs (with rhombic embedding) is critical and confor-
mally invariant in the following sense:

THEOREM 8.2 (Chelkak, Smirnov [CS09]). The interfaces of the critical Ising model
on isoradial graphs converge, as the mesh size goes to 0, to the chordal Schramm-Loewner
Evolution with k = 3.

Note that the previous theorem is uniform on any rhombic graph discretizing a given
domain (€2, a,b), as soon as the edge-length of rhombi is small enough. This provides a
first step towards universality for the Ising model.

QUESTION 8.3. Since not every topological quadrangulation admits a rhombic embed-
ding [KS05], can another embedding with a sufficiently nice version of discrete complex
analysis always be found?

QUESTION 8.4. Is there a more general discrete setup where one can get similar
estimates, in particular convergence of preholomorphic functions to the holomorphic
ones in the scaling limit?

In another direction, consider a biperiodic lattice £ (one can think of the universal
cover of a finite graph on the torus), and define a Hamiltonian with periodic correlations
(Jzy) by setting H(o) = -, Juyoz0y. The Ising model with this Hamiltonian makes
perfect sense and there exists a critical inverse temperature separating the disordered
phase from the ordered phase.

QUESTION 8.5. Prove that there always exists an embedding of L such that the Ising
model on L is conformally invariant.



266 HUGO DUMINIL-COPIN AND STANISLAV SMIRNOV
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cluster-weight ¢

subcritical phase

critical phase: first order ——
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critical phase: SLE (m)
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2 FK Ising

edge-weight p |
F1GURE 17. The phase diagram of the FK percolation model on the
square lattice.

8.2. Full scaling limit of critical Ising model. It has been proved in [KS10]
that the scaling limit of Ising interfaces in Dobrushin domains is SLE(3). The next
question is to understand the full scaling limit of the interfaces. This question raises
interesting technical problems. Consider the Ising model with free boundary conditions.
Interfaces now form a family of loops. By consistency, each loop should look like a
SLE(3). In [HK11|, Hongler and Kytold made one step towards the complete picture
by studying interfaces with +/ — /free boundary conditions.

Sheffield and Werner [SW10a, SW10b| introduced a one-parameter family of pro-
cesses of non-intersecting loops which are conformally invariant — called the Conformal
Loop Ensembles CLE(k) for k > 8/3. Not surprisingly, loops of CLE(k) are locally simi-
lar to SLE(k), and these processes are natural candidates for the scaling limits of planar
models of statistical physics. In the case of the Ising model, the limits of interfaces all
together should be a CLE(3).

8.3. FK percolation for general cluster-weight ¢ > 0. The FK percolation
with cluster-weight ¢ € (0, 00) is conjectured to be critical for p.(q) = \/q/(1+/q) (see
[BDC10] for the case ¢ > 1). Critical FK percolation is expected to exhibit a very rich
phase transition, whose properties depend strongly on the value of ¢ (see Fig. 17). We
use generalizations of the FK fermionic observable to predict the critical behavior for
general q.

8.3.1. Case 0 < q < 4. The critical FK percolation in Dobrushin domains can be
associated to a loop model exactly like the FK-Ising model: each loop receives a weight
V4 In this context, one can define a natural generalization of the fermionic observable
on medial edges, called a parafermionic observable, by the formula

(81) F(e) _ E(Zg,a(s,b(g,p,q[ea.iWW(&bS) 1eev];
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where o = 0(q) is called the spin (o takes a special value described below). Lemma 5.2
has a natural generalization to any ¢ € [0, 00):

PROPOSITION 8.6. For g <4 and any FK Dobrushin domain, consider the observable
F at criticality with spin o = 1 - %arccos(\/@/Q). For any medial vertex inside the
domain,

(8.2) F(N)-F(S) = i[F(E)- F(W)]
where N, E, S and W are the four medial edges adjacent to the vertex.

These relations can be understood as Cauchy-Riemann equations around some ver-
tices. Importantly, F' is not determined by these relations for general ¢ (the number of
variables exceeds the number of equations). For ¢ = 2, which corresponds to o = 1/2, the
complex argument modulo 7 of the observable offers additional relations (Lemma 5.1)
and it is then possible to obtain the preholomophicity (Proposition 5.3).

Parafermionic observables can be defined on medial vertices by the formula

1
F(v) =5 ¥ F(e)
e~v
where the summation is over medial edges with v as an endpoint. Even though they are

only weakly-holomorphic, one still expects them to converge to a holomorphic function.
The natural candidate for the limit is not hard to find:

CONJECTURE 8.7. Let g < 4 and (Q,a,b) be a simply connected domain with two
points on its boundary. For every z € (),

1
(26)
where o = 1 - 2 arccos(y/q/2), Fs is the observable (at pc(q)) in discrete domains with
spin o, and ¢ is any conformal map from Q to R x (0,1) sending a to —oo and b to co.

(8.3) Fs(z) - ¢'(2)7 when -0

Being mainly interested in the convergence of interfaces, one could try to follow the
same program as in Section 6:

e Prove compactness of the interfaces.

e Show that sub-sequential limits are Loewner chains (with unknown random
driving process Wy).

e Prove the convergence of discrete observables (more precisely martingales) of
the model.

e Extract from the limit of these observables enough information to evaluate the
conditional expectation and quadratic variation of increments of W; (in order
to harness the Lévy theorem). This would imply that W; is the Brownian
motion with a particular speed x and so curves converge to SLE(k).

The third step, corresponding to Conjecture 8.7, should be the most difficult. Note
that the first two steps are also open for ¢ # 0,1,2. Even though the convergence of
observables is still unproved, one can perform a computation similar to the proof of
Proposition 6.7 in order to identify the possible limiting curves (this is the fourth step).
The following conjecture is thus obtained:

CONJECTURE 8.8. For q < 4, the law of critical FK interfaces converges to the
Schramm-Loewner Evolution with parameter k = 4w/ arccos(—/q/2).

The conjecture was proved by Lawler, Schramm and Werner [LSWO04a] for ¢ = 0,
when they showed that the perimeter curve of the uniform spanning tree converges to
SLE(8). Note that the loop representation with Dobrushin boundary conditions still
makes sense for ¢ = 0 (more precisely for the model obtained by letting ¢ — 0 and
p/q = 0). In fact, configurations have no loops, just a curve running from a to b (which
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then necessarily passes through all the edges), with all configurations being equally
probable. The ¢ = 2 case corresponds to Theorem 3.13. All other cases are wide open.
The g = 1 case is particularly interesting, since it is actually bond percolation on the
square lattice.

8.3.2. Case q > 4. The picture is very different and no conformal invariance is ex-
pected to hold. The phase transition is conjectured to be of first order : there are
multiple infinite-volume measures at criticality. In particular, the critical FK perco-
lation with wired boundary conditions should possess an infinite cluster almost surely
while the critical FK percolation with free boundary conditions should not (in this case,
the connectivity probabilities should even decay exponentially fast). This result is known
only for ¢ > 25.72 (see [Gri06] and references therein).

The observable still makes sense in the ¢ > 4 case, providing o is chosen so that
2sin(7o/2) = \/q. Interestingly, o becomes purely imaginary in this case. A natural
question is to relate this change of behavior for o with the transition between conformally
invariant critical behavior and first order critical behavior. Let us mention that the
observable was used to compute the critical point on isoradial graphs for ¢ > 4 [BDS12]
and to show that the phase transition is second order for 1 < ¢ <4 [Dum12].

8.4. O(n) models on the hexagonal lattice. The Ising fermionic observable
was introduced in [SmiO6| in the setting of general O(n) models on the hexagonal
lattice. This model, introduced in [DMNS81] on the hexagonal lattice, is a lattice
gas of non-intersecting loops. More precisely, consider configurations of non-intersecting
simple loops on a finite subgraph of the hexagonal lattice and introduce two parameters:
a loop-weight n > 0 (in fact n > —2) and an edge-weight a > 0, and ask the probability
of a configuration to be proportional to n# 100Psg# edses

Alternatively, an interface between two boundary points could be added: in this
case configurations are composed of non-intersecting simple loops and one self-avoiding
interface (avoiding all the loops) from a to b.

The O(0) model is the self-avoiding walk, since no loop is allowed (there is still a self-
avoiding path from a to b). The O(1) model is the high-temperature expansion of the
Ising model on the hexagonal lattice. For integers n, the O(n)-model is an approximation
of the high-temperature expansion of spin O(n)-models (models for which spins are n-
dimensional unit vectors).

The physicist Bernard Nienhuis [Nie82, Nie84| conjectured that O(n)-models
in the range n € (0,2) (after certain modifications n € (-2,2) would work) exhibit a
Berezinsky-Kosterlitz-Thouless phase transition [Ber72, KT73|:

CONJECTURE 8.9. Let z.(n) =1/\V/2+V2-n. For x <x.(n) (resp. = >x.(n)) the

probability that two points are on the same loop decays exponentially fast (as a power

law).

The conjecture was rigorously established for two cases only. When n = 1, the
critical value is related to the critical temperature of the Ising model. When n = 0,

it was recently proved in [DCS10] that \/2++/2 is the connective constant of the
hexagonal lattice.

It turns out that the model exhibits one critical behavior at z.(n) and another on
the interval (z.(n),+o0), corresponding to dilute and dense phases (when in the limit
the loops are simple and non-simple respectively), see Fig. 18. In addition to this, the
two critical regimes are expected to be conformally invariant.

Exactly as in the case of FK percolation, the definition of the spin fermionic observ-
able can be extended. For a discrete domain {2 with two points on the boundary a and
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loop-weight n
TXY model
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FIGURE 18. The phase diagram of the O(n) model on the hexagonal lattice.

b, the parafermionic observable is defined on middle of edges by

—-oiW, (a,z) .4 edges in w,, # loops in w
Zweg(a,z) € 7 ):E n

e—0iWy (a,b) -# edges in wp# loops in w

8.4 F =
( ) (Z) Zweg(a,b)

where E(a, z) is the set of configurations of loops with one interface from a to z. One
can easily prove that the observable satisfies local relations at the (conjectured) critical
value if o is chosen carefully.

PROPOSITION 8.10. If x = z.(n) = 1/\/2+ /2 -n, let F be the parafermionic ob-
servable with spin o = o(n) =1 - = arccos(-n/2); then
(8.5) (p-v)F(p) +(¢-v)F(q) + (r-v)F(r) = 0
where p, q and r are the three mid-edges adjacent to a verter v.

This relation can be seen as a discrete version of the Cauchy-Riemann equation on
the triangular lattice. Once again, the relations do not determine the observable for

general n. Nonetheless, if the family of observables is precompact, then the limit should
be holomorphic and it is natural to conjecture the following:

CONJECTURE 8.11. Let n € [0,2] and (Q,a,b) be a simply connected domain with
two points on the boundary. For x =x.(n),

V()Y
(8.6) Fs5(z) - (

¢'(b)
where o =1 - % arccos(—n/2), Fs is the observable in the discrete domain with spin o
and v is any conformal map from ) to the upper half-plane sending a to oo and b to 0.

A conjecture on the scaling limit for the interface from a to b in the O(n) model
can also be deduced from these considerations:

CONJECTURE 8.12. Forn€[0,2) and x.(n) = 1/\/2+ /2 —n, as the mesh size goes
to zero, the law of O(n) interfaces converges to the chordal Schramm-Loewner Evolution
with parameter k = 4w /(27 — arccos(-n/2)).

This conjecture is only proved in the case n = 1 (Theorem 2.10). The other cases
are open. The case n = 0 is especially interesting since it corresponds to self-avoiding
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walks. Proving the conjecture in this case would pave the way to the computation of
many quantities, including the mean-square displacement exponent; see [LSW04b]| for
further details on this problem.

The phase < z.(n) is subcritical and not conformally invariant (the interface
converges to the shortest curve between a and b for the Euclidean distance). The critical
phase x € (z.(n),o0) should be conformally invariant, and universality is predicted:
the interfaces are expected to converge to the same SLE. The edge-weight Z.(n) =

1/v/2-+/2 - n, which appears in Nienhuis’s works [Nie82, Nie84|, seems to play a
specific role in this phase. Interestingly, it is possible to define a parafermionic observable
at Z.(n) with a spin &(n) other than o(n):

PROPOSITION 8.13. If x = Z.(n), let F' be the parafermionic observable with spin

G=5(n)=-1%- % arccos(—n/2); then

(8.7) (p-v)F(p) +(¢-v)F(q) + (r-v)F(r) = 0
where p, q and r are the three mid-edges adjacent to a vertex v.

A convergence statement corresponding to Conjecture 8.11 for the observable with
spin & enables to predict the value of x for Z.(n), and thus for every x > x.(n) thanks
to universality.

CONJECTURE 8.14. For n € [0,2) and x € (z.(n),o), as the lattice step goes to
zero, the law of O(n) interfaces converges to the chordal Schramm-Loewner Evolution
with parameter k = 4w/ arccos(-n/2).

The case n = 1 corresponds to the subcritical high-temperature expansion of the Ising
model on the hexagonal lattice, which also corresponds to the supercritical Ising model
on the triangular lattice via Kramers-Wannier duality. The interfaces should converge
to SLE(6). In the case n = 0, the scaling limit should be SLE(8), which is space-filling.
For both cases, a (slightly different) model is known to converge to the corresponding
SLE (site percolation on the triangular lattice for SLE(6), and the perimeter curve of
the uniform spanning tree for SLE(8)). Yet, the known proofs do not extend to this
context. Proving that the whole critical phase (z.(n),c0) has the same scaling limit
would be an important example of universality (not on the graph, but on the parameter
this time).

The two previous sections presented a program to prove convergence of discrete
curves towards the Schramm-Loewner Evolution. It was based on discrete martingales
converging to continuous SLE martingales. One can study directly SLE martingales (i.e.
with respect to o(v[0,t])). In particular, g/(2)*[g:(2) - W:]? is a martingale for SLE(k)
where k = 4(a - 8)/[B(8 —1)]. All the limits in these notes are of the previous forms,
see e.g. Proposition 6.7. Therefore, the parafermionic observables are discretizations of
very simple SLE martingales.

QUESTION 8.15. Can new preholomorphic observables be found by looking at dis-
cretizations of more complicated SLE martingales?

Conversely, in [SS05|, the harmonic explorer is constructed in such a way that a
natural discretization of a SLE(4) martingale is a martingale of the discrete curve. This
fact implied the convergence of the harmonic explorer to SLE(4).

QUESTION 8.16. Can this reverse engineering be done for other values of k in order
to find discrete models converging to SLE?

8.5. Discrete observables in other models. The study can be generalized to a
variety of lattice models, see the work of Cardy, Ikhlef, Riva, Rajabpour [IC09, RCO07,
RCO06]. Unfortunately, the observable is only partially preholomorphic (satisfying only
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Fi1cURE 19. Different possible plaquettes with their associated weights.

some of the Cauchy-Riemann equations) except for the Ising case. Interestingly, weights
for which there exists a half-holomorphic observable which is not degenerate in the
scaling limit always correspond to weights for which the famous Yang-Baxter equality
holds.

QUESTION 8.17. The approach to two-dimensional integrable models described here
is in several aspects similar to the older approaches based on the Yang-Baxter relations
[Bax89|. Can one find a direct link between the two approaches?

Let us give the example of the O(n) model on the square lattice. We refer to [IC09]
for a complete study of the following.

It is tempting to extend the definition of O(n) models to the square lattice in order to
obtain a family of models containing self-avoiding walks on Z? and the high-temperature
expansion of the Ising model. Nevertheless, difficulties arise when dealing with O(n)
models on non-trivalent graphs. Indeed, the indeterminacy when counting intersecting
loops prevents us from defining the model as in the previous subsection.

One can still define a model of loops on G c L by distinguishing between local
configurations: faces of G* c L* are filled with one of the nine plaquettes in Fig. 19. A
weight p, is associated to every face v € G* depending on the type of the face (meaning its
plaquette). The probability of a configuration is then proportional to n# 1OPSTT o py.

REMARK 8.18. The case u1 =us =v=x,t=1 and wy = wy =n =0 corresponds to
vertex self-avoiding walks on the square lattice. The case uy = ug =v = \/El = \/E2 =x
and n =t =1 corresponds to the high-temperature expansion of the Ising model. The
caset =u; =us =v =0, wy =we =1 and n > 0 corresponds to the FK percolation at
criticality with q =n.

A parafermionic observable can also be defined on the medial lattice:

—ioW, (a,z) n 7 loops I

Zwéf(a,z) € vel.x Pv

Lwee n# loops [Toerx Po
where £ corresponds to all the configurations of loops on the graph, and £(a, z) corre-
sponds to configurations with loops and one interface from a to z.

One can then look for a local relation for F' around a vertex v, which would be a
discrete analogue of the Cauchy-Riemann equation:

(8.9) F(N)-F(S) = i[F(E)-F(W)],

An additional geometric degree of freedom can be added: the lattice can be stretched,
meaning that each rhombus is not a square anymore, but a rhombus with inside angle
a.

(8.8) F(z) =

As in the case of FK percolations and spin Ising, one can associate configurations
by pairs, and try to check (8.9) for each of these pairs, thus leading to a certain number
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of complex equations. We possess degrees of freedom in the choice of the weights of the
model, of the spin ¢ and of the geometric parameter «. Very generally, one can thus try
to solve the linear system and look for solutions. This leads to the following discussion:

Case v = 0 and n = 1: There exists a non-trivial solution for every spin o, which
is in bijection with a so-called six-vertex model in the disordered phase. The height
function associated with this model should converge to the Gaussian free field. This
is an example of a model for which interfaces cannot converge to SLE (in [IC09]; it is
conjectured that the limit is described by SLE(4, p)).

Case v =0 and n # 1: There exist unique weights associated to an observable with
spin —1. This solution is in bijection with the FK percolation at criticality with /g =
n+ 1. Nevertheless, physical arguments tend to show that the observable with this spin
should have a trivial scaling limit. It would not provide any information on the scaling
limit of the model itself; see [IC09] for additional details.

Case v # 0: Fix n. There exists a solution for o = S’—Z - % where 7 € [-7, 7] satisfies

—% = cos2n. Note that there are a priori four possible choices for . In general the

following weights can be found:

t = -sin(2¢-3n/2) + sin(5n/2) - sin(3n/2) + sin(n/2)
up = -2 sin(n) cos(3n/2-¢)

ug = =2 sin(n) sin(¢)

v = -2 sin(¢) cos(3n/2-¢)

wy = =2 sin(¢d—n) cos(3n/2 - )

wy = 2 cos(n/2-¢) sin(¢)
where ¢ = (1 + 0)a. We now interpret these results:

When 7 € [0, 7], the scaling limit has been argued to be described by a Coulomb gas
with a coupling constant 2n/7. In other words, the scaling limit should be the same as
the corresponding O(n) model on the hexagonal lattice. In particular, interfaces should
converge to the corresponding Schramm-Loewner Evolution.

When 7 € [-7,0], the scaling limit curve cannot be described by SLE, and it pro-

vides yet another example of a two-dimensional model for which the scaling limit is not
described via SLE.
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