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In recent years, important progress has been made in the field of two-dimensional
statistical physics. One of the most striking achievements is the proof of the Cardy-
Smirnov formula: this theorem, together with the introduction of Schramm-Loewner
Evolution and techniques developed over the years in percolation, allow precise descrip-
tions of the critical and near-critical regimes of the model. This survey aims to describe
the different steps leading to the proof that the infinite-cluster density θ(p) for site per-

colation on the triangular lattice behaves like (p− 1/2)
5/36+o(1)
+ when p approaches its

critical value pc = 1/2.

1 Introduction

Percolation as a physical model was introduced by Broadbent and Hammersley in 1950 [BH57].
For p ∈ (0, 1), (site) percolation on the triangular lattice T is a random configuration sup-
ported on the vertices (or sites), each one being open with probability p and closed otherwise,
independently of the others. By duality, this can also be seen as a random coloring of the faces
of the hexagonal lattice; we will use this representation extensively, if only because it makes
for prettier pictures. . . Denote the measure on configurations by Pp. For general background
on percolation, we refer the reader to the books of Grimmett [Gri99] and Kesten [Kes82].

We will be interested in the connectivity properties of the model. Two sites a and b of
the triangular lattice are connected (which will be denoted by a ↔ b) if there exists a path
of neighboring open sites starting at a and ending at b. If there exists a path of neighboring
closed sites starting at a and ending at b, we will write a

⋆↔ b. A cluster is a connected
component of open sites.

It is classical that there exists pc ∈ (0, 1) — called the critical point — such that for
p < pc, there exists almost surely no infinite cluster, while for p > pc, there exists almost
surely a unique such cluster.

Theorem 1.1. The critical of site-percolation on the triangular lattice point equals 1/2.

This theorem was first proved in the case of bond percolation on the square lattice by
Kesten in [Kes80].

The proof can be summarized as follow. First, crossing probabilities at p = 1/2 for
rectangles [0, n] × [0, ρn] are proved to remain bounded away from 0 and 1 uniformly in n.
The main ingredients are the self-duality of the model at p = 1/2 and what is known as
Russo-Seymour-Welsh theory. Second, crossing probabilities are proved to converge to 0 and
1 as n goes to infinity when p < 1/2 and p > 1/2 respectively. The proof of this statement
is based on a sharp threshold argument.

Once the critical point has been determined, it is natural to study the phase transition
of the model, i.e. the behavior when p crosses pc. Physicists are interested in the thermody-
namical properties of the model, such as the infinite cluster density

θ(p) := Pp(0 ↔ ∞)

when p > pc, the susceptibility (or mean cluster-size)

ξ(p) :=
∑

x∈T

Pp(0 ↔ x)
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or the correlation length Lp (see Definition 3.5) when p < pc. The behavior of these quantities
near pc is governed by power laws, more precisely one expects:

θ(p) = (p− pc)
β+o(1) when pց pc,

ξ(p) = (p− pc)
−ν′+o(1) when pր pc,

Lp = (p− pc)
−ν+o(1) when pր pc.

These critical exponents β, ν and ν ′ are not independent of each other but satisfy equa-
tions: Kesten’s scaling relations relate β and ν to the so-called monochromatic one-arm and
polychromatic four arm exponents at criticality. The important feature of these relations is
that they relate quantities defined away from criticality to fractal properties of the critical
regime. In other words, the behavior of percolation through its phase transition (when p
varies from slightly below to slightly above pc) is intimately related to its behavior at pc. The
scaling relations enable mathematicians to focus on the critical phase: if connectivity prop-
erties of the critical phase can be understood, then critical exponents for thermodynamical
quantities will follow.

We now turn to the study of critical planar percolation and briefly recall the historic
on the subject. In the seminal papers [BPZ84a] and [BPZ84b], Belavin, Polyakov and
Zamolodchikov postulated conformal invariance in the scaling limit (under all conformal
transformations of sub-regions) of critical two-dimensional statistical models: the renormal-
ization group formalism suggests that the scaling limit of critical models is a fixed point for
the renormalization transformation. The fixed point being unique, the scaling limit should
be invariant under translation, rotation and scaling; since it can be described by quantum
local fields, it was natural to expect that the field describing the scaling limit of critical
regime would itself be invariant under all transformations which are locally compositions of
translations, rotations and scalings — i.e., conformal maps.

From a mathematical perspective, the notion of conformal invariance of a model is ill-
posed, since the meaning of scaling limit is not even clear in general. The following solution
to this problem can be implemented: the scaling limit of the model could simply be less
rich and retain the information given by “interfaces” only. There is no reason why all the
information of a model should be encoded into information on interfaces, but one can hope
that most of the relevant quantities can be recovered from it. The advantage of this approach
is that there exists a mathematical setting for families of continuous curves.

Let us first start with the study of one curve. Fix a simply connected domain (Ω, a, b)
with two points on the boundary and consider discretizations (Ωδ, aδ, bδ) of (Ω, a, b) by a
triangular lattice of mesh size δ. Assume now that the sites along the boundary arc ∂ab are
open and that those along the arc ∂ba are closed. There exists a unique interface (which
consists in a chain of bonds of the dual hexagonal lattice) between open and closed sites
going from a to b. In order to see this, the correspondence between face percolation on the
hexagonal lattice and site percolation on the triangular one is useful. We call this interface
the exploration path and denote it by γδ.

Conformal field theory predicts that γδ converges when δ goes to 0 to a random continuous
non-self-crossing curve between a and b in Ω which must be conformally invariant, where
conformal invariance has now a precise meaning:
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Definition 1.2. A family of random continuous curves γ(Ω,a,b) indexed by simply connected
domains with two marked points on the boundary (Ω, a, b) is conformally invariant if for any
(Ω, a, b) and any conformal map ψ : Ω → C,

ψ(γ(Ω,a,b)) has the same law as γ(ψ(Ω),ψ(a),ψ(b)) .

In 1999, Schramm proposed a natural candidate for the possible conformally invariant
families of continuous non-self-crossing curves. He noticed that the interfaces of various
models further satisfy the domain Markov property (see Section 2.4) which, together with the
assumption of conformal invariance, determines the possible families of curves. In [Sch00],
he introduced the Schramm-Loewner evolution — or SLE for short. SLE(κ), for κ > 0,
is the random Loewner evolution with driving process

√
κBt, where (Bt) is a standard

Brownian motion. By construction, the process is conformally invariant, random and fractal.
The prediction of conformal field theory then translates into the following predictions for
percolation: the limit of (γδ)δ>0 in (Ω, a, b) is SLE(6).

For completeness, let us mention that families of interfaces in a percolation model are also
expected to converge in the scaling limit to a conformally invariant family of non-intersecting
loops. By consistency, each loop should look like an SLE(6) process. Sheffield and Werner
[SW10a, SW10b] introduced a one-parameter family of processes of non-intersecting loops
which are conformally invariant — called the Conformal Loop Ensembles CLE(κ) for κ > 8/3.
Non-surprisingly, the loops of CLE(κ) are locally similar to SLE(κ).

Even though we now have a mathematical frame for conformal invariance, it remains
an extremely hard task to prove convergence of the interfaces to SLE curves. Observe that
working with interfaces offers a further simplification: properties of these interfaces should
also be conformally invariant. Therefore, we could simply look at an observable of the model,
i.e. something that one can measure by looking at the configuration. Of course, it is not
clear that this observable would tell us anything about critical exponents, but it already
represents a significant step toward conformal invariance.

In 1994, Langlands, Poulliot and Saint-Aubin [LPSA94] published numerical values in
agreement with the conformal invariance (in the scaling limit) of crossing probabilities in
the percolation model. More precisely, they checked that taking different topological rectan-
gles, the probability Cδ(Ω, A, B, C,D) of having a path of adjacent open sites between the
boundary arcs AB and CD converges when δ goes to 0 towards a limit which is the same for
(Ω, A, B, C,D) and (Ω′, A′, B′, C ′, D′) if they are image of each other by a conformal map.
Notice that the existence of such a crossing property can be expressed in terms of properties
of an interface, thus keeping this discussion in the frame proposed earlier.

The paper [LPSA94], while only numerical, attracted many mathematicians to the do-
main. The same year, Cardy [Car92] proposed an explicit formula for the limit of crossing
probabilities. In 2001, Smirnov proved Cardy’s formula rigorously for critical site percola-
tion on the triangular lattice, hence rigorously providing a concrete example of a conformally
invariant property of the model:

Theorem 1.3 (Smirnov [Smi01]). The probability of the event Cδ(Ω, A, B, C,D) has a limit
f(Ω, A, B, C,D) as δ goes to 0. Furthermore, the limit satisfies the two following properties:

• It is equal to AB/AC if Ω is a equilateral triangle with vertices A, C and D;
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• It is conformally invariant, in the following sense: if Φ is a conformal map from Ω to
another simply connected domain Ω′ = Φ(Ω), and extends continuously to ∂Ω, then

f(Ω, A, B, C,D) = f(Φ(Ω),Φ(A),Φ(B),Φ(C),Φ(D)).

The fact that Cardy’s formula takes such a simple form for equilateral triangles was first
observed by Carleson. Notice that the Riemann mapping theorem and conformal invariance
then give the value of f for every conformal rectangle.

A remarkable consequence of this theorem is that the mechanism can be reversed: even
though Cardy’s formula seems to be much weaker than convergence to SLE(6), they are
actually equivalent. In other words, conformal invariance of one well-chosen observable of
the model can be sufficient to prove conformal invariance of interfaces, and in particular
convergence of the exploration path to an SLE curve:

Theorem 1.4 (Smirnov, see also [CN07]). Let Ω be a simply connected domain with two
marked points a and b on the boundary. Let γδ be the exploration path of the critical percola-
tion as described in the previous paragraphs. Then the law of γδ converges weakly, as δ → 0,
to that of chordal Schramm-Loewner evolution with κ = 6.

Let us mention that convergence to CLE(6) was proved in [CN06], thus providing a proof
of the full conformal invariance of percolation interfaces.

Convergence to SLE(6) is important for many reasons. Since SLE itself is very well
understood (in particular, its fractal properties are known), it enables the computation of
several critical exponents describing the critical phase. We will introduce these exponents
during the study, but let us now state the result non-formally (see Theorem 4.1 or [SW01]):

• the probability that there exists an open path from the origin to the boundary of the
box of size n decays equals n−5/48+o(1).

• the probability that there exist four arms, two open and two closed going from the
origin to the boundary of the box of size n equals n−5/4+o(1).

Convergence to SLE(6) is the main step in the derivation of critical exponents describing
fractal properties of the critical regime (for instance the arm exponents). Together with
Kesten’s scaling relations (Theorem 4.3 or [Kes87]), the previous asymptotics imply the
following result, which is the main focus of this survey:

Theorem 1.5. For site percolation on the triangular lattice, pc = 1/2 and as p→ 1/2,

θ(p) = (p− 1/2)
5/36+o(1)
+ .

Organization of the survey

The first section is devoted to the geometry of the p = 1/2 percolation. Uniform bounds
away from 0 and 1 are proved for crossing probabilities. In a second part, these crossing
probabilities are proved to converge in the scaling limit (Cardy-Smirnov’s formula). The
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pc = 1/20 1

p

θ(p)

1

(p− 1/2)5/36+o(1)

Figure 1: Cluster density with respect to p. Non-trivial facts in this picture include
pc = 1/2, θ(pc) = 0 and the behavior near the critical point. We do not investigate
properties such as continuity of the cluster density away from pc.

last part of this section presents a sketched proof of convergence of the exploration path to
SLE(6).

The second section studies the percolation away from p = 1/2. First, we prove that
pc = 1/2. Then, we introduce the notion of correlation length and study properties of
percolation below the correlation length.

The third section deals with critical exponents at criticality (in the form of some of the
arm-exponents) and then goes into some details about Kesten’s scaling relations.

The last part gathers a few open questions which we found relevant to the topic.

Notation and basic properties

Except otherwise stated, T will denote the triangular lattice with mesh size 1 embedded
in the complex plane C, containing a vertex at the origin and a vertex at 1 — complex
coordinates will be used frequently to specify the position of a point. Let dT(·, ·) be the
graph distance in T. Define the ball Λn := {x ∈ T : dT(x, 0) ≤ n} (balls have hexagonal
shapes). Let ∂Λn = Λn \ Λn−1 be the internal boundary of Λn.

We write up ≍ vp if there exist two constants 0 < A,B < ∞ not depending on p such

that Aup ≤ vp ≤ Bup for all p in a neighborhood of pc. We also write up <⌢ vp if there exists

0 < B <∞ such that up ≤ Bvp for all p.
The Harris inequality and monotonicity of percolation will be used a few times. Let us

recall these two facts now. An event is called increasing if it is preserved by addition of open
sites, see Section 2.2 of [Gri99] (a typical example is the existence of an open path from one
set to another). The inequality p < p′ implies that Pp(A) ≤ Pp′(A) for any increasing event
A. Moreover, for every p ∈ [0, 1] and A, B two increasing events,

Pp(A ∩ B) ≥ Pp(A)Pp(B) (Harris inequality).

The van den Berg-Kesten inequality [vdBK85] will also be used extensively. For two
increasing events A and B, let A ◦ B be the event that A and B occur disjointly, meaning
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that ω ∈ A ◦B if there exist two sets of sites E and F (possibly depending on ω) such that
one can verify that ω ∈ A (resp. ω ∈ B) by looking at sites in E (resp. F ) only. Then, for
every p ∈ [0, 1] and A, B two increasing events,

Pp(A ◦B) ≤ Pp(A)Pp(B) (BK inequality).

This inequality was improved by Reimer [Rei00], who proved that one can relax the condition
on A and B being increasing: let p ∈ [0, 1] and A, B two events,

Pp(A�B) ≤ Pp(A)Pp(B) (Reimer inequality),

where A�B denotes the disjoint occurrence of A and B.

2 Crossing probabilities and conformal invariance at

the critical point

2.1 Circuits in annuli

In this whole section, we let p = 1/2. Let En be the event that there exists a circuit of
adjacent open sites in Λ3n \ Λn that surrounds the origin:

Theorem 2.1. There exists C > 0 such that for every n > 0, P1/2(En) ≥ C.

This theorem was first proved in a corresponding form in the case of bond percolation
on the square lattice by Russo [Rus78] and by Seymour and Welsh [SW78]. It led to many
applications, several of which will be discussed in this survey.

Such a bound (and its proof) is typical of the behavior of percolation at the self-dual
point p = 1/2: it is indeed natural to expect that the probability of En event goes to 0 (resp.
1) below (resp. above) 1/2. Making this vague statement rigorous is not elementary and is
indeed the whole point of Theorem 1.1.

Proof. We present one of the many proofs of Theorem 2.1, inspired by a argument due to
Smirnov and available in [Wer09] and in [Gri10].

Step 1: Let n > 0 and index the sides of Λn as in Fig. 2. Consider the event that ℓ1 is
connected by an open path to ℓ3 ∪ ℓ4. The complement of this event is that ℓ2 is connected
by a closed path to ℓ5 ∪ ℓ6. Using the symmetry between closed and open sites and the
invariance of the model under rotations of angle π/3 preserving the lattice, P1/2(ℓ1 ↔ ℓ3∪ℓ4)
is equal to 1/2.

In fact, we also have that P1/2(ℓ1 ↔ ℓ4) ≥ 1/8. Indeed, either this is true or, going to
the complement, P1/2(ℓ1 ↔ ℓ3) ≥ 1/2− 1/8. But in this case, using the Harris inequality,

P1/2(ℓ1 ↔ ℓ4) ≥ P1/2(ℓ1 ↔ ℓ3)P1/2(ℓ2 ↔ ℓ4) ≥ (3/8)2 ≥ 1/8.
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Step 2: Now consider Rn = Λn ∪ (Λn − 2ni) and index the sides of Rn as in Fig. 2. For
a path γ from ℓ1 to ℓ4, define the domain Ωγ to consist in the sites of Rn strictly to the
right of γ ∪ σ(γ), where σ is the reflection with respect to ℓ1. Once again, the complement

of {ℓ4 ∪ γ ↔ ℓ10 ∪ ℓ11 in Ωγ} is {ℓ9 ∪ σ(γ) ⋆↔ ℓ2 ∪ ℓ3 in Ωγ}. The switching of colors and the
symmetry with respect to ℓ1 imply that the probability of the former is larger than 1/2 (it
is not exactly equal to 1/2, since the site on γ ∩ ℓ1 is assumed to be open).

ℓ1

ℓ2

ℓ3

ℓ4

ℓ5

ℓ6

ℓ7

ℓ8

ℓ9

ℓ10

ℓ11

Γ = γ
0

Bn

RN

−2in + Bn

Figure 2: The dark gray area is the set of sites which are discovered after conditioning
on {Γ = γ}. The white area is Ωγ .

If E := {ℓ1 ↔ ℓ4} occurs, set Γ to be the left-most crossing between ℓ1 and ℓ4. For a
given path γ from ℓ1 to ℓ4, the event {Γ = γ} is measurable only in terms of sites to the
left or in γ. In particular, conditioning on {Γ = γ}, the configuration in Ωγ is a percolation
configuration, so that

P1/2

(

(ℓ4 ∪ γ) ↔ (ℓ10 ∪ ℓ11) in Ωγ | Γ = γ
)

≥ 1/2.

Therefore,

P1/2

(

ℓ4 ↔ (ℓ10 ∪ ℓ11)
)

= P1/2

(

ℓ4 ↔ (ℓ10 ∪ ℓ11) , E
)

=
∑

γ

P1/2

(

ℓ4 ↔ (ℓ10 ∪ ℓ11) , Γ = γ
)

≥
∑

γ

P1/2

(

(ℓ4 ∪ γ) ↔ (ℓ10 ∪ ℓ11) in Ωγ , Γ = γ
)

≥
∑

γ

1

2
P1/2(Γ = γ) =

1

2
P1/2(E) =

1

16
.
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Figure 3: Six “rectangles” which, when crossed, ensure the existence of a circuit in
the annulus.

Step 3: Invoking the Harris inequality,

P1/2(ℓ4 ↔ ℓ9) ≥ P1/2

(

ℓ4 ↔ (ℓ10 ∪ ℓ11)
)

P1/2

(

(ℓ2 ∪ ℓ3) ↔ ℓ9
)

≥ 1

162
.

Assuming that the six rectangles described in Fig. 3 are crossed (in the sense that there are
paths between opposite short edges), the result follows from a last use of Harris inequality.

The first corollary of Theorem 2.1 is the following lower bound on pc (the result can also
be proved using an elegant argument by Zhang which invokes the uniqueness of the infinite
cluster when it exists, see Section 11 of [Gri99]).

Corollary 2.2 (Harris [Har60]). For percolation on the triangular lattice, θ(1/2) = 0; in
particular, pc ≥ 1/2.

Proof. Let us prove that when p = 1/2, 0 is almost surely not connected by a closed path to
infinity (it is the same probability for an open path). Let N > 0. The origin being connected
to ∂Λ3N by a closed path implies that for every n < N , E c3n occurs. Therefore,

P1/2(0
⋆↔ ∂Λ3N ) ≤ P1/2

(

⋂

n<N

E c3n
)

=
∏

n<N

P1/2 (E c3n) ≤ (1− C)N , (2.1)

where C is the constant in Theorem 2.1. In the second inequality, the independence between
percolation in different annuli is crucial. In particular, the left-hand term converges to 0 as
N → ∞, so that θ(1/2) = 0. Hence, by the definition of pc, pc ≥ 1/2.

2.2 Discretization of domains and crossing probabilities

In general, we are interested in crossing probabilities for more general shapes. More precisely,
we wish to let the size of the graph go to infinity, but keeping the same global shape. A
natural way to do this is to shrink the lattice instead of looking at bigger and bigger scales.
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Consider a topological rectangle (Ω, A, B, C,D), i.e. a bounded simply connected domain
Ω 6= C with four distinct points A, B, C and D on its boundary, indexed in counter-clockwise
order. [For simplicity, we are only considering domains whose boundary is a Jordan curve,
and we will also silently assume that their discretizations below satisfy a similar criterion.
The eager reader might want to check that the argument still goes through in the most
general case, where A, B, C and D are prime ends of Ω, but they will soon notice that the
added notational weight makes the proof more obscure.]

For δ > 0, we will be interested in percolation on Ωδ := Ω ∩ δT. Note that we can see
the boundary of Ωδ as a self-avoiding curve s on Ω∗

δ (which is a subgraph of the hexagonal
lattice). The graph Ωδ should be seen as a discretization of Ω at scale δ. Let Aδ, Bδ, Cδ and
Dδ be the sites of s that are closest to A, B, C and D respectively. They divide s into four
arcs denoted by AδBδ, BδCδ, etc.

In the percolation setting, let Cδ(Ω, A, B, C,D) be the event that there is a path of open
sites in Ωδ between the intervals AδBδ and CδDδ of its boundary (more precisely connecting
two sites of Ωδ adjacent to AδBδ and CδDδ respectively). We call such a path a crossing,
and the event a crossing event. Sometimes, we will say that the rectangle is crossed if there
exists a crossing.

With a slight abuse of notation, we will denote the percolation measure with p = 1/2 on
δT by P1/2 (even though the measure is the push-forward of P1/2 by the scaling x 7→ δx).
We first state a direct consequence of Theorem 2.1:

Corollary 2.3. Let (Ω, A, B, C,D) be a topological rectangle. There exist 0 < c1, c2 < 1
such that for every δ > 0,

c1 ≤ P1/2

[

Cδ(Ω, A, B, C,D)
]

≤ c2.

A

B

C

D

Ω

Figure 4: Circuits in annuli linking two edges of a topological rectangle. If each
of these annuli contains an open circuit disconnecting the interior from the exterior
boundary, we obtain an open path connecting the two sides.

Proof. It is sufficient to prove the lower bound, since the upper bound is a consequence of
the following fact: the complement of Cδ(Ω, A, B, C,D) is the existence of a closed path
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from BδCδ to DδAδ, it has same probability as Cδ(Ω, B, C,D,A). Therefore, if the latter
probability is bounded from below, the probability of Cδ(Ω, A, B, C,D) will be bounded
away from 1.

Fix ε ∈ δN positive. For a hexagon h of radius ε > 0, we set h̃ to be the hexagon with
the same center and radius 3ε. Now, consider a collection h1, . . . , hk of hexagons “parallel”
to H and of radius ε satisfying the following conditions:

• h1 intersects AB and hk intersects CD,

• h̃1, . . . , h̃k intersect neither BC nor DA,

• hi are adjacent and create a “path” in Ω from AB to CD.

(Such a chain exists if ε is chosen small enough.) Let Eδ
i be the event that there is an open

circuit in Ωδ ∩ (h̃i \ hi) surrounding Ωδ ∩ hi. By construction, if each Eδ
i occurs, there is

a path from AB to CD, see Fig. 4. Using Theorem 2.1, the probability of this is bounded
from below by Ck uniformly in δ. Yet, one can choose k = k(Ω, A, B, C,D, ε) not depending
on δ, which readily implies the claim.

In particular, long rectangles are crossed in the long direction with probability bounded
away from 0 as δ → 0. This result is the classical formulation of Theorem 2.1. We finish
this section with a property of percolation with parameter 1/2:

Corollary 2.4. There exist α, β > 0 such that for every n > 0,

n−α ≤ P1/2(0 ↔ ∂Λn) ≤ n−β .

Proof. The existence of β > 0 is given as in (2.1). For the lower bound, we use the following
construction: define Rn := [0, 2n] × [0, 2n+1] if n is odd, and Rn := [0, 2n+1] × [0, 2n] if it is
even. Set Fn to be the event that Rn is crossed in the “long” direction. Corollary 2.3 applied
to the topological rectangle of the form [0, 1] × [0, 2] implies the existence of C1 > 0 such
that P1/2(Fn) ≥ C1 for every n > 0. By the Harris inequality

P1/2(0 ↔ ∂Λ3N ) ≥ P1/2

(

⋂

n<N

Fn

)

≥
∏

n<N

P1/2(Fn) ≥ CN−1
1 .

This yields the existence of α > 0.

2.3 The Cardy-Smirnov formula

The subject of this section is the proof of Theorem 1.3. The proof of this theorem is very
well (and very shortly) exposed in the original paper [Smi01]. It has been rewritten in a
number of places including [BR06b, Gri10, Wer09]. We provide here a version of the proof
that we used during the lecture in Florence (in particular with the same notations), which
is mainly inspired by [Smi01] and [Bef07].
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Proof. Fix (Ω, A, B, C) a topological triangle and z ∈ Ω (with the same caveat as in the
previous proof that we will silently assume the boundary of Ω to be smooth, for notation’s
sake, but that the same proof applies to the general case of a simply connected domain).
For δ > 0, Aδ, Bδ, Cδ, zδ are the points of Ω∗

δ closest to A, B, C and z, as before. Define
EA,δ(z) to be the event that there exists a non-self-intersecting path of open sites in Ωδ,
separating Aδ and zδ from Bδ and Cδ — and EB,δ(z), EC,δ(z) similarly, with obvious circular
permutations of the letters. Let HA,δ(z) (resp. HB,δ(z), HC,δ(z)) be the probability of EA,δ(z)
(resp. EB,δ(z), EC,δ(z)).

A

B

C

Ω

z

e

e
⋆

Figure 5: Picture of the event EA,δ(z). Also depicted is one oriented edge e with its
associated edge e⋆. The graph Tδ is drawn with dotted lines while its dual Hδ is drawn
with solid lines.

The proof runs into three steps, the second one being the most important:

• First, prove that (HA,δ, HB,δ, HC,δ)δ>0 is a precompact family of functions (with variable
z).

• Second, let τ = e2iπ/3 and introduce the following two sequences of functions defined
by

Hδ(z) := HA,δ(z) + τHB,δ(z) + τ 2HC,δ(z) Sδ(z) = HA,δ(z) +HB,δ(z) +HC,δ(z),

and show that any subsequential limits h and s of these sequences are holomorphic.
This statement is proved using Morera’s theorem, based on the study of discrete inte-
grals.

• Third, use boundary conditions to identify the possible h and s, and thus guarantee
the possible subsequential limit of (HA,δ, HB,δ, HC,δ)δ>0 to be unique. A byproduct of
the proof is the exact computation of the limit of h and s, and thus of the limits of
(HA,δ), (HB,δ) and (HC,δ).

Then, making the additional remark that EC,δ(Dδ) is the event Cδ(Ω, A, B, C,D), the limit
of HC,δ(Dδ) as δ goes to 0 converge to the limiting crossing probability, thus concluding the
proof of Theorem 1.3.
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Precompactness The main remark is that if two points z, z′ are surrounded by an open
(or a closed) circuit, then the events EA,δ(z

′) and EA,δ(z) are realized simultaneously, so that

|HA,δ(z
′)−HA,δ(z)| ≤ Pp[zδ and z

′
δ are not separated from Aδ and BδCδ in Ωδ]

For z and z′ remaining at distance η > 0 away from A, B and C, Theorem 2.1 applied in
roughly log(|z − z′|/η)/ log 3 concentric annuli, there exist two positive constants K and ε
depending only on η such that, for every δ > 0,

|HA,δ(z
′)−HA,δ(z)| 6 K |z′ − z|ε (2.2)

and a similar bound for HB,δ and HC,δ. Hence, if we suitably extend these functions continu-
ously to Ω, we obtain a family of uniformly Hölder maps from Ω to [0, 1]. The family is then
relatively compact with respect to uniform convergence, and it is hence possible to extract a
subsequence (HA,δn , HB,δn, HC,δn)n>0, with δn → 0, which converges uniformly to a triple of
Hölder maps (hA, hB, hC) from Ω to [0, 1]. From now on, we set h = hA + τhB + τ 2hC and
s = hA + hB + hC (they are the limits of (Hδn)n>0 and (Sδn)n>0 respectively).

Holomorphicity of h and s To prove that h is holomorphic, one can try to prove that
Hδn is a sequence of (almost) discrete holomorphic functions, where one needs to specify
what is meant by discrete holomorphic; in our case, we take it to mean that discrete contour
integrals vanish. Indeed, Morera’s theorem (see e.g. [Lan99]) yields that for any a simply
connected domain Ω of the complex plane, and any continuous function f : Ω → C, f is
holomorphic if, and only if, for every simple, closed, smooth curve γ contained in Ω, the
integral of f along γ vanishes: the previous definition is a natural discretization of this
property. We refer to [Smi10] for more details on discrete holomorphicity, including other
definitions of it, and its connections to statistical physics.

Consider a simple, closed, smooth curve γ contained in Ω. For every δ > 0, let γδ be a
discretization of γ contained in Ωδ, i.e. a finite chain (γδ(k))06k6Nδ

of pairwise distinct sites
of Ωδ, ordered in the positive direction, such that for every index k, γδ(k) and γδ(k + 1) are
nearest neighbors, and chosen in such a way that the Hausdorff distance between γδ and γ
goes to 0 with δ. Notice that Nδ can be taken of order δ−1, which we shall assume from now
on.

For an edge e ∈ Hδ, define e
⋆ to be the rotation by π/2 of e (it is an edge of the triangular

lattice). For an edge e of the hexagonal lattice, let

Hδ(e) :=
Hδ(x) +Hδ(y)

2
,

where e = xy.
The discrete curve γδ surrounds a finite family of edges of Tδ, which we shall denote by

Int(γδ). An oriented edge e⋆ of Tδ belongs to γδ if it is of the form γδ(k)γδ(k + 1) (we set
e ∈ γδ).

Define the discrete integral Iδγ(H) of Hδ (and similarly Iδγ(S) for Sδ) along γδ by

Iδγ(H) :=
∑

e⋆∈γ

e⋆Hδ(e).

13



Our goal is to prove that Iδγ(H) and Iδγ(S) converge to 0 when δ goes to 0. Since along
the sequence (δn), they also converge to

∮

γ
h(z)dz and

∮

γ
s(z)dz, it will imply that h and s

are holomorphic via Morera’s Theorem (notice that h and s are continuous as uniform limits
of continuous functions).

For every oriented edge e = xy ∈ Hδ, set

PA,δ(e) = P1/2

(

EA,δ(y) \ EA,δ(x)
)

,

and similarly PB and PC .

Lemma 2.5. For any smooth γ, when δ goes to 0,

Iδγ(H) =
∑

e⋆⊂Int(γδ)

e⋆
[

PA(e) + τPB(e) + τ 2PC(e)
]

+ o(1), (2.3)

Iδγ(S) =
∑

e⋆⊂Int(γδ)

e⋆
[

PA(e) + τ 2PB(e) + τ 4PC(e)
]

+ o(1). (2.4)

Proof. We treat the case of Hδ. For every oriented edge e = xy in Hδ, define the following
notation:

∂eHδ := Hδ(y)−Hδ(x),

where e = xy. If f is a face of Tδ, let ∂f be its oriented boundary, seen as a set of oriented
edges. With these notations, we get the following identity:

Iδγ(H) =
∑

e⋆∈γδ

e⋆Hδ(e) =
∑

f∈Int(γδ)

∑

e⋆∈∂f

e⋆Hδ(e). (2.5)

Indeed, in the last equality, each boundary term is obtained exactly once with the correct
sign, and each interior term appears twice with opposite signs. The sum of eHδ(e) around
f can be rewritten in the following fashion:

∑

e⋆∈∂f

e⋆Hδ(e) =
∑

e⋆=xy∈∂f

(

x+ y

2
− f

)

∂eHδ.

Putting this quantity in the sum (2.5), the term ∂eHδ = Hδ(y)−Hδ(x) appears twice notice
for x, y nearest neighbors bordered by two triangles in γδ, and the factors (x + y)/2 cancel
between the two occurrences, leaving only the difference between the centers of the faces, i.e.
the dual edge of xy. Therefore,

Iδγ(H) =
1

2

∑

e⋆⊂Int(γδ)

e⋆∂eHδ + o(1). (2.6)

In the previous equality, we used the fact that the total contribution of the boundary goes
to 0 with δ. Indeed, e⋆ is of order δ, and

∂eHδ = PA,δ(e)− PA,δ(−e) + τ(PB,δ(e)− PB,δ(−e)) + τ 2(PC,δ(e)− PC,δ(−e)) (2.7)

so that Theorem 2.1 gives a bound of δ1+ε for e⋆∂eHδ. Since there are roughly δ
−1 boundary

terms, we obtain that the boundary contributes for at most δε.
Replacing in (2.6) ∂Hδ by its expression (2.7), and re-indexing the sum to obtain each

oriented edge in exactly one term, we get the announced equality.
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Lemma 2.6 (Smirnov [Smi01]). For every edge e of Ω⋆δ, we have the following identities:

PA,δ(e1) = PB,δ(e2) = PC,δ(e3),

where e1, e2, e3 are three edges emanating from a site x.

A

B

C

a
b c

y
z

t

x

Figure 6: The dark gray and the white hexagons are the hexagons on Γ, Γ being in
black.

Even though we include the proof for completeness, we refer the reader to [Smi01] for the
(elementary, but very clever) first proof of this result. The lemma extends to site-percolation
with parameter 1/2 on any planar triangulation.

Proof. Index the three sites around x by a, b and c, and the sites by y, z and t as depicted
in Fig. 6. We see events as subsets of {Open,Closed}|Ωδ|.

Let us prove that PA,δ(e1) = PB,δ(e2). The event EA,δ(y) \ EA,δ(x) occurs if and only if
there are open paths from AB to a and from AC to c, and a closed path from BC to b.

Consider the interface Γ between the open cluster connected to AC and the closed cluster
connected to BC, starting at C up to the first time it hits x (it will do it if and only if there
exist an open path from AB to a and a closed path from AC to c). Fix a deterministic path
from C to x, the event {Γ = γ} depends only on sites adjacent to γ (we denote the space
of such sites γ). Now, on {Γ = γ}, there exists a bijection between configurations with an
open path from a to AB and configurations with a closed path from a to AB (by symmetry
between open and closed edges in the domain Ωδ \ γ). This is true for any γ, hence there is
a bijection between the event

EA,δ(y) \ EA,δ(x) =
⋃

γ

{Γ = γ} ∩ {a↔ AB in Ωδ \ γ}
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and
E :=

⋃

γ

{Γ = γ} ∩ {a ⋆↔ AB in Ωδ \ γ}.

Note that EB,δ(z) \ EB,δ(x) is the image of E after switching the colors, so that it is in
bijection with it. This part is the key step of the lemma, and is sometimes called color-

switching trick. Since P1/2 is simply the uniform measure on configurations, we obtain
PA,δ(e1) = P (E) = PB,δ(e2).

We are now in a position to prove that Iδγ(H) and Iδγ(S) converge to 0. From Lemmas 2.5
and 2.6, we obtain by re-indexing the sum

Iδγ(H) =
∑

e⋆⊂Int(γδ)

(e⋆ + τ(τ.e)⋆ + τ 2(τ 2.e)⋆)PA(e) + o(1) = o(1)

using that
e⋆ + τ(τ.e)⋆ + τ 2(τ 2.e)⋆ = 0. (2.8)

Similarly, for s:

Iδγ(S) =
∑

e⋆⊂Int(γδ)

(e⋆ + (τ.e)⋆ + (τ 2.e)⋆)PA(e) + o(1) = o(1).

Here, we have used
e⋆ + (τ.e)⋆ + (τ 2.e)⋆ = 0. (2.9)

This concludes the proof of the holomorphicity of h and s.

Identification of s and h Let us start with s. Since it is holomorphic and real-valued, it
must be constant. It is easy to see from the boundary conditions (near a corner for instance)
that it is equal to 1. Now, consider h. Since h is holomorphic, it is sufficient to identify
enough boundary conditions to specify it uniquely.

Let z ∈ Ω. Since hA(z) + hB(z) + hC(z) = 1, h(z) is a barycenter of 1, τ and τ 2 and it
belongs to the triangle with sites 1, τ and τ 2. Furthermore, if z is on the boundary of Ω⋆δ
lying between B and C, hA(z) = 0 (using Theorem 2.1), and thus hB(z) + hC(z) = 1 (since
s = 1). Hence, h(z) lies on the interval [τ, τ 2] of the complex plane. Besides, h(B) = τ and
h(C) = τ 2, so h induces a continuous map from the boundary interval [BC] of Ω onto [τ, τ ].
By Theorem 2.1 yet again, h is one-to-one on this boundary interval. Similarly, h induces
a bijection between the boundary interval [AB] (resp. [CA]) of Ω and the complex interval
[1, τ ] (resp. [τ 2, 1]), so putting the pieces together we see that h is a holomorphic map from
Ω to the triangle with sites at 1, τ and τ 2 which extends continuously to Ω̄ and induces a
continuous bijection between ∂Ω and the boundary of the triangle.

From standard results of complex analysis (“principle of corresponding boundaries”, cf.
for instance Theorem 4.3 in [Lan99]), this implies that h is actually a conformal map from Ω
to the interior of the same triangle. But we know that h maps A (resp. B, C) to 1 (resp. τ ,
τ 2), and this determines it uniquely. In other words, there is only one possible limit for the
triple (HA, HB, HC) as δ goes to 0, which gives conformal invariance for free and concludes
the proof of Theorem 1.3.
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As a corollary of the proof, we get a nice expression for hA: if ΦΩ,A,B,C is the conformal
map from Ω to the triangle mapping A, B and C as previously (which means of course that
ΦΩ,A,B,C = h) then

HA,δ(z) →
2ℜe(ΦΩ,A,B,C(z)) + 1

3
.

If Ω is the equilateral triangle itself, then h is the identity map and we obtain Cardy’s formula
in Carleson’s form: if D ∈ [CA] then

f(Ω, A, B, C,D) =
|CD|
|AB| .

It is also to be noted that (2.8) actually characterizes the triangular lattice (and therefore
its dual the hexagonal one). So, it seems that the triangular lattice is the only one (apart
from trivial modifications of it) in which a fully combinatorial proof of the holomorphicity
of h is possible. On the other hand, the holomorphicity of s and therefore the fact that it
equals 1 relies only on (2.9), which is true for any triangulation where Theorem 2.1 holds.
This seems to be a fundamental property of critical two-dimensional percolation (and might
be the key to understanding universality in this particular, limited case, though this is hardly
even speculative). As of this time, no direct, combinatorial proof of this fact seems to be
known.

2.4 Scaling limit of interfaces

A natural question at this point is the exact amount of information contained in Theorem 1.3.
For instance, is it enough to derive precise results about the geometry of critical percolation
clusters? It turns out that it is indeed the case, and in fact the full structure of the percolation
scaling limit can be recovered from it through Schramm-Loewner Evolution; we now present
the proof of Theorem 1.4. The strategy to prove that a family of parametrized curves
converges to an SLE(κ) follows three steps:

• First, prove that the family of curves is tight.

• Then, show that any subsequential limit is a time-changed Loewner chain with a con-
tinuous driving process.

• Finally, show that the only possible driving process for the subsequential limits is
√
κBt

where Bt is a standard Brownian motion.

The main step is the third one. In order to identify Brownian motion as being the only
possible driving process for the curve, we find computable martingales expressed in terms of
the limiting curve. In our case, these martingales will be the limits of crossing probabilities;
the fact that these (explicit) functions are martingales allows us to deduce martingale prop-
erties of the driving process. More precisely, we aim to use Lévy’s theorem: a continuous
real-valued process X such that Xt and X

2
t − at are martingales is necessarily of the form√

aBt.
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2.4.1 A crash-course on Schramm-Loewner Evolution

In this paragraph, several non-trivial concepts about Loewner chains are used and we refer
to the extensive literature for details. We briefly recall several useful facts in the next
paragraph. We do not aim for completeness (see [Law05, Wer40, Wer05] for details). We
simply introduce notions needed in the next sections. Recall that a domain is a simply
connected open set not equal to C.

Set H to be the upper half-plane. Fix a compact set K ⊂ H such that H = H \ K is
still simply connected. For such a domain H , Riemann’s mapping theorem guarantees the
existence of a conformal map from H onto H. Moreover, there are a priori three real degrees
of freedom in the choice of the conformal map, so that it is possible to fix its asymptotic
behavior when z goes to ∞: let gK be the unique conformal map from H onto H such that

gK(z) := z +
C

z
+O

(

1

z2

)

.

The proof of the existence of this map is not completely obvious and requires the reflection
principle. The constant C is called the h-capacity ofH . It acts like a capacity: it is increasing
in K and the h-capacity of λK is λ2 times the h-capacity of K.

There is a natural way to parametrize continuous curves γ : R+ → H with γ(0) = 0 and
with γ going to ∞ when t→ ∞. For every s, let Hs be the connected component of H\γ[0, s]
containing ∞. We denote by Ks the hull created by γ[0, s], i.e. the compact set H \ Hs.
From the previous paragraph, Ks has a certain h-capacity Cs. The continuity of the curve
guarantees that Cs grows continuously, so that it is possible to parametrize the curve in such
a way that Cs = 2t at time t. This parametrization is called the h-capacity parametrization.
Note that in general, the previous operation is not a proper reparametrization, since any part
of the curve “hidden from ∞” will not make the h-capacity grow, and thus will be mapped
to the same point for the new curve.

From now on, assume the curve is parametrized via h-capacity. In particular, the curve
can be encoded via the family of conformal maps gt from Ht to H, in such a way that

gt(z) := z +
2t

z
+O

(

1

z2

)

.

Under mild conditions, the infinitesimal evolution of the family (gt) implies the existence of
a continuous real valued process Wt such that for every t and z ∈ Ht,

∂tgt(z) :=
2

gt(z)−Wt
.

The process Wt is called the driving process of γ. The typical required hypothesis in order
to do so is the following “local growth” condition:

Local Growth Condition: for any t ≥ 0 and for any ε, there exists δ > 0 such that for
any s ≤ t, the diameter of gs(Ks+δ \Ks) is smaller than ε, where Ks = H \ Hs is the hull
created by γs.

It is important to notice that the procedure is reversible under mild assumptions. If a
continuous function Wt is given, it is possible to reconstruct the hull Kt as the set of points
z for which the previous differential equation already blew up.
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We are now in a position to define Schramm-Loewner Evolutions:

Definition 2.7 (SLE in the upper half-plane). The chordal Schramm-Loewner Evolution in
H with parameter κ > 0 is the (random) Loewner chain with driving process Wt :=

√
κBt,

where Bt is a standard Brownian motion.

Loewner chains in other domains are easy to define via conformal maps:

Definition 2.8 (SLE in a general domain). Fix a domain Ω with two points on the boundary
a and b and assume it has a nice boundary (for instance a Jordan curve). The chordal
Schramm-Loewner evolution with parameter κ > 0 in (Ω, a, b) is the image of the Schramm-
Loewner evolution in the upper half-plane by a conformal map from (H, 0,∞) onto (Ω, a, b).

To conclude this paragraph, let us justify the fact that these curves are natural scaling
limits for interfaces of conformally invariant models. In order to explain this fact, we need
the notion of domain Markov property for a family of random growing curves:

Definition 2.9. A family of random continuous curves γ(Ω,a,b) (parametrized via h-capacity)
in simply connected domains is said to satisfy the domain Markov property if for every
(Ω, a, b), and every t > 0, the law of the curve γ[t,∞) conditionally on γ[0, t] is the same as
the law of γ(Ωt,γt,b), where Ωt is the connected component of Ω \ γt containing b.

Discrete interfaces in many models of statistical physics naturally satisfy this property
(which can be seen as a variant of the DLR conditions), and therefore their scaling limits,
provided that they exist, also do. Schramm proved the following result in [Sch00], which in
some way justifies SLE processes as natural candidates for such scaling limits:

Theorem 2.10 (Schramm [Sch00]). Every family of Loewner chains γ(Ω,a,b) which

• is conformally invariant,

• satisfies the domain Markov property,

• satisfies that γ(H,0,∞) is scale invariant,

is a chordal Schramm-Loewner evolution with parameter κ ∈ [0,∞).

2.4.2 Tightness of the interfaces

Convergence of random parametrized curves (say with time-parameter in [0, 1]) is in the
sense of the weak topology inherited from the following distance on curves:

d(γ1, γ2) = inf
φ

sup
u∈[0,1]

|γ1(u)− γ2(φ(u))|, (2.10)

where the infimum is taken over all reparametrizations (i.e. strictly increasing continuous
functions φ : [0, 1] → [0, 1] with φ(0) = 0 and φ(1) = 1).

In this section, the following theorem is proved:

Theorem 2.11. Fix a domain (Ω, a, b), the family (γδ)δ>0 of exploration paths for critical
percolation in (Ω, a, b) is tight for the topology associated to the curve distance.

19



The question of tightness for curves in the plane has been studied in the milestone paper
[AB99]. In this paper, it is proved that a sufficient condition for tightness is the absence, at
every scale, of annuli crossed back and forth an unbounded number of times. More precisely,
for x ∈ Ω and r < R, let Λr(x) = x+Λr and Sr,R(x) = ΛR(x)\Λr(x) and define Ak(x; r, R) to
be the existence of k crossing of the curve γδ between outer and inner boundaries of Sr,R(x).

Theorem 2.12 (Aizenman-Burchard [AB99]). Let Ω be a simply connected domain and let
a and b be two marked points on its boundary. Denote by µδ the law of a random curve γ̃δ
on Ωδ from aδ to bδ. If there exist k ∈ N, Ck < ∞ and ∆k > 2 such that for all δ < r < R
and x ∈ Ω,

µδ(Ak(x; r, R)) ≤ Ck

( r

R

)∆k

,

then the family of curves (γ̃δ) is tight.

We now show how to exploit this theorem in order to prove Theorem 2.11. The main
tool is Theorem 2.1.

Proof of Theorem 2.11. Fix x ∈ Ω, δ < r < R and recall that the lattice has mesh size δ.
Let k to be fixed later. The Reimer inequality implies

Pp

(

Ak(x; r, 3r)
)

≤
[

Pp

(

A1(x; r, 3r)
)]k

.

Using Theorem 2.1, Pp
(

A1(x; r, 3r)) ≤ 1−Pp(En) < 1−C. Let us fix k large enough so that
(1−C)k < 1/27. Now, one can decompose the annulus Sr,R(x) into roughly ln3(R/r) annuli
of the form Sr,3r(x), so that for the previous k,

Pp(Ak(x; r, R)) ≤
( r

R

)3

. (2.11)

Hence, Theorem 2.12 implies that the family (γδ) is tight.

2.4.3 Subsequential limits are Loewner chains

In the previous paragraph, traces of exploration paths were shown to be tight. We would now
like to parametrize any subsequential limit curve as a Loewner chain, i.e. via its h-capacity.
Furthermore, in order to be able to reconstruct the curve from the driving process associated
to it, we require the Loewner chain to be generated by a curve. In this case, we say that the
curve is a time-changed Loewner chain.

Theorem 2.13. Any subsequential limit of the family (γδ)δ>0 of exploration paths is a time-
changed Loewner chain.

As emphasized before, not every continuous curve is a time-changed Loewner chain,
therefore an additional argument is needed, especially since the limiting curve is fractal-like
and has many double points. A general characterization for a parametrized non-self-crossing
curve in (Ω, a, b) to be a time-changed Loewner chain generated by a curve is the following:

• its h-capacity must be continuous,
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• its h-capacity must be strictly increasing

• the curve grows locally seen from infinity in the following sense: for any t ≥ 0 and
for any ε, there exists δ > 0 such that for any s ≤ t, the diameter of gs(Ks+δ \Ks) is
smaller than ε, where Ks = H \Hs is the hull created by γ[0, s].

The first condition is automatically satisfied by continuous curves. The third one follows
from the two others when the curve is continuous, so that the only condition to check is the
second one. This condition can be understood as being the fact that the tip of the curve is
visible from b at every time. In other words, the family of hulls created by the curve (i.e. the
complement of the connected component of Ω\γt containing b) is strictly increasing. This is
the case if the curve does not enter long fjords created by its past at every scale, see Fig. 7.

b

Sr,R

a

b

a

b

Figure 7: Left: An example of a fjord. Seen from b, the h-capacity (roughly speaking,
the size) of the hull does not grow much while the curve is in the fjord. The event
involves six alternating open and closed crossings of the annulus. Right: Conditionally
on the beginning of the curve, the crossing of the annulus is unforced on the left, while
it is forced on the right.

In the case of percolation, this corresponds to the six-arm events, and it boils down to
proving that ∆6 > 2. We will prove this result in Proposition 3.15, and we show at the end
of this subsection how it indeed implies that scaling limits are Loewner chains. Before that,
we present a more general criterion characterizing Loewner chains.

A criterion for a random continuous curve to be a Loewner chain Recently, Kemp-
painen and Smirnov [KS10] proved a “structural theorem” characterizing random continuous
curves that can be parametrized as Loewner chains. We describe it now. For a family of
parametrized curves (γδ)δ>0, define the following:

Definition 2.14 (Condition (⋆), see Fig. 7). There exist C > 1 and ∆ > 0 such that for
any 0 < δ < r < R/C, for any stopping time τ and for any annulus Sr,R(x) not containing
γτ , the probability that γδ crosses the annulus Sr,R(x) (from the outside to the inside) after
time τ while it is not forced to enter Sr,R(x) again is smaller than C(r/R)∆.

Roughly speaking, the previous condition is a uniform bound on unforced crossings. Note
that it is necessary to precise the fact that the crossing is unforced.
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Theorem 2.15. If a family of curves (γδ) satisfies Condition (⋆), then it is tight. Moreover,
any subsequential limit is a time-changed Loewner chain.

Tightness is almost obvious, since Condition (⋆) implies the hypothesis in Aizenman-
Burchard’s theorem. The hard part is the proof that Condition (⋆) guarantees that the
h-capacity of subsequential limits is strictly increasing and that they create Loewner chains
generated by a curve. The reader is referred to [KS10] for a proof of this statement.

Proof of Theorem 2.13. Theorem 2.1 implies Condition (⋆) without difficulty.

Alternative (sketched) proof of Theorem 2.13. Let us now sketch another way of proving
Theorem 2.13. It does not require Theorem 2.15 and it harnesses Theorem 2.1 and The-
orem 3.14 below. We refer to [Wer07] for additional details on this method.

We need to prove that the h-capacity is strictly increasing. Let us consider the discrete
explorations directly in the upper half-plane, and already parametrized by their h-capacity.
The idea is to proceed in three steps. Let σδ(z) (resp. σ(z)) be the time at which z is
disconnected from infinity by the discrete curve γδ (resp. the continuous curve γ).

Step 1: simultaneously for every z, σδ(z) converges to σ(z) almost surely. This is due to
the fact that if one point z does not satisfy this property, the discrete model has to possess
six arms of alternative colors (or three arms on the boundary of alternative colors). Yet, the
six arm event has exponent larger than 2 and does not happen anywhere in the domain with
probability going to 1.

Step 2: for any u < u′, there exists v ∈ (u, u′) such that γ(v) /∈ γ[0, u]∪ ∂H. Fix a dense
family of points on γ[0, u] ∪ ∂H. Each of these points does not belong to the curve γ[0,∞]
almost surely, thanks to Theorem 2.1. Therefore, none of these points belongs to γ[0,∞]
almost surely. This implies that γ[u, u′] cannot be included in γ[0, u] ∪ ∂H.

Step 3: for every rational u < u′, Ku 6= K ′
u. Recall that Ku is the hull created by γ[0, u].

It is thus sufficient to prove that there exists v ∈ (u, u′) such that γ(v) /∈ Ku ∪ ∂H. We
already know from the second step that there exists γ(v) /∈ γ[0, u]∪ ∂H. Thus γ(v) is in one
of the connected components of H \ γ[0, u]. Assume it is not in the unbounded one. The
first step implies that

σδ[γ(v)] ≤
v + σ[γ(v)]

2

with probability going to 1. It immediately implies that σδ[γδ(v)] < v for δ small enough,
which is impossible since discrete curves γδ do not have triple points.

2.4.4 Convergence of exploration paths to SLE(6)

Fix a topological triangle (Ωδ, Aδ, Bδ, Cδ) and zδ ∈ Ω⋆δ . Define EΩδ,Aδ,Bδ,Cδ
(zδ) to be the event

that there exists a non-self-intersecting path of open sites in Ωδ, separating Aδ and zδ from
Bδ and Cδ, and let

HΩδ,Aδ,Bδ,Cδ,zδ(n) := Pδ(EΩδ\γ[0,n],γn,Bδ,Cδ
(zδ)).

Lemma 2.16. (HΩδ,Aδ,Bδ,Cδ,zδ(n))n≥0 is a martingale with respect to (Fn)n≥0 where Fn is
the σ-algebra generated by the γ[0, n].
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Proof. The slit domain created by “removing” the first n steps of the exploration path is
again a topological triangle. Conditionally on γ[0, n], the law of the configuration in the
new domain is exactly percolation in Ω \ γ[0, n]. This observation implies that HΩ,A,B,C,z(n)
is the random variable 1EΩδ,Aδ,Bδ,Cδ

(zδ) conditionally on Fn, therefore it is automatically a
martingale.

Proposition 2.17. Any subsequential limit of (γδ)δ>0 which is a Loewner chain is (chordal)
Schramm-Loewner evolution with parameter κ = 6.

Proof. Consider a subsequential limit γ in the domain (Ω, a, b) which is a Loewner chain.
Let φ be a map from (Ω, a, b) to (H, 0,∞). Our goal is to prove that γ̃ := φ(γ) is a chordal
SLE(6) in the upper half-plane.

Since γ is assumed to be a Loewner chain, γ̃ is a growing hull from 0 to ∞; we can assume
that it is parametrized by its h-capacity. Let Wt be its continuous driving process. Also
define gt to be the conformal map from H \ γ̃[0, t] to H such that gt(z) = z +2t/z +O(1/z2)
when z goes to infinity.

Fix c′ ∈ ∂Ω and z′ ∈ Ω. For δ > 0, recall that Hδ(n) = HΩδ,Aδ,Bδ,Cδ,z
′

δ
(n) is a martingale

for γδ. Since the martingale is bounded, Hδ(τt) is a martingale with respect to Fτt , where
τt is the first time at which φ(γδ) has a h-capacity larger than t. Since the convergence is
uniform, Ht(z

′) := limδ→0Hδ(τt) is a martingale with respect to Gt, where Gt is the σ-algebra
generated by the curve γ̃ up to the first time its h-capacity exceeds t. By definition, this
time is t, and Gt is the σ-algebra generated by γ̃[0, t] — in other words, it is the natural
filtration associated to the process (Wt).

The Cardy-Smirnov formula, or rather its extension to the inside of the domain (as
introduced in the proof of Theorem 1.3 under the name hA), gives the value of Ht(z

′), or
rather of its complexified version H̃t(z

′) like in the proof of the formula, in terms of conformal
maps as

H̃t(z
′) = f

(

gt(z)−Wt

gt(c)−Wt

)

with an explicit, smooth function f (where we define z := φ(z′) and c := φ(c′)). This is a
martingale for every choice of z and c, so we get the family of identities

E

[

f

(

gt(z)−Wt

gt(c)−Wt

)
∣

∣

∣

∣

Gs
]

= f

(

gs(z)−Ws

gs(c)−Ws

)

for all z ∈ H, c ∈ R and 0 < s < t such that z and c are both within the domain of definition
of gt. We know the asymptotic expansion of gs and gt around infinity, so the above becomes

E

[

f

(

z −Wt + 2t/z +O(1/c2)

c−Wt + 2t/c+O(1/z2)

)
∣

∣

∣

∣

Gs
]

= f

(

z −Ws + 2s/z +O(1/z2)

c−Ws + 2s/c+O(1/c2)

)

. (2.12)
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Letting z and c go to infinity with fixed ratio z/c = λ ∈ H, we have

f

(

z −Ws + 2s/z +O(1/z2)

c−Ws + 2s/c+O(1/c2)

)

= f

(

λ−Ws/c+ 2s/λc2 +O(1/c2)

1−Ws/c+ 2s/c2 +O(1/c3)

)

= f

(

λ+
(λ− 1)Ws

c
+

(λ− 1)W 2
s + 2(1− λ2)s/λ

c2
+O(c−3)

)

.

= f(λ) +
(λ− 1)f ′(λ)Ws

c

+
(λ− 1)W 2

s [f
′(λ) + (λ− 1)f ′′(λ)/2] + 2(1− λ2)sf ′(λ)/λ

c2
+O(c−3).

Using this expansion on both sides of (2.12) and matching the terms, we obtain two identities
for (Wt):

E[Wt|Gs] =Ws, E[W 2
t |Gs] = W 2

s +
4(1 + λ)f ′(λ)/λ

2f ′(λ) + (λ− 1)f ′′(λ)
(t− s).

The function f is a conformal map from the upper-half plane to the equilateral triangle,
sending 0, 1 and∞ to the vertices of the triangle; up to additive and multiplicative constants,
it can be written using the Schwarz-Christoffel formula as

f(λ) ∝
∫ λ

[z(1− z)]−2/3 dz.

From this, one obtains f ′(λ) ∝ [λ(1− λ)]−2/3 and

f ′′(λ)

f ′(λ)
= −2

3

(

1

λ
− 1

1− λ

)

=
2(2λ− 1)

3λ(1− λ)
.

Plugging this into the previous expression shows that the factor of (t−s) is identically equal
to 6, and since we know that (Wt) is a continuous process, this implies that it is of the form
(
√
6Bt) where (Bt) is a standard real-valued Brownian motion, meaning that γ is exactly an

SLE(6) process in (Ω, a, b).

Proof of Theorem 1.4. By Theorem 2.11, the family of exploration processes is tight. Using
Theorem 2.13, any subsequential limit is a time-changed Loewner chain. Consider such a
subsequential limit and parametrize it by its h-capacity. Proposition 2.17 then implies that it
is the Schramm-Loewner Evolution with parameter κ = 6. The possible limit being unique,
the claim is proved.

3 The critical point of percolation

We now arrive at a milestone of modern probability, Kesten’s “pc = 1/2” Theorem (Theo-
rem 1.1). It was proved in the case of bond-percolation on the square lattice, but the same
argument applies to site percolation on the triangular lattice. The rough philosophy of the
proof is the following:
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• First, exhibit a property at p = 1/2, which should be witness of the critical phase.

• Second, prove that the property holds only at p = 1/2, identifying 1/2 to be the only
possible value for the critical point.

One property “identifying” the critical phase is Theorem 2.1 or more generally crossing
probabilities of rectangles with fixed aspect ratio. To illustrate that this result can hold only
at criticality, let us prove the following result, which says that whenever there exists L > 0
such that the rectangle [0, L]× [0, 2L] is crossed horizontally with small enough probability,
the probability of two points being connected decays exponentially fast (which implies that
the model is subcritical and that its dual is supercritical). In the previous sentence, and from
now on, [0, n] × [0, m] denotes the set of points of the form k · 1 + ℓ · eiπ/3, with 0 ≤ k ≤ n
and 0 ≤ ℓ ≤ m.

Proposition 3.1. Fix p ∈ (0, 1) and assume there exists L ∈ N such that

Pp([0, L]× [0, 2L] is crossed horizontally) <
1

e
(

8
2

) .

Then,
Pp(0 ↔ ∂Λn) ≤ ne−n/(2L) for all n ≥ L.

In particular, p ≤ 1− pc.

R̃1 R̃2

R̃3 R̃4R̃5

R̃6

R̃7

R̃8

Figure 8: The rectangles R̃1, . . . , R̃6.

Proof. The inequality p ≤ 1 − pc follows easily from the exponential decay of connectivity
properties. Indeed, one can prove via Borel-Cantelli that there exists almost surely a finite
number of open circuits surrounding the origin, thus proving that there exists an infinite
closed-cluster. The definition of pc then implies that 1− p ≥ pc.

Let m > 0 and consider the rectangles R̃1, R̃2, . . . , R̃8 defined as in Fig. 8. These
rectangles have the property that whenever [0, 2m]× [0, 4m] is crossed horizontally, at least
two of the rectangles R̃i are crossed in the easy direction by disjoint paths. We deduce, using
the BK inequality, that

Pp

(

[0, 2m]× [0, 4m] is crossed horizontally
)

≤
(

8

2

)

Pp

(

[0, m]× [0, 2m] is cros. hor.
)2
.
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Iterating the construction, we easily obtain that for every k ≥ 0,

(

8

2

)

Pp

(

[0, 2km]× [0, 2k+1m] is cros. hor.
)

≤
((

8

2

)

Pp

(

[0, m]× [0, 2m] is cros. hor.
)

)2k

.

In particular, if m = L,
(

8
2

)

Pp

(

[0, n]× [0, 2n] is cros. hor.
)

< 1/e and we deduce for n = 2kL:

Pp(0 ↔ ∂Λn) ≤ ne−n/L.

The claim follows for every n by monotonicity.

The proposition can be reformulated in a nice way: let Csub denote the statement that
there exists L > 0 such that

Pp([0, L]× [0, 2L] is crossed horizontally) <
1

e
(

8
2

) .

The condition Csub on p is a criterion of sub-criticality, and the fact that it holds for 1− p is
a criterion of super-criticality.

The previous discussion implies that it suffices to prove that probabilities to cross a
rectangle of aspect ratio 2 in the easy direction is going to 0 as n → ∞ when p < 1/2, or
equivalently that the probability to cross a rectangle of aspect ratio 2 in the hard direction
is going to 1 as n→ ∞ when p > 1/2.

In order to prove this fact, we consider a more general question. We aim to understand
the behavior of the function p 7→ Pp(A) for a non-trivial increasing event A depending on
sites of a subgraph of the triangular lattice (think of this event as being a crossing event).
This increasing function is equal to 0 at p = 0 and to 1 at p = 1, and we are interested in
the range of p for which its value is between ε and 1 − ε for some positive ε (this range is
usually referred to as a window). Under certain conditions on A, the window will be narrow
for large graphs, and its width can be bounded above in terms of the size of the underlying
graph. This kind of result is known as a sharp threshold behavior.

The study of p 7→ Pp(A) harnesses a differential equality known as Russo’s formula:

Proposition 3.2 (Russo [Rus78], Section 2.3 of [Gri99]). Let p ∈ (0, 1) and A an increasing
event depending on a finite set of sites V , then

d

dp
Pp(A) =

∑

v∈V

Pp(v pivotal for A),

where v is pivotal for A if A occurs when v is open, and does not if v is closed.

If the typical number of pivotal sites is sufficiently large, for instance when the probability
of A is not close to 0 nor 1, the window is necessarily narrow. There has been an extensive
study of the largest (among all the sites) probability to be pivotal. We present one of the
most striking results on the subject:
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Theorem 3.3 (Kahn, Kalai, Linial [KKL88], see also [Fri04, FK96, KS06]). Let p0 > 0.
There exists a constant c = c(p0) ∈ (0,∞) such that the following holds. Consider a percola-
tion model on a graph G with |V | denoting the number of sites of G. For every p ∈ [p0, 1−p0]
and every increasing event A, there exists v ∈ V such that

Pp(v pivotal for A) ≥ cPp(A)
(

1− Pp(A)
) log |V |

|V | .

This theorem does not imply that there always are many pivotal sites, since it deals
only with the maximal probability over all sites. It could be that this maximum would be
attained only at one site (for instance for the event that the origin is open). There is a
particularly efficient way (first appeared in [BR06a, BR06c]) to avoid this problem. In the
case of a translation-invariant event A on a torus with n vertices, sites play a symmetric role,
so that the probability to be pivotal is the same for all of them. Proposition 3.2 together
with Theorem 3.3 thus imply that in this case, for p ∈ (p0, 1− p0),

d

dp
Pp(A) ≥ c

(

Pp(A)(1− Pp(A)
)

logn.

Integrating the previous inequality between two parameters p0 < p1 < p2 < 1−p0, we obtain
Pp2(A)

1− Pp2(A)
≥ Pp1(A)

1− Pp1(A)
nc(p2−p1).

If we further assume that Pp1(A) stays bounded away from 0 uniformly in n ≥ 1, we can
find c, C > 0 such that

Pp2(A) ≥ 1− Cn−c(p2−p1). (3.1)

Now that the theory is settled, we can prove the fundamental lemma which shows that
Theorem 2.1 fails when p 6= 1/2 (in the sense that crossing probabilities of a rectangle of
aspect ratio 2 go to 1 as n→ ∞ when p > 1/2). This result is true for every shape, we prove
it for the shape of a rectangle [0, 1]× [0, 2].

Lemma 3.4. Let p < 1/2, there exist ε = ε(p) > 0 and c = c(p) > 0 such that for every
n ≥ 1,

Pp

(

[0, n]× [0, 2n] is crossed horizontally
)

≤ cn−ε. (3.2)

The proof uses Theorem 3.3: we consider a well-chosen translation-invariant event for
which we can prove sharp threshold. Then, we bootstrap the result to our original event.
Let us mention that Kesten proved in [Kes80] a sharp-threshold for the case needed using
different arguments.

Proof. We work with the dual percolation. We need to prove that for p > 1/2, there exist
ε = ε(p) and c = c(p) such that

Pp

(

[0, n]× [0, 2n] is crossed vertically
)

≥ 1− cn−ε. (3.3)

Consider the torus T4n of size 4n. Let B be the event that there exists a vertical crossing of
a rectangle with dimensions (n/2, 4n) in the torus of size 4n. This event is invariant under
translations and satisfies

P1/2(B) ≥ P1/2

(

[0, n/2]× [0, 4n] is crossed vertically
)

≥ c > 0
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T4n

R1 R2 R3 R4

R5 R6 R7 R8

R9 R10 R11 R12

R13 R14 R15 R16

Figure 9: The rectangles R1, . . . , R16. They are all translates of R1.

uniformly in n. Since B is increasing, we can apply (3.1) to deduce that for p > 1/2, there
exist ε, c > 0 such that

Pp(B) ≥ 1− cn−ε. (3.4)

If B holds, one of the 16 rectangles R1, . . . , R16 drawn in Fig. 9 must be crossed from top
to bottom. We denote these events by A1, . . . , A16 — they are translates of the event that
[0, n]× [0, 2n] is crossed horizontally. Using the Harris inequality in the second line, we find

Pp(B) = 1− Pp(B
c) = 1− Pp

(

16
⋂

i=1

Aci

)

≤ 1−
16
∏

i=1

Pp(A
c
i) = 1−

[

1− Pp

(

[0, n]× [0, 2n] is crossed vertically
)]16

.

Plugging (3.4) into the previous inequality, we deduce

Pp ([0, n]× [0, 2n] is crossed vertically) ≥ 1− (cn−ε)1/16.

3.1 Definition of the correlation length

We have studied how probabilities of increasing events evolve as functions of p. If p is fixed
and we consider larger and larger rectangles (of size n), crossing probabilities go to 1 whenever
p > 1/2, or equivalently to 0 whenever p < 1/2. But what happens if (p, n) → (1/2,∞) (this
regime is called the near-critical regime)?

If one looks at two percolation pictures in boxes of size N , one at p = 0.5, and one at
p = 0.47, it is not be necessarily possible to distinguish between them if N is not large enough.
Yet, when the size of the picture gets bigger and bigger, connectivity properties start to differ
drastically. The scale at which one starts to see that p is not critical is called the correlation
length. Interestingly, it can naturally be expressed in terms of crossing probabilities

Definition 3.5. For ε > 0 and p < 1/2, define the correlation length by

Lp(ε) := inf
{

n > 0 : Pp

(

[0, n]2 is crossed horizontally
)

≤ ε
}

. (3.5)

Extend the definition of the correlation length to every p by setting Lp(ε) := L1−p(ε).
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Note that the definition itself of Lp(ε) uses the fact that crossing probabilities converge
to 0 when p < 1/2 to guarantee that the infimum is well-defined. Let us also mention that
taking rhombi in the definition of the correlation length is not crucial. Indeed, the following
result, called a Russo-Seymour-Welsh result, implies that one could equivalently define the
correlation length with other aspect ratio, and that it would only change the value of the
corresponding ε.

Theorem 3.6 (see e.g. [Gri99, Kes82]). Let p0 > 0, there exists a strictly increasing contin-
uous function ρp0 : [0, 1] → [0, 1] such that ρp0(0) = 0 and ρp0(1) = 1 satisfying the following
property: for every p ∈ (p0, 1− p0) and every n > 0,

ρp0(δ) ≤ Pp([0, 2n]× [0, n] crossed horizontally) ≤ ρp0(1− δ),

where
δ := Pp([0, n]

2 crossed horizontally).

From now on, fix p0 > 0. Let us mention that ε is not relevant as well, as long as it is taken
small enough. More precisely, we want to argue that above the critical length, things look
subcritical or supercritical depending on p < 1/2 or p > 1/2. To do so, we would like Csub
to be satisfied. In other words, we want Pp([0, 2n] × [0, n] crossed horizontally) < 1/(e

(

8
2

)

)

for n ≥ Lp(ε). Fix ε = ε(p0) small enough so that ρ(ε) < 1/(e
(

8
2

)

) and drop it from the
notations. Note that with this value of ε, the correlation length at criticality equals infinity,
since probabilities to be connected at distance n do not decay exponentially fast for p = 1/2.

In particular, we get that below the correlation length, crossing probabilities of topological
rectangles are bounded from below: for any topological rectangle (Ω, A, B, C,D), there exists
c = c(ε, p0) > 0 such that for p ∈ (p0, 1− p0) and n < Lp(ε),

Pp

[

C1/n(Ω, A, B, C,D)
]

≥ c. (3.6)

In this sense, the configuration looks critical. We will see in the next section that fractal
properties are the same below the correlation length as at criticality.

We conclude this section by mentioning that usually, the correlation length is defined as
the “inverse rate” of exponential decay of the two-point function. More precisely, since the
quantity Pp(0 ↔ nx) is super-multiplicative, the quantity ξp can be defined by the formula

1

ξp
= lim

n→∞
−1

n
log Pp(0 ↔ nx).

Then, it is possible to prove that Lp ≍ ξp when p < 1/2 (note that Proposition 3.1 gives one
inequality, see Theorem 3.1 of [Nol08] e.g. for the other bound).

Remark 3.7. Another way to understand the critical length is the following: when studying
the super or subcritical percolation, coarse-graining arguments allow to relate properties of a
percolation with parameter p to a percolation with new parameter p′ much closer to 0 or 1.
Usually, by taking N to be large enough, it is even possible to get p′ in the Peierls regime, in
which counting arguments are sufficient to estimate relevant quantities. Typically, the grain
needs to be considered at parameter p is of order Lp.
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3.2 Percolation below the correlation length and arm exponents

Proposition 3.1 together with the definition of the correlation length imply that percolation
in boxes much larger than the correlation length look subcritical or supercritical. The goal
of this section is to describe percolation below the correlation length. In particular, we aim
to prove that connectivity properties are basically the same as the connectivity properties
at criticality.

To quantify connectivity properties, we introduce the notion of arm-event. Fix a sequence
σ of j colors (”open” o or ”closed” c). For n < N , define Aσ(n,N) to be the event that
there are j disjoint paths from ∂Λn to ∂ΛN with colors σ1, . . . , σj where the paths are
indexed in counter-clockwise order. We set Aσ(N) to be Aσ(k,N) where k is the smallest
possible integer such that the event is non-empty. For instance, Ao(n,N) is the one-arm
event corresponding to the existence of a crossing from the inner to the outer boundary of
ΛN \ Λn.

An adaptation of Corollary 2.4 implies that there exists βσ and β ′
σ such that

(n/N)βσ ≤ P1/2[Aσ(n,N)] ≤ (n/N)β
′

σ .

It is therefore natural to predict that there exists a critical exponent ασ ∈ (0,∞) such that

P1/2[Aσ(n,N)] = (n/N)−ασ+o(1),

where o(1) is a quantity converging to 0 as n/N goes to 0. The quantity ασ is called an
arm-exponent.

We will compute critical exponents later in the survey. Before that, we get interested in
the variation of Pp[Aσ(n,N)] as a function of p when N < Lp. We aim to show that the
variation is not large, and that Pp[Aσ(n,N)] remains basically constant. This fact justifies
the following claim: below Lp, percolation looks critical.

Theorem 3.8 (Kesten [Kes87]). For a polychromatic sequence σ, we have Pp(Aσ(n)) ≍
P1/2(Aσ(n)) for every p and n ≤ Lp.

3.2.1 Quasi-multiplicativity of arm exponents

Let us start with a technical yet fundamental result.

Theorem 3.9 (Quasi-multiplicativity). Fix p ∈ (p0, 1−p0) and a polychromatic sequence σ.
For every n1 < n2 < n3 < Lp, we have

Pp

[

Aσ(n1, n3)
]

≍ Pp

[

Aσ(n1, n2)
]

· Pp
[

Aσ(n2, n3)
]

.

The inequality

Pp

[

Aσ(n1, n3)
]

≤ Pp

[

Aσ(n1, n2)
]

· Pp
[

Aσ(n2, n3)
]

.

is straightforward using independence. The other one is slightly more technical. Let us
mention that in the case of one arm, the proof is fairly easy (see Fig. 10 for an illustration
of the proof).

30



n2

n3

n1

2n2

n2/2

Figure 10: The paths in the annuli Λn3
\Λn2

and Λn2
\Λn1

are in black. A combination
of two circuits connected by a path (in gray) connects the paths together. This figure
occurs with probability bounded away from 0 thanks to crossing estimates.

For general σ, the proof requires the notion of well-separated arms. In words, well-
separated arms extend slightly outside the boxes and their ends are at macroscopic distance
of each others, see Fig. 11. More precisely, for δ > 0, j arms γ1, . . . , γj with end-points
xk = γk ∩ ∂Λn, yk = γk ∩ ∂ΛN are said to be (δ-)well-separated if

• sites yk are at distance larger than 2δN from each others.

• sites xk are at distance larger than 2δn from each others.

• For every k, yk is σk-connected to distance δN of Sn,N in ΛδN(yk),

• For every k, xk is σk-connected to distance δn of Sn,N in Λδn(xk).

Let Asep;δσ (n,N) = Asepσ (n,N) be the event that Aσ(n,N) holds true and there exist arms
realizing Aσ(n,N) which are δ-well-separated.

The previous definition has several convenient properties, such as:

Proposition 3.10. Fix p ∈ (p0, 1− p0) and δ < 1 small enough. For every n1 ≤ n2 ≤ n3

2
≤

Lp,

Pp[A
sep
σ (n1, n3)] >⌢ Pp(A

sep
σ (n1, n2)] · Pp[Asepσ (2n2, n3)].

From this, we deduce that for p ∈ (0, 1) and ε, δ < 1, there exists α = α(δ, ε) > 0 such
that for every n1 ≤ n2 ≤ n3 < Lp(ε),

Pp

[

Asepσ (n1, n2)
]

<
⌢

(

n3

n2

)α

· Pp
[

Asepσ (n1, n3)
]

. (3.7)

To prove this inequalities, it suffices to see that Pp(A
sep
σ (n,N)) is also bounded from below

by a power of (n/N). This is an easy consequence of (3.6).

31
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y2
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x1
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x3

x2

Figure 11: On the left, the five-arm event Aocooc(n,N). On the right, the event
Asepocooc(n,N) with well-separated arms. Note that these arms are not at macroscopic
distance of each others inside the domain, but only at their end-points.

Proof of Proposition 3.10. We have

Pp

[

Asepσ (n1, n2) ∩ Asepσ (2n2, n3)
]

≥ Pp

[

Asepσ (n1, n2)
]

· Pp
[

Asepσ (2n2, n3)
]

and it suffices to prove that Pp

[

Asepσ (n1, n2) ∩ Asepσ (2n2, n3)
]

and Pp

[

Asepσ (n1, n3)
]

are com-
parable. To do so, condition on Asepσ (n1, n2) ∩ Asepσ (2n2, n3) and construct j disjoint tubes
of width ε = ε(δ) connecting (yk + Λδn2

) \ Λn2
to (yk + Λ2δn2

) ∩ Λ2n2
for every k ≤ j. It

is simple to show that this is topologically possible. Via (3.6), the σk-paths connecting xk
to ∂Λ2δn2

(xk) ∩ Λn2
, and yk to ∂Λδn2

(yk) \ Λn2
can be connected by a σk-path with positive

probability c = c(δ, p0). Therefore,

Pp(A
sep
σ (n1, n3)) ≥ cPp

[

Asepσ (n1, n2) ∩ Asepσ (2n2, n3)
]

,

thus concluding the proof.

If Asepσ (n,N) and Aσ(n,N) have uniformly comparable probabilities, Theorem 3.9 follows
readily. Therefore, our main objective is now the following result:

Proposition 3.11. Fix p ∈ (p0, 1− p0). For every n < N ≤ Lp,

Pp

[

Asepσ (n,N)
]

≍ Pp

[

Aσ(n,N)
]

.

Let us present how to conclude the proof of Theorem 3.9:

Proof of Theorem 3.9. As we said earlier, one inequality is straightforward. Let us deal with
the other one. We have for n1 ≤ n2 ≤ n3,

Pp

[

Aσ(n1, n3)
]

≥ Pp

[

Asepσ (n1, n3)
]

>
⌢ Pp

[

Asepσ (n1, n2)
]

· Pp
[

Asepσ (2n2, n3)
]

≍ Pp

[

Aσ(n1, n2)
]

· Pp
[

Aσ(2n2, n3)
]

≥ Pp

[

Aσ(n1, n2)
]

· Pp
[

Aσ(n2, n3)
]

,
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where in the third line, we used Proposition 3.11, in the second Proposition 3.10, and in the
last, Aσ(n2, n3) ⊂ Aσ(2n2, n3).

Let us now turn to the proof of Proposition 3.11. We start with the following lemma:

Lemma 3.12. For any ε > 0, there exists δ > 0 such that for every 2n ≤ N ,

Pp(any set of crossings of Sn,N can be made well separated) ≥ 1− ε.

Proof. Fix 2n < N ≤ Lp. Consider T large enough so that there exist more than T disjoint
crossings of Sn,2N with probability less than ε. This is possible since the probability that
there is one crossing is smaller than c = c(ε) < 1 via the definition of Lp, hence the Reimer
inequality implies that the probability that there are T crossing is smaller than cT .

Fix δ > 0 such that in any sub-domain of the annulus Sδr,r, ∂Λδr is not connected or
dual connected to ∂Λr with probability 1− ε/T , uniformly in the domain and the boundary
conditions on Sδr,r. This fact can be proved easily using (3.6).

We can assume with probability 1 − 12ε that no crossing ends at distance less than δN
of a corner of Sn,N . It is thus sufficient to work with vertical crossings in the trapeze shape
Tn,N := Sn,N ∩ [−N,N ] × [n,N ].

Now, condition on the left-most crossing γ1 of Tn,N and set y to be the ending point of
γ1 on the top. Construct the domain Ω to be the connected component of the right edge in
Tn,N \ γ1. We can assume with probability 1− ε/T that no vertical crossing land at distance
δN of y by ensuring that Ω ∩ Sδ2N,δN (y) contains open and closed circuits. Moreover, (3.6)
allows to construct a path P in Λδ2N (y)\ (Tn,N \Ω) connecting γ1 to the top of Λδ2N (y) with
probability c > 0. This construction costs cε/T and γ1 is guaranteed to be isolated from
other crossings. Iterating the construction T times, we find the result.

The same reasoning applies to the interior side and we obtain the result.

γ

Ω

y

y
′

Figure 12: The construction of open and closed paths extending the crossing and
preventing other crossings of finishing close to the path in the shape Tn,N .

Proof of Proposition 3.11. The lower bound Pp[A
sep
σ (n,N)] ≤ Pp[Aσ(n,N)] is straightfor-

ward. Let us prove the upper bound for S2n,2N , first with only the separation on the exterior.

Define A
sep/ext
σ (2n, 2k) to be the event Aσ(2

n, 2k) with separation on the exterior only. Let
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Λk be the event that crossings in S2k−1,2k can be made separated. Lemma 3.12 ensures that

Pp(B
c
k) ≤ ε. Note that Aσ(2

n, 2k) ∩ Bk ⊂ A
sep/ext
σ (2n, 2k). We thus have

Pp

[

Aσ(2
n, 2N)

]

≤
N−1
∑

k=n

Pp

[

Aσ(2
n, 2k), Bk, B

c
k+1, . . . , B

c
N−1

]

≤
N−1
∑

k=n

Pp

[

Aσ(2
n, 2k), Bk

]

· Pp(Bk+2)Pp(Bk+4) . . .

≤
N−1
∑

k=n

Pp

[

Asep/extσ (2n, 2k)
]

εN−n

<
⌢

(

N−1
∑

k=n

2(log[ε]−α)(N−k)

)

· Pp
[

Asep/extσ (2n, 2N)
]

where we used Lemma 3.12 and the fact that Proposition 3.10 together with the a priori
bound

Pp[A
sep/ext
σ (r, R)] ≥ (r/R)α

(which follows from the same techniques as the a priori bounds on Pp[Aσ(r, R)]) implies

Pp

[

Asep/extσ (2n, 2k)
]

≤ 2α(k−N)
Pp

[

Asep/extσ (2n, 2N)
]

.

Choosing ε small enough, we obtain δ and c > 0 such that

Pp

[

Aσ(2
n, 2N)

]

≤ c · Pp
[

Asep/extσ (2n, 2N)
]

One can then obtain the separation on the interior in the same way. Now, fix n < N
arbitrary. Define s, r by the formulas 2s−1 < n ≤ 2s and 2r ≤ N < 2r+1. We have

Pp

[

Aσ(n,N)
]

≤ Pp

[

Aσ(2
s, 2r)

]

≍ Pp

[

Asepσ (2s, 2r)
]

≍ Pp

[

Asepσ (n,N)
]

.

We mention a classical corollary of the comparison between well-separated arms and
usual arms: one can choose a landing sequence I = (Ik)k≤j of disjoint areas of size δ on the
boundary of the square Q = [−1, 1]2, found in counter-clockwise order following ∂Q.

Let AIj,σ(n,N) be the event that there exist arms from the interior to the exterior of Sn,N ,
and such that γk ends on NIk.

Corollary 3.13. Fix j > 0. For any choice of I, σ, n < N , we have

Pp

[

AIσ(n,N)
]

≍ Pp

[

Aσ(n,N)
]

.

3.2.2 Some specific critical arm exponents

The quasi-multiplicativity allows for the derivation of so-called universal exponents.

Theorem 3.14. For every 0 < k < n ≤ Lp,

Pp

[

Aocooc(k, n)
]

≍ (k/n)2 , Pp

[

AHPoc (k, n)
]

≍ k/n, Pp

[

AHPoco (k, n)
]

≍ (k/n)2 .

where AHPσ (n,N) is the existence of j paths in [−N,N ]×[0, N ]\[−n, n]×[0, n] form [−n, n]×
[0, n] to ([−N,N ]× [0, N ])c.
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Figure 13: Only one site per rectangle can satisfy the following topological picture.

Proof. We treat the first case only, since the others are similar and actually technically easier.
We only need to look at the case k = 1 via quasi-multiplicativity.

Let us first prove the lower bound. Fix n < Lp, we work in the box [0, n]2 for simplicity.
The same reasoning extends to the case of the box. Consider the following construction:
assume there exist a horizontal crossing of [−n, n]× [−n/4, 0] and a dual horizontal crossing
of [−n, n] × [0, n/4]. This happens with probability bounded from below by c > 0 not
depending on n. By conditioning on the lowest interface Γ between an open and a closed
crossing of [−n, n]× [−n/4, n/4], the configuration above it is a random-cluster configuration
with free boundary conditions. Let Ω be the connected component of Λn \ Γ containing
[−n, n] × {n}. Assume that [−n/4, 0] × [−n, n] ∩ Ω is dual crossed horizontally, and that
[0, n/4] × [−n, n] ∩ Ω is crossed horizontally. The probability of this event is once again
bounded from below uniformly in n, thanks to (3.6). Note that we need a strong form
of crossing probabilities in order to guarantee the existence of the last crossing since the
boundary of Ω can be very rough.

Summarizing, all these events occur with probability larger than c′ > 0. Moreover, the
existence of all these crossings implies the existence of a site in Λn/4 with five arms emanating
from it. The union bound implies

(n/4)2Pp[Aocooc(n/4)] ≥ c′.

In order to prove an upper bound for Pp[Aocooc(n)], recall that it suffices to show it for
well-separated arms for which we choose landing sequences. Consider the event described in
Fig. 13. Topologically, no two sites in Λn can satisfy this event simultaneously, which implies
the claim.

This result has an interesting corollary:

Corollary 3.15. Fix p ∈ (0, 1). There exists α > 0 such that for every 0 < k < n ≤ Lp,

Pp

[

Aocococ(k, n)
]

<
⌢ (k/n)2+α

Pp

[

Aococ(k, n)
]

>
⌢ (k/n)2−α.
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The first inequality is useful since it relates to convergence to SLE(6), as mentioned before.
The second one is also interesting, especially when k = 1, since it implies the existence of at
least nα pivotal points. This fact is crucial in the study of the near-critical regime, as well
as the dynamical percolation, see [Gar10] and references therein.

Proof. Note that for any sequence σ, Reimer’s inequality implies

Pp

[

Aσo(k, n)
]

≤ Pp

[

Aσ(k, n)
]

· Pp
[

Ao(k, n)
]

.

The result also holds with {o} replace by {c}. Since Pp[Ao(k, n)] ≥ (k/n)α for some constant
α, we deduce the result from the fact that Pp

[

Aocooc
]

≍ (k/n)2.

3.2.3 Stability of arm probabilities below the critical length

We now prove Theorem 3.8. The idea is to estimate the logarithmic derivative of arm-event
probabilities in terms of the derivative of the crossing probabilities. In order to do so, we
relate the probability to be pivotal for arm-events with the probability to be pivotal for
crossing events.

Proof of Theorem 3.8. We treat the case of Pp(Ao(n)) when p > 1/2. Recall that n is
assumed to be smaller than Lp, so that RSW holds at every scale smaller than n. We will
be using the fact that crossing probabilities are bounded away from 0 and 1 uniformly in
n ≤ Lp. We cannot stress enough the fact that it holds as long as (and roughly speaking if
and only if) n < Lp.

Russo’s formula implies

d

dp
Pp

[

Ao(n)
]

=
∑

v∈Λn

Pp

[

v pivotal for Ao(n)
]

. (3.8)

The site v is pivotal if and only if there are four arms of alternating colors emanating from
it, one of the open arm going to the origin, the other to the boundary of the box, and
the two closed arms forming a circuit around the origin (see Fig 14). The event that a
site v (at distance |v| of the origin) is pivotal is thus included in the intersection of events
Ao(|v|/2), Ao(2|v|, n) and the translate of Aococ(|v|/2) by v (see Fig 14 again). We deduce,
using independence, that

Pp

[

v pivotal for Ao(n)
]

≤ Pp

[

Ao(|v|/2)
]

· Pp
[

Ao(2|v|, n)
]

· Pp
[

Aococ(|v|/2)
]

<
⌢ Pp

[

Ao(n)
]

· Pp
[

Aococ(|v|/2)
]

where in the second line we have used Theorem 3.9 and the fact that Pp
[

Ao(|v|/2, 2|v|)
]

is
of order 1 (use crossing estimates). Plugging this inequality into (3.8), we find

d

dp
Pp

[

Ao(n)
]

<
⌢ Pp

[

Ao(n)
]

·
∑

v∈Λn

Pp

[

Aococ(|v|/2)
]

(3.9)

which integrates into

logPp
[

Ao(n)
]

− log P1/2

[

Ao(n)
]

<
⌢

∫ p

1/2

∑

v∈Λn

Pp′
[

Aococ(|v|/2)
]

dp′. (3.10)
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It remains to prove that the right-hand side is of order 1. Theorem 3.9 and Corollary 3.15
imply

Pp′
[

Aococ(k)
]

<
⌢ (n/k)2−α Pp′

[

Aococ(n)
]

,

for n ≤ Lp ≤ Lp′ (since 1/2 < p′ < p). Put into (3.10), it gives

logPp
[

Ao(n)
]

− log P1/2

[

Ao(n)
]

<
⌢

∫ p

1/2

(

∑

v∈Λn

(2n/|v|)2−α Pp′
[

Aococ(n)
]

)

dp′

<
⌢

∫ p

1/2

n2
Pp′
[

Aococ(n)
]

dp′.

To conclude, Russo’s formula implies

1 ≥ Pp([0, n/2]
2 is crossed)− P1/2([0, n/2]

2 is crossed)

=

∫ p

1/2

∑

v∈Λn/2

Pp′
[

v pivotal for [0, n/2]2 being crossed
]

dp′

≥
∫ p

1/2

3n2

4
Pp′
[

Aococ(n)
]

dp′,

where we have used the fact that v is pivotal for the event {[0, n/2]2 is crossed} if there are
four arms of alternating colors going to the boundary of [0, n/2]2. In particular, we find the
required bound

logPp
[

Ao(n)
]

− log P1/2

[

Ao(n)
]

<
⌢ 4/3.

The same reasoning can be applied for any sequence σ. The main step is to get (3.9) with
{o} replaced by σ, the end of the proof being the same. In order to obtain this inequality,
one harnesses a generalization of Russo’s formula; we refer to Theorem 26 of [Nol08] for a
complete exposition.

4 Critical exponents for percolation exponents.

4.1 Critical arm exponents

The fact that SLE paths can be “encoded” via Brownian motions paves the way to the use of
standard techniques such as stochastic calculus in order to study the properties of SLE curves.
Consequently, SLEs are now fairly well understood: path properties have been derived in
[RS05], their Hausdorff dimension can be computed [Bef04, Bef08a], etc. In addition to
this, several critical exponents can be related to properties of the interfaces, and thus be
computed using SLE.

It is easy to show, using a color-switching argument very similar to the one harnessed in
Lemma 2.6, that ασ depends only on the length of the sequence, as long as we consider bi-
chromatic sequences. From now on, we set αj to be the exponent for bi-chromatic sequences
of length j and Aj(n,m) for the corresponding event. By extension, we set α1 to be the
exponent of the one-arm event.
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Bn

B2|f |

B|f |/2

f

Figure 14: The event that f is pivotal for Ao(n). The dotted line corresponds to a
closed circuit.

Theorem 4.1 ([LSW02, SW01]). α1 =
5

48
and αj =

j2 − 1

12
for j > 1.

The proof of this is heavily based on the use of Schramm-Loewner Evolution. We sketch
the proof and we refer the reader to existing literature on the topic for details [LSW02,
SW01]. The argument is two-fold. First, arm-exponents can be related to the corresponding
exponents for SLE. And second, these exponents can be computed using stochastic and
conformal invariance techniques. We will not describe the second step, since the computation
can be found in many places in the literature already, and that it would bring us far from
our main subject of interest in this review.

Lemma 4.2. Assume that for any R > 0, P1/2[Aj(m,Rm)] converges as m goes to ∞. For
any ε > 0, there exists R > 0 such that for N large enough,

∣

∣

∣

∣

log P1/2[Aj(N)]

logN
− lim

m→∞

logP1/2[Aj(m,Rm)]

logR

∣

∣

∣

∣

≤ ε.

Proof. Fix ε > 0. First note that it is sufficient to prove the result for N of the form Rn.
Using Theorem 3.9 iteratively, there exists a universal constant C > 1 such that for any n,

∣

∣

∣

∣

∣

logP1/2[Aj(R
n)]−

n−1
∑

k=0

log P1/2[Aj(R
k, Rk+1)]

∣

∣

∣

∣

∣

≤ n logC. (4.1)

Now, if P1/2[Aj(m,Rm)] converges as m goes to ∞, then

1

n

n−1
∑

k=0

log P1/2[Aj(R
k, Rk+1)] −→ lim

m→∞
logP1/2[Aj(m,Rm)] as n goes to ∞.

Now, let R large enough that logC/ logR ≤ ε/2. The statement follows readily by dividing
(4.1) by n logR and plugging the previous limit into it.
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Proof of Theorem 4.1. The previous lemma implies that in order to compute arm-exponents,
it suffices to show that limm→∞ P1/2[Aj(m,Rm)] exists and to compute its limit when R goes
to ∞.

Let us first deal with j = 1. Let Λ be the box centered at the origin with hexagonal shape
and edge-length 1. Consider a exploration process in the discrete domain (RΛ)δ defined as
follows:

• It starts from the corner R.

• Inside the domain, the exploration γ takes on the left when it faces an open hexagonal,
and on the right otherwise.

• On the boundary of (RΛ)δ \ γ, γ carries on in the connected component of (RΛ) \ γ
containing the origin (it always bumps in such a way that it can reach the origin
eventually).

The existence of one open path from ∂Λ to ∂(RΛ) corresponds to the fact that the exploration
does not close any counterclockwise loop before reaching Λ.

It can be shown that the exploration γ converges to a so-called radial SLE6 [LSW02], so
that the probability of P1/2[A1(m,Rm)] converges to the probability that a SLE6 does not

close counterclockwise loops before reaching Λ (denote this probability by P [ASLE6

1 (1, R)]).
This quantity has been computed in [LSW02] and it was proved that

logP [ASLE6

1 (1, R)]

logR
→ −5/48 as R goes to ∞,

thus concluding the proof in this case.
Let us now deal with αj for j > 1 even. Let us consider the case of σ = ococ..c with

length j, since all the polychromatic exponents with the same number of colors are equal.
The corresponding event for the exploration process is that it does j + 1 crossings of the
annulus (RΛ) \ Λ. The probability of this event ASLE6

j (1, R) for SLE6 was also estimated in
[LSW01a, LSW01b] and it was proved that

logP [ASLE6

j (1, R)]

logR
→ −(j2 − 1)/12 as R goes to ∞,

thus concluding the proof int his case. The case of j odd can also be handled. Let us
mention that the previous paragraphs constitute a sketch of proof only, and the real story is
fairly more complicated, we refer to [LSW02, SW01] (or [Wer40, Wer07]) and the references
therein for a full proof.

Fractal properties of critical percolation. These arm exponents can be used to mea-
sure the size (Hausdorff dimension) of various sets describing percolation clusters at criticality.
A set S is said to be fractal of dimension dS if the density of points in S within a box of
size n decays as n−xS , with xS = 2 − dS in two dimensions. The codimension xS is related
to arm exponents in many cases:
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• The 1-arm exponent is related to the existence of long connections, from the center of
a box to its boundary. It measures the size of big clusters, like the incipient infinite
cluster (IIC) as defined by Kesten [Kes86], which scales as n2−5/48 = n91/48.

• The monochromatic 2-arm exponent describes the size of the backbone of a cluster.
The fact that this backbone is much thinner than the cluster itself was used by Kesten
[Kes86] to prove that the random walk on the IIC is sub-diffusive (while it has been
proved to converge toward a Brownian Motion on a supercritical infinite cluster, see
[BB07, MP07] for instance).

• The polychromatic 2-arm exponent is related to the boundary points of big clusters,
which are thus of fractal dimension 2− α2 = 7/4.

• The 3-arm exponent concerns the external (accessible) perimeter of a cluster, which is
the accessible part of the boundary: one excludes fjords which are connected to the
exterior only by 1-site wide passages. The dimension of this frontier is 2 − α3 = 4/3.
These last two exponents can be observed on random interfaces, numerically and in
real-life experiments as well (see [DSB03, SRG85] for instance).

• The 4-arm exponent with alternating colors counts the pivotal sites (see the next
section for more information). Its dimension is 2− α4 = 3/4. This exponent is crucial
is the study of noise-sensitivity of percolation.

4.2 Near-critical exponents

It is now time to relate arm-exponents to near-critical ones. The goal of this section is to
prove the following:

Theorem 4.3 (Kesten [Kes87]). For every p > 1/2, we have

(p− 1/2) L2
p P1/2[Aococ(Lp)] ≍ 1 and θ(p) ≍ P1/2[Ao(Lp)].

Theorems 4.1 and 4.3 imply Theorem 1.5 easily:

Proof of Theorem 1.5. Since P1/2[Aococ(n)] = n−5/4+o(1) and P1/2[Ao(n)] = n−5/48+o(1), we
deduce that θ(p) = (p− 1/2)5/36+o(1), which is exactly the claim of Theorem 1.5.

More generally, if we only assume the existence of α1 and α4 such that P1/2[Aococ(n)] =
n−α4+o(1) and P1/2[Ao(n)] = n−α1+o(1), the previous statement implies the existence of ν and
β such that Lp = (p− 1/2)−ν+o(1) and θ(p) = (p− 1/2)β+o(1) and moreover

(2− α4)ν = 1 and β = α1ν.

A connection between different critical exponents is called a scaling relation. In this case,
they are called Kesten’s relations.
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Proof. Let us deal with the first equality. We aim to apply Russo’s formula to the event A
that [0, Lp]

2 is crossed. On the one hand, with the definition of Lp, Pp(A) equals 1 − ε. On
the other hand, one can check that P1/2(A) = 1/2. Moreover, a site is pivotal for A if and
only if there are four alternating arms starting from it and going to the boundary of [0, Lp]

2.
Except for points near the boundary, this occurs with Pp′-probability of order Pp′[Aococ(Lp)]
for every p′ ∈ (1/2, p). Therefore, if we neglect the effect of the boundary, we obtain

1 ≍ Pp(A)− P1/2(A) ≍
∫ p

1/2

L2
p Pp′[Aococ(Lp)]dp

′.

There are several ways to deal with the boundary effect. One can control the probability to
be pivotal for boundary points separately, or one can do the following: for the lower bound,
it is sufficient to count points far from the boundary like we did in the previous section, for
the upper bound, one can work with the event that the torus of size n contains a circuit with
non-trivial homotopy. There, the probability to be pivotal is the same for every site, and is
smaller than Pp[Aococ(n)].

Theorem 3.8 implies Pp′[Aococ(Lp)] ≍ P1/2[Aococ(Lp)] for every p
′ ∈ (1/2, p), so that

1 ≍ (p− 1/2) L2
p P1/2[Aococ(Lp)].

We now turn to the second relation. On the one hand, it is straightforward that θ(p) =
Pp(0 ↔ ∞) ≤ Pp(0 ↔ ∂[0, Lp]

2) = Pp[Ao(Lp)]. On the other hand, Proposition 3.1 implies
that Pp[Ao(Lp, n)] ≥ c where c > 0 is uniform in n and p. Using the quasi-multiplicativity,
we can deduce

Pp[Ao(n)] ≥ Pp[Ao(Lp)]Pp[Ao(Lp, n)] ≥ c · Pp[Ao(Lp)]

uniformly in n and p. Once again, Theorem 3.8 implies Pp[Ao(Lp)] ≍ P1/2[Ao(Lp)], which in
turn implies the theorem by noticing that θ(p) = limn→∞ Pp[Ao(n)].

5 A few open questions

Percolation on the triangular lattice Percolation on the triangular lattice is now very
well understood. Nevertheless, several questions remain open. We selected two of them.

We know the behavior of most thermodynamical quantities (the cluster density θ, the
truncated mean-cluster size ξ(p) = (p − 1/2)−ν+o(1) as p → pc, the two-point functions
P1/2(0 ↔ x) = |x|2−d−η+o(1) as x → ∞ and many others). Nevertheless, the behavior of the
following fundamental quantity remains unproved:

Question 1. Prove that the mean number of clusters per site κ(p) = Ep(|C|−1) behaves like
|1/2− p|2+α+o(1), where C is the cluster at the origin and α = −2/3.

Interestingly, the critical exponent for j 6= 1 disjoint arms of the same color is not equal
to the polychromatic arms exponent [BN10]. A natural open question would be to compute
these exponents:

Question 2. Compute the monochromatic exponents.
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Percolation on other graphs Conformal invariance of percolation has been proved only
on the triangular lattice. In physics, it is conjectured that the scaling limit of percolation
should be universal, meaning that it should not depend on the lattice. For instance, interfaces
of bond-percolation on the square lattice at criticality (when the bond-parameter is 1/2)
should also converge to SLE(6).

Question 3. Prove conformal invariance for critical percolation on another planar lattice.

For general graphs, the question of embedding the graph becomes crucial. Indeed, if one
embeds the square lattice by gluing long rectangles, then the model will not be rotationally
invariant. We refer to [Bef08b] for further details on the subject.

Question 4. For a general lattice, how to construct a natural embedding on which percolation
is conformally invariant?

In order to understand universality, a natural class of lattices to start with is the class of
lattices where box crossings can be proved. Note that proofs of RSW often invoke some sym-
metry (rotational invariance for instance). A proof valid for lattices without any symmetry
would be of great importance:

Question 5. Prove RSW for critical percolation on all planar lattices.

Let us mention that an important step towards the case of general lattices was accom-
plished in [GM11a, GM11b], where box crossings are proved to exist with positive probability
for critical anisotropic percolation models on the hexagonal, triangular and square lattices.

Percolation in high dimension is well understood (see e.g. [HS94]), thanks to the so-
called triangular condition and lace-expansion techniques associated to it. In intermediate
dimensions, the critical phase is not understood. Of course, one of the main conjectures
in probability is to prove that θ(pc) = 0 for bond-percolation on Z

3. Even weakening of
this conjecture seems to be very hard. For instance, the same question on the “sandwich”
Z2 × {0, 1} is still open:

Question 6. Prove that θ(pc) = 0 on Z2 × {0, 1}.

Other two-dimensional models of statistical physics Conformal invariance (for in-
stance of crossing probabilities) is not restricted to percolation (see [Smi06, Smi10] and
references therein). It should hold for a wide class of two-dimensional lattice models at criti-
cality. Among natural generalizations of percolation, we mention the class of random-cluster
models and of loop O(n)-models (including the Ising model and the self-avoiding walk). The
only three models in this family for which conformal invariance has been proved are the
Ising model, the q = 2-random cluster model (which is a geometric representation of the
Ising model), and the uniform spanning tree (the ’q = 0’-random cluster model).

Question 7. Prove conformal invariance of another two-dimensional critical lattice model.
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