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This article provides a brief summary on recent advances on the so-called Russo-Seymour-

Welsh (RSW) Theory and its applications to the study of planar percolation models.
In particular, we introduce a few properties of percolation models and discuss their

connections.
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1. Percolation models

A percolation measure on a graph G is given by a measure P on subgraphs ω =

(Vω, Eω) of G = (VG, EG) with vertex set Vω = VG and edge set Eω ⊂ EG. In this

note, we will focus our attention on percolation measures on Z2 which are invariant

under the isometries preserving Z2 (we call such a percolation measure invariant).

We will also assume that the measures satisfy the FKG inequality:

(FKG) For any two increasing events A and B (here increasing means that if ω ∈ A
and Eω′ contains Eω, then ω′ ∈ A),

P[A ∩B] ≥ P[A]P[B].

The simplest such model is provided by Bernoulli percolation5 on Z2 for which

each edge of the square lattice Z2 is in ω with probability p ∈ [0, 1], independently

of the other edges. In the last sixty years, more complicated percolation models

emerged. Some percolation processes were introduced as direct generalizations of

Bernoulli percolation intended to test the physical concept of universality. Namely,

these models have different microscopic definitions (for example, they can be de-

fined on different graphs) but their macroscopic behavior is expected to be the same

as Bernoulli percolation. Yet one may imagine more general percolation models ex-

hibiting very different behaviors. In particular, some dependent percolation models

were introduced as geometric representations of quantum and classical lattice spin

models.

In order to provide a second example of percolation model, let us define the

Fortuin-Kasteleyn percolation (for details, see the book of Grimmett13). Fix p ∈
[0, 1] and q > 0. Let Pp,q be the weak limit of the measures Pp,q,n on [−n, n]2

defined by

Pp,q,n[{ω}] =
p|Eω|(1− p)|EG\Eω|qk(ω)

Z0(n, p, q)
,
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where Z0(n, p, q) is a normalizing constant and k(ω) is equal to the number of

connected components in ω. For integer q ≥ 2, the model is coupled to the q-state

Potts model, which makes it a very interesting percolation model from the point of

view of statistical physics. For q = 1, one recognizes Bernoulli percolation. Let us

mention that for q ≥ 1, Pp,q is an invariant percolation satisfying (FKG).

2. A few properties of percolation models

Percolation models exhibit a very rich behavior which is determined by the geometry

of the large connected components of ω. To achieve a good understanding of these

large connected components for planar models, one may study the so-called crossing

probabilities. To this end, Russo17 and Seymour-Welsh18 proved a theorem – often

referred to as the RSW theorem or simply (RSW) – for Bernoulli percolation which

quickly became the main tool to study the critical regime. This result was later

proved in more and more different and elegant ways6–8,19, each one based on delicate

properties of the model, including independence, translational invariance and some

symmetries.

The zoo of new percolation models called for a more general RSW theorem ap-

plicable to a wider class of percolation models, but this more general version was

lacking and the understanding of the critical phase remained limited to Bernoulli

percolation. The object of this note is to briefly discuss some recent progress

in generalizing (RSW) to percolation models with dependency (with the Fortuin-

Kasteleyn percolation as an illustrating example in mind). Let us start by stating

what is meant by the (RSW) property. For n,m ≥ 1, consider the event Ch(n,m)

(illustrated below) that the rectangle [0, n] × [0,m] contains a path of edges in ω

from its left to its right side.

Ch(n,m) =
n

m

We say that a percolation measure P on Z2 satisfies the property (RSW) if the

following holds:

(RSW) Let 0 < α < β <∞, and x > 0. Then, there exists y = y(α, β, x) > 0 such

that for any n ≥ 1,

P[Ch(αn, n)] ≥ x =⇒ P[Ch(βn, n)] ≥ y.

In words, the property (RSW) can be interpreted as follows: a lower bound on the

crossing probability for a rectangle of aspect ratio α implies a lower bound for a

rectangle of larger aspect ratio β. For measures satisfying (FKG), the difficulty

in proving (RSW) concerns the case 0 < α ≤ 1 < β , the other cases being easy

consequences of (FKG).

This seemingly tautological result has tremendous applications in percolation

theory. Our goal is to discuss several versions of this property and to describe
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some of its applications. In particular, we wish to highlight the connection to the

following two properties (which cannot hold at the same time):

(EXP) There exists c > 0 such that for any n ≥ 1,

P[0↔ Z2 \ [−n, n]2, 0 6↔ ∞] ≤ e−cn.

(BCP) For any ρ > 0, there exists c = c(ρ) > 0 such that for any n ≥ 1,

c ≤ P[Ch(ρn, n)] ≤ 1− c.

The first property, sometimes referred to as exponential decay, is typical of non-

critical models. Many important results follow from (EXP): C∞-regularity of the

free energy, Ornstein-Zernike estimates, exponential decay of the volume of con-

nected components, fast mixing, etc.

The second property, called the box-crossing-property, is typical of critical mod-

els. Alone, it brings little information on the model, but it can be combined with

the following mixing property:

(MIX)There exist c, C ∈ (0,∞) such that for any n ≥ 1 and for any events A and

B depending respectively on edges in [−n, n]2 and outside [−2n, 2n]2,

cP[A]P[B] ≤ P[A ∩B] ≤ C P[A]P[B].

Note that Bernoulli percolation satisfies a much stronger statement than (MIX).

Indeed, the independence between the status of the edges implies that P[A ∩ B] =

P[A]P[B] if the events are chosen as above. Nevertheless, for many applications the

property (MIX) is sufficient.

The combination of (BCP) and (MIX) leads to an anthology of results: poly-

nomial bounds on connection probabilities, fractal properties of the critical phase,

scaling relations16, inequalities on critical exponents, existence of sub-sequential

scaling limits when combined to Aizenman and Burchard’s result2,14. We do not

wish to spend too much time on the applications of these properties, but it is fair

to say that almost all results on planar Bernoulli or dependent percolation models

involve these properties – (EXP), (BCP) and (MIX) – one way or the other.

3. The original RSW theory for Bernoulli percolation

Russo17 and Seymour-Welsh18 proved the following result.

Theorem 3.1. Let p ∈ [0, 1], the Bernoulli percolation measure Pp on Z2 with

parameter p satisfies (RSW).

In order to illustrate the importance of (RSW) and its connection to (EXP) and

(BCP), let us describe one of the most impressive applications of the previous

theorem. Let pc ∈ [0, 1] be the critical parameter of Bernoulli percolation defined

as the supremum of the p for which all connected components of ω are finite Pp-
almost surely. In 1980, Kesten15 proved the following result.
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Theorem 3.2. For any p 6= pc, the Bernoulli percolation measure Pp satisfies

(EXP) while at pc it satisfies (BCP). Furthermore, pc is equal to 1/2.

The previous result is called sharpness of the phase transition. In physics terms,

it means that the model has a finite correlation length except at the critical point.

Note that it establishes a non trivial fact: that if (BCP) is not satisfied then it

means that (EXP) is.

Let us highlight very briefly where (RSW) is used. Standard renormalization

arguments show that there exists a constant ε > 0 such that the following holds.

If the probability Pp[Ch(N/2, N)] of crossing a rectangle of aspect ratio 2 in the

easy direction is smaller than ε for some value of N , then the probability of being

connected to distance n decays exponentially fast in n. Therefore, for (EXP) not

to be satisfied, one must have

inf
n≥2

Pp[Ch(n/2, n)] ≥ ε.

Then, (RSW) implies that infn≥1 Pp[Ch(ρn, n)] > 0 for any ρ > 0.

On the other hand, if the probability Pp[Ch(2N,N)] of crossing a rectangle of

aspect ratio 2 in the hard direction is larger than 1 − ε for a certain value of N ,

then the probability of being connected to distance n but not to infinity decays

exponentially fast in n. Therefore, for (EXP) not to be satisfied, one must have

sup
n≥1

Pp[Ch(2n, n)] ≤ 1− ε.

Then, (RSW) can in fact be used to show that supn≥1 Pp[Ch(ρn, n)] < 1 for any

ρ > 0. In conclusion, at each p, if (EXP) does not hold, then (BCP) is satisfied.

Furthermore, the two previous displayed equations implies that the set of values

of p for which (BCP) holds is of the form [p1, p2] with p1 ≤ p2 (since it is the

intersection on n of closed sets). Kesten’s proof then consists in showing that p1
must be equal to p2, and that the only possible value for these two parameters is

pc. A byproduct of this last fact is that pc coincides with the self-dual point of

the model which is equal to 1/2 for Bernoulli percolation. Many modern proofs of

sharpness of the phase transition for more general models follow the same global

strategy.

4. A weak RSW property and its connection to (RSW)

The property (RSW) is unfortunately not proved for all invariant percolation satisfy-

ing (FKG). In order to circumvent this difficulty, Bollobás and Riordan6 introduced

the following weaker property

(wRSW) infn≥1 P[Ch(n, n)] > 0 =⇒ lim supn≥1 P[Ch(2n, n)] > 0

in the slightly different context of a Bernoulli percolation defined in the continuum

(the model is called Voronoi percolation) to compute its critical point. The property

is weaker than (RSW) for two reasons. First, it implies a lower bound for infinitely
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many scales n only. Second, the assumption on the left requires a uniform lower

bound on the crossing probabilities for squares which is holding at all scales n

instead of just one.

Recently, Tassion19 proved that (wRSW) holds for a large class of percolation

models.

Theorem 4.1. An invariant percolation P satisfying (FKG) satisfies (wRSW).

For q ≥ 1, Pp,q is an invariant percolation satisfying (FKG) and therefore by the

previous theorem (wRSW). This property was used10 to prove that Pp,q satisfies

(EXP) except if p = pc(q), where pc(q) is defined as the supremum of the p for which

all connected components of ω are finite Pp,q-almost surely. While this result was

already proved4 a few years ago, this new approach seems more robust and could

be applied to a large class of percolation models. Note that there is no mention of

(BCP) at pc(q) and in this sense (wRSW) is weaker than (RSW).

5. (RSW) for measures satisfying (MIX)

The property (wRSW) has limited applications to the study of P. Nevertheless, the

ideas developed by Tassion19 to prove Theorem 4.1 can be combined1 with (MIX)

to show the following result.

Theorem 5.1. If P is invariant and satisfies (FKG) and (MIX), then

inf
n≥2

P[Ch(n/2, n)] > 0 =⇒ inf
n≥1

P[Ch(2n, n)] > 0.

We still have one constraint of (wRSW) remaining, namely that we need to

start with an estimate at all scales, but this time one can prove a uniform bound

on crossing probabilities which is true for all scales n.

The previous result should be taken with a grain of salt. For models with de-

pendencies, proving (MIX) is usually based on a stronger version of (RSW) that we

discuss below. Nevertheless, the understanding of some Bernoulli-type percolation

models with very weak dependencies that automatically satisfy (MIX) – such as

Voronoi or continuum percolation1 – has progressed greatly thanks to this RSW-

type results.

6. A strong (BCP) replacing (BCP) and (MIX)

General percolation measures do not satisfy a priori the mixing property (MIX) and

may have long-range dependencies. For these measures, (MIX) is not a straight-

forward consequence of the definition (actually in general, it does not hold for all

choices of parameters) and the property (BCP) alone is not really useful. For ex-

ample, consider the percolation process which is empty with probability 1/2 and

the full Z2 otherwise. This model satisfies (BCP) but has very different features

than critical Bernoulli percolation.
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To avoid such behaviors for dependent models, we consider the following prop-

erty which is stronger than (BCP). For a set E, let FE be the σ-algebra generated by

the random variables (ωe : e ∈ E) (in other words it is the set of events measurable

in terms of edges in E only).

(sBCP) For every ρ > 0, there exists c = c(ρ) > 0 such that for every n ≥ 1,

c ≤ P
[
Ch(ρn, n)

∣∣FZ2\[−n,(ρ+1)n]×[−n,2n]
]
≤ 1− c P− almost surely.

In words, this condition yields that whatever the state of the edges at distance

n of the rectangle, the conditional probability of the rectangle to be crossed is

between c and 1 − c. This property obviously implies (BCP). Actually, a model

which satisfies (sBCB) shares similar features with critical Bernoulli percolation

(existence of macroscopic clusters at every scale, polynomial bounds on connection

probabilities, existence of interfaces, to name a few).

This property seems much more difficult to prove than the previous ones since

it requires the understanding of the law of the edges in the rectangle conditioned

on the process outside of the rectangle. Nevertheless, a large class of dependent

percolation models satisfy the so-called domain Markov property (which is of big

help here), and one may use this property to prove (sBCB) using a renormalization

scheme. For instance, one may obtain11 the following result (which was proved9

before for q = 2):

Theorem 6.1. For any q ∈ [1, 4] and p = pc(q), the Fortuin-Kasteleyn measure

Pp,q satisfies (sBCB).

Note that Baxter conjectured3 that the property is not satisfied for q > 4 and

p = pc(q). Let us mention that the previous theorem implies (MIX) for the Fortuin-

Kasteleyn percolation with parameters q ∈ [1, 4] and pc(q), see12.

7. Two conjectures

We would like to finish by mentioning two conjectures that we consider of interest.

The first one concerns the assumption that the model defined on Z2 is invariant

under the rotation by an angle of π/2. Currently, all proofs involve the use of

rotational symmetry in a crucial way. We think that getting rid of this assumption

is very important from the conceptual point of view.

Conjecture 7.1. Property (RSW) holds for any Bernoulli-percolation measure Pp
of parameter p on a quasi-periodic planar lattice L.

The constraint that the measure satisfies (FKG) is very natural. On the other hand,

one would ideally prefer not to use (MIX) to prove (RSW). Therefore, we propose

the following conjecture.

Conjecture 7.2. If P is an invariant percolation on Z2 satisfying (FKG), then P
satisfies (RSW).
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