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Abstract. The loop O(n) model is a model for a random collection of non-intersecting loops
on the hexagonal lattice, which is believed to be in the same universality class as the spin O(n)
model. It has been predicted by Nienhuis that for 0 ≤ n ≤ 2, the loop O(n) model exhibits a phase
transition at a critical parameter xc(n) = 1/

√
2 +
√
2− n. For 0 < n ≤ 2, the transition line has

been further conjectured to separate a regime with short loops when x < xc(n) from a regime with
macroscopic loops when x ≥ xc(n).

In this paper, we prove that for n ∈ [1, 2] and x = xc(n), the loop O(n) model exhibits macro-
scopic loops. This is the first instance in which a loop O(n) model with n 6= 1 is shown to exhibit
such behavior. A main tool in the proof is a new positive association (FKG) property shown to
hold when n ≥ 1 and 0 < x ≤ 1√

n
. This property implies, using techniques recently developed

for the random-cluster model, the following dichotomy: either long loops are exponentially unlikely
or the origin is surrounded by loops at any scale (box-crossing property). We develop a ‘domain
gluing’ technique which allows us to employ Smirnov’s parafermionic observable to rule out the first
alternative when n ∈ [1, 2] and x = xc(n).

1. Introduction

1.1. Historical background. After the introduction of the Ising model [33] and Ising’s conjecture
that it does not undergo a phase transition, physicists tried to find natural generalizations of the
model with richer behavior. In [28], Heller and Kramers described the classical version of the
celebrated quantum Heisenberg model, where spins are vectors in the (two-dimensional) unit sphere
in dimension three. In 1966, Vaks and Larkin introduced the XY model [45], and a few years later,
Stanley proposed a more general model, called the spin O(n) model, allowing spins to take values in
higher-dimensional spheres [43]. We refer the interested reader to [13] for a history of the subject.
On the hexagonal lattice, the spin O(n) model can be related to the so-called loop O(n) model
introduced in [12] (see also [17] for more details on this connection).

More formally, the loop O(n) model is defined as follows. Consider the triangular lattice T
composed of vertices with complex coordinates r + eiπ/3s with r, s ∈ Z, and its dual lattice, the
hexagonal lattice H. Since T and H are dual of each other, we call vertices of T hexagons to highlight
the fact that they are in correspondence with faces of H.

A loop configuration is a spanning subgraph of H in which every vertex has even degree. Note
that a loop configuration can a priori consist of loops (i.e., subgraphs which are isomorphic to a
cycle) together with isolated vertices and infinite paths. For a set of edges Ω of the hexagonal lattice
H and a loop configuration ξ, let E(Ω, ξ) be the set of loop configurations coinciding with ξ outside
Ω. Let n and x be positive real numbers. The loop O(n) measure on Ω with edge-weight x and
boundary conditions ξ is the probability measure PξΩ,n,x on E(Ω, ξ) defined by the formula

PξΩ,n,x(ω) :=
x|ω|n`(ω)

ZξΩ,n,x
,
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for every ω ∈ E(Ω, ξ), where |ω| is the number of edges of ω ∩ Ω, `(ω) is the number of loops of ω
intersecting Ω, and ZξΩ,n,x is the unique constant making PξΩ,n,x a probability measure.

The physics predictions on the loop O(n) model are quite mesmerizing. Nienhuis conjectured
[36, 34] the following behavior: for n ≤ 2 and x strictly smaller than

xc(n) :=
1√

2 +
√

2− n
,

the probability that a given vertex is on a long loop decays exponentially fast in the length of
the loop (subcritical regime), while for x ≥ xc(n) the decay is algebraic. In this second regime
(sometimes called the critical regime), the scaling limit of the model should be described by (see
e.g. [32, Section 5.6]) a Conformal Loop Ensemble (CLE) of parameter κ equal to

κ =

{
4π

2π−arccos(−n/2) ∈ [8
3 , 4] if x = xc(n),

4π
arccos(−n/2) ∈ [4, 8] if x > xc(n).

For n > 2, the model is expected [6] not to undergo a phase transition and to be in the subcritical
regime for all x > 0.

While the physical understanding of the loop O(n) model is very advanced, the mathematical
understanding remains limited to specific values of n:

• For n = 1, x = 1, the model can be viewed as the site percolation on the triangular lattice
and it is proven [39, 8] that it converges to CLE(6) in the scaling limit.
• For n = 1, 0 < x < 1, the model is in correspondence with the ferromagnetic Ising model
on the triangular lattice. It is proven that for 0 < x < xc(1) = 1/

√
3 the model is in the

subcritical regime [2], for x = 1/
√

3 it converges to the CLE(3) in the scaling limit [41, 11,
10, 4], and for 1/

√
3 < x < 1 the model exhibits macroscopic loops (follows from the proof

in [44]). Remarkably, the question of convergence to CLE(6) for 1/
√

3 < x < 1 remains
open.
• For n = 0, the model is called the self-avoiding walk model (one has to make sense of the
fact that the configuration does not contain any loops). It is known that the critical point
is equal to xc(0) [21] and that the model is in a dense phase for x > xc(0) [16].
• For large values of n and suitable boundary conditons, it is proved [17] that for any x > 0,
the probability that the loop passing through a given vertex in Ω is of length k decays
exponentially fast in k.

The goal of this paper is to study the loop O(n) model in a wider regime of parameters. More
precisely, we study the model for n ≥ 1 and x ≤ 1√

n
.

1.2. Main results for the loop O(n) model. As mentioned above, the mathematical understand-
ing of the model is quite limited, and until now, the loop O(n) model was not shown to exhibit
macroscopic loops for n ∈ (1, 2] at any x > 0. The next theorem states that this holds at Nienhuis’
critical point. A measure P on loop configurations on H is called an infinite-volume loop measure
of parameters n and x, if for any loop configuration ξ and any finite subset Ω of edges of H,

P[· | E(Ω, ξ)] = PξΩ,n,x
(this should be understood as an almost sure equality of conditional expectations). Denote by Pn,x
an infinite-volume loop O(n) measure (existence of which is asserted by Theorem 2), and let R be
the largest diameter of a loop surrounding the origin. For k ∈ N, let Λk be the ball in T of radius
k around the origin for the graph distance, and let Ak be the annulus in H made of the edges of H
between any two vertices belonging to some hexagon in Λ2k \ Λk.
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Figure 1. A sample of a random loop configuration on the critical line: n = 1.4
and x = xc(n) ≈ 0.6. The longest loops are highlighted (from longest to shortest:
red, blue, green, purple, orange). Theorem 1 shows that long loops are likely when
n ∈ [1, 2] and x = xc(n).

Theorem 1. For n ∈ [1, 2] and x = xc(n), we have En,x[R] = +∞ and there exists c > 0 such that
for any k ≥ 1 and any loop configuration ξ,

c ≤ PξAk,n,x
[∃ a loop in Ak surrounding 0] ≤ 1− c.

This theorem has a nice corollary: since it is simple to prove that for x� 1, the probability that
a loop surrounding the origin has diameter k decays exponentially fast in k, the theorem shows that
the model undergoes a phase transition in terms of diameter of loops. This transition should be
compared to the Kosterlitz-Thouless phase transition undergone by the XY model. To the best of
our knowledge, this is the first proof of such a behavior for n ∈ (1, 2]. Also note that for n� 1, the
model was proved [17] not to undergo a phase transition in terms of diameter of loops: there exists
c > 0 such that Pn,x[R ≥ k] ≤ exp(−ck) for any x ∈ (0,∞).

The proof of Theorem 1 combines probabilistic techniques with parafermionic observables. These
observables first appeared in the context of the Ising model (where they are called order-disorder
operators) and dimer models. They were later extended to the random-cluster model and the loop
O(n) model by Smirnov [40] (see [20] for more details). They also appeared in a slightly different
form in several physics papers going back to the early eighties [23, 5] as well as in more recent papers
studying a large class of models of two-dimensional statistical physics [30, 37, 38, 9, 31]. They have
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(a) n = 1.4 and x = 0.57 < xc(n). (b) n = 1.4 and x = 0.63 > xc(n).

Figure 2. Samples of random loop configuration below and above the critical line.

been the focus of much attention in recent years and became a classical tool for the study of these
models.

The precise property of these observables that will be used in this article is the fact that discrete
contour integrals of parafermionic observables vanish for the special value of parameters 0 ≤ n ≤ 2
and x = xc(n). Together with probabilistic estimates available when n ≥ 1, this can be used
to prove that correlations cannot decay too fast when n ∈ [1, 2]. This method was already used
in [21, 26] for the self-avoiding walk model, and in [19, 15] for random-cluster models. In our model,
additional difficulties arise from the rigid structure of loop configurations. In order to overcome
these difficulties, we develop a gluing technique, which, we hope, will be useful in the study of the
loop O(n) model also when x 6= xc(n).

The second theorem states the existence of a unique infinite-volume Gibbs measure and provides
an alternative between two possible behaviors in terms of the size of loops.

Theorem 2. For n ≥ 1, x ≤ 1√
n
and a sequence of domains (Ωk) with boundary conditions (ξk),

the family of measures PξkΩk,n,x
converges as Ωk ↗ H to an infinite-volume measure Pn,x, which is

supported on loop configurations with no infinite paths. Furthermore, exactly one of the following
occurs:

A1 There exists c > 0 such that Pn,x[R ≥ k] ≤ exp(−ck) for any k ≥ 1.
A2 There exists c > 0 such that for any k ≥ 1 and any loop configuration ξ,

c ≤ PξAk,n,x
[∃ a loop in Ak surrounding a] ≤ 1− c. (1)

In particular, En,x[R] = +∞.

The theorem implies that the infinite-volume Gibbs measure is unique, and thus, Pn,x is inde-
pendent of (Ωk) and (ξk), invariant under translations and ergodic. In the case A1, the model is
in the subcritical regime, while in the case A2, it is in the dilute or dense critical regime. In the
latter case, the estimate (1), which should be understood as a box-crossing property, enables to
derive many properties of the model. To mention but a few, one may show that P[R ≥ k] decays
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(a) The cluster representation. (b) Loops and clusters.

Figure 3. Loop configurations on the hexagonal lattice are in bijection with color-
ings of the dual triangular lattice by two colors (up to a global permutation of the
two colors): the loops are obtained from the coloring as the boundaries of clusters,
and the coloring is obtained from the loops by switching color every time an edge of
a loop is crossed.

polynomially fast, prove mixing properties of the model, establish the existence of sub-sequential
scaling limits, etc. We refer to the corresponding results in [19] for details.

An important ingredient in the proofs is the strong FKG inequality, which we show holds in the
regime n ≥ 1 and x ≤ 1√

n
, for the cluster representation of the loop O(n) model introduced below.

This property will allow us to compare probabilities of events in the loop O(n) model, which would
otherwise be very difficult to handle without the monotonic properties of the cluster representation.

We note that, at the moment, we are unable to show for n 6= 1 that, in the subcritical regime
(alternative A1 above), the probability of having a macroscopic loop in a non-simply connected
domain is exponentially small. The problem here is that the presence of holes can be viewed as
forcing certain hexagons to bear the same spin in the cluster representation. As this is not positive
information, Theorem 5 does not imply that in case of plus boundary conditions on the exterior
boundary, the minus cluster around the origin is small.

1.3. The cluster representation. As mentioned above, the loop O(1) model can be seen as
the Ising model on the triangular lattice T. More formally, the set E(H, ∅) × {−1, 1} of all loop
configurations on H is in bijection with spin configurations σ = (σx : x ∈ T) in {−1, 1}T via the
mapping σ 7→ (ω(σ), σ0), where ω(σ) is the loop configuration composed of edges of H separating
two hexagons u and v with σu 6= σv. In words, ω(σ) is the loop configuration obtained by taking
the boundary walls between pluses and minuses. We use the denomination plus and minus for a
vertex x to denote the fact that the spin σx is equal to +1 or −1, respectively.

In this section, we extend this correspondence to the loop O(n) model for any n > 0, by introduc-
ing a probability measure on spin configurations which is closely related to the loop O(n) measure.
We call this the cluster representation of the loop O(n) model.
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For τ ∈ {−1, 1}T and G ⊂ T finite, let Σ(G, τ) ⊂ {−1, 1}T be the set of spin configurations
that coincide with τ outside of G. The cluster representation measure with edge-weight x > 0 and
loop-weight n > 0 is the probability measure µτG,n,x on Σ(G, τ) defined by the formula

µτG,n,x(σ) :=
nk(σ)xe(σ)

ZτG,n,x
, (2)

for every σ ∈ Σ(G, τ), where k(σ) + 1 is the sum of the number of connected components of pluses
and minuses in σ that intersect G or its neighborhood, e(σ) :=

∑
u∼v 1σu 6=σv is the number of

edges {u, v} that intersect G and have σu 6= σv, and ZτG,n,x is the unique constant making µτG,n,x a
probability measure. Clearly, both k(σ) and e(σ) depend on G, but we omit it in the notation for
brevity.

The next proposition states that (2) indeed defines a representation of the loop O(n) model.

Proposition 3. Let G ⊂ T be finite and let Ω be the set of edges of H bordering a hexagon in G.
Then, for any τ ∈ {−1, 1}T and any n, x > 0, if σ has law µτG,n,x, then ω(σ) has law Pω(τ)

Ω,n,x.

Proof. The following combinatorial relations hold:

e(σ) = |ω(σ)| and k(σ)− `(ω(σ)) = #{infinite paths in ω(σ) intersecting Ω},
where the first equality is trivial and the second can be obtained by iteratively flipping signs in
all finite clusters of σ which intersect G or are adjacent to G. Noting that the quantity on the
right-hand side is constant for σ ∈ Σ(G, τ) finishes the proof. �

An important property of the Ising model is its monotonicity (FKG inequality and monotonicity
with respect to boundary conditions). This tool has become central in the study of the Ising model
and luckily for us the cluster representation shares this property with the Ising model for certain
values of x and n. Define a partial order on {−1, 1}T as follows: τ ≤ τ ′ if τx ≤ τ ′x for all x ∈ T. We
say that A ⊂ {−1, 1}T is increasing if its indicator function is an increasing function for this partial
order.

Theorem 4. Fix n ≥ 1 and nx2 ≤ 1. Then for any finite G ⊂ T,
• (strong FKG inequality) for any τ ∈ {−1, 1}T and any two increasing events A and B,

µτG,n,x(A ∩B) ≥ µτG,n,x(A) · µτG,n,x(B). (FKG)

• (comparison between boundary conditions) for any τ ≤ τ ′ and any increasing event A,

µτG,n,x(A) ≤ µτ ′G,n,x(A).

While fairly simple to prove, this theorem is our main toolbox for the study of the loop O(n)
model. In particular, it allows us to use techniques developed in [19] to prove the following dichotomy
theorem for the cluster representation. By Theorem 6 below, infinite-volume limits µ+

n,x and µ−n,x
of µ+

G,n,x and µ−G,n,x as G↗ T are well-defined, invariant under translations and ergodic.
Recall that Λk ⊂ T is the ball of radius k around the origin. Write V ←→ W if some vertex of

V is connected to some vertex of W by a path of adjacent pluses. We also write v ←→ ∞ for the
event that v is in an infinite connected component of pluses.

Theorem 5. For n ≥ 1 and x ≤ 1√
n
, the following conditions are equivalent:

P1 µ+
n,x[0←→∞] = 0,

P2 µ−n,x = µ+
n,x,

P3
∑

v∈T µ
−
n,x[0←→ v] =∞,

P4 For any v ∈ T,
lim
k→∞

− 1
k logµ−n,x[0←→ kv] = 0,
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P5 There exists c > 0 such that for any k ≥ 1,

µ−Λ2k,n,x
[∃ a circuit of neighboring pluses surrounding Λk in Λ2k] ≥ c.

Similarly to the discussion of the box-crossing property in Theorem 2, we wish to highlight the
importance of Property P5. It implies the decay of the probability of having an arm to distance k,
as well as many other properties such as tightness of interfaces, universal exponents, etc. We again
refer to [19] for examples (and proofs) of applications in the context of the random-cluster model.
Let us also remind the reader that P5 is equivalent to the following box-crossing property (which is
itself related to the Russo-Seymour-Welsh property, see [22] for a review of recent advances on the
subject): for ρ, ε > 0, there exists c = c(ρ, ε) > 0 such that for all k ≥ 1 and any τ ∈ {−1, 1}T,

c ≤ µτ
Rk,n,x

[∃ a path of pluses crossing Rk from left to right] ≤ 1− c, (3)

where Rk and Rk are “rectangles of T” defined by

Rk := {r + eiπ/3s : 0 ≤ r ≤ k , 0 ≤ s ≤ ρk},

Rk := {r + eiπ/3s : −εk ≤ r ≤ (1 + ε)k , −εk ≤ s ≤ (ρ+ ε)k}.

We also define the cluster representation measure with external magnetic fields. The cluster
representation measure with edge-weight x > 0, loop-weight n > 0 and external magnetic fields
h, h′ ∈ R is the probability measure µτG,n,x,h,h′ on Σ(G, τ) defined by the formula

µτG,n,x,h,h′(σ) :=
nk(σ)xe(σ)ehr(σ)+h′r′(σ)

ZτG,n,x,h,h′
, (4)

where r(σ) :=
∑

u∈G σu is the sum of spins of σ in G, r′(σ) := 1
2

∑
t={u,v,w} σu1σu=σv=σw is one-half

of the difference between the number of plus and minus monochromatic triangles that intersect G
(where a monochromatic triangle is a set of three mutually adjacent vertices with equal spins), and
ZτG,n,x,h,h′ is the unique constant making µτG,n,x,h,h′ a probability measure.

When n = 1 and h′ = 0, the above model is precisely the Ising model (see [24] for more about this
model) on G at inverse-temperature β = 1

2 | log x| (ferromagnetic when x ≤ 1 and antiferromagnetic
when x ≥ 1) and magnetic field h (see below for some additional details on this relation).

Remark. In [35], Nienhuis discusses the dilute Potts model. Its vacancy/occupancy representation
is in a direct correspondence with the cluster representation with external fields, and all theorems
that we are proving for the cluster representation can be extended to the vacancy/occupancy rep-
resentation. From the perspective of this representation, the loop O(n) model can be viewed as the
self-dual surface. Nienhuis claims that this is also a critical surface and the line x = xc(n) should
be viewed as the so-called tricritical line where the order of the phase transition changes. What we
prove in Theorems 5 and 7 partially confirm this prediction.

In Proposition 8, we show that the strong FKG inequality extends to the case of the cluster
representation measure with an external field if nx2 ≤ e−|h′|. This enables us once again to use the
techniques developed for the random-cluster model and to define infinite-volume measures µ+

n,x,h,h′

and µ−n,x,h,h′ as weak limits as G ↗ T of finite-volume measures µ+
G,n,x,h,h′ and µ−G,n,x,h,h′ , corre-

sponding to the two constant functions τ equal to + and −.

Theorem 6. For any (n, x, h, h′) such that n ≥ 1 and nx2 ≤ e−|h′|, there exists an infinite-volume
measure µ+

n,x,h,h′ satisfying the following properties:

• µ+
n,x,h,h′ is the weak limit of the measure µ+

G,n,x,h,h′ as G↗ T.
• µ+

n,x,h,h′ is invariant under translations and extremal.
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• the µ+
n,x,h,h′-probability that there exists both an infinite connected component of pluses and

an infinite connected component of minuses is 0.
Similarly, there exists a measure µ−n,x,h,h′ (possibly equal to µ+

n,x,h,h′) satisfying the analogous prop-
erties.

Moreover, for h = h′ = 0, measures µ+
n,x := µ+

n,x,0,0 and µ−n,x := µ−n,x,0,0 are the only extremal
Gibbs measures for the cluster representation.

We remark that, since r(σ) and r′(σ) are anti-symmetric, the map σ 7→ −σ takes the measure
µτG,n,x,h,h′ to µ

−τ
G,n,x,−h,−h′ . In particular, h = h′ = 0 is a self-dual surface in the space of parameters.

Recall that h can be interpreted as an external field favoring pluses over minuses. Comparing the
cluster representation defined above to the well-known random-cluster model (also known as the FK-
model), h plays an analogous role as the parameter p of the random-cluster model (more precisely, eh
should be compared to p

1−p). Similarly, + and − boundary conditions correspond respectively to the
wired and free boundary conditions of the random-cluster model. For most properties, the analogy
is uncanny: one may use the techniques of the random-cluster model with trivial modifications
— the key point is to obtain the monotonicity properties of the cluster representation (the FKG
inequality and the comparison between boundary conditions stated above).

The next theorem shows that, within the h′ = 0 surface, the self-dual line h = 0 is critical.

Theorem 7. For n ≥ 1 and x ≤ 1√
n
,

• if h > 0, µ−n,x,h,0[0←→∞] > 0.
• if h < 0, there exists ch > 0 such that for all v ∈ T,

µ+
n,x,h,0[0←→ v] ≤ exp[−ch d(v, 0)].

This result is similar to the recent developments in the understanding of random-cluster models,
for which the critical point was computed on the square lattice; see [3, 18].
Organization. The paper is organized as follows. The next two sections describe the proofs of
Theorems 2–7. The last section introduces parafermionic observables and presents the proof of
Theorem 1.
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the NCCR SwissMap from the Swiss NSF. Research of A. G. was supported by the Swiss NSF grant
P2GE2_165093, and partially supported by the European Research Council starting grant 678520
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grant 861/15 and the European Research Council starting grant 678520 (LocalOrder). Research
of Y.S. was supported by Israeli Science Foundation grant 861/15, the European Research Council
starting grant 678520 (LocalOrder), and the Adams Fellowship Program of the Israel Academy of
Sciences and Humanities.

2. FKG inequality and comparison between boundary conditions

This section is devoted to monotonicity properties of the cluster representation. Theorem 4 follows
directly from Proposition 8 and Corollary 10 below. We start by proving the Fortuin-Kasteleyn-
Ginibre lattice condition which is known to imply (FKG) by [27, Theorem (2.19)]. For σ, σ′ ∈
{−1, 1}T, we define σ ∨ σ′ and σ ∧ σ′ by

(σ ∨ σ′)(v) := max{σ(v), σ(v′)}, (σ ∧ σ′)(v) := min{σ(v), σ(v′)}, v ∈ T.
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Proposition 8 (FKG lattice condition). Fix (n, x, h, h′) such that n ≥ 1 and nx2 ≤ e−|h′|. Let B ⊂
T be such that each two neighboring vertices in B have a common neighbor inside B. Let G ⊂ B be
finite, and τ ∈ {−1, 1}B. Then, for every σ, σ′ ∈ {−1, 1}B such that σ|B\G = σ′|B\G,

µτG,n,x,h,h′ [σ ∨ σ′] · µτG,n,x,h,h′ [σ ∧ σ′] ≥ µτG,n,x,h,h′ [σ] · µτG,n,x,h,h′ [σ′]. (5)

Remark. The previous proposition states the strong FKG inequality for the cluster representation
defined by (4) in the case B = T. When extending the inequality to the case B ⊂ T, we slightly
abuse notation by using µτG,n,x,h,h′(σ) for σ, τ defined only on a subset B of T containing G. By
this we mean that µτG,n,x,h,h′(σ) is defined by (4), where k(σ), e(σ), r(σ) and r′(σ) are defined in
the same way. This extension will be instrumental in Corollary 10, where we prove monotonicity in
boundary conditions.

Proof. By [27, Theorem (2.22)], it is enough to show the inequality for any two configurations which
differ in exactly two places i.e., that for any σ ∈ Σ(G, τ) and u 6= v in G,

µτG,n,x,h,h′ [σ
++] · µτG,n,x,h,h′ [σ−−] ≥ µτG,n,x,h,h′ [σ+−] · µτG,n,x,h,h′ [σ−+],

where σηη′ is the configuration coinciding with σ except (possibly) at u and v, and such that σηη
′

u = η

and σηη
′

v = η′. Equivalently, one needs to prove that

(log n)∆k + (log x)∆e+ h∆r + h′∆r′ ≥ 0, (6)

where

∆k := k(σ++) + k(σ−−)− k(σ+−)− k(σ−+),

and ∆e, ∆r and ∆r′ are defined similarly. Observe that ∆r = 0 so that we may drop this term in
(6).

Write ∆k = ∆k+ + ∆k−, where ∆k+ and ∆k− take into account the plus or minus connected
components separately. Clearly, only plus-clusters containing u or v or adjacent to one of these
vertices contribute to ∆k+. It is easy to see that each such cluster in σ+− or σ−+ is also a cluster
in σ−− as soon as it does not intersect {u, v}. The number of plus-clusters intersecting {u, v} is
equal to one in σ+− and σ−+ and is at least one in σ++, whence ∆k+ ≥ −1. Moreover, ∆k+ = −1
only if there are no plus-clusters in σ−− that are adjacent to both u and v, and if u and v are in the
same plus-cluster of σ++. In other words, ∆k+ < 0 implies that ∆k+ = −1, u and v are adjacent,
and common neighbors of u and v have spin −1. The analogous statement holds for ∆k−.

We now divide the study into three cases.

• Assume u and v are not neighbors. Then, ∆e = ∆r′ = 0 and ∆k+,∆k− ≥ 0. The
assumption that n ≥ 1 immediately implies (6).
• Assume u and v are neighbors and have two common neighbors with different spins. Then,

∆r′ = 0, ∆e = −2 and ∆k ≥ 0. Since n ≥ 1 and nx2 ≤ 1, we get (6).
• Assume u and v are neighbors and common neighbors of u and v have the same spin. Then,
|∆r′| ≤ 1, ∆e = −2 and ∆k ≥ −1 (since either ∆k+ or ∆k− is non-negative). Since n ≥ 1

and nx2 ≤ e−|h′|, we get (6). �

Remark. It is easy to see that the conditions n ≥ 1 and nx2 ≤ e−|h
′| are necessary in order for the

FKG lattice condition to hold for arbitrary G ⊂ T.

The following corollary will be important in the proof of Lemma 12. It compares the probabilities
of the events that the spins of two sets U and V are equal to a certain value.

9



Corollary 9. Fix (n, x, h, h′) such that n ≥ 1 and nx2 ≤ e−|h
′|. Let G ⊂ T be finite and τ ∈

{−1, 1}T. Then, for every σ, σ′ ∈ Σ(G, τ) and U, V ⊂ G,

µτG,n,x,h,h′ [σ|U = σ|V = 1] ·µτG,n,x,h,h′ [σ|U = σ|V = −1] (7)
≥ µτG,n,x,h,h′ [σ|U = 1, σ|V = −1] · µτG,n,x,h,h′ [σ|U = −1, σ|V = 1].

Proof. Trivially, (5) implies that the FKG lattice condition is satisfied also for the conditioned
measure ν := µτG,n,x,h,h′ [ · | σ|U ≡ const, σ|V ≡ const], and hence this measure satisfies the FKG
inequality (see [27, Theorem (2.19)]), i.e., for any two increasing events A,B ⊂ {−1, 1}T,

ν[A ∩B] ≥ ν[A] · ν[B].

Applying this inequality to A := {σ|U = 1} and B := {σ|V = 1}, yields the inequality

ν[σ|U = σ|V = 1] ≥ ν[σ|U = 1] · ν[σ|V = 1],

which can be written in the form (7), where µτG,n,x,h,h′ is replaced with ν. Removing the redundant
condition finishes the proof. �

In order to treat boundary conditions, we recall the following domain Markov property (the
proof is straightforward and therefore omitted). For any (n, x, h, h′), any finite H ⊂ G ⊂ T and
any τ, σ ∈ {−1, 1}T,

µτG,n,x,h,h′ [σ | σ|T\H = τ|T\H ] = µτH,n,x,h,h′ [σ].

Remark. As a consequence of this property and the definition of the measure, the model satisfies
the finite energy property: for any τ ∈ {−1, 1}T and σ ∈ Σ(G, τ), µτG,n,x,h,h′ [σ] ≥ ε|G| for a constant
ε > 0 depending only on (n, x, h, h′).

Let us conclude this section by observing that the domain Markov property together with the
FKG lattice condition imply the following comparison between boundary conditions.

Corollary 10 (Comparison between boundary conditions). Consider G ⊂ T finite and fix (n, x, h, h′)

such that n ≥ 1 and nx2 ≤ e−|h′|. For any increasing event A and any τ ≤ τ ′,

µτG,n,x,h,h′ [A] ≤ µτ ′G,n,x,h,h′ [A].

Proof. There exists B ⊂ T finite such that G ⊂ B and for any σ ∈ Σ(G, τ) ∪ Σ(G, τ ′), the number
k(σ) is not changed by removing all hexagons outside B. It is enough to prove the inequality for
measures µτG,n,x,h,h′ and µ

τ ′
G,n,x,h,h′ on configurations restricted to B. As in Proposition 8, we abuse

notation and keep denoting measures in the same way. Consider the finite set H := {x ∈ B \ G :
τx < τ ′x}. The domain Markov property implies that

µτG,n,x,h,h′ = µτG∪H,n,x,h,h′ [ · | σ|H = −1],

µτ
′
G,n,x,h,h′ = µτG∪H,n,x,h,h′ [ · | σ|H = 1].

As a consequence, the FKG inequality (5) applied to configurations restricted to the set B implies
that

µτG,n,x,h,h′ [A] ≤ µτG∪H,n,x,h,h′ [A] ≤ µτ ′G,n,x,h,h′ [A]. �

3. Proofs of Theorems 2 and 5–7

Now that we are in possession of the FKG inequality and the comparison between boundary
conditions, the proofs of Theorems 5–7 follow standard paths already described in detail in the
literature. For this reason, we only outline the arguments and give the relevant references.
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(a) Half-plane πup with points x and y on its boundary and
box Λ between them. An infinite path p+x (ω̂) (resp. p−y (ω))
starts at x (resp. y), consists of pluses of ω̂ (resp. mi-
nuses of ω) and does not intersect Λ. The paths p+x (ω̂) and
p−y (ω) intersect infinitely often, thus the connected compo-
nent in πup \ (p+x (ω̂)∪ p−y (ω)) attached to the segment xy is
finite, and its boundary pup is contained in p+x (ω̂) ∪ p−y (ω).

Ωup

Ωdown

p−y (ω)p+
x (ω̂)

q+
y (ω̂)q−x (ω)

x y

(b) The infinite paths q+y (ω̂) and q−x (ω) in
πdown give rise to a path pdown from x to y in
πdown. Then C := pup ∪ pdown is a ≤ circuit
for (ω, ω̂). Indeed, this follows from the fact
that p−y (ω)∪q−x (ω) separates p+x (ω̂)∩C from
q+y (ω̂)∩ C in the exterior of C, and p+x (ω̂)∪
q+y (ω̂) separates p−y (ω) ∩ C from q−x (ω) ∩ C
in the exterior of C.

Figure 4. Existence of a ≤ circuit for (ω, ω̂) containing a box.

Proof of Theorem 6. The first two items are very simple consequences of the comparison between
boundary conditions and the domain Markov property. In particular, proofs that are valid for the
random-cluster model also apply here. We refer to Theorem (4.19) and Corollary (4.23) in [27].

Let us now turn to the third item. First, the measure is ergodic and satisfies the finite energy
property. As a consequence, the Burton-Keane argument [7] shows that the infinite connected
component of pluses, when it exists, is unique (see [27, Theorem (5.99)] for an exposition of the
argument). Similarly, the infinite connected component of minuses, when it exists, is unique. Thus,
there cannot be coexistence of an infinite connected component of pluses and an infinite connected
component of minuses, since Zhang’s construction [27, Theorem (6.17)] would imply the existence
of more than one infinite connected component of pluses.

It remains to show that, for h = h′ = 0, the only extremal measures are µ+
n,x and µ−n,x. The

corresponding statement for the two-dimensional Ising model was proven by Aizenman [1] and
Higuchi [29]. Both these proofs rely on particular properties of the Ising model and do not apply
to our case. Instead, we use the later proof by Georgii–Higuchi [25], which is more geometric and
can be extended to the context of dependent models on the triangular lattice. Below, we use the
notation of [25], replacing *connectivity in Z2 with standard connectivity in T.

The main difference between the cluster representation and the Ising model is that the former
does not have the strong domain Markov property, which states that the distribution in a particular
domain is completely determined by one layer of spins on the boundary. Clearly, in our case one
also needs to know the connectivities outside of the domain. Thus, the comparison between the
boundary conditions takes a more general form (Corollary 10) and we need to adapt the definition
of a ≤ circuit for a pair of configurations (ω, ω̂). In [25], a ≤ circuit is a simple cycle on which ω ≤ ω̂.
Here, we say that a simple cycle C ⊂ T is a ≤ circuit for (ω, ω̂) if the following two conditions hold:

(1) if u, v ∈ C are connected by a path of ω̂-minuses (in particular, ω̂(u) = ω̂(v) = −1) in the
exterior of C (where the exterior includes C), then there is also such a path of ω-minuses;

(2) if u, v ∈ C are connected by a path of ω-pluses in the exterior of C, then there is also such a
path of ω̂-pluses.

A particularly simple situation in which C is trivially a ≤ circuit is when C can be partitioned
into two connected sets A and Â such that ω|A ≡ −1 and ω̂|Â ≡ +1.
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bd

y

Figure 5. A symmetric domain S (hexagons inside the dashed boundary) sur-
rounded by a polygonal boundary P (bold boundary) with points a, b, c, d on it. The
axis y is depicted in the middle. The boundary conditions are defined as follows:
next to the arcs (ab) and (cd) the spins are 1 (marked with gray color) and the rest
are −1 (marked with dashed gray). Inside the domain the event of the crossing is
depicted.

One can repeat mutatis mutandis all the proofs from [25], with the exceptions of Lemmas 2.2
and 5.5. In [25, Lemma 2.2], the assumption that “ω ≥ R ◦ T (ω) on C” should be changed to be “C
is a ≤ circuit for (R ◦ T (ω), ω)”. The same proof then works, since by Corollary 10, µτG,n,x 4 µ

τ ′
G,n,x

if the boundary vertices of G constitute a ≤ circuit for (τ, τ ′). In [25, Lemma 5.5], the proof works
as is if, in one of the half-planes πup or πdown, Case 1 or Case 2 is realized, or if in both half-planes,
Case 3 is realized and the infinite paths of pluses start from the same vertex (x or y), thus boiling
down to the (A, Â) situation described above. However, if Case 3 is realized in both half-planes
and the infinite paths of ω̂-pluses and ω-minuses start from different vertices in different half-planes
(paths p+

x (ω̂), q+
y (ω̂), p−y (ω), q−x (ω), see Fig. 4b), then one needs to be more careful since the

connectivity condition in the definition of ≤ circuit becomes non-trivial. In [25], it is enough to
consider any path pup ⊂ p+

x (ω̂) ∪ p−y (ω) from x to y. In our case, the path pup is taken to be the
boundary of the connected component in πup \ (p+

x (ω̂) ∪ p−y (ω)) attached to the xy-segment (see
Fig. 4a). Similarly, one obtains a path pdown ⊂ q+

y (ω̂) ∪ q−x (ω) from x to y in πdown. It is then
straightforward to check that C := pup ∪ pdown is a ≤ circuit for (ω, ω̂) (see Fig. 4b). �

Proof of Theorem 5. Again, the analogy with the random-cluster model suggests that the proofs of
[19] apply in our context. Indeed the choice of n ≥ 1 and x ≤ 1√

n
implies that the associated cluster

representation enjoys the FKG inequality and the comparison between boundary conditions. It is
in fact the case that the proofs of [19] apply here, with additional simplifications: one does not need
to work both with the square lattice and its dual, and one can focus on the triangular lattice solely
(since the duality here is simply flipping the spins). For this reason, we do not write out the proof.
In order to illustrate one of the aspects of the argument though, we define the notion of symmetric
domain and state an important lemma used repeatedly in the proof of [19].

A symmetric domain S (see Fig. 5) is the collection of hexagons fully contained (all six edges) in
the finite connected component of H \ P for some self-avoiding polygon P in H which is symmetric
with respect to the y-axis. Fix four points a, b, c, d on P , with b symmetric to d, and a and c the
unique points on the y-axis. Define (ab), (bc), (cd) and (da) the arcs from a to b, b to c, c to d and d
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to a in P . Also, define the mixed boundary conditions to be made of pluses on hexagons bordering
(ab) or (cd), and minuses everywhere else.

Lemma 11. Consider a symmetric domain S, then

µmix
S,n,x[∃ a path of pluses from (ab) to (cd)] ≥ 1

1+n . (8)

Proof. The complement of the event that (ab) is connected to (cd) by a path of pluses is the event
that (bc) and (da) are connected by a path of minuses. The symmetry between the pluses and
minuses (note that the pluses may even have a slight advantage if there are hexagons of (ab) or
(cd) intersecting the y-axis), and the fact that (bc) and (da) are in the same connected component
of minuses outside of S implies that the complement event has probability at most n times the
probability of our event. The proof follows readily. �

Again, we highlight that this lemma is even more convenient than the corresponding claim in
[19], since it does not involve the dual lattice. With this lemma at hand, the rest of the proof of
[19] is simple to adapt and we refer to the original article for details. �

Remark. Removing spins in all hexagons outside of P in the same way as in Proposition 8 and a
remark after it, one obtains 1/2 on the right-hand side of (8) using a complete symmetry of the
pluses and minuses in the cluster representation. We prefer keeping minus boundary conditions
outside in order to be closer to the setup in [19].

We now show how to derive Theorem 2 using Theorems 6 and 5. Recall that Λk is the ball of
size k around the origin, and denote ∂Λk := Λk \ Λk−1.

Proof of Theorem 2. One simply defines Pn,x to be the pushforward of µ+
n,x (or µ−n,x) by the map

σ 7→ ω(σ). The convergence of finite-volume measures with empty boundary conditions follows
directly from the corresponding statement for µ+

n,x. The fact that configurations do not contain
infinite paths follows from the fact that there is no coexistence of infinite connected components of
pluses and minuses. In order to see that the limit is unique, one needs to take any sequence (Ωk, ξk)

and consider the pullback µτkGk,n,x
of PξkΩk,n,x

. There exists a subsequence such that µτk′Gk′ ,n,x
has a

weak limit. Moreover, by Theorem 6, this limit can be written as a linear combination of µ+
n,x

and µ−n,x. The pushforward of both of these measures is the same and equal to Pn,x. Thus, the weak
limit of Pξk′Ωk′ ,n,x

is Pn,x. Note that any infinite-volume measure P for the loop O(n) measure with
parameters n and x is in direct correspondence with a Gibbs measure for the dilute Potts model
with the same parameters (and h = 0) by attributing a spin ±1 uniformly at random independently
of ω, and then defining the spin configuration step by step for u ∈ T using the rule σu 6= σv if and
only if the edge of H bordering the hexagons u and v is in ω.

In order to show the dichotomy, we use the alternative provided by Theorem 5. Fix n ≥ 1 and
x ≤ 1√

n
. If none of the properties of Theorem 5 are satisfied, then P4 is not satisfied and therefore

there exists c = c(n, x) > 0 such that

µ−n,x[a←→ ∂Λk(a)] ≤ exp(−ck),

for all k ≥ 1, where a ∈ T and Λk(a) is the translation of Λk that maps 0 to a. With the map ω 7→ σ,
one easily sees that if the loop passing through a point a has diameter at least k, then there exists
a path of pluses from one of the three hexagons bordering a, going to distance k from a. Applying
the previous displayed inequality to all points in Λk, we obtain the first item of Theorem 2.

If all the properties of Theorem 5 are satisfied, we can prove that the second item of Theorem 2
is satisfied as follows. Fix k and τ ∈ {−1, 1}T. Recall that Ak is the set of edges of H belonging
to a hexagon in A′k := Λ2k \ Λk. Set B := Λ3k/2 \ Λk and B′ := Λ2k \ Λ3k/2. Let E be the event
that there exists a circuit of neighboring pluses in B surrounding the origin. Similarly, let F be
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the event that there exists a circuit of neighboring minuses in B′ surrounding the origin. Then, P5
(more precisely (3) and the FKG inequality) implies that µ−B,n,x[E ] ≥ c and µ+

B′,n,x[F ] ≥ c. Then,
conditioning on the values of the spins in B and using the domain Markov property, we obtain that

µτA′k,n,x
[E ∩ F ] =

∑
τ ′∈{−1,1}B

1τ ′∈E · µτA′k,n,x[σ|B = τ ′] · µτA′k,n,x[F |σ|B = τ ′]

≥
∑

τ ′∈{−1,1}B
1τ ′∈E · µτA′k,n,x[σ|B = τ ′] · µ+

B′,n,x[F ] = µ+
B′,n,x[F ] · µτA′k,n,x[E ] ≥ c2,

where both inequalities are obtained using the comparison between the boundary conditions. Note
that by writing τ ′ ∈ E for τ ′ ∈ {−1, 1}B, we are slightly abusing the notation, since E is an event
on {−1, 1}H. Nevertheless, as E is completely defined by the values of spins in B, this does not lead
to any ambiguity.

To conclude the proof, observe that on E ∩ F , the configuration ω(σ) contains a loop which is
contained in Ak and surrounds the origin, so that the theorem follows from Proposition 3. �

Proof of Theorem 7. We may apply mutatis mutandis the existing arguments for showing that the
critical point of random-cluster models on the square lattice is equal to the self-dual point. We
even have several ways to proceed. Rather than using the original argument [3], we choose to use
a recent short proof of this statement [18].

First, note that the choice of n ≥ 1 and x ≤ 1√
n
guarantees that the associated cluster repre-

sentation satisfies the FKG lattice condition. Since it is also strictly positive by the finite energy
property (each configuration in Σ(G, τ) has positive probability), we deduce by [27, Theorem (2.24)]
that it is monotonic. A direct application of the result of [18] (with eh playing the role of p

1−p) thus
implies the existence of hc ∈ R such that

• There exists c > 0 such that for all h ≥ hc, µ+
n,x,h,0[0←→∞] ≥ c(h− hc).

• For h < hc, there exists ch > 0 such that for any k ≥ 1,

µ+
Λ2k,n,x,h,0

[0←→ ∂Λk] ≤ exp(−chk).

We now prove that hc = 0 in two steps. Consider the event Vk that there exists a path of pluses
in the trapeze {r + eiπ/3s : r, s ∈ J0, kK} from the top side to the bottom side. The complement of
this event is the existence of a path of minuses from the left side to the right side so that, using the
symmetry of the trapeze,

µ+
n,x[Vk] + µ−n,x[Vk] = 1.

By the comparison between boundary conditions, we deduce that, for h ≥ 0,

µ+
Λ2k,n,x,h,0

[0←→ ∂Λk] ≥ 1
k · µ

+
n,x[Vk] ≥ 1

2k .

This immediately implies that hc ≤ 0 by item 2 above.
We now prove that µ−n,x,h,0[0←→∞] > 0 for any h > hc. This property immediately implies that

hc ≥ 0, since otherwise there would be both infinite connected components of pluses and minuses for
the measure µ+

n,x. To show that µ−n,x,h,0[0↔∞] > 0, observe that the proof of [27, Theorem (4.63)]
or [14, Theorem 1.12] applied to our context shows that for any fixed n and x, µ+

n,x,h,0 6= µ−n,x,h,0 for
at most countably many values of h. Therefore, there exists h′ ∈ (hc, h) such that µ+

n,x,h′,0 = µ−n,x,h′,0
so that

µ−n,x,h,0[0←→∞] ≥ µ−n,x,h′,0[0←→∞] = µ+
n,x,h′,0[0←→∞] > 0. �
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4. Proof of Theorem 1

The proof of Theorem 1 is a combination of several ingredients. We will work by contradiction,
assuming that scenario A1 of Theorem 2 is realized and all loops are small, and then proving that
the probability of large loops is not exponentially small. In order to do so, we will invoke so-called
parafermionic observables to prove that weighted sums (defined below) of loop configurations with
an additional path between two vertices on the boundary of a domain are not much smaller than
weighted sums of loop configurations. Then, intuitively, the idea is to glue several domains together
and combine these long paths into the large loop that we are looking for. The main problem here
is that there can be loops exactly at the place of gluing. The solution is to use the fact that these
loops are small by assumption, to condition on them, and, through the use of probabilistic estimates
on relative weights of paths (see definition below), to show that long paths still exist with good
probability and can be combined into a large loop. We start the proof by studying these relative
weights in the next two sections.

In this section, we always assume that n ≥ 1 and x ≤ 1√
n
. We sometimes specify in addition

that n ∈ [1, 2] and that x = xc(n), which is always at most 1√
n
. To lighten the notation, we will

drop n and x from the subscript in the measures or partition functions.

4.1. Relative weight of a path. In this section, a finite subset of edges Ω of H is also seen as
a subgraph of H with vertex-set given by the endpoints in Ω. For a subset A of vertices of Ω,
introduce the weighted sum

ZAΩ :=
∑

ω∈E(Ω,A)

x|ω|n`(ω),

where E(Ω, A) is the set of subgraphs of Ω with even vertex degree for v /∈ A and vertex degree 1
for v ∈ A; as before, |ω| and `(ω) denote the number of edges and loops in ω. Note that ZAΩ = 0

unless |A| is even. When A consists of two vertices a and b, we write Za,bΩ for Z{a,b}Ω . Define also
the relative weight of a path γ in Ω to be the following ratio:

wΩ(γ) = x|γ| ·
Z∅Ω\γ

Z∅Ω
,

where Ω \ γ is the subset of edges of H obtained from Ω by removing all the edges in γ and the four
additional edges incident to the endpoints of γ. We extend the above definition to the case when γ
is a subset of Ω consisting of disjoint paths, in which case Ω \ γ is obtained by removing all edges
in γ and the edges incident to the endpoints of the paths.

Remark. When n = 1 and vertices in A are allowed to have degree 3, the sums and weights above
are related via the Kramers–Wannier duality to spin correlations in the Ising model on H. More
precisely, the ratio of ZAΩ and Z∅Ω is then simply the average of the random variable

∏
x∈A σx. In

particular, it is always smaller than 1. The properties of wΩ(γ) are well-understood in this context,
and are also related to the weights of the backbone in the random-current representation of the
model [2, page 353–355]. In the following sections, we extend some of these properties to the regime
n ≥ 1 and nx2 ≤ 1.

Let us conclude this section by introducing notation. We write γ : a→ b if γ starts at a and ends
at b, and similarly, we write γ : a→ B if γ starts at a and ends at some b ∈ B. We also write γ ◦ η
for the concatenation of the paths γ and η (when η starts at the end of γ). Note that by definition,
the weights satisfy the chain rule,

wΩ(γ ◦ η) = wΩ(γ) ·wΩ\γ(η) = wΩ\η(γ) ·wΩ(η).
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Note also the simple relation for any vertices a, b ∈ Ω:

Za,bΩ

Z∅Ω
=
∑
γ⊂Ω
γ:a→b

wΩ(γ). (9)

4.2. Probabilistic estimates on weights. We will restrict ourselves to special subsets Ω of H.
We refer to Fig. 7 for an illustration (there the case of a triangular domain is depicted). A subset
Ω of edges of H is called a domain if there exists a self-avoiding polygon P in H such that Ω is the
set of edges with at least one endpoint in the finite connected component of H \ P . Let ∂Ω be the
set of vertices of P neighboring a vertex in Ω. Note that the vertices of ∂Ω are incident to exactly
one edge of Ω.

In the next two lemmas, we refer to sums of weights of configurations of the loop O(n) and its
cluster representation. We recall the notation and emphasize the difference: ZAΩ was defined in the
previous subsection and refers to the loop O(n) model (note that it is different from ZξΩ,n,x defined
in the introduction), and Z−G refers to the cluster representation and is defined by (2). We shall also
use the notation Z−G[·] := µ−G,n,x[·] · Z−G,n,x.

Lemma 12. Fix n ≥ 1 and x ≤ 1√
n
. Then for any domain Ω and any A ⊂ ∂Ω,

ZAΩ
Z∅Ω
≤ ck
nk/2

,

where k := |A|/2 and ck := 1
k+1

(
2k
k

)
is the k-th Catalan number.

Proof. Assume first that k = 1 so that A = {a, b} for some a, b ∈ ∂Ω. Let P be the polygon defining
the domain Ω and consider the set G of hexagons having all their six edges in Ω ∪ P (see Fig. 5).
Let (ab) (resp. (ba)) be the set of hexagons inside P bordering the edges of P contained in the arc
between a and b when going counter-clockwise around P (resp. b and a). Proposition 3 describes a
measure preserving bijection between the loop O(n) model and its cluster representation. Moreover,
the proof implies that the partition functions coincide, whence

Z∅Ω = Z−G[σ|(ab) = −, σ|(ba) = −],

xmn · Za,bΩ = Z−G[σ|(ab) = +, σ|(ba) = −],

xm
′
n · Za,bΩ = Z−G[σ|(ab) = −, σ|(ba) = +],

xm+m′n · Z∅Ω = Z−G[σ|(ab) = +, σ|(ba) = +],

where m and m′ are the lengths of P -arcs between a and b, and between b and a. The additional x
terms appear due to the fact that certain edges of P are separating hexagons bearing different spins
and they are not counted in Za,bΩ and Z∅Ω. The additional n terms appear because the exterior loop
is not counted in Za,bΩ and Z∅Ω.

Applying Corollary 9 for U = (ab) and V = (ba) gives

µ−G,n,x[σ++]µ−G,n,x[σ−−] ≥ µ−G,n,x[σ+−]µ−G,n,x[σ−+],

where σηη′ is the configuration coinciding with σ except that it is equal to η on (ab) and η′ on (ba).
Using the four displayed equalities above, we obtain

(xm+m′n · Z∅Ω) · (Z∅Ω) ≥ (xmn · Za,bΩ ) · (xm′n · Za,bΩ ).
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The term xm+m′n cancels out and we obtain
Za,bΩ

Z∅Ω
≤ 1√

n
. (10)

Assume now that k ≥ 2. Since ck counts the number of connectivity patterns on vertices of A
induced by k (non-intersecting) paths linking them inside Ω, it suffices to show that, for any partition
{a1, b1}, . . . , {ak, bk} of A arising from such a connectivity pattern,∑

γ1,...,γk⊂Ω
∀i γi : ai→bi

wΩ(γ1 ∪ · · · ∪ γk) ≤
1

nk/2
,

where the sum is over collections {γ1, . . . , γk} of non-intersecting paths. Yet, the chain rule gives

wΩ(γ1 ∪ · · · ∪ γk) = wΩ(γ1) ·wΩ\γ1(γ2) · · ·wΩ\(γ1∪···∪γk−1)(γk),

so that the lemma follows by iteratively summing over γk up to γ1 and using (9) and (10), noting
also that if Ω′ ⊂ Ω is obtained by removing a path from ∂Ω to itself, then each connected component
of Ω′ is also a domain. �

We now compare the relative weights of a path in different domains.

Lemma 13. Fix n ≥ 1 and x ≤ 1√
n
. Then for any two domains Ω ⊂ Λ and any path γ ⊂ Ω,

wΛ(γ) ≤ 2wΩ(γ).

Furthermore, if γ starts and ends in ∂Ω ∩ ∂Λ, then wΛ(γ) ≤ wΩ(γ).

Proof. We have
wΩ(γ)

wΛ(γ)
=
Z∅Ω\γ

Z∅Λ\γ
·
Z∅Λ
Z∅Ω

.

Denote by Ω• (resp. Λ•) the set of hexagons fully contained in Ω (resp. Λ). Let S be the set of
hexagons having a vertex in common with γ, and denote T := Λ• \ Ω•. By Proposition 3,

Z∅Λ = Z−Λ• ,

Z∅Ω = Z−Λ• [σ|T = −],

Z∅Ω\γ = Z−Λ• [σ|T = −, σ|S = −] + Z−Λ• [σ|T = −, σ|S = +] ≥ Z−Λ• [σ|T = −, σ|S = −].

Furthermore, the ± symmetry and the comparison between boundary conditions imply that

µ−Λ• [σ|S = +] = µ+
Λ• [σ|S = −] ≤ µ−Λ• [σ|S = −],

from which we deduce that

Z∅Λ\γ = Z−Λ• [σ|S = −] + Z−Λ• [σ|S = +] ≤ 2Z−Λ• [σ|S = −]. (11)

Overall, we have

Z∅Ω\γ

Z∅Λ\γ
≥ 1

2 · P
−
Λ• [σ|T = − | σ|S = −]

(FKG)

≥ 1
2 · P

−
Λ• [σ|T = −] =

Z∅Ω
2Z∅Λ

.

In the case where γ starts and ends in ∂Ω ∩ ∂Ω′, we have that Z∅Λ\γ = Z−Λ• [σ|S = −] (the spins in
S cannot be equal to +1 since S is touching the boundary), so that we do not lose the factor of 2
in (11). �

Let us mention an important (technical) consequence of the above lemmas (see Fig. 6).
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Λ

Ωa

c

d

b

γ

ψ

ψ′γ′

Figure 6. The domain Λ and the subdomain Ω (hexagons inside it are marked with
gray). Points a, b are in ∂Λ, points c, d are in ∂Ω, path γ ⊂ Ω has endpoints c, d,
path γ′ ⊂ Λ contains γ as a subpath and has endpoints a, b. Path γ′ can visit Ω
several times. Points c, d are connected to ∂Λ by paths ψ and ψ′ (the wavy paths
on the figure) of length at most k. The paths ψ and ψ′ can intersect γ.

Corollary 14. Fix n ≥ 1 and x ≤ 1√
n
. There exists a constant C = C(n) > 0 such that the

following holds. Consider two domains Ω ⊂ Λ with two boundary points a, b ∈ ∂Λ and two points
c, d ∈ ∂Ω at distance less than k from ∂Λ in Λ. Then for any path γ in Ω from c to d,

wΩ(γ) ≥ e−Ck
∑
γ′∈Γ′

wΛ(γ′),

where Γ′ is the set of paths in Λ from a to b that contain γ as a subpath.

Proof. Observe that the right-hand side of the inequality can be expressed as a sum over configura-
tions in E ′ :=

⋃
γ′∈Γ′ E(Λ \ γ′, {a, b}). Fix two paths ψ and ψ′ in Λ of length less than k, going from

∂Λ to c and d respectively. For ω ∈ E ′, define ω1 := ω \ (γ ∪ψ ∪ψ′) and ω2 := ω ∩ (ψ ∪ψ′), and let
A be the set of degree 1 vertices in ω1 so that ω1 ∈ E(Λ \ (γ ∪ψ∪ψ′), A). Note that A ⊂ {a, b}∪V ,
where V is the set of endpoints of edges of ω2 in ψ ∪ψ′. Observe that Λ \ (γ ∪ψ ∪ψ′) is a union of
domains with disjoint boundaries. Note also that |V | ≤ 2k + 2 and that `(ω) ≤ `(ω1) + 2k. Since
ω = ω1∪ω2∪γ for ω ∈ E ′, the map ω 7→ (ω1, ω2) is injective on E ′. Thus, summing over the choices
of ω1, ω2 and A, and using Lemma 12, we obtain

∑
γ′∈Γ′

wΛ(γ′) =
1

Z∅Λ

∑
ω∈E ′

x|ω|n`(ω) ≤ x|γ|

Z∅Λ
· n2k ·

∑
A⊂{a,b}∪V

ω1∈E(Λ\(γ∪ψ∪ψ′),A)

x|ω1|n`(ω1) ·
∑

ω2⊂ψ∪ψ′
x|ω2|

≤ x|γ|

Z∅Λ
· n2k(1 + x)2k ·

∑
A⊂{a,b}∪V

ZAΛ\(γ∪ψ∪ψ′)

≤ x|γ|

Z∅Λ
· (2n)2k ·

k+2∑
`=0

(
2k + 4

2`

)
c`
n`/2

· Z∅Λ\(ψ∪γ∪ψ′)

≤ (2n)2k · ck+2 · 22k+4 ·wΛ(γ),
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Lk

Rk

Bk

a

z0

z

a

Tk

0

Figure 7. Domain Ω = Tk: the polygon P around it is in bold, the edges of Tk
are all those that lie inside P (note that the edges of P are not in Ω), boundary
vertices ∂Tk are marked with bullets, three different sides of ∂Tk are denoted by Bk,
Lk, Rk, each of them contains k hexagons, where k is an even number. The origin is
located at the center of the leftmost hexagon on the bottom side, vertex a is in the
middle of Bk and z0 is the midpoint of the edge in Tk emanating from a. The path
depicted on the picture is starting at z0 and ending at the midpoint z of an edge
inside Tk (as in the definition of the parafermionic observable). Furthermore, it has
winding 2π at z.

where, in the last inequality, we used that Z∅Λ\γ ≥ Z∅Λ\(ψ∪γ∪ψ′) to obtain the term wΛ(γ). We
conclude the proof by noting that wΛ(γ) ≤ 2wΩ(γ) by Lemma 13 and that all the constant terms
above are bounded by exp[O(k)]. �

4.3. The input from the parafermionic observable. Fix k even. Consider the equilateral
triangular domain Tk of side length k (see Fig. 7) defined as the set of edges of H with at least one
endpoint in the subset {0 < y <

√
3(k2 − |x−

k
2 |)} of R

2. Let Bk, Lk and Rk be the bottom, left and
right parts of ∂Tk. Also, let a be the point of cartesian coordinates (k+1

2 ,−1
2) (it is in the middle

of Bk).

Proposition 15. Fix n ∈ [1, 2] and x = xc(n). Then, for any even integer k ≥ 1,∑
γ⊂Tk
γ:a→Lk

wTk
(γ) ≥ x2.

Proof. In order to prove this statement, we use the parafermionic observable. Set

σ = σ(n) := 1− 3
4π arccos(−n/2).

For this proof only, the paths γ will be considered as going from the center z0 of an edge to the
center z of another edge. Define Γz = Γz(Ω, z0) for the set of paths in Ω from z0 to z. For any
γ ∈ Γz, wΩ(γ) is computed as in the case where z0 and z are vertices, and the notion of length |γ|
is naturally extended by making the starting and ending half-edges contribute 1

2 instead of 1.
Given a domain Ω and a center z0 of an edge incident to ∂Ω, define the parafermionic observable

for any center z of an edge in Ω as follows:

F (z) :=
∑
γ∈Γz

e−iσwind(γ)wΩ(γ),
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where wind(γ) is the total rotation when traversing γ from z0 to z.
It is by now classical (see [42, Lemma 4]) that F satisfies the following relations when x = xc(n):

for the centers p, q, r of the three edges incident to a vertex v ∈ Ω \ ∂Ω,

(p− v)F (p) + (q − v)F (q) + (r − v)F (r) = 0,

where p− v, q − v or r − v are seen as complex numbers.
We now focus on the domain Tk and z0 = (k+1

2 , 0) (which is therefore the center of the edge of
Tk incident to a). Summing the previous relation over all vertices v ∈ Tk \ ∂Tk, we find that the
contributions of each inner edge to the relations around its endpoints cancel each other out, whence

e−2πi/3
∑
z∈Lk

F (z) + e2πi/3
∑
z∈Rk

F (z) +
∑
z∈Bk

F (z) = 0, (12)

where Lk (resp. Rk and Bk) denotes the set of centers of edges with one endpoint in Lk (resp. Rk
and Bk).

Now, if z ∈ Lk ∪ Rk ∪ Bk then the observable can be computed simply using the observation
that the winding of paths going from z0 to z is constant, i.e., does not depend on the path. More
precisely, if b is the vertex of ∂Tk associated to z (recall that a is associated to z0), we obtain

F (z) = 1
x · e

−iσw(z)
∑
γ⊂Tk
γ:a→b

wTk
(γ),

where w(z) is equal to π/3 on Lk, −π/3 on Rk, and ±π on Bk depending on whether z is on the left
or right of z0. Note that the term 1

x comes from the two missing half-edges necessary to complete
γ into a path from a to b. In particular, we obtain that

e−2πi/3
∑
z∈Lk

F (z) + e2πi/3
∑
z∈Rk

F (z) =
1

x
· 2 cos((2 + σ)π3 )

∑
γ⊂Tk
γ:a→Lk

wTk
(γ) = − 1

x2

∑
γ⊂Tk
γ:a→Lk

wTk
(γ),

where we used that − cos((2 + σ)π3 ) = cos((1− σ)π3 ) =

√
2+
√

2−n
2 = 1

2xc
= 1

2x .
Since the empty walk is the only possible path from z0 to z0, we find F (z0) = 1. This, together

with σ ≤ 1/2, implies that∑
z∈Bk

F (z) = F (z0) + 1
x · cos(σπ) ·

∑
γ⊂Tk

γ:a→Bk\{a}

wTk
(γ) ≥ 1.

Plugging this inequality and the previous displayed equation in (12) completes the proof. �

4.4. Wrapping up the proof. Fix n ∈ [1, 2] and x = xc(n) ≤ 1√
n
. For convenience, we will write

ZAΩ [E ] for the weighted sum over configurations in E ⊂ E(Ω, A). Fix a large even integer k and
define

r :=
k

log k
and ` := (log k)2.

We remark that the precise values of r and k are not important, we just need that k/r, r/` and
`/ log k are sufficiently large. For 1 ≤ s < k, set Tk,s to be the domain Tk−s translated so that it is
centered in the middle of Tk.

Proposition 15 implies that ∑
γ⊂Tk
γ:a→Lk

wTk
(γ) ≥ x2.
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c5

c6

d1
d2

d3

d4

d5
d6

Tk

Tk,r

Tk,`

(a) Point c is on the bottom side of T`
k and d is on

the left side of T`
k.

c1

c2
c3

c4
c5

c6

d1

d2
d3

d4
d5

d6

(b) Both c and d are on the bottom side of T`
k.

Figure 8. Case 1 of the proof. The triangle Tk = T1
k is colored in gray. The

triangles on both pictures represent Tjk (big triangles), Tjk,` (middle triangles), Tjk,r
(smallest triangles). The set S is shown by dashed lines. Paths from cj to dj in Tjk,`
and crossing Tjk,r have a big relative weight. Points of the set A = {c1, d1, . . . , c6, d6}
are paired by short paths. The way vertices are paired by τ depends on the location
of points c = c1 and d = d1.

We split the proof into two cases: either the paths γ staying in Tk\Tk,r contribute at least half to the
above sum, or the paths γ intersecting Tk,r do. We will show that both of these cases are impossible
when k is large. We start with the case that the paths intersecting Tk,r contribute substantially,
since this is from our point of view the most conceptual part of the argument.
Case 1. Assume that (see Fig. 8) ∑

γ⊂Tk
γ:a→Lk
γ∩Tk,r 6=∅

wTk
(γ) ≥ x2

2
.

Since any path γ′ in Tk from a to Lk intersecting Tk,r contains a subpath included in Tk,` also
intersecting Tk,r, there must exist b ∈ Lk and c, d ∈ ∂Tk,` satisfying∑

γ′∈Γ′bcd

wTk
(γ′) ≥ x2

18k3
, (13)

where Γ′bcd is the set of paths γ
′ in Tk from a to b containing a subpath in Tk,` from c to d intersecting

Tk,r. Note that we used that there are less than k possibilities for b and less than 3k possibilities
for each of c and d. In what follows, it will only be important whether c and d are on the same part
or on different parts of ∂Tk,`. Using symmetry, we may assume that c is on the bottom and that d
on the bottom or the left of ∂Tk,`.

Set T1
k = Tk, c1 = c and d1 = d. Also, define Tj+1

k , cj+1 and dj+1 to be the reflections of Tjk, cj
and dj with respect to ejπi/3R. Denote Λ′k :=

⋃6
j=1 T

j
k (this is the domain induced by the polygon

surrounding Λk) and A := {c1, d1, . . . , c6, d6}. We define Tjk,s similarly for s ≥ 1 (in particular, for
s = r, `). Let S be the set of edges of H belonging to the hexagons intersecting R∪ eiπ/3R∪ e2iπ/3R.
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For ω ∈ E(Λ′k, ∅), define ∂ω to be the union of all loops of ω that intersect S. Let E be the
set of ω ∈ E(Λ′k, ∅) that contain only loops of diameter less than `. We will later use that the
probability of E is close to one if A1 of Theorem 2 holds. Note that ω \ ∂ω ⊂ T1

k,1 ∪ · · · ∪ T6
k,1

for all ω ∈ E(Λ′k, ∅), and ∂ω ∩ (T1
k,` ∪ · · · ∪ T6

k,`) = ∅ for ω ∈ E . Now, for j = 1, . . . , 6, let Intj(ω)

denote the connected component of the set Tjk,1 \∂ω that contains Tjk,`. Note that by the definition
of E , the set Intj(ω) is well-defined for any ω ∈ E . One may also check that Intj(ω) is in fact a
domain. Define also Int(ω) := Int1(ω)∪· · ·∪ Int6(ω). We extend these definitions for configurations
in E(Λ′k, A): we write EA for the set of ω ∈ E(Λ′k, A) that contain only loops of diameter less than
` and paths which do not intersect S, and define Int(ω) in an analogous way.

Consider Ω such that for some ω ∈ E one has Ω = Int(ω), and denote Ωj := Ω ∩ Tjk = Intj(ω).
Corollary 14 and (13) imply the existence of constants C,C ′ such that

∀j = 1, . . . , 6,
∑
γ⊂Tj

k,`

γ:cj→dj
γ∩Tj

k,r 6=∅

wΩj (γ) ≥ e−C′`
∑

γ′∈Γ′bcd

wTk
(γ′) ≥ e−C′` · x2

18k3
≥ e−C` . (14)

Denote by F the set of configurations ω ∈ EA which contain six paths, such that for all j = 1, . . . , 6,
one of these paths goes from cj to dj in Tjk,` and intersects Tjk,r. Then, applying (14) six times, we
obtain

ZAΩ
[
F ∩ E(Ω, A)

]
≥ e−6C` Z∅Ω

[
E ∩ E(Ω, ∅)

]
.

Now, we use that {Int(·) = Ω} is “measurable from outside Ω”, together with the domain Markov
property of the loop model. More precisely, for any two configurations ω, ω′ ∈ E ∪EA which coincide
on Λ′k \ Ω, we have that Int(ω) = Ω if and only if Int(ω′) = Ω. In addition, if ω ∈ E ∪ EA satisfies
Int(ω) = Ω, then it decomposes into two loop configurations ω ∩ Ω and ω \ Ω, the latter belonging
to E . Using these observations, and denoting EΩ := {ω \ Ω : ω ∈ E , Int(ω) = Ω}, we obtain that

ZAΛ′k
[{ω ∈ F : Int(ω) = Ω}] = Z∅Λ′k\Ω

[EΩ]ZAΩ [F ∩ E(Ω, A)]

≥ e−6C`Z∅Λ′k\Ω
[EΩ]Z∅Ω[E ∩ E(Ω, ∅)]

= e−6C` Z∅Λ′k
[{ω ∈ E : Int(ω) = Ω}].

Summing over all Ω ∈ {Int(ω) : ω ∈ E}, we deduce that

ZAΛ′k
[F ] ≥ e−6C` Z∅Λ′k

[E ].

We now wish to go back to configurations in E(Λ′k, ∅). Fix a collection τ of six paths, each of
length 2`, pairing the vertices of A together in one of two following ways: if d is on the bottom side
of Tk,`, then we choose τ in such a way that the pairing is (c1, c6), (d1, d6), (c2, c3), (d2, d3), (c4, c5),
(d4, d5); if d is on the left side of Tk,`, then we consider a pairing (d1, d2), (c2, c3), (d3, d4), (c4, c5),
(d5, d6) and (c6, c1). Let G be the set of ω ∈ E(Λ′k, ∅) containing a loop of diameter at least r − `.
Observe that ω∆τ ∈ G as soon as ω ∈ F . Moreover, ω 7→ ω∆τ defines an injective map from F
to G and the number of edges and loops in ω∆τ and ω each differ by at most 12`, whence

Z∅Λ′k
[G] ≥ (xn)12` ZAΛ′k

[F ].

Overall, using the two previous displayed inequalities and dividing by Z∅
Λ′k

gives that

P∅Λ′k [G] ≥ (xn)12` e−6C` P∅Λ′k [E ].
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a
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d

a1d1

(a) Paths from a to b contained in Tk \
Tk,r have a large relative weight in Tk.
The point d on the left (or right) side
of rectangle Rectk is such that paths
from a to d have a large relative weight
in Rectk.

a

a1

d

d1

S

Rectk
(b) Here we zoom in on Rectk. Points a1, d1 are symmetric to a, d
with respect to line S. Points a, a1, as well as points d, d1, are
linked by short straight paths (shown in gray) possibly intersect-
ing paths a → d and a1 → d1. In any case, after removing the
double edges these four paths create a big loop.

Figure 9. Case 2 of the proof.

Recall now the choice of r and `, and note that, if A1 of Theorem 2 is satisfied, then P∅
Λ′k

[G] decays

exponentially fast in r, and P∅
Λ′k

[E ] tends to 1. This is contradictory for k large.
Case 2. Assume that (see Fig. 9) ∑

γ⊂Tk\Tk,r

γ:a→Lk

wTk
(γ) ≥ x2

2
.

In this case, a path from a to Lk staying in Tk \Tk,r must intersect the left or right boundary of the
domain Rectk enclosed in [4r, k−4r]× [0, 4r]. Thus, similarly to (13), we get that there exist b ∈ Lk
and d contained in the left or right boundary of Rectk such that∑

γ′∈Γ′bd

wTk
(γ) ≥ x2

4rk
,

where Γ′bd is the set of paths γ′ in Tk from a to b containing a subpath γ in Rectk \ Tk,r from a
to d. Here, we used that there are k choices for b and 2r choices for d. Below, we assume that d is
contained in the left boundary of Rectk, the case of the right boundary being completely analogous.
In the same way as in the derivation of (14), Corollary 14 implies that∑

γ⊂Rectk\Tk,r

γ:a→d

wRectk(γ) ≥ e−C′r
∑
γ′∈Γ′bd

wTk
(γ) ≥ e−Cr. (15)

Consider a1 and d1, the reflections of a and d with respect to the horizontal line {(x, y) ∈ R2 :
y = 2r}, and let S be the set of edges of H belonging to the hexagons intersecting this line.
Similarly to case 1, define E to be set of ω ∈ E(Rectk, ∅) that contain only loops of diameter less
than `, and for ω ∈ E(Rectk, ∅), let ∂ω be the union of all loops of ω intersecting S. For ω ∈ E ,
define Int(ω) ⊂ Rectk to be the union of the two connected components (each of which is a domain)
in Rectk \ ∂ω that contain the top and bottom sides of Rectk. Note that d is an endpoint of an
edge in Int(ω), as the distance from d to S is at least r.
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By decomposing with respect to Int(ω) and using (15) twice, we get

ZARectk
[F ] ≥ e−2CrZ∅Rectk

[E ],

where A := {a, d, a1, d1} and F is the set of configurations ω ∈ E(Rectk, A) such that both paths do
not intersect S (hence, the one from a to d stays below S, and the one from a1 to d1 stays above S).
Taking the symmetric difference with a configuration τ made of two paths, each of length at most
8r, pairing a to a1, and d to d1, we obtain that

Z∅Rectk
[G] ≥ (xn)16r ZARectk

[F ],

where G is the set of configurations ω ∈ E(Rectk, ∅) containing a loop of diameter at least k/2−20r.
Combining the two previous displayed inequalities gives

P∅Rectk
[G] ≥ (xn)16re−2Cr P∅Rectk

[E ].

We conclude as in case 1: if A1 of Theorem 2 is satisfied, P∅Rk
[G] decays exponentially fast in k,

and P∅Rectk
[E ] tends to 1. This is contradictory for large k.
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