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Abstract

In this paper, we prove that Bernoulli percolation on bounded degree graphs with isoperi-
metric dimension d > 4 undergoes a non-trivial phase transition (in the sense that pc < 1).
As a corollary, we obtain that the critical point of Bernoulli percolation on infinite quasi-
transitive graphs (in particular, Cayley graphs) with super-linear growth is strictly smaller
than 1, thus answering a conjecture of Benjamini and Schramm. The proof relies on a new
technique consisting in expressing certain functionals of the Gaussian Free Field (GFF) in
terms of connectivity probabilities for percolation model in a random environment. Then,
we integrate out the randomness in the edge-parameters using a multi-scale decomposition
of the GFF. We believe that a similar strategy could lead to proofs of the existence of a
phase transition for various other models.

1 Introduction

Motivation. Whether a model undergoes a non-trivial phase transition or not is one of the
most fundamental questions in statistical physics. In [Pei36], Peierls introduced a combinatorial
technique, known as Peierls argument, to prove that the critical temperature of the Ising model
is non-zero on Zd for d ≥ 2, thus opening a new realm of questions concerning this important
model of ferromagnetism. This argument found many applications to other models, including
Potts models and models of random graphs such as Bernoulli percolation or the random-cluster
model.

Peierls argument has two drawbacks. First, it often does not apply to continuous spin
models, for instance the spin O(n) models. In this case, the technique may sometimes be
replaced by two other techniques: Reflection Positivity and the Renormalization Group. More
precisely, Fröhlich, Simon and Spencer proved that the spin O(n) model undergoes a non-
trivial order/disorder phase transition on Zd with d ≥ 3 [FSS76] using Reflection Positivity, and
Balaban and coauthors (see [Bal99] and references therein) proved delicate properties of the
large β regime using the Renormalization Group. Let us mention that in the special case of the
XY model (i.e. when n = 2), there are special proofs relying on the Coulomb gas [FS82, KK86].

Another problem with Peierls argument is that it requires a precise understanding of so-called
cut sets, i.e. sets of edges which disconnect certain sets of vertices from infinity. On planar graphs,
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this boils down to the understanding of circuits in the dual graph. On non-planar graphs, the
question is much more complex combinatorial problem and it is not completely understood in
general.

In this paper, we wish to present a new technique which we believe can be useful to prove
the existence of a phase transition for various models. The object of interest of this paper will
be Bernoulli percolation.

Main results. Consider a connected graph G = (V,E) with vertex-set V and edge-set E.
An edge with endpoints x and y will be denoted by xy. For every x ∈ V , let d(x) be the
number of y such that xy ∈ E. We will assume that the graph has bounded degree, that is
sup{d(x) : x ∈ V } < +∞.

Bernoulli percolation is a model of a random subgraph of G with vertex-set V . The subgraph
is encoded by a function ω from E into {0, 1}. We use the notation ωxy to denote the value of
ω at the edge xy and think of edges xy with ωxy = 1 as being the edges of the subgraph, that
are called open. Those with ωxy = 0 are called closed. We are interested in the connectivity
properties of the graph ω. We use the notation S ←→ T (resp. S ←→ ∞) to denote the event
that there is an open path in ω connecting a vertex in S to a vertex in T (resp. the event that
S intersects an infinite connected component of ω). Also, let S 6←→ T (resp. S 6←→ ∞) denote
the complement of the event S ←→ T (resp. S ←→ ∞).

The Bernoulli bond percolation of parameter p = (pxy : xy ∈ E) ∈ [0, 1]E is the probability
measure on configurations ω for which the variables ωxy form a family of independent Bernoulli
random variables of respective parameters pxy. We denote such a measure by Pp and, when
pxy = p for every xy ∈ E, we simply write Pp. The main question of interest is whether the
critical parameter

pc(G) := inf
{
p ∈ [0, 1] : Pp(∃ an infinite connected component in ω) > 0

}
is strictly smaller than 1 or not. Let us mention that proving pc(G) > 0 is a much simpler task:
Peierls argument actually implies pc(G) ≥ 1

D , where D is the maximum degree of G.
In order to state the main result, we need another notion. Given a graph G, the simple

random walk is the discrete-time Markov chain (Xn)n on V moving, at each time step, from its
position to one of its neighbors in G chosen uniformly at random. Define the heat kernel and
the Green function by the following formula: for every x, y ∈ V and n ≥ 0,

pn(x, y) := P[Xn = y|X0 = x] and G(x, y) :=
1

d(y)

∞∑
n=0

pn(x, y).

The main object of this paper is the following result.

Theorem 1.1. Consider a graph G with bounded degree. Assume that there exist real numbers
d > 4 and c > 0 such that

pn(x, x) ≤ c

nd/2
∀x ∈ V , ∀n ≥ 1. (Hd)

Then, there exists p < 1 such that for every finite set S ⊂ V ,

Pp(S 6←→ ∞) ≤ exp[−1
2cap(S)], (1.1)

where cap(S) :=
∑

x∈S d(x)P[Xk /∈ S ∀k ≥ 1|X0 = x] is the capacity of S. In particular,
pc(G) < 1.
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Let us mention a few applications of the theorem. We say that a graph G satisfies an
isoperimetric inequality of dimension d if there exists some constant c > 0 such that

|∂K| ≥ c|K|
d−1
d for all finite K ⊂ V. (Id)

The isoperimetric dimension of G, which we denote by Dim(G), is defined as the supremum
over all d such that (Id) holds. In their celebrated paper [BS96], Benjamini and Schramm asked
whether Dim(G) > 1 necessarily implies pc(G) < 1. We give the following partial answer to this
question:

Theorem 1.2. If a bounded-degree graph G satisfies Dim(G) > 4, then pc(G) < 1.

This theorem follows directly from Theorem 1.1 and a result of Varopoulos [Var85] (see also
[MP05] or [LP17, Corollary 6.32] for a proof relying on evolving sets) stating that (Id) implies
(Hd).

An important application of Theorem 1.2 is the following result answering the first two
conjectures of Benjamini and Schramm from [BS96]. The graph G is called quasi-transitive if
the action of the automorphism group Aut(G) on V has only finitely many orbits. Typical
examples of quasi-transitive graphs to keep in mind are the family of Cayley graphs of finitely
generated groups. Let Br(x) be the ball of radius r centered at x with respect to the graph
distance. We say that a graph G has super-linear growth if lim sup 1

r |Br(x)| = +∞.

Theorem 1.3. Let G be a quasi-transitive with super-linear growth, then pc(G) < 1.

The previous result can be deduced from Theorem 1.2 as follows:

• If lim inf 1
rd
|Br(x)| < +∞ for some d > 0, then a result of Trofimov [Tro84] (see also

[Woe00, Theorem 5.11]) implies that the graph is quasi-isometric to a Cayley graph with
polynomial growth. This fact together with super-linear growth classically implies that
pc(G) < 1 (see the next section for details).

• If lim inf 1
rd
|Br(x)| = +∞ for every d > 0, then in particular lim inf 1

rd
|Br(x)| > 0 for some

d > 4. Therefore [LMS08, Lemma 7.2] (see also the proof of Corollary 7.3 of the same
paper or [CSC93] for the special case of Cayley graphs) implies that the graph satisfies
(Id), which in turn gives that pc(G) < 1 by Theorem 1.2.

All the results in this paper can be extended to site percolation, finite dependent percola-
tion and random-cluster models via classical comparisons, see respectively [GS98], [LSS97] and
[Gri06]. The coupling between random-cluster models and the Ising/Potts model implies that
the results translate into results on the latter as well.

Existing results. Our results should be put in context with the previous partial results re-
garding the Benjamini-Schramm questions.

As already mentioned, Peierls proved [Pei36] that the Ising phase transition is non-trivial for
Z2 through bounding the number of cut sets of specific size disconnecting a vertex from infinity.
The existence of a non-trivial phase transition for the Ising model implies, via monotonicity
arguments, the existence of a non-trivial phase transition for Bernoulli percolation on Zd, d ≥ 2.
See also Lebowitz and Mazel [LM98] and Balister and Bollobás [BB07] for estimates on the
number of cut sets of Zd. The cut set method was extended to Cayley graphs of finitely presented
groups by Babson and Benjamini [BB99] (see also the work of Timar [Tim07]).
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Say that a graph G has polynomial growth if lim sup 1
rd
|Br(x)| < +∞ for some d > 0. As

a consequence of Gromov’s celebrated theorem [Gro81], every infinite finitely generated group
of polynomial growth, which is not virtually Z, contains a subgroup isomorphic to Z2 [LP17,
Proposition 7.18]. Hence, there exists a Cayley graph of such groups that has a subgraph
isomorphic to Z2. Since the property that pc(G) < 1 is stable under quasi-isometries [LP17,
Theorem 7.15], all the Cayley graphs of such groups have non-trivial phase transitions. This
method was also used by Muchnik and Pak in [MP01] to prove pc(G) < 1 for Grigorchuk groups
which are a class of intermediate growth groups.

Lyons has proved [Lyo95] that every Cayley graph of exponential growth (i.e. satisfying that
lim inf 1

r log |Br(x)| > 0) has a non-trivial phase transition. As noted in [LP17, Page 264], the fact
that pc(G) < 1 for quasi-transitive graphs G with exponential growth can also be easily obtained
from the finiteness of the susceptibility for subcritical percolation; see [AB87, Men86, DT16].

In [BPP98] Benjamini, Pemantle and Peres proved another criterion for pc(G) < 1: the
existence of an EIT measure for the graph. A measure on self-avoiding paths starting from a
fixed vertex is an EIT measure if the number of intersections of two independent paths sampled
according to the measure has an exponential tail. In [RY17], by constructing an EIT measure, it
is proved that if G is a Cayley graph of indicable group which is not virtually Z, then pc(G) < 1.
Indicable groups not only contain groups of polynomial growth, they also include some groups of
intermediate growth. It is worth mentioning that the EIT method proves that for p sufficiently
close to 1, there exists a transient infinite connected component almost surely.

The question of pc(G) < 1 has also been approached by analyzing isoperimetric inequali-
ties. Benjamini and Schramm proved in [BS96] that if G satisfies the isoperimetric inequality
of “dimension ∞”, i.e. if G is non-amenable, then pc(G) < 1. It was proved in [BLPS99]
that every unimodular transitive non-amenable graph G has a threshold α < 1 such that any
automorphism invariant percolation measure on G with density higher than α has an infinite
connected component with positive probability. Kozma proved in [Koz05] that planar graphs
of polynomial growth with no vertex accumulation points and isoperimetric dimension greater
than 1 have non-trivial phase transition.

In [Tei16], Teixeira showed that pc(G) < 1 for graphs G with polynomial growth and isoperi-
metric dimension greater than 1 for a stronger version of the isoperimetric inequality, called local
isoperimetric inequality. Teixeira’s proof relies on a clever renormalization argument using in a
crucial way the (essential) uniqueness of large connected components in a box. It is important to
note that this property is not satisfied under the sole assumption that Dim(G) > 1, as exempli-
fied by the graph made of two copies of Zd connected to each other by a single edge between two
of their vertices. Also, in contrast to Teixeira’s proof, our method does not rely on uniqueness:
it works for graphs on which there may be any number of infinite connected components. The
method of [Tei16] was further exploited in [CT15] to prove, without invoking Gromov’s theorem,
that pc(G) < 1 for quasi-transitive graphs G with super-linear but polynomial growth.

Discussion on the strategy of proof. The proof of Theorem 1.1 relies on a new connection
between the Gaussian Free Field (GFF) and Bernoulli percolation. The connection goes through
the observation that conditionally on the absolute value of the GFF at every point, the distribu-
tion of the signs of the GFF is the one of an Ising model with certain coupling constants. This
observation already appeared in a paper of Lupu and Werner [LW16] where the random-current
representation of the Ising model was related to the occupation time of a conditioned loop soup.
Once the connection between the GFF and the Ising is made, we use the Edwards-Sokal cou-
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pling to relate the Ising model to Bernoulli percolation. As a result, it is possible to express the
expectations of particular observables of the GFF in terms of the probabilities of connections
for a (annealed) percolation model on a random environment (i.e. random edge-parameters).
Since the expectation of these observables can be explicitly computed in terms of the Green
function and are therefore easy to study, one may bound from below the averaged probability
of connections in this percolation model.

The second step of the proof consists in integrating out the randomness of the environment
in order to compare the probabilities of connection in the previous model to those in a Bernoulli
percolation with fixed edge-parameter. Since the environment is expressed in terms of the GFF,
we will proceed step by step using a multi-scale decomposition of the GFF. More precisely, we will
write ψ =

∑
n ψ

n where the ψn are independent Gaussian fields with finite-range correlations.
We will then remove the ψn one by one, increasing by an “independent” edge-parameter q in
order to guarantee that the probabilities of connection keep increasing. At the end of the process,
the randomness due to the ψn (and therefore to ψ) will have completely disappeared, and we
will be facing a percolation model with constant edge-density.

It is interesting to notice that we will not prove, in our second step, that a percolation
with some constant edge-parameter p < 1 stochastically dominates the one on the random
environment, because this would be simply false. Rather, we will only compare the probabilities
of connections, which is a weaker statement.

Open questions. The present results raise a number of interesting questions. The first natural
one is to try to relax the requirements on the heat kernel decay. More precisely, we will see in
the proof that we need to be able to define the GFF in infinite volume, which requires the graph
to be transient. Still, this condition holds as soon as d > 2, thus raising the following question.

Question 1.4. Prove Theorem 1.1 under the assumption that d > 2.

The main step in which we lose information is in the rewiring estimate of Step 3 in the proof
of Lemma 3.6. Replacing the exponential cost by a polynomial one would imply the result.

The proof uses the bounded degree assumption in one place only (in the last step of the
proof of Lemma 3.6 again). It is therefore natural to ask the following question.

Question 1.5. Prove Theorem 1.1 under the assumption that the graph is locally finite, meaning
that d(x) <∞ for every x ∈ V .

Another natural question is to improve (1.1). This bound is not sharp, even when applied
in a simple context. Indeed, for G = Zd and S a ball of radius r, the upper bound provided by
(1.1) is of the form exp(−crd−2) while the truth, for p above pc(G), is rather exp(−crd−1).

Question 1.6. Improve the bound (1.1).

This question is probably difficult with the current techniques, due to the following caveat.
The percolation with random edge-densities introduced in this paper does not dominate any
percolation model with a fixed positive edge-parameter. As a consequence, we believe that the
probabilities of big but finite connected components do not have the same tail behavior as in
standard Bernoulli percolation.

The last question is related to other models and is much more informal. In the next section,
we will use that conditioned on the absolute value of the GFF, the signs of the GFF are sampled
according to an Ising model. When conditioning the (Euclidean) norm of the n-component GFF,
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the normalized field is sampled according to a spin O(n) model. As a consequence, the first step
of our proof can be extended to this context and it is believable that the second step (comparing
the model in random environment to a model with fixed coupling constants) could be adapted,
even though the lack of correlation inequalities makes it a challenge.

Question 1.7. Use the techniques developed in the present paper to prove the existence of a
phase transition for the spin O(n) models.

Notation. Set u+ = max{u, 0} and sgn(u) = +1 if u ≥ 0 and −1 otherwise. For a set Λ ⊂ V ,
set Λc := V \ Λ. Also, let E(Λ) be the set of edges in E with at least one endpoint in Λ.

Organization of the paper. The next section presents the connection between the GFF and
a percolation model with random edge-parameters. The third section implements the “integra-
tion” of the randomness in the edge-parameters.

2 GFF and Bernoulli percolation

Let Λ be a finite subset of V . The Gaussian Free Field (or GFF) with 0 boundary conditions
on Λ is defined to be the random (Gaussian) field ψ = (ψx : x ∈ Λ) in RΛ with distribution

dPΛ[ψ] :=
1

ZΛ
exp[−DΛ(ψ)]dψ,

where ZΛ is a normalizing constant, dψ stands for the Lebesgue measure on RΛ and DΛ(ψ) is
the Dirichlet energy given by

DΛ(ψ) := 1
2

∑
xy∈E(Λ)

(ψx − ψy)2,

where ψx is extended to every vertex of V by setting ψx = 0 for every x ∈ Λc. Under the
assumption of transience of the graph G which follows from (Hd), one can extend the GFF
to Λ = V by taking the weak limit P of the measures PΛ as Λ tends to V . The measure P
is simply the centered Gaussian vector with covariance matrix given by the Green function G.
Expectation with respect to P (resp. PΛ) is denoted by E (resp. EΛ). The main result of this
section is the following.

Proposition 2.1. For any finite subset S of V one has:

E[Pp(ψ)(S 6←→ ∞)] ≤ exp[−1
2cap(S)] (2.1)

where p(ψ)xy := 1− exp[−2(ψx + 1)+ (ψy + 1)+] for every xy ∈ E.

Note that for S = {x}, one gets that x is connected to infinity with positive probability. One
may wonder why we added 1 to the GFF: we refer to the remarks at the end of this section for
a discussion of this technical trick. The key step in the proof of Proposition 2.1 is the following
lemma.

Lemma 2.2. Fix a finite subset S of V and t ∈ RS. If XS(ψ) := exp[−
∑

x∈S tx(ψx + 1)], then

E[Pp(ψ)(S 6←→ ∞)] ≤ E[XS(ψ)].
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Before proving this lemma, let us show how it implies Proposition 2.1.

Proof of Proposition 2.1. Since
∑

x∈S tx(ψx + 1) is a Gaussian random variable with mean∑
x∈S tx and variance

∑
x,y∈S txtyG(x, y), we deduce that

E[XS(ψ)] = exp
(
−
∑
x∈S

tx +
1

2

∑
x,y∈S

txtyG(x, y)
)
.

Now, we choose t according to the equilibrium measure of S, namely

tx = eS(x) := d(x)P[Xk /∈ S ∀k ≥ 1|X0 = x]

(which turns out to be the optimal choice of t). This gives the result by observing that
cap(S) =

∑
x∈S eS(x) and that

∑
y∈S eS(y)G(x, y) = 1 for all x ∈ S (which can be deduced

in a straightforward way via a decomposition of the random walk started at x in terms of its
last visit to S).

Let us now turn to the proof of the lemma.

Proof of Lemma 2.2. The proof proceeds in three steps. The first one relates the GFF on Λ to
an Ising model on Λ with + boundary conditions and random coupling constants. The second
one relates the Ising model to Bernoulli percolation via the Edwards-Sokal coupling. The last
step consists in taking the limit as Λ tends to V .

In the first two steps, we fix a finite subset Λ of V . We also define

|ψ + 1| := (|ψx + 1|)x∈V ,
σ(ψ) := (sgn(ψx + 1))x∈V ,

J(ψ)xy := |ψx + 1| |ψy + 1|.

Step 1: Conditionally on |ψ+1|, the random variable σ(ψ) is distributed according to the Ising
model on Λ with + boundary conditions and coupling constants J(ψ).

Recall that the Ising model on Λ with + boundary conditions and coupling constants J =
(Jxy) is defined on configurations σ = (σx : x ∈ Λ) in {−1,+1}Λ by

µ+
Λ;J(σ) :=

1

Z̃Λ

exp[−HΛ,J(σ)]

where Z̃Λ is a normalizing constant and HΛ,J(σ) is the Hamiltonian given by

HΛ,J(σ) := −
∑

xy∈E(Λ)

Jxy σxσy

where σ is extended to V by setting σx = +1 for every x ∈ Λc.
Now, the fact that ψx = 0 for every x outside Λ obviously implies σ(ψ)x = +1. In addition,

we have that

DΛ(ψ) = 1
2

∑
xy∈E(Λ)

(ψx − ψy)2 = F (|ψ + 1|) +HΛ,J(ψ)(σ(ψ)),
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where F is some function on RΛ. This implies that

dPΛ[ψ] = G(|ψ + 1|)µ+
λ;J(ψ)(σ(ψ))dψ

for all ψ ∈ RΛ, where G is some function on RΛ. Since ψ 7→ (|ψ + 1|, σ(ψ)) is a bijection from

(R \ {−1})Λ (which has total Lebesgue measure) to
(
R>0 × {−1,+1}

)Λ
, the above equation

implies Step 1 readily.

Step 2: We have that EΛ[Pp(ψ)(S 6←→ Λc)] ≤ EΛ[XS(ψ)].

This step relies on the Edwards-Sokal coupling (see [Gri06] for details), which we recall
for completeness. Sample a configuration σ according to the Ising model with + boundary
conditions and coupling constants Jxy. Then, construct a configuration ω on the edges in
E intersecting Λ as follows: for every edge xy, let ωxy be a Bernoulli random variable with
parameter 1 − exp(−2Jxy1{σx=σy}). Note that ωxy = 0 automatically if σx 6= σy. Below, PJ
denotes the law of (σ, ω) and EJ the expectation with respect to PJ . (We only use this notation
in this step.)

The percolation process ω thus obtained is called the random-cluster model with cluster-
weight q = 2, but this will be irrelevant for us. The important feature of this coupling will be
that, conditionally on ω, σ is sampled as follows:
• every vertex connected to Λc receives the spin +1;
• for every connected component C of ω not intersecting Λc, choose a spin σC equal to +1 or
−1 with probability 1/2, independently for each connected component, and set σx = σC
for every x ∈ C.

The construction above implies that, conditionally on ω, the law of the σx for the vertices which
are not connected to Λc is symmetric by global flip. Using Step 1 and applying this observation,
we deduce that

EΛ[XS(ψ) | |ψ + 1|] ≥ EJ(ψ)[EJ(ψ)(XS(ψ)|ω)1{S 6←→Λc in ω}] ≥ PJ(ψ)[S 6←→ Λc in ω]. (2.2)

In the second inequality, we used that, on the event that S is not connected to Λc, XS(ψ) and
1/XS(ψ) have the same law, so that E(XS(ψ)|ω) ≥ 1.

Now, conditioned on σ, the only vertices that can potentially be connected to Λc in ω are
those which are connected by a path of pluses in σ. For an edge xy with at least one endpoint
of this type, one has

1− exp(−2Jxy(ψ)1{σ(ψ)x=σ(ψ)y}) = p(ψ)xy.

This observation together with the Edwards-Sokal coupling and Step 1 gives

PJ(ψ)[S 6←→ Λc in ω] = EΛ[Pp(ψ)(S 6←→ Λc) | |ψ + 1|]. (2.3)

Step 2 follows readily by putting (2.3) into (2.2) and then integrating with respect to |ψ + 1|.

Step 3: Passing to the infinite volume.

Step 2 implies that for every S ⊂ T ⊂ Λ,

EΛ[Pp(ψ)(S 6←→ T c)] ≤ EΛ[XS(ψ)]. (2.4)
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Since S and T are finite, the random variables considered in the previous inequality are contin-
uous local observables of ψ. Letting Λ tend to V , by weak convergence we have

E[Pp(ψ)(S 6←→ T c)] ≤ E[XS(ψ)].

Letting T tend to V concludes the proof.

Remark 2.3. In this section, we did not use the bound (Hd) on the decay of return probabilities.
The only property we needed from G was its transience, so that we could consider the GFF in
infinite volume.

Remark 2.4. If we were only interested in proving pc(G) < 1, but not the quantitative bound
(1.1), we could have proceeded as follows. The Edward-Sokal coupling implies that for any x

PJ(ψ)[x←→ Λc in ω] = EJ(ψ)[σx].

Using the above, in place of (2.2), and subsequently applying (2.3) and integrating with respect
to |ψ + 1|, we deduce that

EΛ

[
Pp(ψ)(x←→ Λc)

]
= EΛ

[
sgn(ψx + 1)

]
.

Proceeding as in the third step, we obtain E
[
Pp(ψ)(x←→ ∞)

]
≥ E

[
sgn(ψx + 1)

]
> 0.

Remark 2.5. By comparing with [Lup16], one can deduce that the clusters of the annealed
percolation with random parameters p(ψ) exactly correspond to the connected components
(when restricted to the vertices of G) of the super level-set {y ∈ G̃ : ψ̃y > −1} of the (extended)
GFF ψ̃ on the metric graph G̃ constructed by interpreting each edge of G as an interval where
the field takes values continuously. This connection follows from the following observations:
first, the field ψ̃ can be constructed from ψ by simply putting independent Brownian bridges
on each edge, interpolating between the values on its endpoints; second, the probability that a
Brownian bridge between a and b stays above −1 is exactly 1 − exp[−2(a + 1)+(b + 1)+] (see
[Lup16] for details).

Remark 2.6. In the same spirit as in the previous remark, Bernoulli percolation with random
parameters given by q(ψ)xy := 1 − exp[−2(ψx)+(ψy)+] corresponds to the 0 super level-set
{y ∈ G̃ : ψ̃y > 0}. Also, using the strong Markov property for ψ̃, Lupu proved in [Lup16] that
the sign of ψ̃ can be sampled by assigning independent uniform signs to each excursion of |ψ̃|.
As a consequence, one has

E[Pq(ψ)(x←→ y)] =
1

2
E[sgn(ψx)sgn(ψy)] =

1

π
arcsin

( G(x, y)√
G(x, x)G(y, y)

)
(2.5)

for every x, y ∈ V . One can easily deduce from this identity that the (annealed) percolation on
the random environment q(ψ) has infinite susceptibility, i.e.

∑
y∈V E[Pq(ψ)(x ←→ y)] = +∞

for any x ∈ V .

Remark 2.7. The previous remark shows that (a priori) there is no infinite connected component
for the model with edge-parameters q(ψ). This is the reason why we shift the GFF by 1 to obtain
the edge-parameters p(ψ) for which the bound on E[Pp(ψ)(x←→ ∞)] guarantees the fact that
there is at least one infinite connected component.
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3 Integrating out the random environment

If p(ψ) was bounded away from 1, the result would follow by comparison between different
Bernoulli percolations. Yet, the GFF is unbounded, and places where the field is large are places
for which p(ψ) is very close to 1, so that the vertices in these regions are almost automatically
connected. As a consequence, we will need to consider the annealed probabilities.

Remark 3.1. Let us mention that we were very inspired by the beautiful paper of Rodriguez and
Sznitman [RS13] on the study of the super level-set percolation of GFF.

If we could prove that the annealed percolation on the random environment p(ψ) was stochas-
tically dominated by a Bernoulli percolation Pp with p < 1, then we would be done. Unfortu-
nately, this is not true (for example, one can prove that in Zd, the probability that all the edges
inside a ball are open in the former decays slower than in the later for any p < 1). On the other
hand, we are able to compare the probabilities for “connectivity events” such as {S ←→ ∞}.

Proposition 3.2. There exists p < 1 such that for every finite subset S of V ,

Pp[S ←→∞] ≥ E[Pp(ψ)(S ←→∞)].

This proposition, together with Proposition 2.1, implies Theorem 1.1 readily. We therefore
focus on the proof of the proposition.

Remark 3.3. It will be evident in the proof that we could also get the result of Proposition 3.2
for all events of the form {A ←→ B} where A,B ⊂ V are finite. It will also be clear that the
same proof works for q(ψ) (see Remark 2.6) instead of p(ψ). This, together with Remark 2.6,
would imply the existence of p < 1 such that the susceptibility of Bernoulli percolation with
parameter p is infinite. Since for quasi-transitive graphs the susceptibility is finite in the whole
subcritical phase (see [AB87, Men86, DT16]), we would deduce that pc(G) ≤ p < 1. Therefore,
if we only wanted to prove Theorem 1.3, it would be enough to consider the (perhaps more
intuitive) random environment q(ψ).

The fact that the GFF has long-range dependencies is a difficulty here. In order to overcome
this problem, the key tool used in the proof of Proposition 3.2 is a multi-scale decomposition
of the GFF in terms of finite-range-dependent Gaussian fields. Such decompositions appear
naturally in rigorous implementations of the Renormalization Group. In this context, the spin-
spin correlations of a spin system (for instance the Ising model or the ϕ4

d lattice models) with a
certain set of parameters β, λ, . . . are expressed in terms of the GFF ψ, which itself is decomposed
into a sum of fields with finite-range dependencies ψ =

∑
n ψ

n. Then, one integrates out the fields
ψn one by one by changing the parameters β, λ, . . . into parameters β1, λ1, . . . , then β2, λ2, . . . ,
etc. We will do the same in our context. The parameter that will vary in each step to compensate
for the integration of the field ψn will be called qn. A main difference with the Renormalization
Group is that we will only be interested in inequalities; see (3.3) below.

We now describe the decomposition that we are going to use in our proof. Let qn(x, y) be
the heat kernel associated with the lazy random walk in G, i.e. the Markov chain which stays
put with probability 1/2, and moves to one of the neighbors chosen uniformly at random with
probability 1/2. For any x, y ∈ V , set G0(x, y) := 1

2d(y)q0(x, y) and

Gn(x, y) :=
1

2d(y)

∑
2n−1≤k<2n

qk(x, y)

for all n ≥ 1. The matrices (Gn)n satisfy the following properties:
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1. G(x, y) =
∑

n≥0 Gn(x, y) for all x, y ∈ V ,

2. Gn is a covariance matrix (i.e. symmetric positive semi-definite) for every n ≥ 0,

3. Gn(x, y) ≥ 0 for any x, y ∈ V and n ≥ 0,

4. Gn(x, y) = 0 for any x, y ∈ V with d(x, y) ≥ 2n,

5. there exists c′ > 0 such that, for every n ≥ 0 and x ∈ V , one has

Gn(x, x) ≤ c′2−( d−2
2

)n. (3.1)

Properties 1, 3 and 4 are evident. Property 2 follows from the fact qn is positive semi-definite
for every n (this is why we take the lazy random walk instead of the simple one). Property 5 is
a direct consequence of our assumption (Hd) on the heat kernel decay.

It follows from Properties 1 and 2 above that, if ψn ∼ N (0,Gn) are independent Gaussian
fields, then

ψ =
∑
n≥0

ψn (3.2)

in law. Property 4 is called the finite-range property (the value 2n should be understood as
the scale at which correlations occur in ψn). Property 3 implies that each field ψn is positively
associated. Property 5, which bounds the value of Gn(x, x), will be used to show that ψn is
small.

Remark 3.4. We will use the assumption d > 4 only to guarantee that the exponent d−2
2 in

the bound (3.1) is strictly larger than 1. Let us mention that in [Bau13], it was proved that
there is a decomposition such that the bound (3.1) holds with exponent d − 2 instead of d−2

2 .
Unfortunately, this decomposition does not seem to satisfy Property 3.

From now on, we write P (resp. E) for the probability (resp. expectation) with respect to
(ψn)n≥0, and set ψ :=

∑
ψn. By construction, ψ has the law of the GFF. For convenience, we

introduce the normalized Gaussian processes φn := π(n+1)√
12

ψn.

For the proof, we add three copies of the edge xy of G, that we denote xy, ⇀xy, ↼xy and call
the new graph with all these edges G (it has the same set of vertices and four edges between
every pair of neighbors in G). Fix some h ≥ 0 to be determined below. For each realization of
(ψn)n≥0, define a Bernoulli percolation model Pq,n,λ on G with parameters

pxy := q,

pxy := 1− exp
(
− h−

∑
k>n

(φkx)2
+ + (φky)

2
+

)
,

p⇀xy := 1− exp
(
− (φnx)21{φnx≥λ}

)
,

p↼xy := 1− exp
(
− (φny )21{φny≥λ}

)
.

The edge-density of xy depends on the φk with k > n only, those of ⇀xy and ↼xy depend on φn

only, and that of xy is deterministic. Also, the parameter λ enables us to interpolate between
Pq,n,0 and Pq,n+1,0. (Notice that the dependence on h is omitted for the sake of the notational
convenience, especially since it will be fixed once and for all in Lemma 3.5.)
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We now integrate out the randomness coming from the Gaussian processes by showing that
there exists h large enough and an increasing sequence (qn) such that limn qn < 1 and

E[Pqn,n,0,(S ←→∞)] ≥ E[Pp(ψ)(S ←→∞)]

for all n. We prove this by induction. The first lemma initiates the induction.

Lemma 3.5. For every n0 ≥ 0, there exists h = h(n0) > 0 such that

E[P0,n0,0(S ←→∞)] ≥ E[Pp(ψ)(S ←→∞)]

for every finite subset S of V .

Proof. Using that (1 + a)(1 + b) ≤ 2 + a2 + b2, we find that

2(1 + ψx)+ (1 + ψy)+ ≤ 2
(

1 +
∑
n≥0

(ψnx)+

)(
1 +

∑
n≥0

(ψny )+

)
≤ 4 + 2

(∑
n≥0

(ψnx)+

)2
+ 2
(∑
n≥0

(ψny )+

)2
.

Cauchy-Schwarz inequality (twice) together with the identity ψnx =
√

12
π(n+1)φ

n
x gives that

2(1 + ψx)+ (1 + ψy)+ ≤ 4 +
∑
n≥0

[
(φnx)2

+ + (φny )2
+

]
Define Kxy := 4 +

∑
k<n0

[
(φkx)2

+ + (φky)
2
+

]
and qxy := 1− exp

(
−Kxy

)
. We only need to show

that there exists h > 0 such that the annealed percolation model with (random) parameters q
given by is stochastically dominated by a Bernoulli percolation with parameter 1− e−h. Notice
that, for every M > 0, this model is clearly dominated by the superposition of ωxy := 1{Kxy>M}
and an independent Bernoulli percolation with parameter 1− e−M . As each φk has finite range
of dependence, ω also does. This observation together with the result [LSS97, Theorem 1.3]
implies that, provided that M is chosen large enough (depending on n0), ω is dominated by a
Bernoulli percolation with parameter 1− e−1. Taking h = M + 1 gives the result.

The second lemma is used for the induction step. More precisely, it will allow us to remove
continuously the field ψn using a reasoning similar to the Aizenman-Grimmett paper [AG91] on
essential enhancements.

Lemma 3.6. There exist α > 0 and n0 ≥ 1 depending only on G, such that for every two finite
subsets S ⊂ Λ of V , every n ≥ n0, λ ≥ n−1 and q ≥ 1

2 , we have

− d

dλ
E[Pq,n,λ(S ←→ Λc)] ≤ exp

(
− α2nλ2

) d

dq
E[Pq,n,λ(S ←→ Λc)].

Before proving this lemma, let us show how Proposition 3.2 follows from it.

Proof of Proposition 3.2. Take n0 and h = h(n0) > 0 given by Lemmas 3.6 and 3.5 respectively.
Define qn inductively by setting qn := 1/2 for all n ≤ n0 and qn+1 := limλ→∞ qn(λ) for all
n ≥ n0, where

qn(λ) :=

{
qn + 2n−2, if λ ≤ n−1

qn + 2n−2 +
∫ λ
n−1 exp(−α2nt2)dt, if λ ≥ n−1.
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First, notice that

q := lim
n→∞

qn =
1

2
+
∑
n≥n0

(
2n−2 +

∫ ∞
n−1

exp(−α2nt2)dt
)
<∞,

so that we can assume without loss of generality (increasing n0 if necessary) that q < 1. Fix
two finite subsets S ⊂ Λ of V .

On the one hand, using that (φnx)21{φnx≥0} ≤ λ2 + (φnx)21{φnx≥λ}, one can easily deduce that

E[Pqn(λ),n,λ(S ←→ Λc)] ≥ E[Pqn,n,0(S ←→ Λc)]

for all λ ≤ n−1. On the other hand, Lemma 3.6 with the choice of qn(λ) tells us that the function
λ 7→ E[Pqn(λ),n,λ(S ←→ Λc)] is increasing on [n−1,∞). Taking λ to infinity implies that

E[Pqn+1,n+1,0(S ←→ Λc)] ≥ E[Pqn,n,0(S ←→ Λc)] (3.3)

for all n ≥ n0. This, together with Lemma 3.5, gives

Pp(S ←→ Λc) = E[Pp(S ←→ Λc)] = lim
n→∞

E[Pqn,n,0(S ←→ Λc)] ≥ E[Pp(ψ)(S ←→ Λc)]

where p := 1− (1− q)e−h. The result follows by letting Λ tend to V .

We now go back to the proof of Lemma 3.6. Let us first recall classical expressions for
derivatives of events in Bernoulli percolation. Consider an increasing event A depending on
finitely many edges. A set F of edges in G is pivotal (in ω) for A if the configuration is in A
when one opens all the edges in F and not in A when one closes these edges. We say that F is
open (resp. closed) pivotal if in addition ω ∈ A (resp. ω /∈ A). Notice that F being open pivotal
does not necessarily imply that all the edges in F are open. Of course, all these definitions apply
when F consists of a single edge to recover the standard notion of pivotality. Russo’s formula
states that

d

dq
E[Pq,n,λ(A)] =

∑
xy∈E

E[Pq,n,λ(xy pivotal for A)]. (3.4)

For the derivative in λ, a quick analysis of 1
δE[Pq,n,λ+δ(A)−Pq,n,λ(A)] gives that

− d

dλ
E[Pq,n,λ(A)] =

∑
x

ρnx(λ)E[Pq,n,λ(Nx open pivotal for A)|φnx = λ], (3.5)

where ρnx(λ) is the density of φnx and Nx := {⇀xy : xy ∈ E(G)} is the directed edge neighborhood
of x.

Proof of Lemma 3.6. To lighten the notation, write L = 2n and Pq,λ instead of Pq,n,λ and keep
in mind that Pq,λ is a function of (ψk)k≥n. Below, we apply the notions defined in the last
paragraphs for A being equal to {S ←→ Λc}, where Λ is a finite set of vertices containing S. In
order to lighten the notation, we write “pivotal” instead of “pivotal for {S ←→ Λc}”.

The proof proceeds as follows. We start from the quantity obtained on the right of (3.5),
and try to compare it to the one obtained in (3.4). We do it in three steps. The first one consists
in going from open to closed pivotal. The second one enables us to get rid of the conditioning
on φnx = λ, at the cost of comparing to the probability that the ball BL(x) of radius L around
x is pivotal. The third step brings us back from the probability of the latter to probabilities of
being pivotal for individual edges.

13



Step 1. From x open pivotal to x closed pivotal.

Since Nx being pivotal is independent of the state at Nx, we deduce that

E[Pq,λ(Nx closed pivotal)|φnx = λ] ≥ E
[
Pq,λ(Nx closed) ·Pq,λ(Nx pivotal)

∣∣φnx = λ
]

= exp
(
− d(x)λ2

)
E[Pq,λ(Nx pivotal)|φnx = λ]. (3.6)

Step 2. Removing the conditioning on φnx = λ.

For Nx to be closed pivotal, the ball BL(x) must be closed pivotal. We therefore find that

E[Pq,λ(Nx closed pivotal)|φnx = λ] ≤ E[Pq,λ(BL(x) closed pivotal)|φnx = λ].

Conditionally on φnx = λ, φn is a Gaussian process with means and covariances given, respec-
tively, by

mz := λ
G̃n(x, z)

G̃n(x, x)
and G′n(z, w) := G̃n(z, w)− G̃n(z, x)G̃n(x,w)

G̃n(x, x)

for every z, w ∈ V (recall that G̃n is the covariance matrix of φn). In particular, for every
µ ≤ λ, φn conditioned on φnx = λ and φn conditioned on φnx = µ are shifts of the same centered
Gaussian process. Since the shift (λ − µ)G̃n(x, z)/G̃n(x, x) is non-negative for z ∈ BL(x) and
equal to 0 for z /∈ BL(x) (by Properties 3 and 4 of (Gn), respectively), we deduce that

E[Pq,λ(BL(x) closed pivotal)|φnx = λ] ≤ E[Pq,λ(BL(x) closed pivotal)|φnx = µ].

Integrating on µ ≤ λ gives that

E[Pq,λ(BL(x) closed pivotal)|φnx = λ] ≤
E[Pq,λ(BL(x) closed pivotal)]

P[φnx ≤ λ]
.

Using P[φnx ≤ λ] ≥ 1
2 and (3.6) gives that

E[Pq,λ(Nx open pivotal)|φnx = λ] ≤ 2 exp(d(x)λ2) E[Pq,λ(BL(x) closed pivotal)]. (3.7)

Step 3. Bound on E[Pq,λ(BL(x) closed pivotal)] in terms of probabilities of being pivotal.

Fix an order for vertices and edges of G and consider a configuration ω for which BL(x) is
closed pivotal. Let y and z be the smallest vertices in BL(x) such that S ←→ y and z ←→ Λc

both without using any edge contained inBL(x). Take γ inG to be the earliest (in lexicographical
order) path contained in BL(x) of length at most 2L between y and z, and define a configuration
ω′ by opening the edges of γ one by one (in order) until the first time that an edge uv of BL(x)
becomes pivotal. By construction, ω′ contains a pivotal edge in BL(x), and it is elementary to
check that

E[Pq,λ(ω′)] ≥ q2L E[Pq,λ(ω)].

Furthermore, the map from ω to ω′ is at most 2L-to-one (since the configuration is not altered
outside BL(x), the sites y and z can be reconstructed, and so can γ). We deduce that

E[Pq,λ(BL(x) closed pivotal)] ≤ 2Lq−2L
∑

u,v∈BL(x):
uv∈E

E[Pq,λ(uv pivotal)]. (3.8)
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Conclusion of the proof. Let D := maxx d(x) be the maximum degree of G. Combining the
two inequalities (3.7) and (3.8) enables us to compare the right-hand side of (3.5) and (3.4):

− d

dλ
E[Pq,λ(S ←→ Λc)] ≤

(
sup
x∈V

ρnx(λ)
)
· 2L

(D
q2

)L
exp(Dλ2)

∑
uv∈E

E[Pq,λ(uv pivotal)]

≤
(

sup
x∈V

ρnx(λ)
)
· exp(C2n +Dλ2)

d

dq
E[Pq,λ(S ←→ Λc)]

for some constant C > 0. We replaced L by 2n and used that q ≥ 1/2 and that the number of
times that an edge uv appears in the summation is |{x ∈ V : u, v ∈ BL(x)}| ≤ DL. Reminding
that ρnx(λ) := 1√

2πĜn(x,x)
exp[−1

2λ
2/Ĝn(x, x)], where Ĝn is the covariance matrix of φn, and using

that

Ĝn(x, x) =
π2n2

12
Gn(x, x)

(3.1)

≤ c′′2−βn

for some c′′ > 0 and β > 1 (here is the only place where we use d > 4), one can find n0 ≥ 0 and
α > 0 such that (

sup
x∈V

ρnx(λ)
)
· exp

(
C2n +Dλ2

)
≤ exp[−α2βnλ2]

for every n ≥ n0, λ ≥ n−1 and q ≥ 1/2, thus concluding the proof.
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[FSS76] J. Fröhlich, B. Simon, and T. Spencer, Infrared bounds, phase transitions and con-
tinuous symmetry breaking, Comm. Math. Phys., 50 (1976), no. 1, 79–95.
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