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Abstract

This paper studies the critical and near-critical regimes of the planar random-
cluster model on Z2 with cluster-weight q ∈ [1,4] using novel coupling techniques.
More precisely, we derive the scaling relations between the critical exponents β, γ, δ,
η, ν, ζ as well as α (when α ≥ 0). As a key input, we show the stability of crossing
probabilities in the near-critical regime using new interpretations of the notion of
influence of an edge in terms of the rate of mixing. As a byproduct, we derive a
generalization of Kesten’s classical scaling relation for Bernoulli percolation involving
the “mixing rate” critical exponent ι replacing the four-arm event exponent ξ4.
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1 Introduction

1.1 Motivation

Understanding the behaviour of physical systems undergoing a continuous phase transition
at and near their critical point is one of the major challenges of modern statistical
physics, both on the physics and the mathematical sides. In the first half of the twentieth
century, the understanding relied essentially on exact computations, as exemplified by
the analysis of mean-field systems and Onsager’s revolutionary solution of the 2D Ising
model [Ons44]. In the sixties, the arrival of the renormalization group (RG) formalism
(see [Fis98] for a historical exposition) led to a (non-rigorous) deep physical and geometrical
understanding of continuous phase transitions. The RG formalism suggests that “coarse-
graining” renormalization transformations correspond to appropriately changing the scale
and the parameters of the model under study. The large scale limit of the critical regime
then arises as the fixed point of the renormalization transformations.

A striking consequence of the RG formalism is that the critical fixed point being usually
unique, the scaling limit at the critical point must satisfy translation, rotation, scale and
even conformal invariance, see e.g. [BPZ84b, BPZ84a]. In two dimensions, this prediction
allowed for the computation of critical exponents ruling the behaviour of thermodynamical
quantities and the classification of models into universality classes, meaning classes of
models undergoing the same critical behaviour.

Another observation related to the previous developments is that the critical exponents
are related to each other: if the behaviours of the specific heat, the order parameter,
the susceptibility, the source-field, the two-point function and the correlation length are
governed by the exponents α, β, γ, δ, η and ν respectively, then the following scaling
relations should be satisfied (below, the dimension d of the lattice is assumed to be equal
to 2, but we state the relations in this generality as they are predicted to extend to any
dimension below the so-called upper critical dimension of the system):

2 − α
d

= ν = 2β

d − 2 + η , (1.1)

2 − η = dδ − 1

δ + 1
= γ
ν
. (1.2)

A striking feature of these relations is that they hold for different universality classes,
meaning that the critical exponents may be different for different models, yet they are
always related via (1.1) and (1.2).

The aim of this paper is to provide rigorous proofs of these scaling relations for a family
of planar percolation models. Percolation models are models of random subgraphs of a given
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lattice. Bernoulli percolation is maybe the most studied such model, and breakthroughs in
the understanding of its phase transition have often served as milestones in the exciting
history of statistical physics. The random-cluster model (also called Fortuin-Kasteleyn
percolation) is another example of a percolation model. It was introduced by Fortuin and
Kasteleyn around 1970 [For71, FK72] as a generalization of Bernoulli percolation. It was
found to be related to many other models of statistical mechanics, including the Ising
and Potts models, and to exhibit a very rich critical behaviour. Of particular importance
from the point of view of physics and for the relevance of our paper is the fact that the
scaling limits of the random-cluster models at criticality are expected to fall into different
universality classes and to be related to various 2D conformal field theories.

Let us conclude this section by reminding the reader that the theory of Bernoulli perco-
lation is now well developed, with a decent understanding of the properties of the scaling
limit [AB99], of crossing probabilities [Rus78, SW78], universal critical exponents [KSZ98],
scaling relations [Kes87, Nol08], noise sensitivity and near-critical window [GPS10, GPS18],
etc. For a variant of the model (site percolation on the triangular lattice), the existence of
the scaling limit and its conformal invariance was proved [Smi01] and critical exponents
have been computed [SW01], see [BD13] and references therein for an overview of two-
dimensional Bernoulli percolation. Deriving all these properties for Bernoulli percolation
relies on specific features, such as independence of the states of different edges and geometric
interpretations of differential formulae using so-called pivotal events. These features are not
satisfied for more general random-cluster models. Another more prosaic goal of this paper
is therefore to develop robust tools enabling one to bypass these special characteristics of
Bernoulli percolation to extend the results mentioned in the abstract to the whole regime
of critical random-cluster models undergoing a continuous phase transition. As such, these
tools may have a number of implications that are not mentioned in the present paper, in
particular for the study of other planar dependent percolation models.

1.2 Definition of the random-cluster model

As mentioned in the previous section, the model of interest in this paper is the random-
cluster model, which we now define. For background, we direct the reader to the mono-
graph [Gri06] and to the lecture notes [Dum17] for an exposition of the most recent
results.

Consider the square lattice (Z2,E), that is the graph with vertex-set Z2 = {(n,m) ∶
n,m ∈ Z} and edges between nearest neighbours. In a slight abuse of notation, we will
write Z2 for the graph itself. Consider a finite subgraph G = (V,E) of the square lattice (V
denotes the vertex-set and E the edge-set) and let ∂G be the set of vertices in V incident
to at most three edges in E. Write Λn for the subgraph of Z2 spanned by the vertex-set
{−n, . . . , n}2. For 1 ≤ r < R, write Ann(r,R) for the annulus ΛR ∖ Λr−1. We also write
Λn(x) and Λn(e) for the boxes of size n recentred around x and the bottom left endpoint
of the edge e, respectively.

In order to define the model, consider first a finite graph G. A percolation configuration
ω on G is an element of {0, 1}E . An edge e is said to be open (in ω) if ωe = 1, otherwise it
is closed. A configuration ω can be seen as a subgraph of G with vertex-set V and edge-set
{e ∈ E ∶ ωe = 1}. When speaking of connections in ω, we view ω as a graph. For sets of
vertices A and B, we say that A is connected to B if there exists a path of edges of ω with
endpoints that connect a vertex of A to a vertex of B. This event is denoted by A←→B.
We also speak of connections in a set of vertices C if the endpoints of the edges of the path
are all in C.
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A cluster is a connected component of ω. The boundary conditions ξ on G are given by
a partition of ∂G. We say that two vertices of G are wired together if they belong to the
same element of the partition ξ.

Definition 1.1 The random-cluster measure on G with edge-weight p, cluster-weight q > 0
and boundary conditions ξ is given by

φξG,p,q[ω] =
1

Zξ(G,p, q)(
p

1−p)
∣ω∣qk(ω

ξ), (1.3)

where ∣ω∣ = ∑e∈E ωe, k(ω) is the number of connected components of the graph, ωξ is the
graph obtained from ω by identifying wired vertices together, and Zξ(G,p, q) is a normalising
constant called the partition function chosen in such a way that φξG,p,q is a probability
measure.

Two specific families of boundary conditions will be of special interest to us. On the one
hand, the free boundary conditions, denoted 0, correspond to no wirings between boundary
vertices. On the other hand, the wired boundary conditions, denoted 1, correspond to all
boundary vertices being wired together.

The random-cluster model may be modified to accommodate an external magnetic
field as follows. Add to the lattice Z2 a vertex g called the ghost vertex and connect it to
each vertex v of Z2 by an edge vg. The random-cluster measure φiG,p,q,h (for i = 0 or 1 and
h ≥ 0) is defined exactly as the random-cluster model on G, except that the boundary is
now ∂G ∪ {g}, and the edge-weight is p for the edges of G and 1 − e−h for edges having g
as an endpoint, i.e. that

φiG,p,q,h[ω] =
1

Zξ(G,p, q, h)(
p

1−p)
∣ω∣(eh − 1)∆(ω)qk(ω

i), (1.4)

where ∆(ω) ∶= ∑v∈V ωvg. The probability that g is in the cluster of 0 has an interpretation
in terms of spin models with a magnetic field: for q = 2, this probability is equal to the
spontaneous magnetization with an external field h for the Ising model on the square lattice.
A similar interpretation holds for the 3-state and 4-state Potts models. For more details
on this topic, see [BBCK00].

For q ≥ 1 and i = 0,1, the family of measures φiG,p,q,h converges weakly as G tends to
the whole square lattice. The limiting measures on {0,1}E are denoted by φip,q,h and are
called infinite-volume random-cluster measures with free and wired boundary conditions.
They are invariant under translations and ergodic. When h = 0, we simply drop it from
the notation.

The random-cluster model undergoes a phase transition at h = 0 and a critical parameter
pc = pc(q) in the following sense: if p > pc(q), the probability

θ(p) ∶= φ1
p,q[0 is in an infinite cluster]

is strictly positive, while for p < pc(q), it is equal to 0. In the past ten years, considerable
progress has been made in the understanding of this phase transition: the critical point
was proved in [BD12] (see also [DM16, DRT18]) to be equal to

pc(q) =
√
q

1 +√
q
.

It was also shown in these papers that the correlation length

ξ(p) ∶= lim
n→∞

−n/ log[π1(p,n) − θ(p)] ∈ [0,∞] (1.5)
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is finite as soon as p ≠ pc, where

π1(p,n) ∶= φ1
p,q[0←→ ∂Λn] (1.6)

(when p = pc we drop pc from this notation).
For q ≥ 1, it was proved in [DST17, DGHMT16] (see also [RS20] when q > 4) that the

correlation length at pc is infinite if and only if q ≤ 4. As the divergence of the correlation
length is one of the characterizations of a continuous phase transition, and as we are
interested in this type of phase transition only, in the whole paper we will restrict our
attention to the range q ∈ [1,4]. Also, since the q = 1 case was already treated by Kesten
in [Kes87], and later solved in numerous other places (see references below), we will often
assume that q > 1.

Two notational conventions Since q ∈ [1,4] will always be fixed, we drop it from
notation. For q ∈ [1,4], there is a unique infinite-volume random-cluster measure, so we
omit the superscript corresponding to the boundary condition and denote it simply by φp.

For two families (fi)i∈I and (gi)i∈I , introduce f ≍ g (resp. f <
⌢ g and f >

⌢ g) to refer to the
existence of constants c,C ∈ (0,∞) such that for every i ∈ I, cgi ≤ fi ≤ Cgi (resp. fi ≤ Cgi
and fi ≥ cgi). In most cases, the family I will be obvious from context and omitted. In the
special case where I contains (implicitly or explicitly) the edge-parameter p ∈ (0,1), we in
fact further require that p is not close to 0 or 1 (which is justified for every application
that we have in mind since we are interested in properties for p close to pc).

1.3 Stability below the characteristic length

When studying a non-critical system, a natural length-scale is provided by the characteristic
length, which appeared in a simplified context of Bernoulli percolation in the work of
Kesten [Kes87] (see also [BCKS99]) and was explicited for the random-cluster model
in [DGP14]. In order to define the characteristic length, we first introduce the notion of
crossing probability.

A quad (D ;a, b, c, d) is a finite subgraph of Z2 whose boundary ∂D is a simple path
of edges of Z2, along with four points a, b, c, d found on ∂D in counterclockwise order.
These points define four arcs (ab), (bc), (cd), and (da) corresponding to the parts of the
boundary between them. We also see the quad as a domain of R2 with marked points on
its boundary by taking the union of the faces enclosed by ∂D . The typical example is
the case of rectangles [0, n] × [0,m] or Λn with a, b, c, d being the corners of the rectangle,
oriented in counterclockwise order, starting from the bottom-right one. In this case, we
omit a, b, c, d from the notation. We say that the quad (D , a, b, c, d) is crossed if (ab) is
connected to (cd) in D . The event is denoted by C (D).

We say that a quad (D ;a, b, c, d) is η-regular at scale R for some η > 0 if D is contained
in ΛR, is the union of a finite number of translates of ΛηR by points of ηRZ2, and
a, b, c, d ∈ ηRZ2.

Now, consider δ > 0 small enough. How small δ should be is dictated by the proof
of Theorem 2.1 and we simply wish to mention here that δ can be taken independent of
q ∈ [1,4], and can easily be estimated (even though the value is irrelevant for our study).

Definition 1.2 (Characteristic length) For each q ≥ 1 and p ∈ (0,1), let

L(p) = L(p, q) ∶= inf{R ≥ 1 ∶ φp[C (ΛR)] ∉ [δ,1 − δ]} ∈ [1,∞]. (1.7)
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Note that L(p) < +∞ for every p ≠ pc by [BD12]; by duality, L(pc) = +∞ as long as
δ < 1/2, which we will always assume. The interest of the characteristic length lies in its
connection with the scaling window, i.e. the regime of parameters (R,p) for which one
expects typical properties of the random-cluster model in ΛR with parameters p to be
similar to the critical ones. In physics, the statement that the system looks critical is
usually related to another length-scale, namely the correlation length ξ(p) defined in (1.5).
The correlation length encodes the rate of exponential decay of the probability of being
connected to distance n but not to infinity as n tends to infinity; it is not a priori directly
related to L(p). Nevertheless, the following result reunite the two notions of correlation and
characteristic lengths, thus affirming that the characteristic length is simply the correlation
length in disguise.

Theorem 1.3 (Equivalence correlation/characteristic lengths) Fix 1 ≤ q ≤ 4, we
have that for p ∈ (0,1),

L(p) ≍ ξ(p). (1.8)

The proof is based on a coarse-grained procedure. We wish to highlight that the result
is new for every 1 < q ≤ 4, even for q = 2 for which [DGP14, Theorem 1.2] proves almost
the same statement, but with a logarithmic control over the ratio of L(p)/ξ(p) rather than
a constant one.

One of the main results of [Kes87] is that the scaling window is simply the set of
(p,R) such that R = O(L(p)). This result is sometimes referred to as stability below
the characteristic length; it is the subject of the following theorem in the context of the
random-cluster model. Together with Theorem 1.3 the stability result legitimates the two
physical interpretations of the correlation length: in terms of rate of decay and in terms
of scaling window. We state the result for q ≠ 1 as the case q = 1 was already treated
in [Kes87].

Theorem 1.4 (Stability below the characteristic length) Fix 1 < q ≤ 4.

(Stability of crossing probabilities) There exists ε > 0 such that, for every η-regular discrete
quad (D , a, b, c, d) at scale R ≥ 1 and every p ∈ (0,1) (the constant in <

⌢ depends on η but
ε does not),

∣φp[C (D)] − φpc[C (D)]∣ <⌢ ( R
L(p))

ε. (1.9)

(Stability of the one-arm event) For every p ∈ (0,1) and every R ≤ L(p),

π1(R) ≍ π1(p,R). (1.10)

The stability of arm event probabilities (1.10) extends to more general arm events. Moreover,
an improved version may be formulated; see Remark 7.3 for details.

The strategy for proving Theorem 1.4 is related to Kesten’s original one, in that it uses
Theorem 1.6 to study the behaviour of derivatives of crossing events. Nevertheless, several
additional difficulties occur, mainly due to the replacement of pivotality by influence in
the differential formulas for probabilities of events: recall [Gri06, Thm. (2.46)] the general
formula, valid for every q > 0,

d
dpφp[C (D)] = 1

p(1−p)∑
e∈E

Covp(ωe,C (D)), (1.11)

where Covp denotes the covariance under φp. For q = 1, the sum of covariances gets nicely
rewritten in terms of pivotal edges, i.e. edges which, when switched from close to open,
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change the occurrence of the event. In particular, it is possible to prove that for crossing
events of a rectangle of size R and edges that are far from the boundary of the rectangle,
the probability of being pivotal is of the order of the probability π4(p,R) that the two
extremities of a given edge e belong to different clusters of radius at least R (when p = pc,
we simply write π4(R)). This property was used crucially in [Kes87] and ultimately leads
to Kesten’s scaling relation L(p)2π4(L(p)) ≍ (p−pc)−1. The description in terms of pivotal
edges is wrong for random-cluster models with q > 1 as the covariance between an edge
and crossing events at scale R is no longer of the order of π4(p,R).

Driven by this different phenomenology, in this paper we introduce a new interpretation
of the covariance valid for every q > 1 encoding how much an edge is influenced by boundary
conditions at a distance R, or equivalently, how fast the model mixes.

Definition 1.5 (Mixing rate) For 1 < q ≤ 4, 1 ≤ r < R, p ∈ (0, 1) and e an edge incident
to the origin, write

∆p(R) ∶= φ1
ΛR,p

[ωe] − φ0
ΛR,p

[ωe], (1.12)

∆p(r,R) ∶= φ1
ΛR,p

[C (Λr)] − φ0
ΛR,p

[C (Λr)]. (1.13)

The quantity ∆p(R), to which we now refer as the mixing rate, will be crucial in our
study, as it will replace the amplitude π4(p,R) of standard pivotal events in the study of
Bernoulli percolation. As such, it is very important to derive some of its properties.

Theorem 1.6 (Properties of the mixing rate) Fix 1 < q ≤ 4.

(i) (Mixing rate/covariance connection) For every η > 0, every p ∈ (0,1), every η-regular
quad (D , a, b, c, d) at scale R ≤ L(p) containing ΛηR(e) for some edge e (below the constants
in ≍ depend on η),

Covp[ωe;C (D)] ≍ ∆p(R). (1.14)

(ii) (Quasi-multiplicativity) For every p ∈ (0,1) and 1 ≤ r ≤ R ≤ L(p),

∆p(r)∆p(r,R) ≍ ∆p(R). (1.15)

(iii) (Stability below the characteristic length) For every p ∈ (0,1) and 1 ≤ R ≤ L(p),

∆p(R) ≍ ∆pc(R). (1.16)

(iv) (Comparison to pivotality) There exists ε > 0 such that for every 1 ≤ R ≤ L(p),

∆p(r,R) >⌢ (R/r)επ4(R)/π4(r). (1.17)

(v) (Mixing interpretation) For every 1 ≤ 2r ≤ R ≤ L(p),

∆p(r,R) ≍ max{∣ φp[A ∩B]
φp[A]φp[B] − 1∣ ∶ A ∈ F (Λr) and B ∈ F (Z2 ∖ΛR)}, (1.18)

where F (S) is the σ-algebra generated by the edges with both endpoints in S.

The proof of this theorem is the main innovation of the paper. It is based on new
increasing couplings between random-cluster models. While coupling Bernoulli percolation
at different parameters is fairly straightforward, coupling different random-cluster models
can be quite elaborate. In this paper, we develop several increasing couplings between
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random-cluster models (typically one at pc and one at p, or one at pc and another one at
pc, but conditioned on an event) that satisfy various properties.

In the previous theorem, Properties (i)–(v) have crucial interpretations. Property (i)
will have the following important application. It states that the covariance between an
edge which is deep inside an η-regular quad and the crossing event of said quad is of the
order of ∆p(R). Property (ii) is an analog of the quasi-multiplicativity of probabilities of
arm events and will be popping up everywhere in the applications of ∆p(R), in particular
when trying to estimate the covariance between a crossing event and an edge close to the
boundary of the quad. Property (iii) states the stability below the characteristic length for
the mixing rate, analogously to that proved by Kesten for the four-arm event probability.
Property (iv) shows that replacing π4(p,R) by ∆p(R) is really necessary, as the trivial
bound stating that the covariance is larger than or equal to pivotality is polynomially far
from being sharp for any q > 1. Finally, (v) justifies the reference to mixing in the name of
∆p, as it links this quantity to the error term in the ratio-weak mixing.

We finish comments on this theorem by a crucial observation. When trying to compute
asymptotics for the covariance between an edge and a crossing event, (i) and (ii) imply
that it suffices to understand for every ε > 0 the limit of ∆pc(εR,R) as R tends to infinity.
Indeed, these limits allow to estimate the covariance up to arbitrarily small polynomial
terms and therefore to estimate the critical exponent. This is very useful as the covariance
itself is not easily expressed in terms of properties of large interfaces of the critical system,
while ∆pc(εR,R) (which is equal by duality to 1−2φ0

ΛR,pc
[C (ΛεR)]) is a quantity that can

be derived from the scaling limit of the critical model, for instance using the conjectural
convergence to the Conformal Loop Ensemble.

It is tempting to deduce from the previous theorem that when q > 1 the derivative of
crossing probabilities of η-regular quads at scale R ≤ L(p) is of order R2∆p(R) (exactly
like it is of order R2π4(R) for Bernoulli percolation). This statement is actually wrong
and illustrates the subtle but deep difference with Bernoulli percolation. Indeed, there is a
competition on the right-hand side of (1.11) between two possible scenarios:

• The collective contribution of edges in D is the main part of the right-hand side.
In such case, we expect the derivative at pc to exist and to be equal to R2∆p(R).
Moreover, it may be proved in this case that the derivative is stable within the critical
window.

• The collective contribution of edges far from D is the main part of the right-hand side.
In such case, the derivative at pc is infinite. For p ≠ pc, the contribution comes mostly
from edges at distance L(p), and the derivative is of order L(p)2∆p(L(p))2/∆p(R).

An accurate estimate of the derivative, valid in all scenarios, is therefore given by the
following statement.

Corollary 1.7 Fix 1 < q ≤ 4 and η > 0. Every p ∈ (0,1) and every η-regular quad
(D , a, b, c, d) at scale R ≤ L(p),

d
dpφp[C (D)] ≍ R2∆p(R) +

L(p)

∑
`=R

`∆p(`)∆p(R, `), (1.19)

where the constants in ≍ depend on η.

Looking at this sum formula for the derivative, one sees that whether the derivative is
governed by the collective contribution of edges in or close to D or by that of edges far
from D is related to whether `∆p(`) decays or not as ` tends to infinity. This can also
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be related to whether the specific heat blows up or not at pc, as will be seen in the next
section. Note that this up-to-constant formula unraveled a third possible scenario where
each scale contributes the same amount. This scenario happens for the random-cluster
model with q = 2, in which the derivative blows up logarithmically in L(p).

In order to derive this corollary, one will need an important result which is reminiscent
of the classical claim that the four-arm exponent is strictly smaller than 2 for Bernoulli
percolation.

Proposition 1.8 (Lower bound on ∆p(r,R)) There exists δ > 0 such that for every
1 < q ≤ 4 and 1 ≤ r ≤ R ≤ L(p),

∆p(r,R) ≥ δ(r/R)2−δ. (1.20)

While the rest of the paper relies on fairly generic assumptions of the percolation model at
hand, the previous proposition harvests a much more specific property of the random-cluster
model on Z2, namely the parafermionic observable. For 1 ≤ q < 4, the result will follow
from crossing estimates that were recently obtained in [DMT20] using this observable.
These crossing estimates are uniform in boundary conditions and in (possibly fractal)
domains. The byproduct of the analysis in [DMT20] is that π4(R)/π4(r) is bounded from
below by δ(r/R)2−δ, and therefore by (iv) so is ∆p(r,R). For q = 4, the crossing estimates
are not uniform in boundary conditions and a more specific analysis, also based on the
parafermionic observable, must be performed. It is the subject of Section 6.2 in this paper.

1.4 Scaling relations

In continuous phase transitions, natural observables of the model decay algebraically.
The behaviour at and near criticality is thus expected to be encoded by various critical
exponents α, β, γ, δ, η, ν, ζ, ι, ξ1 and ξ4 defined as follows (below o(1) denotes a quantity
tending to 0):

f ′′(p) = ∣p − pc∣−α+o(1) as p→ pc,

θ(p) = (p − pc)β+o(1) as p↘ pc,

χ(p) = ∣p − pc∣−γ+o(1) as p→ pc,

φ1
pc,h[0←→ g] = h1/δ+o(1) as h→ 0,

φpc[0←→ x] = ∣x∣−η+o(1) as ∣x∣→∞,
π1(R) = R−ξ1+o(1) as R →∞,
ξ(p) = ∣p − pc∣−ν+o(1) as p→ pc,

φpc[∣C∣ ≥ n] = n−ζ+o(1) as n→∞,
∆pc(R) = R−ι+o(1) as R →∞,
π4(R) = R−ξ4+o(1) as R →∞,

where all the quantities above were already defined in previous sections, except that 0←→ g
is the event that 0 is connected to the ghost by an open path, ∣C∣ is the number of vertices
in the cluster C of the origin, and f(p) and χ(p) are the thermodynamical quantities
respectively called the free-energy and the susceptibility defined1 by

f(p) ∶= lim
n→∞

− 1
∣Λn∣

logZ0(Λn, p),

χ(p) ∶= φp[∣C∣1∣C∣<∞].
1The definition of f(p) for q = 1 is slightly different and is given by f(p) ∶= φp[1/∣C∣].
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Let us mention that the first equation only applies when f ′′(p) diverges as p approaches
pc, which is to say that the phase transition is of second order.

These exponents are quantities of central interest in physics and have been the object
of many studies. A beautiful prediction is that these exponents should depend on each
other via scaling relations:

η = 2ξ1, (R1)
ζ = ξ1/(2 − ξ1), (R2)
δ = (2 − ξ1)/ξ1, (R3)
β = νξ1, (R4)
γ = (2 − 2ξ1)ν, (R5)
α = 2 − 2ν. (R6)

An important feature of the relations above is that they are independent of q: the exponents
vary from model to model, but not the formulae. Relations R1–6 were proved for Bernoulli
percolation (i.e. cluster-weight q = 1) in a milestone paper by Harry Kesten [Kes87]
without any of them being computed, or indeed even be shown to exist (see also [Nol08,
GPS18, DMT20b]). For the random-cluster with q = 2, critical exponents were calculated
independently [MW83, DGP14, Dum13] and were observed to satisfy R1–6. Let us
mention that similar relations should hold in all dimensions that are below the so-called
upper-critical dimension (with certain values of 2 replaced by the dimension d). We refer
to a paper by Borgs, Chayes, Kesten and Spencer [BCKS99] (see also [BCKS01]) for a
discussion of this phenomenon for Bernoulli percolation.

Kesten’s analysis in the case of Bernoulli percolation was relying on another scaling
relation, sometimes referred to as Kesten’s scaling relation, stating that ν(2 − ξ4) = 1 for
q = 1. It was observed in [DGP14] that this equality fails for q = 2 (one can also check this
using the table gathering the predicted exponents below). We will show that it should be
replaced by the following generalized Kesten’s scaling relation,

ν(2 − ι) = 1. (R7)

Note that the second property of Theorem 1.6 shows that ξ4 > ι so that ν(2 − ξ4) = 1 fails
not only at q = 2 but for every q > 1.

Before discussing the main results, let us mention the predicted values for the different
exponents. The first three scaling relations enable us to express δ, η and ζ in terms of ξ1

only. This is particularly interesting since ξ1 is measurable in terms of the scaling limit of
interfaces at criticality. The relations R6 and R7 link α, ν and ι. This is again very useful
since it was noted in the previous section how ι can be obtained from the understanding of
the scaling limit of interfaces. An alternative approach to computing these three exponents
would be to first obtain α, which may perhaps be derived using exact integrability of the
random-cluster model, see [Bax89, Sec. 12.8] and Section 1.6 for more details. Finally, R4
and R5 express β and γ in terms of ξ1 and ν, so that one can obtain all the exponents
from ξ1 and ι (or α).

Conformal invariance enables to predict that the scaling limit of the random-cluster
model with cluster-weight q ∈ [0,4] is related to CLE(κ) (see [SSW09] and the discussion
in [GW19]), from which ξ1 and ι can be deduced. This leads to the following table, where
all the exponents are expressed in terms of κ.
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Exponent Definition q ∈ [0,4] q = 1 q = 2 q = 3 q = 4

κ κ(q) ∶= 4π/arccos(−
√
q

2 ) κ 6 16
3

24
5 4

α f ′′(p) = ∣p − pc∣−α+o(1) 2
3

16−3κ
8−κ −2

3 0 1
3

2
3

β θ(p) = (p − pc)β+o(1) 3κ−8
12

5
36

1
8

1
9

1
12

γ χ(p) = ∣pc − p∣−γ+o(1) 8
κ −

2
3 +

2
3

κ
8−κ

43
18

7
4

13
9

7
6

δ θ(pc, h) = h1/δ+o(1) (8+κ)(8+3κ)
(8−κ)(3κ−8)

91
5 15 14 15

η φ0
pc[0←→ x] = ∣x∣−η+o(1) (8−κ)(3κ−8)

16κ
5
24

1
4

4
15

1
4

ν ξ(p) = ∣pc − p∣−ν+o(1) 8
3(8−κ)

4
3 1 5

6
2
3

ζ φ0
pc[∣C∣ ≥ n] = nζ+o(1)

(8−κ)(3κ−8)
(8+κ)(3κ+8)

5
91

1
15

1
14

1
15

ξ1 π1(R) = R−ξ1+o(1) (8−κ)(3κ−8)
32κ

5
48

1
8

2
15

1
8

ξ4 π4(R) = R−ξ4+o(1) −κ8 + 4 + 6
κ

5
4

39
24

33
20 2

ι ∆(R) = R−ι+o(1) 3κ
8 − 1 1 4

5
1
2

In this paper, we prove R1–7 for the random-cluster model with general cluster-
weights q ∈ [1,4], except for R6 when α is negative. We insist on the fact that the
random-cluster models belong to different universality classes when q varies from q = 1
to q = 4, so that this paper provides the first generic derivation of these relations for
different universality classes. As in [Kes87], we do not claim to show that any of these
exponents exist, nor do we compute their values; the actual statements of the scaling
relations with no reference to the exponents are given in the three theorems below. Note
nonetheless that if one makes the assumption of algebraic decay with the proper exponent,
the statements below imply the scaling relations mentioned above.

Below, we assume that 1 < q ≤ 4 as the case q = 1 is already known. We start by
the two simplest scaling relations (R1) and (R2) involving only quantities at p = pc
and h = 0. The theorem is an easy consequence of uniform crossing estimates obtained
for the random-cluster at criticality, see e.g. [DST17]. While the result is not especially
complicated, we chose to include it here for completeness. Introduce the following quantity
for every n > 0,

ϕ(n) ∶= min{r ∈ N ∶ r2π1(r) ≥ n}. (1.21)

Theorem 1.9 (Scaling relations at criticality) Fix 1 < q ≤ 4. For x ∈ Z2 and n ≥ 1,

φpc[0←→ x] ≍ π1(∣x∣)2, (1.22)
φpc[∣C∣ ≥ n] ≍ π1(ϕ(n)). (1.23)

We now turn to the scaling relation (R3) involving the magnetic field. For q = 2, (R3)
was proved in [CGN14] using the GKS inequality but this inequality is not available for
general random-cluster models. A fact which came as a surprise to us is that (R3) can
be derived for every 1 ≤ q ≤ 4 without referring to any other result of the paper (see
Section 8.3).

Theorem 1.10 (Scaling relation with magnetic field) Fix 1 < q ≤ 4. For h > 0,

φpc,h[0←→ g] ≍ π1(ϕ( 1
h)). (1.24)

The scaling relations (R4)–(R7) are the most difficult ones as they involve the random-
cluster model at p near pc and rely heavily on the stability in the near-critical regime.
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Theorem 1.11 (Scaling relations near-critical regime) Fix 1 < q ≤ 4. For p > pc
(and p ≠ pc for the second),

θ(p) ≍ π1(ξ(p)), (1.25)

χ(p) ≍ ξ(p)2π1(ξ(p))2, (1.26)

∆pc(ξ(p)) ≍ ξ(p)−2∣p − pc∣−1, (1.27)

f ′′(p) ≍ ∑
`≤ξ(p)

`∆pc(`)2. (1.28)

Note that assuming that ι exists, we get a very different behaviour depending on
whether it is smaller or larger than 1, or correspondingly whether α is positive or negative,
i.e. whether the random-cluster model undergoes a second-order or higher-order phase
transition. The former occurs when ν < 1, i.e. conjecturally when q ∈ (2,4]. When ν = 1,
which is conjectured to correspond only to q = 2, all the exponents are known and f ′′(p)
blows up logarithmically (in particular it satisfies the scaling relation as well). When ν >
1, f ′′(p) remains bounded in the vicinity of pc, and the phase transition becomes of
third-order (or higher). The exponent α may still be defined using the third derivative
of f , which is supposed to diverge at pc. We are currently only able to derive an upper
bound on f ′′′; the lower bound is unavailable even for Bernoulli percolation. We refer to
Remark 8.4 for details.

1.5 Two complementary results on the order parameter of Potts models

This section gathers two satellite results that are of interest on their own and that do not
necessarily fit in the storyline of the previous sections. For q = 2, it is already known that
the value of ξ1 is equal to 1/8, so that our paper provides a new proof of the following
immediate corollary using the Edwards-Sokal coupling [Gri06, Section 1.4]. We include it
since the Ising model with magnetic field, contrary to the case h = 0, is not integrable and
hence notoriously difficult to study. As mentioned previously, it was obtained in [CGN14]
using alternative arguments.

Theorem 1.12 Let m(β,h) be the spontaneous magnetization of the Ising model on Z2

at inverse-temperature β and magnetic field h. For every h ∈ (0,1),

m(βc, h) ≍ h1/15.

When 1 ≤ q ≤ 3, it was proved in [DMT20] that π1(R)π4(R) ≥ cRc−2 for every R ≥ 1
and some constant c > 0. In Remark 6.8, we show that π1(R)∆(R) ≥ cRc−2 also for q = 4.
From these inequalities, using (1.25), (1.27) and (1.20), one may deduce the result below,
which should be understood as β < 1 for 1 ≤ q ≤ 3 and q = 4. The result for q = 1 (that is for
Bernoulli percolation) was already obtained by Kesten and Zhang [KZ87]; we expect β < 1
to be valid for all 1 ≤ q ≤ 4.

Theorem 1.13 (non-differentiability of the order parameter) For every 1 ≤ q ≤ 3
or q = 4, there exists c > 0 such that for every p ≥ pc,

θ(p) ≥ c(p − pc)1−c. (1.29)

In particular, the spontaneous magnetization m(β) of the 2, 3 and 4-state Potts model
satisfies m(β) ≥ c(β − βc)1−c for β ≥ βc.
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1.6 Open questions

The present paper opens many doors in the study of the critical regime of random-cluster
models (and more generally planar dependent percolation models). We now mention a few
open questions that in our opinion deserve attention. We refrain ourselves from asking the
obvious question of proving conformal invariance of the model, and focus on questions that
are directly related to the current work.

Let us start by a question concerning scaling relations, namely whether one can
prove (R6) when q ≤ 2. As mentioned above, in this case f ′′(p) is expected to remain
bounded when p tends to pc, but one may consider the behaviour of f ′′′(p) to make sense
of α. Remark 8.4 of the present paper shows that the critical exponent α defined like
this satisfies 2ν ≤ 2 − α, leaving the following question open (note that this is also open
for q = 1).

Question 1 Prove that for every 1 ≤ q < 2, one has 2ν ≥ 2 − α.

Another natural question is to derive critical exponents for random-cluster models.
The scaling relations enable one to deduce certain exponents from others, and we may
therefore choose which exponents to try to derive. From this point of view, the exponent α
is particularly tempting since it implies directly ν, and also since exact integrability often
provides physicists and mathematicians with closed formulae that may lead to α. We refer
to [Bax89] for more details on this and summarize the discussion in the following question.

Question 2 Obtain α using exact integrability to understand the near-critical behaviour
of the free energy.

Another approach consists in deriving the exponents having as a basis the assumption of
conformal invariance. In this case, we know that the scaling limit of the family of boundaries
of clusters should be a Conformal Loop Ensemble as mentioned in the introduction. As
a consequence, ξ1 seems very easy to deduce from conformal invariance. Note that ξ1

and ι are sufficient to derive the other exponents, and that ι has the advantage of being a
quantity which is computable using the scaling limit at criticality (the exponents β, γ, δ,
and ν involve values of p ≠ pc and should therefore be difficult to compute directly using
only conformal invariance). At the light of the quasi-multiplicativity property of ∆pc(r,R),
the following question seems tractable.

Question 3 Compute ι assuming conformal invariance of interfaces at criticality.

Let us finish this section by mentioning that [DGP14] emphasizes a self-organized
mechanism in the way new edges occur as p increases in Grimmett’s monotone coupling
(see [Gri06] for details). The authors argued that edges appear in clouds and that the
understanding of these clouds would be crucial towards the construction of the near-critical
scaling limit, would anybody manage to construct the conformally invariant scaling limit
at pc. The current work answers a number of questions and conjectures asked in this
paper (including Conjecture 4.1 and 4.2 since ξ(p) is explicitly known, see e.g. [BD12b]
and references therein), but does not provide direct insight on the structure of these clouds.
We therefore conclude with the following question.

Question 4 What does the present work tell us about clouds (in the sense of [DGP14]) in
Grimmett’s monotone coupling?
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Almost everything is known about the random-cluster model with q = 2 on the square
lattice, since the conformal invariance of the model and its interfaces was proved [Smi10,
CDHKS14]. It is therefore only natural to discuss the question of the construction of the
near-critical scaling limit in this context, especially since one expects subtle differences
with the corresponding result for Bernoulli percolation (see [GPS18]).

Question 5 Construct the near-critical scaling limit of the model, i.e. the limits of random-
cluster models on 1

RZ
2 at p such that R is of order of λL(p), where λ is a fixed strictly

positive parameter. One may start by studying the case of q = 2.

Recently, rotational invariance of the critical random-cluster model was obtained
in [DKKMO20]. This rotational invariance is expected to carry over to the near-critical
regime. The arguments developed here, combined with those of [DGP14], should be relevant
for the next question.

Question 6 Prove that the near-critical scaling limit of the model is invariant under
rotations.

Organisation of the paper

Section 2 provides the necessary background to our paper. Section 3 studies the dependency
of crossing probabilities on boundary conditions (see Theorem 3.6) and introduces the notion
of boosting pair of boundary conditions. Section 4 contains the proof of points (ii), (iv)
and (v) of Theorem 1.6. This is the core of our paper, and indeed its biggest innovation.
Section 5 initiates the connection between the quantity ∆p and covariances, in particular
proving Theorem 1.6(i). Section 6 provides the lower bound on ∆p given by Proposition 1.8.
Section 7 contains the proof of the stability below the correlation length: Theorem 1.4 and
Theorem 1.6(iii). Finally, Section 8 contains the derivation of the scaling relations.

A word about constants

We will often work with p ∈ (0,1) and a spatial scale R ≤ L(p). Unless stated otherwise,
constants c, (ci)i≥0,C and (Ci)i≥0 are assumed uniform in (p,R) as above, with the
assumption that p is not close to 0 or 1. They are, however, allowed to depend on the
threshold δ used in the definition of L(p); recall that this threshold is assumed small, but
fixed. We do not discuss the dependence in q of constants, but the careful reader will notice
that they may be rendered uniform in q, potentially outside of the vicinity of 1 and 4.

We reiterate that the constants in the notation ≍, <
⌢ and >

⌢ also follow the same
principle.

2 Preliminaries

This section briefly recalls some tools for the study of the planar random-cluster model.
Some sections are new, for instance Section 2.4. We recommend that the readers quickly
browse through this section, even if they are already comfortable with the basics of the
random-cluster model.

2.1 Elementary properties of the random-cluster model

We will use standard properties of the random-cluster model. They can be found in [Gri06],
and we only recall them briefly below. Fix a subgraph G = (V,E) of Z2.
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Monotonic properties. An event A is called increasing if for any ω ≤ ω′ (for the partial
ordering on {0,1}E), ω ∈ A implies that ω′ ∈ A. Fix q ≥ 1, 1 ≥ p′ ≥ p ≥ 0, h′ ≥ h ≥ 0, and
some boundary conditions ξ′ ≥ ξ, where ξ′ ≥ ξ means that any wired vertices in ξ are also
wired in ξ′. Then, for every increasing events A and B,

φξG,p,h[A ∩B] ≥ φξG,p,h[A]φξG,p,h[B], (FKG)

φξG,p,h′[A] ≥ φξG,p,h[A], (h-MON)

φξG,p′[A] ≥ φξG,p[A], (p-MON)

φξ
′
G,p,h[A] ≥ φξG,p,h[A]. (CBC)

The inequalities above will respectively be referred to as the FKG inequality, the
monotonicity in h and p, and the comparison between boundary conditions.

Spatial Markov property. For any configuration ω′ ∈ {0,1}E and any F ⊂ E,

φξG,p,h[⋅∣F ∣ωe = ω′e,∀e ∉ F ] ≥ φξ
′
H,p,h[⋅], (SMP)

where H denotes the graph induced by the edge-set F , and ξ′ the boundary conditions
on H defined as follows: x and y on ∂H are wired if they are connected in (ω′)ξ

∣E∖F
.

Dual model. Define the dual graph G∗ = (V ∗,E∗) of G in the usual way: place dual sites at
the centers of the faces of G (when considering a graph on the plane, the external face must
be counted as a face of the graph), and for every bond e ∈ E, place a dual bond between
the two dual sites corresponding to faces bordering e. Given a subgraph configuration ω,
construct a configuration ω∗ on G∗ by declaring any bond of the dual graph to be open
(resp. closed) if the corresponding bond of the primal lattice is closed (resp. open) for the
initial configuration. The new configuration is called the dual configuration of ω. The
dual model on the dual graph given by the dual configurations then corresponds to a
random-cluster measure with the same parameter q, a dual parameter p∗ satisfying

p∗p

(1 − p∗)(1 − p) = q,

and dual boundary conditions. We do not want to discuss too much the details of how
dual boundary conditions are defined (we refer to [Gri06]) and simply mention that the
dual of free boundary conditions are the wired ones, and vice versa. Note that the critical
point is self-dual in the sense that p∗c = pc.

Loop model. The loop representation of a configuration on G is supported on the medial
graph of G defined as follows. Let (Z2)◇ be the medial lattice, with vertex-set given by
the midpoints of edges of Z2 and edges between pairs of nearest vertices (i.e. vertices at
a distance

√
2/2 of each other). It is a rotated and rescaled version of Z2. For future

reference, note that the faces of (Z2)◇ contain either a vertex of Z2 or one of (Z2)∗. The
edges of the medial lattice (Z2)◇ are considered oriented in counterclockwise direction
around each face containing a vertex of Z2. Let G◇ be the subgraph of (Z2)◇ spanned by
the edges of (Z2)◇ adjacent to a face corresponding to a vertex of G.

Let ω be a configuration on G. Draw self-avoiding paths on G◇ as follows: a path
arriving at a vertex of the medial lattice always takes a ±π/2 turn at vertices so as not to
cross the edges of ω or ω∗ (see Figure 12). The loop configuration thus defined is formed of
possibly several paths going from boundary to boundary, as well as disjoint loops; together
these form a partition of the edges of G◇.
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2.2 Crossing and arm events probabilities below the characteristic length

As it is often the case when investigating the critical behaviour of lattice models, we
will need to use crossing estimates in rectangles and more generally in quads, as well as
estimates on certain universal and non-universal critical exponents. Such crossing estimates
initially emerged in the study of Bernoulli percolation in the late seventies under the coined
name of Russo-Seymour-Welsh theory [Rus78, SW78].

The main technical tool that we will use is the following result on crossing estimates
and arm events probabilities.

Theorem 2.1 (Crossing estimates below the characteristic length) For ρ, ε > 0,
there exist c′ > 0 and c = c(ρ, ε) > 0 such that for every p, every 1 ≤ n ≤ L(p), every graph G
containing [−εn, (ρ + ε)n] × [−εn, (1 + ε)n] and every boundary conditions ξ,

c ≤ φξG,p[C ([0, ρn] × [0, n])] ≤ 1 − c. (RSW)

Moreover, if An denotes the event that there exists an open circuit surrounding Λn in
Ann(n,2n),

φ0
Ann(2n,n),p[An] ≥ c

′ > 0. (RSW’)

Since the result is not formally proved anywhere, we include it here. It basically consists
in gathering different known results.

Proof We start with (RSW). By duality and comparison between boundary conditions
(CBC), it suffices to show that for p < pc and ξ = 0, we have that

φ0
R,p

[C (R)] ≥ c,

where R ∶= [0, ρn] × [0, n] and R = [−εn, (ρ + ε)n] × [−εn, (1 + ε)n].
The RSW theorem extracted from [DT19] gives the existence of C = C(ρ) > 0 such that

for every n and p,
φp[C (R)] ≥ 1

Cφp[C (Λn)]C ≥ 1
C δ

C , (2.1)

where in the second inequality we used the definition of L(p) and the fact that n ≤ L(p).
Consider the event E ∗ that there exists a dual-open circuit in the annulus R ∖ R

surrounding R. Then (CBC), (p-MON) and the fact that E ∗ is decreasing imply that
φp[E ∗∣C (R)] ≥ φ1

R∖R,pc
[E ∗]. The result of [DST17] states that the latter probability is

bounded from below by c0 = c0(ρ, ε) > 0 independently of n. The spatial Markov property
and the comparison between boundary conditions allow us to conclude that

φ0
R,p

[C (R)] ≥ φp[C (R)∣E ∗] ≥ φp[E ∗∣C (R)]φp[C (R)] ≥ c0

C
δC . (2.2)

This concludes the proof of (RSW). For (RSW’), use the FKG inequality and the fact
that there exists a circuit in Ann(n, 2n) surrounding the origin if the rectangle [−5

3n,
5
3n]×

[4
3n,

5
3n] as well as its rotations by angles π

2 , π and 3π
2 are all crossed in the long direction.

◻

The previous theorem has classical applications for the probability of so-called arm
events. A self-avoiding path of type 0 or 1 connecting the inner to the outer boundary of
an annulus is called an arm. We say that an arm is of type 1 if it is composed of primal
edges that are all open, and of type 0 if it is composed of dual edges that are all dual-open.
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For k ≥ 1 and σ ∈ {0,1}k , define Aσ(r,R) to be the event that there exist k disjoint arms
from the inner to the outer boundary of Ann(r,R) which are of type σ1, . . . , σk, when
indexed in counterclockwise order.

To simplify the notation, we introduce πσ(p, r,R) for the φp-probability of Aσ(r,R). We
drop p or r from the notation when p = pc or r is the smallest integer such that πσ(p, r,R) > 0
for all R > r. Finally, when σ = 1010 . . . has length k, we write the subscript k instead
of σ. For every σ, πσ(R) decays algebraically with R [DST17] and the scale invariance
prediction suggests the existence of a critical exponent ξσ such that πσ(R) = R−ξσ+o(1)

as R tends to infinity.
We also introduce A+

σ(r,R) to be the same event as Aσ(r,R), except that the paths
must lie in the upper half-plane H ∶= Z ×Z+ and are indexed starting from the right-most.
Introduce its probability π+σ(p, r,R) and the associated exponent ξ+σ .

We will need the following near-critical estimates on certain arm event probabilities.

Proposition 2.2 (estimates on certain arm events) Fix 1 ≤ q ≤ 4. There exists c > 0
such that, for p ∈ (0,1) and 1 ≤ r ≤ R ≤ L(p),

π2(p, r,R) >⌢ (r/R)1−c, (2.3)

(r/R)1/2−c <
⌢ π1(p, r,R) <⌢ (r/R)c. (2.4)

Proof The bound (2.3) follows from the fractal structure of interfaces, which in turn
follows from Theorem 2.1 and [AB99, Theorem 2.1]. The argument is classical and we
omit it.

The inequality on the right of (2.4) is standard. The one on the left follows readily
from (2.3) and the FKG inequality. ◻

Proposition 2.3 (quasi-multiplicativity of the one-arm) Fix 1 ≤ q ≤ 4. For ev-
ery 1 ≤ r ≤ ρ ≤ R ≤ L(p),

π1(p, r, ρ)π1(p, ρ,R) ≍ π1(p, r,R). (2.5)

Proof This is a standard consequence of Theorem 2.1. ◻

2.3 Couplings via exploration

In this section we present a technique for coupling different random-cluster measures in an
increasing fashion by exploring the graph edge by edge, which we formalise using decision
trees as follows. Consider a graph G = (V,E) with n edges and U = (Ue)e∈E a family of
independent uniform random variables in [0, 1]. For a n-tuple e = (e1, . . . , en) of edges and
for t ≤ n, write e[t] = (e1, . . . , et) (with the convention e[0] = ∅) and U[t] = (Ue1 , . . . , Uet).

Definition 2.4 (decision tree, stopping time)
A decision tree is a pair T = (e1, (ψt)2≤t≤n), where e1 ∈ E, and for each 2 ≤ t ≤ n the
function ψt takes a pair (e[t−1], U[t−1]) as an input and returns an element et ∈ E ∖
{e1, . . . , et−1}. A stopping time for T is a random variable τ taking values in {1, . . . , n,∞}
which is such that {τ ≤ t} is measurable in terms of (e[t], U[t]).
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We will say that the decision tree reveals one by one the edges of E; the edges e[t] are the
edges explored at time t. Less formally, a decision tree takes U as an input and reveals
edges one after the other. It always starts from the same fixed e1 ∈ E (which corresponds
to the root of the decision tree), then queries the value of Ue1 . After that, it continues
inductively as follows: at step t > 1, the function ψt, which should be interpreted as the
decision rule at time t, takes the locations and the values of the explored edges at time t−1,
and decides of the next edge to reveal.

Remark 2.5 The theory of (random) decision trees played a key role in computer science
(we refer the reader to the survey [BW02]), but also found many applications in other
fields of mathematics. In particular, random decision trees (sometimes called randomized
algorithms) were used in [SS10] to study the noise sensitivity of Boolean functions, for
instance in the context of percolation theory. It was also used in [DRT19] in combination
with the OSSS inequality (which was originally introduced in [OSSS05]) to prove sharpness
of random-cluster models.

Decision trees may be used to construct random-cluster measures in a step-by-step
fashion. This technique is generic and may be applied to so-called monotonic measures
(see e.g. [Gri06]). A key feature of this construction is that it enables one to do it with
two (or more) random-cluster measures simultaneously. In this case, the decision tree
produces couplings of these measures. Since we are mostly interested in couplings, we
directly explain the construction for a pair of configurations. For 1 ≤ t ≤ n, we extend the
notation e[t] and U[t] with the notation ω[t] = (ωe1 , . . . , ωet). Below, we use the notation Gt
for the graph G minus the edges e1, . . . , et.

Proposition 2.6 Fix a finite subgraph G = (V,E) of Z2. Consider 0 ≤ p ≤ p′ ≤ 1, q ≥ 1
and ξ ≤ ξ′ boundary conditions. Let T = (e1, (ψt)2≤t≤n) be a decision tree and (Ue)e∈E be
a set of i.i.d. uniform random variables under some measure PT. Define ω,ω′ ∈ {0, 1}E by
the following inductive procedure: for every 0 ≤ t < n,

ωet+1 ∶= 1(Uet ≥ φ
ξt
Gt,p

[et closed]);

ω′et+1 ∶= 1(Uet ≥ φ
ξ′t
Gt,p

[et closed]),

where ξt and ξ′t are the boundary conditions induced by ωξ
[t]

and (ω′
[t])

ξ′, respectively
(when t = 0, these are ξ and ξ′). Then, PT-almost surely, for every stopping time τ for T,
we have that

• ω[τ] ≤ ω′[τ],
• conditionally on (τ, ω[τ], ω

′
[τ]), ω and ω′ on Gτ have law φξτGτ ,p and φξ

′
τ
Gτ ,p′ .

Note that for τ = 0, we obtain that ω and ω′ have laws φξG,p and φξ
′
G,p′ , respectively,

and that ω ≤ ω′ a.s.. The procedure above may be applied to infinite-volume measures as
long as T is such that a.s. all edges are eventually queried.

Proof That ω[τ] ≤ ω′
[τ] is proved by induction and uses the monotonic property of

random-cluster measures mentioned in Section 2.1. That ω[τ] and ω′[τ] have the right laws
follows immediately from the spatial Markov property (SMP). ◻
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Remark 2.7 While the definition indicates that T looks at U[t] in order to decide the next
queried edge et+1 (and hence Uet+1), we will often describe T as choosing et+1 in function
of ω[t] and ω′[t], which are in turn functions of (e[t], U[t]).

Remark 2.8 Due to Proposition 2.6, we may construct an increasing coupling between
φξG,p and φξ

′
G,p′ by switching between decision trees at stopping times. Indeed, if we start

the coupling by following a decision tree T, but stop the procedure at some stopping time τ ,
then we may complete it with any increasing coupling of φξτGτ ,p and φξ

′
τ
Gτ ,p′ . We will often use

this property, sometimes continuing with a specific coupling, other times with an arbitrary
one.

We now discuss a few examples of decision trees and the couplings they produce.

Example 1 The deterministic decision tree T for which the order e1, . . . , en is fixed.

Example 2 The decision tree T that explores the clusters of ∂G in ω′. Formally, this
decision tree is defined using a growing sequence ∂G = V0 ⊂ V1 ⊂ ⋯ ⊂ V that represents the
sets of vertices that the decision tree found to be connected to ∂G at time t.

Fix an arbitrary ordering of the edges in E and set V0 = ∂G. Now, for t ≥ 0, assume
that e[t] and Vt ⊂ V have been constructed and distinguish between two cases:

• If there exists an unexplored edge connecting a vertex x ∈ Vt to a vertex y ∉ Vt,
then reveal et+1 = xy (if several choices for xy exists, choose one according to some
arbitrary order) and set

Vt+1 ∶=
⎧⎪⎪⎨⎪⎪⎩

Vt ∪ {y} if ω′et+1 = 1

Vt otherwise.

• If no edge as above exists, then set et+1 to be the smallest e ∈ E ∖ e[t] for some
arbitrary order and set Vt+1 = Vt.

The coupling PT has the following useful property when p = p′. If τ denotes the first
time that the decision tree finds no unexplored edge between Vt and V c

t (note that τ is a
stopping time), then all edges bounding the unexplored region E ∖ e[τ] are closed in ω′

[τ],
hence also in ω[τ]. As a consequence, at every subsequent step in the coupling process,
edges will be sampled with the same rule in the two configurations, hence the configurations
will be equal on E ∖ e[τ]. Equivalently, they will only (possibly) differ for edges that are
connected to ∂G in ω′, thus leading to the following conclusion when combined with
Theorem 2.1.

Proposition 2.9 (mixing) There exists cmix > 0 such that for every p ∈ (0,1) and ev-
ery r ≤ R with R/r large enough, every G ⊃ ΛR and every event A depending on edges
in Λr, we have that for every two boundary conditions ξ and ψ,

∣φψG,p[A] − φξG,p[A]∣ ≤ (r/R)cmix φψG,p[A]. (2.6)

In particular, for any two events A and B depending on the edges inside Λr and outside ΛR,
respectively,

∣φξG,p[A ∩B] − φξG,p[A]φξG,p[B]∣ ≤ (r/R)cmix φξG,p[A]φξG,p[B]. (Mix)
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One may be surprised at first sight not to see any reference to the characteristic length
in this statement, yet one should remember that the rate of decay is in fact faster when p
is away from pc. The previous proposition simply state a universal bound on the rate of
mixing valid for every p ∈ (0,1).

Notice also that in (2.6) the event A is not assumed increasing nor is there any
assumption of ordering between the boundary conditions ξ and ψ. These assumptions
would greatly simplify the proof.

Proof Notice that applying (2.6) to ΛR and using (SMP) implies directly (Mix). We
therefore focus on proving (2.6).

By duality, it suffices to prove the statement for p ≤ pc. Set ρ =
√
rR and let Ω be a

subgraph of G containing Λρ. We first compare the probability of A under free boundary
conditions to that under arbitrary boundary conditions ψ. For reasons which will be
apparent later, we do this on Ω.

For ψ boundary conditions on ∂Ω, using the increasing coupling PT between φ0
Ω,p

and φψΩ,p described above, we find

φψΩ,p[A] − φ0
Ω,p[A] = PT[ω ∉ A but ω′ ∈ A]

≤ φψΩ,p[ω
′ ∈ A and ∂Λr

ω′←→ ∂G]

≤ φ1
Ω∖Λr,pc[∂Λr ←→ ∂G]φψΩ,p[A]

≤ (r/R)cφψΩ,p[A],

for some constant c > 0. The first inequality is due to the property of the coupling, the
second to (SMP), (CBC) and (p-MON) and the third to (2.4). In conclusion,

φψΩ,p[A] ≤ φ0
Ω,p[A]/(1 − (r/R)c). (2.7)

The above applies in particular to Ω = G; let us now obtain a converse bound in this case.
Start by observing that, for any fixed Ω as above

φ0
G,p[A] = ∑

ξ b.c. on ∂Ω

φξΩ,p[A]φ0
G,p[ω∣G∖Ω induces ξ on ∂Ω] ≤ φ0

Ω,p[A]/(1 − (r/R)c).

Fix now some boundary conditions ψ on G. For a configuration ω on G, let Ω(ω) be the
set of vertices that are not connected to Z2 ∖ ΛR−1. Then, for ψ a boundary condition
on G,

φψG,p[A] ≥ φψG,p[A,∂Λρ /←→ ∂ΛR]

= ∑
Ω⊃Λρ

φ0
Ω,p[A]φψG,p[Ω(ω) = Ω]

≥ (1 − (r/R)c)φ0
G,p[A]φψG,p[∂Λρ /←→ ∂ΛR]

≥ (1 − (r/R)c)2φ0
G,p[A],

where in the second inequality we used (2.7) and the fact that

∑
Ω⊃Λρ

φψG,p[Ω(ω) = Ω] = φψG,p[∂Λρ /←→ ∂ΛR].

In the last inequality we used that

φψG,p[∂Λρ /←→ ∂ΛR] ≤ φψG,pc[∂Λρ /←→ ∂ΛR] ≤ (ρ/R)2c
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for some constant c > 0, by (2.4).
Using the inequality above and (2.7) applied to G, we conclude that

∣φψG,p[A] − φ0
G,p[A]∣ ≤ 2(r/R)cφ0

G,p[A].

Applying the above to two arbitrary boundary conditions ψ and ξ on ∂G and using the
triangular inequality, we conclude that for all r/R large enough,

∣φψG,p[A] − φξG,p[A]∣ ≤ 4(r/R)cφ0
G,p[A] ≤ 4(r/R)c(1 + 2(r/R)c)φψG,p[A].

By assuming again that r/R is large enough and modifying the constant in the exponent,
we may eliminate the prefactor 4, and obtain (2.6). ◻

Example 3 Alternatively, one may consider the decision tree T that explores the dual
clusters of ∂G∗ in ω∗. We do not define this decision tree formally as it is almost identical
to that of the previous example. We simply mention that, when coupling two measures
with p = p′ using T, differences only occur for edges that are connected in ω∗ to ∂G.

Remark 2.10 In spite of the constructions above, we are unaware of the existence of
a coupling of random-cluster models with boundary conditions ξ ≤ ξ′ and same edge-
parameter p = p′ that combines the properties of Examples 2 and 3. Namely a coupling for
which only edges connected in both ω′ and ω∗ to ∂G may have different states in the two
configurations.

Remark 2.11 Even though the uniform variables (Ue)e∈E are attached to the edges, the
order in which these are revealed by T has an influence on the final couple of configura-
tions (ω,ω′). Indeed, consider G = ΛR, parameters p = p′ and boundary conditions ξ = 0
and ξ′ = 1; let e be one of the edges containing the origin. In the coupling produced with
the decision tree of Example 1, ωe may differ from ω′e when e is not connected to ∂G in ω′,
while this is impossible with the one produced by Example 2.

2.4 Equivalence L(p) − ξ(p): proof of Theorem 1.3

We will show the following (stronger) proposition.

Proposition 2.12 There exist c,C > 0 such that for every p ≤ pc and x ∈ Z2,

exp[−C ∣x∣/L(p)] <⌢ φp[ΛL(p) ←→ ΛL(p)(x)] <⌢ exp[−c∣x∣/L(p)]. (2.8)

Before proving this proposition, we explain how it implies the theorem.

Proof of Theorem 1.3 For p < pc, the proof is immediate thanks to the definition
of ξ(p) and the fact that

p2∣ΛL(p)∣φp[ΛL(p) ←→ ΛL(p)(x)] ≤ φp[0←→ x] ≤ φp[ΛL(p) ←→ ΛL(p)(x)]. (2.9)

For p > pc we proceed by duality. Notice that

π1(p,n) − θ(p) = φp[0←→ ∂Λn but 0 /←→∞]

≤ ∑
k≥0

φp[(k + 1
2 ,0)

ω∗←→ ∂Λk∨n(k,0)] <⌢ exp[−c∣x∣/L(p∗)].
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Indeed, any configuration contributing to the second probability contains a dual circuit of
length at least n, surrounding 0 and passing through some point (0, k) of the horizontal
axis. The last inequality is due to the subcritical case already established.

Conversely, due to (CBC),

φp[0←→ ∂Λn and 0 /←→∞] ≥ φ0
Λ2n,pc[0←→ ∂Λn]φp[Λ2n /←→∞].

As n tends to infinity, the first term in the right-hand side above decays at most polynomially
due to (2.4) and (2.6), while the second is lower bounded by exp[−C ∣x∣/L(p∗)] due to the
subcritical case and the FKG property.

The two inequalities above show that ξ(p) ≍ L(p∗). That L(p∗) ≍ L(p) follows directly
by duality from the definition of the characteristic length. ◻

We now turn to the proof of Proposition 2.12.

Proof of Proposition 2.12 Set L = L(p). We assume that x ∈ LZ2; the general case
can be solved similarly. We start with the lower bound. Consider the shortest family
of vertices of yi ∈ LZ2 with 0 = y0, . . . , yk = x. Let AL(y) be the event that there exists
a circuit in Λ2L(y) surrounding ΛL(y). If AL(yj) occurs for every 0 ≤ j ≤ k, then ΛL is
connected to ΛL(x). We deduce from the FKG inequality and Theorem 2.1 that

φp[ΛL ←→ ΛL(x)] ≥ φp[AL]k+1 ≥ exp[−C ∣x∣/L], (2.10)

where the last inequality follows from Theorem 2.1 and C > 0 is some universal constant.
For the upper bound, we start by observing that by (Mix) and the RSW theorem

from [DT19], we have that, for some constant C,

φ1
Λ4L,p

[ΛL ←→ ∂Λ2L] <⌢ φp[ΛL ←→ ∂Λ2L] ≤ Cφp[C (ΛL)]1/C ≤ Cδ1/C < 8−49, (2.11)

provided that δ in the definition of L(p) is chosen sufficiently small. Now, if ΛL and ΛL(x)
are connected, then there must exist a sequence ofN ≥ ∣x∣/L distinct vertices 0 = y1, . . . , yN =
x contained in LZ2 such that

• ∥yi − yi+1∥∞ = L for every i,
• ΛL(yi) is connected to ∂Λ2L(yi) for every i.

Choose out of these the first subsequence of vertices (yi)i∈I for the lexicographical order
which contains k = N/49 vertices which are all at distance at least 8L of each other (the
existence of such a subsequence is due to the pigeonhole principle). The union bound
over the possible choices of y1, . . . , yN (of which there are at most 8N ), the spatial Markov
property (SMP) and the comparison between boundary conditions (CBC) imply that

φp[ΛL ←→ ΛL(x)] ≤ ∑
N≥∣x∣/L

8Nφ1
Λ4L,p

[ΛL ←→ ∂Λ2L]N/49.

The desired upper bound follows from the above using (2.11). ◻

Remark 2.13 The previous proof is probably the place where the strongest condition on
δ is imposed (remember that we already fixed δ < 1/2 to guarantee infinite characteristic
length at pc).

The next corollary is a useful estimate that we will invoke later in the article.

Corollary 2.14 There exists c = c(δ) > 0 such that for every p > pc and k ≥ 1,

φp[ΛkL(p) ↔∞] ≥ 1 − exp[−ck]. (2.12)
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Proof Note that the previous proof implies that for some constant c > 0, we have that
for every p > pc,

φp∗[ΛL(p) ←→ ∂ΛkL(p)] ≤ exp[−ck].

By the same counting argument as in the proof of the supercritical case of Theorem 1.3,
we deduce from the above that the probability that there exists a circuit in ω∗ surround-
ing ΛkL(p) is bounded from above by ∑j≥k φp∗[ΛL(p) ←→ ∂ΛjL(p)] <⌢ exp[−ck]. ◻

3 Boosting pairs of boundary conditions for flower domains

Fix q ∈ (1,4] for the whole section; we will omit it from the notation. The results of this
section do not apply to q = 1.

3.1 Flower domains

we start by introducing the crucial notion of flower domain.

Definition 3.1 (Flower domain) An inner flower domain on ΛR is a simply connected fi-
nite domain F containing ΛR, whose boundary is formed of a sequence of arcs (ajaj+1)j=1,...,2k

(with the convention a2k+1 = a1) where each point aj is on ∂ΛR.
An outer flower domain on ΛR is the complement F of a simply connected finite domain,

with ΛcR ⊂ F and whose boundary is formed of a sequence of primal arcs (ajaj+1)j=1,...,2k

(with the convention a2k+1 = a1) where each point aj is on ∂ΛR.
The arcs of the boundary are called primal and dual petals depending on whether j is

even or odd respectively. In both cases, we identify F to the graph formed of the edges
strictly inside F , plus the edges on the dual petals.

For η > 0, the flower domain F is said to be η-well-separated if the distance between
any two distinct points ai and aj is greater than ηR.

A boundary condition ξ is said to be coherent with F if all vertices of any primal petal
are wired together and all vertices of dual petals (except the endpoints) are wired to no
other vertex of ∂F .

Formally flower domains should be defined as the couple formed of F and of the
points a1, . . . , a2k; we will, however, allow ourselves this small abuse of notation. See
Figure 1 for an illustration. When considering a flower domain with a coherent boundary
condition, it will be useful to view the flower domain as containing the edges of the primal
petals which are conditioned to be opened. We will also often identify dual arcs (ajaj+1)
with the dual path made of the dual edges e∗ with e incident to x ∈ (ajaj+1) and y ∉ F ,
and assume it is made of open dual edges.

Notice that, when F has at least four petals, there are several boundary conditions
that are coherent with F as different primal petals may be wired together or not.

Example The example that we will most commonly use is that of a flower domain
explored from the inside or outside. Consider r < R and let ω be a configuration on the
annulus Ann(r,R).

The inner flower domain F from ΛR to Λr is obtained as follows. Consider all interfaces
of ω contained in Ann(r,R) starting on ∂ΛR; these are paths in the loop representation of
the random cluster model with endpoints on ∂ΛR or ∂Λr. Write Exp for the set of edges
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Figure 1: An inner flower domain on the left and an outer one on the right.

adjacent or intersecting any such interface. Loosely speaking, these are the edges revealed
during the exploration of the interfaces starting on ∂ΛR.

If at least one such interface has an endpoint on ∂Λr, define F as being the connected
component of Λr in ΛR ∖ Exp. Otherwise F is not defined (formally set F = ∅ in this
case). Observe that the number of interfaces between ∂ΛR and ∂Λr is necessarily even.
Their endpoints ∂Λr naturally partition ∂F into primal and dual petals. See Figure 1 for
an illustration.

To define the outer flower domain from Λr to ΛR, similarly explore the interfaces
starting on ∂Λcr.

Lemma 3.2 For every ε > 0, there exists η > 0 such that for any p ∈ (0,1), any R < L(p),
and any boundary conditions ξ,

φξΛ2R
[F exists but is not η-well-separated] < ε,

when F denotes the inner flower domain explored from Λ2R to ΛR, and

φξΛcR
[F exists but is not η-well-separated] < ε,

when F denotes the outer flower domain explored from ΛR to Λ2R.

Proof We treat the case of inner flower domains, that of outer domains can be solved
similarly. For F to exist but not be η-well-separated, it needs to contain a primal or dual
petal of diameter smaller than ηR. We will exclude below the possibility of a small dual
petal, the case of a primal one is identical.

Divide ∂ΛR into arcs `1, . . . , `N of length 2ηR successively overlapping on a segment of
length ηR. Let A◻

10(`i) and A◻
101(`i) be the events that there exist two or three, respectively,

arms of alternating type contained in Ann(R, 2R) from `i to ∂Λ2R; for the three arms, we
require two primal ones with a dual one in between. Notice that, if F contains a dual
petal of diameter smaller than ηR, then there exists at least one arc `i for which A◻

101(`i)
occurs. Our goal is therefore to bound the probability of the events A◻

101(`i).
From Theorem 2.1 it is easily deduced by an exploration argument that for each i,

φξΛ2R
[A◻

101(`i)] ≤ C0η
c0 φξΛ2R

[A◻
10(`i)], (3.1)

for universal constants c0,C0 > 0. Indeed, explore first the interface from `i to ∂Λ2R closest
to a chosen endpoint of `i. The existence of such an interface is synonymous to A◻

10(`i).
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Condition next on this interface, and bound the probability of existence of the second
primal arm. The conditioning induces both positive and negative information on the
remaining edges, but the information favorable to the existence of a primal path is at
every scale around `i at a macroscopic distance from `i. This suffices to obtain the extra
polynomial term using (2.4).

To bound the probabilities of the events A◻
10(`i), define N to be the number of disjoint

clusters crossing Ann(R,2R) from inside to outside. Then

k

∑
i=1

φξΛ2R
[A◻

10(`i)] ≤ φ
ξ
Λ2R

[N] ≤ C1, (3.2)

where the first inequality is a deterministic bound, and the second uniform bound on the
expectation of N which is a standard consequence of Theorem 2.1 sketched below: observe
that there exists c2 > 0 such that for every k ≥ 0,

φξΛ2R
[N ≥ k + 1∣N ≥ k] ≤ 1 − c2. (3.3)

Indeed, conditionally on the k first clusters (in clockwise order around ∂ΛR starting from
some arbitrary point), observe that the complement Ω in Ann(R,2R) of these clusters is
a subset of Ann(R,2R) with free boundary conditions on the part of the boundary that
lies strictly inside Ann(R,2R); on the rest of the boundary, the boundary conditions are
dominated by wired ones. Then, a dual path disconnecting ∂ΛR from ∂Λ2R in Ω occurs
with probability at least c2 > 0 by Theorem 2.1. This proves (3.3), which in turn implies
(3.2).

Combining (3.1) and (3.2), and adding a factor 2 to account for the existence of small
primal petals, we find

φξΛ2R
[F exists but is not η-well-separated] ≤ 2C0η

c0
k

∑
i=1

φξΛ2R
[A◻

10(`i)] ≤ 2C0C1η
c0 .

Fixing η small enough concludes the proof. ◻

Definition 3.3 (Double four-petal flower domain) Fix 1 ≤ r < R. We say that there
exists a double four-petal flower domain between Λr and ΛR if

• the outer flower domain Fout explored from Λ(rR)1/2 to ΛR exists, is 1/2-well-separated
and has exactly four petals P out1 , . . . , P out4 ;

• the inner flower domain Fin explored from Λ(rR)1/2 to Λr exists, is 1/2-well-separated
and has exactly four petals P in1 , . . . , P in4 ;

• P in1 is connected to P out1 and P in3 to P out3 in ω ∩F c
in ∩F c

out;

• P in2 is connected to P out2 and P in4 to P out4 in ω∗ ∩F c
in ∩F c

out.

The advantage of the double four-petal flower domain is that it can be explored
from ∂Λ(rR)1/2 towards the inside and outside, and limits the interaction between the
configurations in Fin and Fout.

Lemma 3.4 For any η > 1 , there exists c = c(η) > 0 such that for any p ∈ (0,1), any
R < L(p) large enough and any boundary conditions ξ on Ann ∶= Ann((1− η)R, (1+ 2η)R)

φξAnn[there exists a double four-petal flower domain between ΛR and Λ(1+η)R] > c.
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Proof We recommend taking a look at Figure 2. Set R′′ ∶= (1 + η)R and R′ ∶= (RR′′)1/2.
Consider the rectangles

Rect1 ∶= [R,R′′] × [0, ηR],
Rect′1 ∶= [R,R′′] × [−ηR,0],

as well as their rotations Rect2,Rect3,Rect4 and Rect′2,Rect′3,Rect′4 by angles of π/2, π, 3π/2.
Define the event E that Rect1,Rect′2,Rect3,Rect′4 (resp. Rect′1,Rect2,Rect′3,Rect4)

are crossed by a primal (resp. dual) path from ∂ΛR to ∂ΛR′′ . Theorem 2.1 implies the
existence of c0 > 0 such that

φξAnn[E] ≥ c0. (3.4)

Let F be the event that there exist exactly two clusters in Ann(R,R′) crossing from ∂ΛR
to ∂ΛR′ , and exactly two clusters in Ann(R′,R′′) crossing from ∂ΛR′ to ∂ΛR′′ . We claim
that

φξAnn[F ∣E] ≥ c1. (3.5)

When F ∩E occurs, both flower domains Fin and Fout exist, have four petals and are 1/2-
well separated. Thus, (3.4) and (3.5) imply directly the result, and we focus next on its
proof.

Let Γ1 be the bottom boundary of the cluster of {R} × [0, ηR] in Rect1 ∪Rect′1, Γ2 be
the left boundary of the cluster of [0, ηR]×{R} in Rect2∪Rect′2, Γ3 be the top boundary of
the cluster of {−R}× [−ηR, 0] in Rect3 ∪Rect′3 and Γ4 be the right boundary of the cluster
of [−ηR,0] × {−R} in Rect4 ∪Rect′4. Notice that each Γi may be explored by a standard
procedure, starting from the common inner corner of Recti and Rect′i. Moreover, E implies
that each Γi is contained in Recti ∪Rect′i and ends on ∂ΛR′′ .

Condition now on a realisation of Γ1, . . . ,Γ4 with the properties above. By Theorem 2.1,
one may construct with uniformly positive probability four primal paths and four dual ones
as in Figure 2, namely: two primal paths connecting Γ1 and Γ2 in the top-right corners
of Ann(R,R′) and Ann(R′,R′′), respectively; two primal paths connecting Γ3 and Γ4 in
the bottom-left corners of the same annuli; two dual paths connecting the dual vertices
adjacent to Γ2 and Γ3 in the top-left corners and and two more between the dual vertices
adjacent to Γ4 and Γ1 in the bottom-right corner of these two annuli. When all these
paths exist, both E and F occur. This concludes the proof of (3.5) and therefore the whole
argument. ◻

3.2 Boosting pair of boundary conditions

The goal of this section is to study how changes of boundary conditions impact crossing
probabilities.

Definition 3.5 A boosting pair of boundary conditions for a flower domain F is a pair
of boundary conditions (ξ, ξ′) such that

• ξ and ξ′ are compatible with F ,
• ξ ≤ ξ′,
• there exist two primal petals of F that are wired together in ξ′ but not in ξ.

In a slight abuse of notation, we will henceforth also call a pair (ζ, ζ ′) of boundary
conditions on F boosting if there exists a boosting pair (ξ, ξ′) of boundary conditions
on F (in the sense of the definition above) such that ζ ≤ ξ < ξ′ ≤ ζ ′.

Recall from Section 2.2 that AR is the event that there exists a circuit in Ann(R,2R)
surrounding 0. The object of this section is to prove the following theorem.
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Figure 2: In grey and darker grey (respectively): the rectangles Recti and Rect′i. We
depicted in red some possible realization for the paths Γ1, . . . ,Γ4. In blue, possible
realizations of paths and dual paths enforcing the event in blue.

Theorem 3.6 Fix q ∈ (1,4]. For every η > 0, there exists δ = δ(η, q) > 0 such that the
following holds.
(i) For every p ∈ (0,1), every R ≤ L(p), every η-well-separated inner flower domain F

on Λ2R, every boosting pair (ξ, ξ′) of boundary conditions on F , and every η-regular
quad (D , a, b, c, d) of size R,

φξ
′

F [C (D)] ≥ φξF [C (D)] + δ, (3.6)

φξ
′

F [AR] ≥ φξF [AR] + δ. (3.7)

(ii) For every p ∈ (0,1), every R ≤ L(p), every η-well-separated outer flower domain F
on ΛR, every boosting pair (ξ, ξ′) of boundary conditions on F , and every η-
regular quad (D , a, b, c, d) of size R translated in such a way that it is contained
in Ann(2R,4R),

φξ
′

F [C (D)] ≥ φξF [C (D)] + δ, (3.8)

φξ
′

F [AR] ≥ φξF [AR] + δ. (3.9)

In light of the RSW theory, the crossing probabilities φξF [C (D)] and φξ
′

F [C (D)] are
bounded away from 0 and 1 by constants depending only on η. Above we are concerned with
the amount by which such crossing probabilities increase when the boundary conditions
change from ξ to ξ′. Indeed, the theorem states that the increase is positive, uniformly in
the scale, the quad to be crossed and the boosting pair of boundary conditions. The rest
of the section is dedicated to proving Theorem 3.6.

27



The following lemma is the cornerstone for the proof. For a quad (D , a, b, c, d), let mix
be the boundary conditions on D corresponding to the partitions containing (ab), (cd)
and singletons, and mix′ be the one containing (ab) ∪ (cd) and singletons.

Lemma 3.7 For every q > 1, p ∈ (0,1), and every quad (D , a, b, c, d), we have

φmix′
D [C (D)] = q

1 + (q − 1)φmix
D [C (D)]

φmix
D [C (D)]. (3.10)

Notice that the ratio in the right-hand side above is always larger than 1, and consider-
ably so when φmix

D [C (D)] is far from 1.

Proof Let w(ω) ∶= ( p
1−p)

∣ω∣qk(ω
mix) and w′(ω) ∶= ( p

1−p)
∣ω∣qk(ω

mix′) and observe that

w(ω) =
⎧⎪⎪⎨⎪⎪⎩

w′(ω) if ω ∈ C (D),
qw′(ω) if ω ∉ C (D).

Now, set

Z[C (D)] ∶= ∑
ω∈C (D)

w(ω) , Z[C (D)c] ∶= ∑
ω∉C (D)

w(ω),

Z ′[C (D)] ∶= ∑
ω∈C (D)

w′(ω) , Z ′[C (D)c] ∶= ∑
ω∉C (D)

w′(ω).

Then

φmix′
D [C (D)] = Z ′[C (D)]

Z ′[C (D)] +Z ′[C (D)c] =
Z[C (D)]

Z[C (D)] + 1
qZ[C (D)c]

= φmix
D [C (D)]

φmix
D [C (D)] + 1

q (1 − φmix
D [C (D)])

,

which is the desired equality. ◻

Proof of Theorem 3.6 We will focus on inner flower domains; the case of outer flower
domains is very similar. Let F be an η-well-separated inner flower domain on Λ2R and
let (ξ, ξ′) be a boosting pair of boundary conditions. Write P1, . . . , P2k for the petals of F
in counter-clockwise order, indexed in such a way that P1 is primal. Fix i and j odd such
that Pi is wired to Pj in ξ′ but not in ξ. Below, c0, . . . , c4 will denote strictly positive
constants depending only on η.

We start by proving (3.6). We recommend to take a look at Figure 3. Fix an η-regular
quad (D , a, b, c, d) of size R and translate everything in such a way that the box ΛηR

is included in D . Consider the event E that there exists a double four-petal flower
domain (Fin,Fout) between ΛηR/4 and ΛηR/2 and that

• P out
1 and P out

3 are connected to Pi and Pj in F ∩Fout, respectively;
• P out

1 and P out
3 are not connected to each other, nor to any other primal petal of F

in F ∩Fout;
• P out

1 and P out
3 are connected to the arcs (ab) and (cd) in D ∩Fout respectively.

• P out
2 and P out

4 are dually-connected to the arcs (bc) and (da) in D ∩Fout.
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D

a

b

c

d
P1

P2

P3P4

P5

P6

P7

P8

P out
1

P in
1

P in
3P out

3

(Fin,Fout)

Figure 3: The domain D with the four marked points a, b, c, d in grey. The outer flower D
is in black. In this case, P3 is assumed to be connected to P7 in ξ′ but not in ξ. The red
depicts the double flower-domain (Fin,Fout) which is explored first. Then, conditionally
on the realization of (Fin,Fout), the conditions for the event E to occur are depicted in
blue (note that the blue connections from Fout to F do not necessarily need to cross the
arcs (ab) and (cd) of D). At the time τ of the procedure, the red and blue parts have
been revealed and only the inside of Fin is unexplored. Then, the event C (D) depends on
the connection inside Fin between its primal petals, which, with positive probability, are
connected in ω′, but not in ω (see the green paths).
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Theorem 2.1 and Lemma 3.4 give

φξF [E] ≥ c0 > 0. (3.11)

Consider the coupling PT between φξF and φξ
′

F , obtained by first exploring (Fin,Fout)
in ω, then revealing all the edges in Fout ∩F , then all those inside Fin. Let τ be the
stopping time corresponding to the end of the second step of this exploration.

Suppose that ω[τ] ∈ E. Then D is crossed in ω if and only if the petals P in
1 and P in

3

are connected inside Fin. Write ζ < ζ ′ for the two boundary conditions on Fin which are
coherent with the flower domain structure (with P in

1 wired to P in
3 in ζ ′, but not in ζ). Then

the boundary conditions induced by ω[τ] and ξ on Fin are ζ. Moreover, since ω′ ≥ ω and
due to the wiring of Pi and Pj in ξ′, ω′

[τ] induces the boundary conditions on Fin that
dominate ζ ′. Thus,

φξ
′

F [C (D)] − φξF [C (D)] = PT[ω′ ∈ C (D), ω ∉ C (D)]

≥ ET[(φζ
′

Fin
[P in

1 ↔ P in
3 ] − φζFin

[P in
1 ↔ P in

3 ])1ω[τ]∈E]

≥ c1PT[ω[τ] ∈ E] ≥ c1 c0 > 0,

where c1 > 0 is given by Lemma 3.7 and Theorem 2.1. This concludes the proof of (3.6).

We turn to (3.7) and refer the reader to Figure 4. Write z for the point (3R/2,0).
Consider the coupling PT between φξF and φξ

′
F obtained by first exploring the double

flower domain (Fin,Fout) in ω between ΛR/16(z) and ΛR/8(z), then the configurations
inside Fin and finally those in Fout. If no double flower domain exists, reveal all remaining
edges in arbitrary order. Write τ1 for the stopping time marking the end of the exploration
of (Fin,Fout), and τ2 the stopping time after further exploring Fin.

Condition on a pair of configurations (ω[τ1], ω
′
[τ1]

) such that the double flower domain
exists, and write ζ < ζ ′ for the two boundary conditions on Fin that are coherent with
the flower domain structure. The configuration ω inside Fin is sampled according to a
convex combination of φζFin

and φζ
′

Fin
. Indeed, the coefficient λ for the latter measure

is given by the probability that P out
1 is connected to P out

3 in Fout, including via the
boundary conditions ξ. Similarly, the law of ω′ inside Fin dominates a convex combination
of φζFin

and φζ
′

Fin
, with the coefficient λ′ for the latter given by the probability that P out

1 is
connected to P out

3 in Fout, including via the boundary conditions ξ′.
As shown in the first point of the proof with the event E, there is a uniformly positive

probability c2 > 0 for P out
1 and P out

3 to be connected in Fout to Pi and Pj respectively, but
not to each other. Thus, λ′ ≥ λ + c2. Applying Lemma 3.7 and Theorem 2.1 we find

PT[P in
1

ω′∩Fin←ÐÐÐ→ P in
3 but P in

1 /ω∩Fin←ÐÐ→ P in
3 ∣ω[τ1], ω

′
[τ1]

s.t. (Fin,Fout) exists]

≥ (φζ
′

Fin
[P in

1
Fin←Ð→ P in

3 ] − φζFin
[P in

1
Fin←Ð→ P in

3 ])(λ − λ′) ≥ c3,

for some c3 > 0.
Write F for the event that (Fin,Fout) exists and that P in

1 is connected to P in
3 inside Fin

in ω′, but not in ω. This event is measurable in terms of the configurations at the stopping
time τ2. Finally, write H for the event that in ω,

• in Fout ∩Ann(R,2R), P out
1 is connected to P out

3 by a primal path,
• P out

2 is connected to ΛR by a dual path, and
• P out

4 is connected to Λc2R by a dual path.
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Λ2R

ΛR

z

Figure 4: A depiction of the annulus configuration in the proof of (3.7). In black, the flower
domain F . The red part corresponds to the double flower-domain (Fin,Fout) explored at
time τ1. The blue part corresponds to what is explored at time τ2, i.e. a connection in ω′

between two wired petals of Fin together with a dual connection in ω∗ between two free
petals. Then after time τ2, we construct the event H (in green).

Notice that, ifH occurs, the primal path connecting P out
1 to P out

3 needs to “wind around” ΛR.
Thus, H may be understood as the connection between P in

1 and P in
3 in Fin being “pivotal”

for AR (for ω). By Theorem 2.1,

PT[ω ∈H ∣ (ω[τ2], ω
′
[τ2]

) such that F occurs] > c4,

for some c4 > 0. Moreover, when F and H occur, then AR occurs for ω′, but not for ω.
Thus,

φξ
1

F [AR] − φξ
0

F [AR] = PT[ω ∈H and F ] ≥ c3 c4 > 0,

which is the desired conclusion. ◻

Remark 3.8 The proof of (3.7) may appear contradictory, as we are first arguing that P out
1

and P out
3 may appear wired in ω′ but not in ω, then we focus on the event ω ∈ H which

ensures that P out
1 and P out

3 are connected in both ω and ω′. The reader should keep in mind
that the configurations ω and ω′ in Fin are sampled before sampling the configurations
in Fout, and their laws are obtained by averaging over the possible configurations in Fout.

Alternatively, one may imagine a coupling where (Fin,Fout) is explored first, then the
configurations in Fout are revealed, then those in Fin and finally the configurations in Fout

are resampled. In this context, we are investigating the situation where, in the first sampling
of the configurations in Fout, P out

1 and P out
3 are connected to Pi and Pj, respectively, but

not to each other, then, in the sampling inside Fin, P in
1 and P in

3 are connected in ω′, but
not in ω, and finally, in the second sampling in Fout, H occurs for ω.
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3.3 Crossing quads produce boosting pairs

This section is concerned with the following result which roughly states that conditioning
on the existence of the crossing of a quad has the same effect as a boosting pair of boundary
conditions.

Proposition 3.9 For any η > 0, there exists a constant c = c(η, q) > 0 such that the
following holds. Fix p and let (D , a, b, c, d) be an η-regular discrete quad at scale R ≤ L(p).
Then there exists a coupling via decision trees P of φp and φp[⋅ ∣C (D)], and a stopping
time τ such that, when τ <∞, Fτ = Z2 ∖ e[τ] is a 1/2-well-separated outer flower domain
on Λ2R, and the boundary conditions induced by ω′

[τ] on Fτ are a boost of those induced
by ω[τ]. Finally,

P[τ <∞] ≥ c.

Remark 3.10 We may replace C (D) by AR/2 in the statement above. Indeed, if we
set x = (0,3R/4), observe that AR/2 induces a vertical crossing of the η-regular discrete
quad ΛR/4(x) (with a, b, c, d the corners of ΛR/4(x), starting with the top-left one). As
a consequence, the measure φp[⋅ ∣AR/2] dominates φp[⋅ ∣C (ΛR/4(x))]. Now, apply the de-
cision tree provided by Proposition 3.9 to couple in an increasing fashion the measures
φp, φp[⋅ ∣C (ΛR/4(x))] and φp[⋅ ∣AR/2]; call ω ≤ ω′ ≤ ω′′ the resulting configurations. Then,
if τ <∞, the boundary conditions induced by ω′′

[τ] on Fτ dominate those induced by ω′
[τ],

and hence are a boost of those induced by ω[τ].

The proof of Proposition 3.9 is based on the following lemma, which allows us to
“lengthen” crossings at a small cost. For an η-regular discrete quad (D , a, b, c, d) at
some scale R and for some m ≤ ηR/4, define two modified quads (D+, a+, b+, c+, d+)
and (D−, a−, b−, c−, d−) as follows (see Figure 5 for an illustration). The domains D+

and D− are formed by the union of D with the set of edges of Z2 ∖D that are at a `∞

distance at most m from the arcs (ab) and (cd) (respectively (bc) and (da)), but at least
distance m from a, b, c and d. The point a+ is the first point of ∂D+ in counter-clockwise
order after a that is at a distancem from ∂D ; the point b+ is the last such point before b. The
points c+ and d+ are defined similarly in terms of c and d respectively. A similar definition
applies to a−, b−, c− and d−. Notice that (D+, a+, b+, c+, d+) and (D−, a−, b−, c−, d−) are
both discrete quads and that

C (D+) ⊂ C (D) ⊂ C (D−).

Remark 3.11 The choice of m ≤ ηR/4 and the fact that D is η-regular guarantee that D+∖
D and D− ∖D are at a distance at least ηR/4 of each other and are each made of two
separate connected components. In particular, the complement of D+ ∪D− is connected.

Lemma 3.12 For any η > 0, there exist C = C(η) > 0, ε = ε(η) > 0 such that the following
holds. For any p ∈ (0, 1), R ≤ L(p), m < ηR/4 and any η-regular discrete quad (D , a, b, c, d)
at scale R ≤ L(p).

φp[C (D)] − φp[C (D+)] ≤ C(m/R)ε, (3.12)
φp[C (D−)] − φp[C (D)] ≤ C(m/R)ε. (3.13)
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Figure 5: Left: For the lowest crossing Γ of D not to be connected to (a+b+), there needs
to exist a dual path from Λm(x) to the arc (d+a+) in the unexplored region above Γ.
Middle: At the time τ2 <∞, when Γ+ and Γ− have been revealed, the region of D+ ∖D
above Γ+ and that of D− ∖D left of Γ− are unexplored.
Right: The unexplored regions may be used to connect Γ+ to the primal petals of F in ω
and Γ− to the dual petals of F in ω∗. This ensures that the boundary conditions induced
by ω′

[τ] on F are a boost of those induced by ω[τ].

Proof We will focus on the first inequality; the second one is the same inequality applied
to the dual model. Since C (D+) ⊂ C (D), we are searching for an upper bound on
φp[C (D) ∖C (D+)]. When C (D) occurs, let Γ be the “lowest” crossing of D , that is the
open path closest to the arc (bc), with endpoints x ∈ (ab) and y ∈ (cd). Write Under(Γ)
for the set of edges of D between Γ and (bc).

If C (D) ∖C (D+) occurs, then at least one of the following four events needs to occur
(i) x is at a distance at most

√
mR from a;

(ii) x is at a distance at least
√
mR from a, but Γ is not connected to (a+b+) in D+;

(iii) y is at a distance at most
√
mR from d;

(iv) y is at a distance at least
√
mR from d, but Γ is not connected to (c+d+) in D+.

Next we bound the probability of each of the four events described above.
If the event in (i) occurs, there exists a primal arm, namely Γ, contained in D

from Λ√
mR(a) to distance ηR; and therefore using (2.4) we get

φp[(i) occurs] ≤ π1(p;
√
mR,ηR) ≤ C(η)(m/R)ε.

If the event in (ii) occurs, then there exists a dual-open path from Λm(x) to (d+a+)
contained in D+ ∖Under(Γ); see Figure 5 (left diagram). It is a standard consequence of
Theorem 2.1 (the near-critical RSW) that there exist ε,C > 0 such that, for any realisation
of Γ such that (i) fails,

φp[Λm(x) ω∗∩(D+∖Under(Γ))←ÐÐÐÐÐÐÐÐÐ→ (da) ∣Γ and ω on Under(Γ)] ≤ C(m/R)ε.

Indeed, notice that the conditioning above induces both positive and negative information
on Under(Γ)c. However, due to the η-regularity of D , the information that is favorable to
the existence of dual connections is at every scale around x at a macroscopic distance from
Λcm(x) ∩ (D+ ∖Under(Γ)); see Figure 5 (left diagram).

The bounds above also apply to the events in (iii) and (iv). When combined using a
union bound, we find

φp[C (D) ∖C (D+)] ≤ 4C(m/R)ε.
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◻

Remark 3.13 Alternatively, one may use bounds on the probability of the three-arm event
in the half-plane to prove the above. We prefer the strategy above as it adapts easily to fractal
quads of bounded extremal distance; the cases (i) and (ii) (and (iii) and (iv), respectively)
should then be distinguished using extremal distance rather than the geometric average of m
and R. Above, the quad D is assumed to be η-regular simply for convenience.

Proof of Proposition 3.9 Fix η > 0 and let C = C(η) and ε = ε(η) be the constants
given by Lemma 3.12 for this value of η. Below, c0, . . . , c3 denote strictly positive constants
depending only on η.

For p and R with R ≤ L(p), let m = c0R be such that

C(m/R)ε < 1
4 inf

D
φp[C (D)]φp[C (D)c],

where the infimum is taken over all η-regular quads D at scale R. By Theorem 2.1, the
infimum is uniformly positive, and therefore c0 > 0 above does indeed depend only on η.

Fix D as in the statement of the proposition. Then, in any increasing coupling P
of φp[⋅] and φp[⋅ ∣C (D)] (note that C (D) occurs automatically for ω′),

P[ω′ ∈ C (D+), ω ∉ C (D−)]
≥ 1 − φp[C (D)] − φp[C (D−) ∖C (D)] − φp[C (D+)c ∖C (D)c ∣C (D)]

≥ φp[C (D)c] −C(m/R)ε − C(m/R)ε
φp[C (D)]

≥ 1
2φp[C (D)c] ≥ c1 > 0.

Next, we create an increasing coupling P between φp and φp[⋅ ∣C (D)] using a specific
decision tree described below. Start by exploring the lowest crossing Γ+ in D+ from (a+b+)
to (c+d+) (that is the crossing closest to (b+c+)) in the larger configuration ω′. Write τ1

for the stopping time when this crossing is found; set τ1 = ∞ if no such crossing exists.
If τ1 <∞, explore the “right-most” dual crossing Γ− in D− from (b−c−) to (d−a−) (that is
the one closest to (c−d−)) in the configuration ω∗; define τ2 for the stopping time when
this crossing is found (if τ1 =∞ or no such crossing is found, set τ2 =∞). Notice that

P[τ2 <∞] = P[ω′ ∈ C (D+), ω ∉ C (D−)] ≥ c1.

Assuming that τ2 <∞, the explored edges e[τ2] are those of D+ below Γ+ and those of D−

right or Γ−. In particular, the edges of D+∖D that are above Γ+, as well as those of D−∖D
that are left of Γ− are unexplored. See Figure 5 (middle diagram).

Next, explore the double four-petal flower domain (Fin,Fout) between Λ3R/2 and Λ2R;
let τ3 be the stopping time marking the end of this exploration (with τ3 =∞ if no double
four-petal flower domain exists or if τ2 =∞). Due to Lemma 3.4,

P[τ3 <∞ ∣ (ω[τ2], ω
′
[τ2]

) s.t. τ2 <∞] ≥ c2.

Finally, reveal the configurations in the unexplored regions of Fin and write τ4 for
the stopping time marking the end of this stage. Let H be the event that P in

1 and P in
3

are connected by paths of ω′ ∩ (F c
in ∖D) to Γ+ and P in

2 and P in
4 are connected by paths

of ω∗ ∩ (F c
in ∖D) to Γ−. Due to Theorem 2.1 (see Figure 5, right diagram),

P[H ∣ (ω[τ3], ω
′
[τ3]

) s.t. τ3 <∞] ≥ c3.
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Special care should be taken as the primal connections occur in ω′ while the dual ones
occur in ω. This may be easily overcome by considering connections in pre-determined
disjoint regions2.

Now, if τ3 <∞ and H occurs, then P out
1 and P out

3 are disconnected in ω ∩F c
out, but

are connected in ω′ ∩F c
out. Set τ = τ4 if the above occurs and τ =∞ otherwise. Then τ

satisfies the requirements of the proposition and

P[τ <∞] ≥ c1c2c3 > 0.

◻

We conclude this section by the following lemma, which is straightforward application
of Theorem 2.1. This lemma will be useful in the future sections.

Lemma 3.14 For any η > 0, there exists a constant c = c(η) > 0 such that the following
holds. Fix p and F an η-well-separated outer flower domain on ΛR for some R ≤ L(p).
Let ξ, ξ′ be a boosting pair of boundary conditions on F and x be a point of Ann(2R,4R).
Then, there exists a coupling via decision trees P of φξF ,p and φ

ξ′
F ,p and a stopping time τ such

that, when τ <∞, Fτ = F ∖ e[τ] is a 1/2-well-separated inner flower domain on ΛR/4(x),
and the boundary conditions induced by ω′

[τ] on Fτ are a boost of those induced by ω[τ].
Finally,

P[τ <∞] ≥ c.

The proof is similar (yet much easier) to the one of Theorem 3.6.

Proof Write Pi, Pj for two petals of F that are wired in ξ′, but not in ξ.
Start by exploring the double four-petal flower domain (Fin,Fout) between ΛR/4(x)

and ΛR/2(x). If no such double flower domain exists, set τ =∞ and proceed in an arbitrary
way. If (Fin,Fout) exists, continue by revealing the configurations in F ∩Fout. Write H for
the event that in ω ∩Fout, P out

1 is connected to Pi, P out
3 is connected to Pj , but that P out

1

and P out
3 are not connected to each other, nor to any other petal of F . Theorem 2.1

implies that

P[H ∣Fin,Fout] ≥ c, (3.14)

where c > 0 depends only on η. If H occurs, set τ to be the stopping time at which the
configurations in Fout have been revealed; otherwise set τ =∞.

Then due to Lemma 3.4 and (3.14), P[H] >⌢ c. Finally, when τ < ∞, the boundary
conditions induced by ω′

[τ] on Fτ = Fin are indeed a boost of those induced by ω[τ],
since P 1

in is connected to P 3
in in ω′

[τ], but not in ω[τ]. ◻

4 Properties of the mixing rate

Fix q ∈ (1,4] and η > 0 for the whole of this section; all constants, including those
in <

⌢ and ≍, may depend on η. In this section, we always work with a single edge-
parameter p ∈ (0,1), and therefore omit it often from the measure φG,p for notational
convenience.

2 One may be tempted to ask for both the primal and dual connections to occur in the same configuration,
for instance in ω. This would be conceptually simpler, but would require a stronger RSW result, as the
sections of Γ+ outside of D are wired in ω′, but not in ω. This stronger RSW result is true for q < 4
(see [DMT20]), but it is expected to be wrong for q = 4.
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4.1 No coupling induces boosting boundary conditions

The main result of this subsection is be the following; it is the cornerstone to the other
results proved later in this and other sections.

Theorem 4.1 For any η > 0, p, and 4r < R ≤ L(p).
(i) Let G be an η-well-separated inner flower domain on ΛR and ξ, ξ′ be a boosting

pair of boundary conditions on G . There exists an increasing coupling P of φξG ,p
and φξ

′
G ,p on G ∖ Λr via decision trees, and a stopping time τ with the following

property. When τ < ∞, Fτ = G ∖ e[τ] is a 1/2-well-separated inner flower domain
on Λr, and the boundary conditions induced by (ω′

[τ])
ξ′ on Fτ are a boost of those

induced by ωξ
[τ]

. Moreover, if we write ζ and ζ ′ for the boundary conditions induced
by ω′ and ω on ∂Λr, then

P[τ <∞] ≍ P[ζ ≠ ζ ′]. (4.1)

(ii) Let G be an η-well-separated outer flower domain on Λr and ξ, ξ′ be a boosting pair
of boundary conditions on G . There exists a increasing coupling P of φξG ,p and φξ

′
G ,p

on G ∩ ΛR via decision trees, and a stopping time τ with the following property.
When τ < ∞, Fτ = G ∖ e[τ] is a 1/2-well-separated outer flower domain on ΛR,
and the boundary conditions induced by (ω′

[τ])
ξ′ on Fτ are a boost of those induced

by ωξ
[τ]

. Moreover, if we write ζ and ζ ′ for the boundary conditions induced by ω′

and ω on ∂ΛR, then
P[τ <∞] ≍ P[ζ ≠ ζ ′]. (4.2)

Remark 4.2 In the previous theorem we sample edges only outside Λr in Case (i), and
only inside ΛR in Case (ii), but, of course, once this is done, one may use an arbitrary
coupling inside Λr or outside ΛR to obtain couplings in the whole flower domain G . We
stated the previous theorem in this setting to be able to reuse the coupling in applications
we have in mind.

The first point of the theorem should be understood as follows. We reveal the configura-
tions ω and ω′ in the coupling P starting from the outside and moving inwards; while doing
this, we follow the difference between the boundary conditions that the configurations
induce on the unexplored region. If this difference survives until the whole of G ∖Λr is
revealed, then there is a positive probability that it survives as a significant difference,
namely in the form of a boosting pair of boundary conditions on a well-separated flower
domain.

The second point is analogous, with the revealment starting inside and moving outwards.

Proof of Theorem 4.1 We will only prove point (i); the proof of point (ii) is identical.
Fix p ∈ (0,1), 4r ≤ R ≤ L(p) and G , ξ and ξ′ as in the statement. All constants below are
independent of r R, G , ξ and ξ′, unless explicitly stated. When referring to connections in
configurations ω and ω′ with laws φξG ,p and φξ

′
G ,p, respectively, we will implicitly include

connections that use the boundary conditions. In other words, we omit the superscript in
the notation ωξ and (ω′)ξ′ .

First, for any increasing coupling P between φξG and φξ
′

G obtained by a decision tree,
and any stopping time τ with the properties of the theorem, P[τ <∞] ≤ P[ζ ≠ ζ ′]. Indeed,
the requirement that the boundary conditions induced by ω′

[τ] on Fτ are a boost of those
induced by ω[τ], imposes that the boundary conditions induced by ω and ω′ on Λr are
distinct. The rest of the proof is dedicated to the converse bound.
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Assume for simplicity that R = 4kr for some integer k ≥ 2. By monotonicity, it suffices
to treat the case where ξ and ξ′ are identical, with the exception of two petals that are
wired together in ξ′, but not in ξ. Assume this is the case, and write P1 and P3 for the
two primal petals of G that are wired together in ξ′, but not in ξ (contrary to what the
notation suggests, P1 and P3 need not be separated by a single dual petal).

Below, we describe an increasing coupling P of φξG and φξ
′

G on G ∩Λcr obtained through
a decision tree. The actual coupling of the theorem is a slight variation of P that we will
describe at the end of the proof.

At any time t, write Ft for the connected component of Λr in G ∖e[t]. We will abusively
consider that all edges of G that are not revealed at time t and which are not part of Ft, are
revealed instantaneously. Thus, from now on, we have Ft = G ∖ e[t]. We will identify ω[t]

and ω′
[t] to the boundary conditions they induce on Ft.

Write T for the first time t when ω[t] and ω′[t] induce the same boundary conditions
on Ft, and T = ∞ if the boundary conditions are never the same. If T < ∞, the
configurations ω,ω′ in FT are identical, regardless of the decision tree used after T . Thus,
when this occurs, reveal the rest of the edges using lexicographical order.

The coupling proceeds in several stages numbered j = 0, . . . , k. If at any point T occurs,
the procedure described below stops, and the revealment by lexicographical order is used.
Stage j corresponds to revealing information in Λc

4k−jr ∶= G ∖Λ4k−jr. We will write τj for
the stopping time that marks the end of stage j. At time τj , the revealed edges are those
of the cluster of P1 and P3 in ω′ ∩Λc

4k−jr, any edges of Λc
4k−jr adjacent to this cluster, as

well as any edges separated from Λr by the two categories of edges mentioned above.
Let us now describe precisely the revealment algorithm.

Revealment algorithm

Stage 0: Reveal the cluster of P1 and P3 inside ω′ ∩ΛcR in arbitrary order. Let τ0 be the
stopping time marking the end of this stage.
Stage j + 1: Fix j ≥ 0 and assume the coupling defined up to time τj (see Figure 6 for
an illustration). Stage j + 1 is itself formed of two steps. As already mentioned, this is
only valid when T > τj . Write ρ = 4k−j−1r. In ω′

[τj]
, the boundary of Fτj is formed of dual

arcs outside of Λ4ρ with endpoints on ∂Λ4ρ, along with points on Λ4ρ that are connected
in ω′τj to P1 or P3. Call the latter points the “wired” points of ∂Fτj . Since T has not yet
occurred, there exists at least one wired point on ∂Fτj .

First, reveal all interfaces in ω ∩Fτj ∩ Λc
2ρ that start at wired points of ∂Fτj . This

may be done by tracking the left and right boundaries of the clusters of each wired point
of ∂Fτj until they finish on ∂Fτj or they reach ∂Λ2ρ. Write τj+1/2 for the stopping time
that marks the end of this step. Formally, if T occurs before time τj+1/2, set τj+1/2 =∞.

Next, explore the cluster of P1 and P3 inside ω′ ∩Λc
ρ and write τj+1 for the stopping

time marking the end of this stage (set τj+1 =∞ if T occurs before the end of this stage).
In fact, we will sometimes require that the clusters are explored in a certain order (see the
coupling P defined by Lemma 4.4 for details).
After stage k: Assuming that T > τk, reveal all remaining edges in lexicographical order.

Each stopping time τj+1/2 will be declared promising or not (see the precise definition
below), depending on the configuration at that stage and on some constant threshold δ > 0
to be fixed below. Fix 0 ≤ j < k and assume τj+1/2 <∞ (otherwise τj+1/2 is not promising).
Then Fτj+1/2 is either a simply connected domain containing Λ2ρ and ω[τj+1/2] induces free
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Figure 6: Red solid lines represent open edges in ω′, while blue ones represent open edges
in ω. Dotted lines represent closed (or equivalently open dual edges) in the configurations
corresponding to their color. Left: At the end of stage j, the revealed edges are those of
the cluster of P1 and P3 in ω′ ∩Λc4ρ and its boundary. Then, by time τj+1/2, the interfaces
in ω starting at the wired vertices previously exposed are explored until they touch Λ2ρ.
At this time, the unexplored region is a flower domain that is likely well-separated. Middle:
Assuming that the primal petals of Fτj+1/2 are all wired together in ω, we turn our attention
to the set A of points that lie on dual petals of Fτj+1/2 , but which are connected to P1

or P3 in ω′
[τj+1/2]

. If this set has a positive probability to be connected to Λρ, then we
call τj+1/2 promising. Right: For τj+1/2 promising, we may connect two separate regions
of A to the two primal external petals of a double flower-domain at a smaller scale. Then
these petals will be connected in ω′ but not in ω.

boundary conditions on it, or it is an inner flower domain on Λ2ρ and ω[τj+1/2] induces
coherent boundary conditions on it. The former occurs when none of the revealed interfaces
in the first step of stage j reaches Λ2ρ.

First, we analyse the case where ω[τj+1/2] induces free boundary conditions Fτj+1/2 .
Write A for the set of vertices on ∂Fτj+1/2 that are connected to P1∪P3 in ω′

[τj+1/2]
. Notice

that, due to the exploration procedure, for any edge uv with u ∈ ∂Fτj+1/2 and v ∈ F c
τj+1/2 ,

v is connected in ω′
[τj+1/2]

to P1 or P3. Thus, A is exactly the set of vertices u ∈ ∂Fτj+1/2
for which there exists an explored edge uv with v ∈ F c

τj+1/2 that is open in ω′
[τj+1/2]

. In
particular, in the boundary conditions induced by ω′

[τj+1/2]
on Fτj+1/2 , all vertices of A are

wired together and all other boundary vertices are free (that is they are not wired to any
other boundary vertices).

In this case, we call τj+1/2 promising if

φ
ω′[τj+1/2]
Fτj+1/2

[A ↔ Λρ] ≥ δ.

Next, we turn our attention to the case where Fτj+1/2 is a flower domain. Write A for
the set of points on the dual petals of Fτj+1/2 that are connected to P1 or P3 in ω′

[τj+1/2]
. By

the same argument as in the previous case, in the boundary conditions imposed by ω′
[τj+1/2]

on Fτj+1/2 there exists a single wired component formed of A along with all primal petals
of Fτj+1/2 .

If Fτj+1/2 is not δ-well-separated, then we say that τj+1/2 is not promising. If Fτj+1/2
is δ-well-separated and contains at least two primal petals that are not wired in ω[τj+1/2],
then we call τj+1/2 promising. Finally, if Fτj+1/2 is δ-well-separated and all its primal petals
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are wired together in ω[τj+1/2], we call τj+1/2 promising if and only if

φ
ω′[τj+1/2]
Fτj+1/2

[A ↔ Λρ] ≥ δ.

For formal reasons, set τ−1/2 = 0 and call it promising. We now state two results that
are instrumental in the proof of the theorem. Roughly speaking, the first one states that
if τj+1/2 is not promising, then it is very likely for T to arise before τj+1. The second lemma
states that as soon as τj+1/2 is promising, then there exists a coupling guaranteeing a fairly
good probability that the flower domain on ∂Λr is 1/2-well-separated and the boundary
conditions in ω and ω′ induced on this domain correspond to a boosting pair.

Lemma 4.3 For any ε > 0, we may choose δ = δ(ε) > 0 (independent of r, R, p, G , ξ
and ξ′) so that for every 0 ≤ j < k,

P[τj+1/2 not promising and T > τj+1 ∣ω[τj], ω
′
[τj]

] < ε.

Lemma 4.4 For any δ > 0, there exists c(δ) > 0 with the following property. Fix some −1 ≤
j ≤ k − 1 and a realisation of τj+1/2, ω[τj+1/2], ω

′
[τj+1/2]

and Fτj+1/2 for which τj+1/2 is

promising. Then there exists an increasing coupling P of φ
ω[τj+1/2]
Fτj+1/2

and φ
ω′[τj+1/2]
Fτj+1/2

via

decision trees, and a stopping time σ with the following property. When σ < ∞, Fσ is
a 1/2-well-separated inner flower domain on Λr, and the boundary conditions induced
by ω′

[σ] on Fσ are a boost of those induced by ω[σ]. Moreover,

P[σ <∞] ≥ c(δ)π4(p; r,4k−jr). (4.3)

Remark 4.5 It is essential in the second lemmata that c(δ) is allowed to depend on δ, but
that it only appears as a multiplicative constant in (4.3). Indeed, the upper bound in (4.3)
depends on the ratio between the scales of Fτj+1/2 and Fσ in a way that is uniform in δ.

Before proving the two lemmas, let us conclude the proof of the theorem. Fix ε > 0 so
that π4(p; r,4jr) ≥ (2ε)j for all j ≥ 0 with 4jr ≤ L(p). Due to (RSW), ε may be chosen
independently of r or p. Let δ = δ(ε) be the quantity given by Lemma 4.3 for this value
of ε. Below, c0 and c1 stand for strictly positive constants that may depend on ε, but not
on r, R or G .

First observe that, due to Lemma 4.4 and Theorem 3.6, there exists c0 > 0 such that
for any 1 ≤ j ≤ k,

P[T =∞] ≥ φξ
′

G [C (Λr)] − φξG [C (Λr)] ≥ c0 (2ε)j P[τk−j−1/2 promising]. (4.4)

Indeed, the first inequality follows from the more general observation that P[T = ∞]
bounds the distance in total variation between the restrictions of φξ

′
G and φξG to Λr. For the

second inequality, consider the increasing coupling of φξ
′

G and φξG obtained by following P
up to the stopping time τk−j−1/2, then, if τk−j−1/2 is promising, using the coupling P of
Lemma 4.4 and applying Theorem 3.6.

Next, we claim that there exists some ` ≥ 1 such that if T = ∞, then with positive
probability there exists one promising stopping time among the last ` ones. It is essential
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here that ` is independent of R/r. Indeed, fix ` ≥ 1, and observe that

P[T =∞ and τk−1/2, . . . , τk−`+1/2 not promising]

=
k

∑
j=`

P[T =∞; τk−1/2, . . . , τk−j+1/2 not promising; τk−j−1/2 promising]

≤
k

∑
j=`

εj−1P[τk−j−1/2 promising]

≤ c0 P[T =∞]
k

∑
j=`

2−j ≤ c0 2−`+1 P[T =∞].

(Note that this is where we use the convention that τ−1/2 is promising.) The first inequality
is obtained by repeated applications of Lemma 4.3; the second is due to (4.4). Thus, if we
fix ` ≥ − log2 c0 + 2, then indeed,

P[at least one of τk−1/2, . . . , τk−`+1/2 is promising ∣T =∞] ≥ 1
2 . (4.5)

We are now ready to define the coupling P of the theorem. Follow P up to the first
promising stopping time τj+1/2 with j ≥ k − `. Then follow the coupling P of Lemma 4.4;
write τfinal for the stopping time described in said lemma. If P does not encounter a
promising stopping time τj+1/2 with j ≥ k − `, set τfinal =∞. Then, due to Lemma 4.4 and
to (4.5),

P[τfinal <∞ ∣T =∞] ≥ 1
2c1 c

`
2.

Since ε and ` are independent of r and R, the right hand side is bounded away from 0
uniformly in r ≤ R/4. Moreover, τfinal satisfies the conditions stated in the theorem.
Multiply the above by P[T =∞] = P[ζ ≠ ζ ′] to obtain the desired inequality. ◻

Proof of Lemma 4.3 Fix ε > 0 and fix a realisation of τj , ω[τj] and ω
′
[τj]

. Lemma 3.2
ensures that, by choosing δ > 0 small enough, we have

P[Fτj+1/2 is a flower domain which is not δ-well-separated ∣ω[τj], ω
′
[τj]

] < ε/2.

Suppose now that either Fτj+1/2 is a δ-well-separated flower domain, or that ωτj+1/2 induced
free boundary conditions on it. In either case, if τj+1/2 is not promising, it is because A
has a conditionally small probability to be connected to Λρ in ω′.

Continue the coupling P by revealing first the connected component C of A in ω′ ∩Λcρ,
then the rest of the connected component of P1 and P3. If C does not reach Λρ, then it is
entirely surrounded by closed edges of ω′. Thus, the boundary conditions in ω and ω′ on
the complement of C are identical, which is to say that T occurs before τj+1. Thus

P[T > τj+1 ∣ω[τj+1/2], ω
′
[τj+1/2]] ≤ φ

ω′[τj+1/2]
Fτj+1/2

[A ↔ Λρ] < δ.

By choosing δ > 0 small enough, both displays may be rendered smaller than ε/2. Apply
the union bound to obtain the desired inequality. ◻
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Proof of Lemma 4.4 Fix δ > 0 and a realisation F of Fτj+1/2 , with boundary condi-
tions ζ and ζ ′ induced by ω[τj+1/2] and ω′

[τj+1/2]
, respectively, on F . Assume that F , ζ

and ζ ′ satisfy the assumptions of the lemma. There are three situations that need to be
analysed; we will proceed in increasing order of difficulty. Set ρ ∶= 4k−jr.

Case 1: F is a flower domain with two petals wired in ζ ′ but not in ζ. First
assume that F is a δ-well-separated flower domain containing two primal petals Pi and Pj
that are not wired together in ζ. Recall that Pi and Pj are necessarily wired together in ζ ′.

Then P is constructed as follows. Attempt to explore the double four-petal flower
domain (Fin,Fout) between Λr and Λ2r for the configuration ω. If no such double four-
petal flower domain exists set σ = ∞ and reveal the remaining edges in lexicographical
order. If it exists, reveal the configurations in Fout ∩F and let σ be the stopping time
marking the end of this stage.

Let H be the event that the double four-petal flower domain (Fin,Fout) exists, that the
two primal petals P out

1 and P out
3 of Fout are connected in ω′

[σ] to Pi and Pj , respectively,
while Pi and Pj are not connected to each other nor to any primal petal of F in ω[σ]. It
is a standard consequence of the separation of arms that there exists a constant c(δ) > 0
such that

P[H ∣ (Fin,Fout) double four-petal flower domain] ≥ c(δ)π4(p; r,4ρ).

Lemma 3.4 ensures that the event in the conditioning has uniformly positive probability,
and hence so does H. Finally, notice that when H occurs, the boundary conditions induced
by ω′

[σ] on ∂Fin are a boost of those induced by ω[σ]. This concludes the proof in this
case.

Case 2: F is not a flower domain. Next, assume that F is not a flower domain, and
therefore that ζ = 0. Start the coupling by attempting to reveal the double four-petal
flower domains (Fin,Fout) between Λr and Λ2r and (F in,F out) between Λρ and Λ3ρ/2,
respectively, for the configuration ω (if ρ = r, only perform the latter exploration). If
these two double four-petal flower domains exist, proceed by revealing the configurations
in F in ∩Fout; call σ0 the stopping time marking the end of this stage.

Let H be the event that the two double four-petal flower domains above exist, that P
in
1

is connected to P out
1 and P

in
3 to P out

3 in ω ∩F in ∩Fout and that P
in
2 is connected to P out

2

and P
in
4 to P out

4 in ω∗∩F in∩Fout. As in the first case, it is a consequence of the separation
of arms and Lemma 3.4 that there exists c0 > 0 such that

P[H] ≥ c0 π4(p; r,4ρ). (4.6)

Next we reveal the configurations in F ∩F out in a fashion described below. Write H ′ for
the event that P

out
1 and P

out
3 are connected to each other in ω′ ∩F out, but not in ω∩F out.

Observe that if H and H ′ occur, then the boundary conditions induced on Fin by ω ∩Fin

and ω′ ∩Fin, respectively, form a boosting pair. At this stage, it will be useful to introduce
the following claim.

Claim 4.6 There exists c1 = c1(δ) > 0 and four disjoint domains D1, . . . ,D4 contained
in F ∩F out (they depend on A ) such that

φ
ω′[σ0],0
D1

[A ←→ P
out
1 ] > c1, φ

ω′[σ0],0
D3

[A ←→ P
out
3 ] > c1, (4.7)

φ
ω[σ0],1
D2

[∂F
ω∗←→ P

out
2 ] > c1, φ

ω[σ0],1
D4

[∂F
ω∗←→ P

out
4 ] > c1, (4.8)
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where ω′
[σ0]

, 0 (and ω[σ0], 1) are the boundary conditions on ∂Di induced by the configuration
equal to ω′ (and ω, respectively), completed in the unexplored region of Dc

i by closed
(respectively, open) edges.

Essentially D1, . . . ,D4 should be viewed as disjoint tubes connecting the petals P
out
i

to four disjoint regions of ∂F . Each tube should be thought of as thick enough to contain
either primal or dual paths with positive probability (for instance we may think of each tube
as being constructed using a finite number of rectangles of aspect ratio 2). Moreover, we
should further require that the regions of ∂F contained in D1 and D3 contain sufficiently
many points of A that a connection reaches these points with positive probability. Let us
delay the proof of this technical result and finish the proof of the lemma in this case.

Fix the four domains D1, . . . ,D4 given by the claim. Reveal the configuration in F ∩
F out by first revealing the configurations outside D1, . . . ,D4, then in each of the quads
D1, . . .D4. Due to (CBC),

P[A ω′∩D1←ÐÐ→ P
out
1 , A

ω′∩D3←ÐÐ→ P
out
3 , ∂F

ω∗∩D2←ÐÐÐ→ P
out
2 , ∂F

ω∗∩D4←ÐÐÐ→ P
out
4 ∣ (ω[σ0], ω

′
[σ0]

)] ≥ c4
1,

whenever (ω[σ0], ω
′
[σ0]

) are such that H occur. Notice now that, since all points of A are
wired together in ω′ outside of F , but that all the boundary of F is free in ω, if the event
above occurs, then so does H ′. Thus,

P[H ′ ∩H] ≥ c4
1P[H] ≥ c0 π4(p; r,4ρ).

If we now set σ to be the stopping time at which all of F c
in has been explored and H ′ has

been found to occur, and σ =∞ otherwise, then σ satisfies the properties claimed in the
lemma.

Case 3: F is a flower domain but the petals wired in ζ ′ are wired in ζ. The
construction in this is very similar to that of Case 2. Start off by revealing the double
four-petal flower domains (Fin,Fout) between Λr and Λ2r and (F in,F out) between Λρ

and Λ3ρ/2, respectively, for the configuration ω. Define H and H ′ in the same way as in
Case 2. The only difference is in the way in which the configurations in F ∩F out are
revealed so that P[H ′ ∣H] is bounded below by a constant depending only on δ.

Write P1, . . . , P2k for the petals of F . By the union bound and the assumption on A ,
there exists a free petal Pj such that

φζ
′

F [Pj ∩A
ω′←→ Λρ] ≥ δ/k.

Recall that F is δ-well-separated, and therefore k is bounded in terms of δ only. A
construction similar to that of the claim may be performed, with A replaced by A ∩ Pj
and ∂F replaced by Pj . We conclude in the same way as in Case 2. ◻

We now turn to the proof of Claim 4.6. This type of construction is usually tedious
because of the general form of F , but may be performed fairly explicitly. We warn the
reader of the difficulties arising from the potential bottlenecks of F and the fact that the
RSW result (RSW) is not valid with arbitrary boundary conditions in arbitrary quads
when q = 4. Nevertheless, with sufficient care, the domains D1, . . . ,D4 may be constructed
as unions of small squares Λcρn(x) with x ∈ cρZ2 and c > 0 a small constant independent
of ρ. We propose below an alternative, more innovative construction of D1, . . . ,D4. We
will use the following result from [DMT20] (see Remark 4.2 to be precise).
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The extremal distance between the arcs (ab) and (cd) of a quad (D , a, b, c, d) is the
unique value ` = `D[(ab), (cd)] such that there exists a conformal transformation ψ from D
(seen as a domain in the continuum) to (0,1) × (0, `), with a, b, c, d being mapped (by
the continuous extension of ψ) to the corners of [0,1] × [0, `], in counterclockwise order,
starting with the lower-left corner.

Proposition 4.7 (RSW in terms of extremal distance) For all L > 0, there exists
η(L) > 0 such that, for all 1 ≤ q ≤ 4, p ∈ (0,1), R < L(p), and (D , a, b, c, d) a discrete quad
contained in ΛR, if `D[(ab), (cd)] ≤ L then

φ
1/0
D ,p[C (D)] ≥ η(L),

where 1/0 denotes the boundary condition on D where the arcs (ab) and (cd) are wired
and the rest of the boundary is free.

While the result is stated for p = pc only in [DMT20], the reader will easily check that
its proof extends readily to the near-critical regime using (RSW’).

Proof of Claim 4.6 Write Bs for the euclidian ball of R2 of radius s centred at 0,
and Bs(z) for its translate by z ∈ R2. Let ψ be a conformal map from F ∩ F out to
some B1 ∖Bs. The existence of such a map is given by the uniformization theorem for
the topological annulus F ∩F out. Note that s is determined by F ∩F out. Moreover,
since ∂F intersects Λ2ρ and ∂F is contained in Ann(ρ, 3

2ρ), s is bounded uniformly away
from 0 and 1, and the endpoints of ψ(P1), . . . , ψ(P4) are uniformly far from each other.

Fix some small positive constant c0 = c0(δ) < (1− s)/16 which will be chosen below and
will depend only on δ. Let a0, . . . , aK = a0 (with K = 2π/c0) be points on the circle ∂B1

indexed in counterclockwise order and at a distance c0 of each other. Write (aiai+1) for
the arc of ∂B1 contained between ai and ai+1; identify ψ−1(aiai+1) to the corresponding
vertices of ∂F . Let Ai ∶= A ∩ ψ−1(aiai+1).

Next, we argue that there exist two indices i, j with ∣i − j∣ ≥ 8 (modulo K) such that

φζ
′

F [Ai ←→ ψ−1(B2c0(ai))c] ≥ c0δ/2, (4.9)

φζ
′

F [Aj ←→ ψ−1(B2c0(aj))c] ≥ c0δ/2.

Indeed, if the above fails, then there necessarily exists i such that for all j ∉ {i, . . . , i + 7},

φζ
′

F [Aj ←→ ψ−1(B2c0(aj))c] < c0δ/2. (4.10)

Assuming that this is the case, explore the open cluster C of A ∖ ψ−1(aiai+8). Due to the
small value of c0 and to the assumption above, we conclude by the union bound that

φζ
′

F [C intersects Λρ] < δ/2. (4.11)

If C does not intersects Λρ, the measure on F ∖C obtained by conditioning on C has free
boundary conditions for all vertices adjacent to C. Then, due to Proposition 4.7 applied
repeatedly to the dual model, we conclude that for c0 small enough,

φζ
′

F [A ←→ Λρ ∣C does no intersect Λρ] < δ/2. (4.12)

Combining (4.11) and (4.12) we conclude that φζ
′

F [A ↔ Λρ] < δ, which contradicts the
assumption that the stopping time at which F was discovered was promising. Thus (4.9)
is proved.
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Fix i, j with ∣i − j∣ ≥ 8 (modulo K) and satisfying (4.9). For what comes next, we refer
to Figure 7. For k = 1,2,3,4, set

(Dk, ak, bk, ck, dk) ∶= ψ−1[(D′
k, a

′
k, b

′
k, c

′
k, d

′
k)],

where the quads (D′
k, a

′
k, b

′
k, c

′
k, d

′
k) satisfy:

• D′
k ⊂ B1 ∖Bs for every k;

• the extremal distances `Dk[(akbk), (ckdk)] belong to (κ, 1/κ) with κ = κ(c0) ∈ (0,∞)
for every k;

• (a′kb′k) is equal to (ai−3ai+3), (ai+3aj−3), (aj−3aj+3) and (aj+3ai−3) for k = 1,2,3
and 4, respectively;

• (c′kd′k) = ψ(P
out
k ) for every k;

• D′
1 and D′

3 contain B3c0(ai) and B3c0(aj) respectively.
The construction of the domains (D′

k, a
′
k, b

′
k, c

′
k, d

′
k) is straightforward.

We now check (4.7) and (4.8). We start by the latter and focus on the first in-
equality. The boundary conditions induced by {ω[σ0],1} on D2 are free on P

out
2 and on

ψ−1((ai+3aj−3)). Therefore, the result follows directly from Proposition 4.7 and duality.
We now turn to (4.7) and focus on the first inequality. Let

` ∶= ∂ψ−1(B2c0(ai))c ∖ ∂(F ∩F
out).

First, a mixing-type argument using Proposition 4.7 and (4.9) combine to give

φ
ω′[σ0],0
D1

[Ai ←→ `] ≥ c2φ
ζ′
F [Ai ←→ `]

(4.9)
≥ c3(δ).

Second, if `± ∶= ` ∩ ψ−1(H±), where H+ is the half-plane on the left of the line going from
0 to 1

2(ai + ai+1) (where left is understood when looking in the direction 1
2(ai + ai+1)) and

H− = C ∖H+. The union bound implies that # may be chosen equal to + or − so that

φ
ω′[σ0],0
D1

[Ai ←→ `#] ≥ 1
2φ

ω′[σ0],0
D1

[Ai ←→ `].

We assume below that # = + (the same can be done for # = −). Condition on the left-most
path Γ going from Ai to `+. Then, conditioned on Γ, the domain carved from D1 by
removing Γ and all the edges explored to determine Γ has wired boundary conditions
on P

out
1 , wired on Γ, and boundary conditions dominating the free boundary conditions

elsewhere. Since the extremal distance between P
out
1 and Γ in this new domain is larger

than κ′ = κ′(κ, δ) > 0, we deduce from Proposition 4.7 that

φ
ω′[σ0],0
D1

[Ai ←→ P
out
1 ∣Ai ←→ `+] ≥ c4.

Combining the last three displayed equations gives the first inequality of (4.7), and therefore
concludes the proof. ◻

4.2 Mixing rate versus coupling

In this section we estimate the probability under the coupling of Theorem 4.1 that τ occurs.
The relevant result of this section is the following theorem.
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Figure 7: The uniformization map Ψ from F ∩ F
out

into B1 ∖ Bs. On the right, the
black dots denote the ai. We depicted the balls B2c0(ai) and B3c0(ai). The four domains
D′

1, . . . ,D
′
4 can be chosen in many ways. In bigger red, the path `+ and its preimage

ψ−1(`+). The path Γ from A into ψ−1(`+) is drawn in dark blue.

Theorem 4.8 For any p ∈ (0,1) and any 4r < R ≤ L(p), the following holds. Fix G
an η-well-separated inner flower domain on ΛR or outer flower domain on Λr and ξ and ξ′

a boosting pair of boundary conditions on G . Let P be the coupling of Theorem 4.1 (points
(i) or (ii), depending on whether G is an inner or outer flower domain), and recall the
stopping time τ associated to P. Then

P[τ <∞] ≍ ∆p(r,R). (4.13)

As a consequence, if G is an inner flower domain and H is either the crossing event of
an η-regular quad at scale r or H = Ar/2, or if G is an outer flower domain and H is
either the crossing event of an η-regular quad at scale R translated so that it is contained
in Ann(R,2R) or H = AR, then

φξ
′

G [H] − φξG [H] ≍ ∆p(r,R). (4.14)

When G is an inner flower domain, (4.14) should be understood as follows. Any
boosting pair of boundary conditions at scale R boosts the probability of any crossing
event at scale r by a quantity comparable to ∆p(r,R). The same holds when the boundary
conditions are at scale r and the crossing event is at scale R. Recall that ∆p(r,R) was
defined in terms of the boost that a specific pair of boundary conditions at scale R has on
a specific crossing event at scale r. Thus, in addition to stating that the boost of any pair
of boundary conditions on any crossing event is comparable, the proposition also links the
boost from outside in to that from inside out.

The rest of this section is dedicated to showing Theorem 4.8. The proof is split into
several steps, each corresponding to a lemma. First, as a consequence of Theorem 4.1(i),
we prove that the influence of boundary conditions on the crossing of any two regular
quads is comparable.
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Lemma 4.9 Fix p ∈ (0,1) and 2r < R ≤ L(p). Let G be an η-well-separated inner flower
domain on ΛR and ξ and ξ′ be a boosting pair of boundary conditions on G . Moreover,
let H be either the crossing event of an η-regular quad at scale r or H = Ar/2. Then

φξ
′

G [H] − φξG [H] ≍ φξ
′

G [C (Λr)] − φξG [C (Λr)]. (4.15)

In particular,

φ1
ΛR

[H] − φ0
ΛR

[H] ≍ ∆p(r,R). (4.16)

A particular case of (4.16) shows that ∆p(1,R) ≍ ∆p(R). In addition, by taking H =
C (Λr/2), (4.16) also proves that

∆p(r,R) ≍ ∆p(r/2,R), (4.17)

and more generally that replacing r by a multiple of r only affects ∆p by a multiplicative
constant.

As will be apparent from the proof, an equivalent of (4.15) may also be proved for outer
flower domains on Λr and crossing events at scale R. However, an equivalent of (4.16)
cannot be shown with the same proof, as least for now (but will be later).

Proof Fix p, r, R, G , ξ, ξ′ and H as in the statement. Let P be the coupling of
Theorem 4.1 (i) between φξ

′
ΛR

and φξΛR . Then, using the notation of the theorem,

φξ
′

G [H] − φξG [H] = P[ω′ ∈H,ω ∉H] ≤ P[ζ ≠ ζ ′] <⌢ P[τ <∞].

Moreover, by Theorem 3.6,

φξ
′

G [H] − φξG [H] ≥ E[1{τ<∞}(φ
ω′[τ]
Fτ

[H] − φω[τ]
Fτ

[H])] >⌢ P[τ <∞],

where E stands for the expectation associated to P. The two displays above imply that

φξ
′

G [H] − φξG [H] ≍ P[τ <∞]. (4.18)

Apply this to a generic H and to H = C (Λr) to obtain (4.15). Finally, (4.15) applied
with G = ΛR, ξ = 0, ξ′ = 1 gives (4.16). ◻

Next, we deduce an interpretation of ∆p(r,R) as a covariance between events at scales r
and R. Considering the symmetry between r and R below, this result is used to link the
influence from outside in to that from inside out.

Lemma 4.10 For every p and every 4r ≤ R ≤ L(p),

Cov[Ar/2,AR] ≍ φ1
Λcr

[AR] − φ0
Λcr

[AR] ≍ ∆p(r,R). (4.19)

Proof We start by proving the equivalence between Cov(Ar/2,AR) and ∆(r,R). By the
monotonicity of boundary conditions (CBC),

Cov(Ar/2,AR) = φ[AR](φ[Ar/2 ∣AR] − φ[Ar/2]) ≤ φ1
ΛR

[Ar/2] − φ0
ΛR

[Ar/2] <⌢ ∆(r,R),
(4.20)

where the last inequality is due to Lemma 4.9.
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For the converse bound, some additional work is needed. Let P denote the coupling be-
tween φ and φ[⋅ ∣Ar/2] inside ΛR/2 produced by applying Remark 3.10 then Theorem 4.1(ii).
Recall that ζ and ζ ′ denote the boosting pair of boundary conditions on ΛcR/2 induced by ω
and ω′, respectively. Complete the coupling outside of ΛR/2 by an arbitrary increasing
coupling. Then, Theorems 3.6 and 4.1(ii) show that

Cov(Ar/2,AR) = P[ω′ ∈ AR, ω ∉ AR]

≥ E[1{τ<∞}(φ
ω′[τ]
Fτ

[AR] − φ
ω[τ]
Fτ

[AR])]
>
⌢ P[τ <∞] >⌢ P[ζ ′ ≠ ζ]. (4.21)

Using that φ[Ar/2] >⌢ 1, we deduce from the display above that Cov(Ar/2,AR) >⌢ P[ζ ′ ≠ ζ].
Moreover

P[ζ ′ ≠ ζ] >⌢ P[ω′ ∈ AR/2, ω ∉ AR/2] ≥ Cov(Ar/2,AR/2) and (4.22)

P[ζ ′ ≠ ζ] >⌢ P[ω′ ∉ AR/2, ω ∈ A∗
R/2] ≥ Cov(Ar/2,A∗

R/2),

where A∗
R/2 = {ΛR/2 /←→ ∂ΛR} is the event AR/2 applied to the dual model. Divide the

equations above by φ[AR/2] and φ[A∗
R/2], respectively, both of which are uniformly positive

quantities. Using the monotonicity of boundary conditions (CBC), we conclude that

P[ζ ′ ≠ ζ] >⌢ φ[Ar/2 ∣AR/2] − φ[Ar/2 ∣A∗
R/2] ≥ φ

1
ΛR

[Ar/2] − φ0
ΛR

[Ar/2] >⌢ ∆(r,R).

Together with (4.21) and (4.20) this shows that

∆(r,R) <⌢ P[ζ ′ ≠ ζ] <⌢ Cov(Ar/2,AR) <⌢ ∆(r,R). (4.23)

Finally, we turn to the equivalence between Cov(Ar/2,AR) and φ1
Λcr

[AR] − φ0
Λcr

[AR].
The monotonicity of boundary conditions (CBC) shows that

Cov(Ar/2,AR) ≤ φ[AR ∣Ar/2] − φ[AR] ≤ φ1
Λcr

[AR] − φ0
Λcr

[AR].

Conversely,

φ1
Λcr

[AR] − φ0
Λcr

[AR] ≤ φ[AR ∣Ar] − φ[AR ∣A∗
r ] by (CBC)

<
⌢ Cov(AR,Ar) −Cov(AR,A∗

r) as φ[Ar] >⌢ 1 & φ[A∗
r ] >⌢ 1

<
⌢ (φ[Ar ∣AR] − φ[Ar]) + (φ[A∗

r ] − φ[A∗
r ∣AR]) since φ[AR] ≤ 1

<
⌢ ∆p(2r,R) by (CBC) and (4.14)

<
⌢ ∆p(r,R) by (4.17)

<
⌢ Cov[Ar/2,AR] by (4.23).

The last two displays prove that Cov[Ar/2,AR] ≍ φ1
Λcr

[AR] − φ0
Λcr

[AR]. ◻

Notice that (4.20)–(4.22) also show that

∆p(r,R) >⌢ Cov[Ar/2,AR] >⌢ Cov[Ar/2,AR/2] >⌢ ∆p(r,R/2) ≥ ∆p(r,R), (4.24)

and more generally that replacing R by a constant multiple of R only affects ∆p by a
multiplicative constant.

Finally, we claim that all boosting pairs of boundary conditions at scale R influence Ar/2
by a similar amount; the same holds from the inside out.
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Figure 8: The graph G (the black edges between the true vertices of the petals and the
vertices in red mean that they are all merged into the red vertex, or equivalently that
we added open edges between them and the red vertices. We also depicted the flower
domains G and Fτ , as well as the event H, that corresponds to the occurrence of the red
paths.

Lemma 4.11 Fix p and 4r ≤ R ≤ L(p). Then
(i) for any η-well-separated inner flower domain G on ΛR and any boosting pair of boundary
conditions ξ, ξ′ on G ,

φξ
′

G [Ar/2] − φξG [Ar/2] ≍ φ1
ΛR

[Ar/2] − φ0
ΛR

[Ar/2]; (4.25)

(ii) for any η-well-separated outer flower domain G on Λr and any boosting pair of boundary
conditions ξ, ξ′ on G ,

φξ
′

G [AR] − φξG [AR] ≍ φ1
Λcr

[AR] − φ0
Λcr

[AR]. (4.26)

Proof We will only treat point (i) as point (ii) is identical.
By the monotonicity of boundary conditions,

φξ
′

G [Ar/2] − φξG [Ar/2] ≤ φ1
ΛR

[Ar/2] − φ0
ΛR

[Ar/2].

We turn to the converse bound. We recommend to take a look at Figure 8. By monotonicity,
we may assume that ξ, ξ′ are both coherent with G , and that there exists exactly one pair
of sets in the partition ξ that are wired together in ξ′ (due to the coherence condition,
each such set contains at least one primal petal of G ). Consider the graph G obtained
from G as follows. All vertices contained in a non-singleton set of the partition ξ are
collapsed to a single point (in particular, all points on each primal petal of G get collapsed
together). Write a1, . . . , ak for the points thus obtained. Then there exist two distinct
points ai and aj such that the corresponding groups of petals are wired in ξ′. Finally, G
is the graph obtained after the collapsing procedure described above, with an additional
edge f between ai and aj . There is an obvious correspondence between the edges of G and
those of G ∖ {f}, and we will identify them from now on. Let φG be the random-cluster
measure on the finite graph G (note that G is not a subgraph of Z2).
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With the construction above, φξG and φξ
′

G are simply the restrictions of φG[⋅ ∣ωf = 0]
and φG[⋅ ∣ωf = 1], respectively, to G . As such, φG[Ar/2] >⌢ 1 and Bayes’s formula imply
that

φξ
′

G [Ar/2] − φξG [Ar/2] = φG[Ar/2∣ωf = 1] − φG[Ar/2∣ωf = 0]
≥ φG[Ar/2∣ωf = 1] − φG[Ar/2]
>
⌢ φG[ωf = 1∣Ar/2] − φG[ωf = 1]. (4.27)

Let now P be the coupling between φG and φG[⋅ ∣Ar/2] obtained as follows:
• reveal the edges of ΛR/2 in the order dictated by Remark 3.10. If this stage pro-
duces an outer flower domain with a boosting pair of boundary conditions, apply
Theorem 4.1(ii) up to the associated stopping time τ ;

• reveal all remaining edges of G ;
• reveal the state of f .

If τ < ∞, there exist two primal petals Pi and Pj of Fτ that are wired in ω′
[τ] but not

in ω[τ]. Choose arbitrarily one such pair of petals. Let H =H(Fτ , ω[τ], ω
′
[τ]) be the event

that ai is connected to Pi in ω ∩Fτ , that aj is connected to Pj in ω ∩Fτ , but that ai
and aj are not connected to each other or to any other primal petal of Fτ in ω ∩Fτ .

Since Fτ is 1/2-well-separated and G is η-well-separated, and since Fτ ∩ G contains
the annulus Ann(R/2,R), by standard applications of Theorem 2.1, we find that

P(H ∣ τ <∞,Fτ , ω[τ], ω
′
[τ]) >⌢ 1.

The occurrence of H may be determined before revealing the state of the edge f . Moreover,
if H occurs, then the endpoints ai and aj of f are connected in ω′∖{f}, but not in ω∖{f}.
Indeed, ω′ dominates ω, which implies that ai is connected to Pi (in ω′ ∩Fτ ), which is
connected to Pj (in ω′[τ]), which in turn is connected to aj (in ω′ ∩Fτ ).

It follows that, at the last step of the coupling, if τ < ∞ and H occurs, there is a
probability (1−p)q

p+(1−p)q that f is closed in ω but open in ω′. To summarise, we find

φG[ωf = 1∣Ar/2] − φG[ωf = 1] = P[ωf = 0, ω′f = 1] >⌢ P[H and τ <∞] >⌢ P[τ <∞]. (4.28)

Finally, by Theorem 4.1(ii), the fact that φG[AR/2] >⌢ 1 and the comparison between
boundary conditions (CBC), we have

P[τ <∞] >⌢ P[ω and ω′ induce different b.c. on ΛcR/2] (4.29)

≥ P[ω′ ∈ AR/2 and ω ∉ AR/2]
>
⌢ CovG(Ar/2,AR/2) >⌢ φ1

ΛR
[Ar/2] − φ0

ΛR
[Ar/2],

where CovG is the covariance under φG and the last inequality is given by (4.16). Equa-
tions (4.27)–(4.29) prove

φξ
′

G [Ar/2] − φξG [Ar/2] >⌢ φ1
ΛR

[Ar/2] − φ0
ΛR

[Ar/2],

as desired. ◻

We are finally ready to prove Theorem 4.8.
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Proof of Theorem 4.8 We focus on the case where G is an inner flower domain on ΛR;
the case where G is an outer flower domain is identical. Recall that ξ and ξ′ form a
boosting pair of boundary conditions on G and that τ is the stopping time associated to
the coupling of Theorem 4.1 between φξ

′
G and φξG . Due to Lemmata 4.9, we find that

P[τ <∞] ≍ φξ
′

G [Ar/2] − φξG [Ar/2].

Now, Lemmata 4.11 and 4.11 indicate that the right-hand side above is of order ∆p(r,R),
and the proof is complete. ◻

4.3 ∆p controls the mixing rate: proof of Theorem 1.6(v)

For the lower bound, (4.19) gives that

max{∣ φp[A ∩B]
φp[A]φp[B] − 1∣ ∶ A ∈ F (Λr),B ∈ F (Z2 ∖ΛR)} ≥

φp[Ar/2 ∩AR]
φp[Ar/2]φp[AR]

− 1 >
⌢ ∆p(r,R).

For the upper bound, use the spatial Markov property (SMP) to get that for every A ∈
F (Λr) and B ∈ F (Z2 ∖ΛR),

∣ φp[A ∩B]
φp[A]φp[B] − 1∣ ≤ max{∣

φξ
′

ΛR,p
[A]

φξΛR,p[A]
− 1∣ ∶ ξ, ξ′ b.c. on ∂ΛR}. (4.30)

Now, consider the coupling P between ω0 and ω1 constructed in Theorem 4.8 on ΛR∖Λ2r and
boundary conditions 0 and 1 respectively on ΛR (which form a boosting pair). By applying
the same decision tree for the boundary conditions ξ and ξ′, we obtain two additional
configurations ωξ, ωξ

′
with laws φξΛR and φξ

′
ΛR

, respectively, and such that ω0 ≤ ωξ ≤ ω1

and ω0 ≤ ωξ′ ≤ ω1. If ζ and ζ ′ are the boundary conditions induced on ∂Λ2r by ω0 and ω1,
we see that

φξ
′

ΛR,p
[A] − φξΛR,p[A] ≤ P[ζ ≠ ζ ′]max

ψ
φψΛ2r,p

[A] <⌢ ∆p(r,R)φξΛR,p[A],

where in the second inequality we used Theorem 4.1 as well as the mixing property to
replace φψΛ2r,p

[A] by φξΛR,p[A]. This concludes the proof.

4.4 Quasi-multiplicativity of ∆p: proof of Theorem 1.6(ii)

The following corollary is a slight generalisation (in the introduction it is the case r = 0
only) of the quasi-multiplicativity property of Theorem 1.6.

Corollary 4.12 (Quasi-multiplicativity of ∆p) For any p and r < n < R ≤ L(p),

∆p(r,R) <⌢ ∆p(r, n)∆p(n,R) <⌢ ∆p(r,R). (4.31)

Proof Let P be the coupling between φ1
ΛR

and φ0
ΛR

in Ann(n,R) given by Theorem 4.1(i)
and let ζ and ζ ′ be the boundary conditions induced by ω and ω′ on ∂Λn. Complete the
coupling inside Λn by an arbitrary increasing coupling of φζΛn and φζ

′
Λn

. Write E for the
expectation associated to P.

50



On the one hand, Theorem 4.8 and the comparison between boundary conditions (CBC)
yields

∆p(r,R) = E[1{ζ≠ζ′}(φζ
′

Λn
[C (Λr)] − φζΛn[C (Λr)])]

≤ P[ζ ≠ ζ ′](φ1
Λn[C (Λr)] − φ0

Λn[C (Λr)])
<
⌢ ∆p(n,R)∆p(r, n).

On the other hand, recall that when τ < ∞, Fτ is a 1/2-well-separated inner flower
domain on Λn and that ω[τ] and ω′[τ] induce a boosting pair of boundary conditions on Fτ .
Thus, Theorem 4.8 implies

∆p(r,R) ≥ E[1{τ<∞}(φ
ω′[τ]
Fτ

[C (Λr)] − φ
ω[τ]
Fτ

[C (Λr)])]
>
⌢ P[τ <∞]∆p(n,R)
>
⌢ ∆p(r, n)∆p(n,R).

◻

4.5 Mixing rate versus pivotality: proof of Theorem 1.6(v)

This section concerns the proof of (1.17). This property is not used in the rest of the
paper, but it proves that Kesten’s scaling relation does not extend with π4(p, r,R) instead
of ∆p(r,R).

The upper bound follows trivially from Proposition 2.9, hence we are left with proving

∆p(r,R) >⌢ (R/r)c π4(p; r,R), (4.32)

for some constant c > 0 and all p and r ≤ R ≤ L(p).

Remark 4.13 Note that the bound ∆p(r,R) >⌢ π4(p, r,R) follows readily from Theorems 4.1
and 4.8. Thus, it is the polynomial improvement of (R/r)c that is the core of the above
inequality. The rest of the section is devoted to the proof of (4.32).

We will use the following notation. Let r < R, F be an outer flower domain on Λr

and G be an inner flower domain on ΛR, each containing exactly four petals denoted
by P1, . . . , P4 and P ′

1, . . . , P
′
4, respectively. Then ξ

1 (resp. ξ0) are the boundary conditions
on F which are coherent with its flower domain structure and in which the primal petals P1

and P3 are wired (resp. not wired) together. The similarly defined boundary conditions
on G are written ζ1 and ζ0, respectively.

For i, j ∈ {0, 1}, denote by φξ
i∪ζj

F∩G the measure on the subgraph F ∩G with the boundary
condition ξi ∪ ζj which is the partition of ∂(F ∩ G ) = ∂F ∪ ∂G given by the union of the
partitions ξi of the inner boundary and ζj of the outer one.

For configurations on F ∩ G , define the events

A4(F ,G ) ∶= {P1
ω←→ P ′

1, P3
ω←→ P ′

3, P2
ω∗←→ P ′

2, P4
ω∗←→ P ′

4},

Ã4(F ,G ) ∶= {P1
ω′←→ P ′

1, P3
ω′←→ P ′

3, P2
ω∗←→ P ′

2, P4
ω∗←→ P ′

4}.

Also write φξ
i∪1

F∩ΛR
and φξ

i∪0
F∩ΛR

for the measure on F ∩ΛR with boundary conditions ξi

on ∂F and respectively wired and free boundary conditions on ∂ΛR. Define A4(F ,R)
and Ã4(F ,R) as in the last display, with P ′

1, . . . , P
′
4 all replaced by ∂ΛR.
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The following lemma states that the probability of the four-arm event A4(F ,G )
increases substantially if we allow the primal arms to be in ω′ rather than in ω. It
is particularly important in the lemma below that F and G are not assumed to be
well-separated.

Lemma 4.14 There exists δ > 0 such that the following holds. For any p ∈ (0,1) and 1 ≤
r ≤ L(p), any outer flower domain F on Λr and any inner flower domain G on Λ2r,
both containing exactly four petals, and any i ∈ {0,1}, there exists a coupling P of φξ

i∪ζ0

F∩G

and φξ
i∪ζ1

F∩G such that

P[Ã4(F ,G )] ≥ (1 + δ)P[A4(F ,G )]. (4.33)

Proof Fix p, r, i, F and G as above. We will first treat the case where both flower
domains are well-separated, then use it to solve the general case.

Proof when F and G are 1/2-well-separated. Let x = (3n/2,0) and start the coupling by
exploring the double four-petal flower domain (Fin,Fout) between Λn/8(x) and Λn/4(x)
in ω. If this stage fails, reveal the rest of the configuration in an arbitrary increasing fashion.
If (Fin,Fout) exists, continue by revealing the configuration inside Fin. Write ξ0

in < ξ1
in for

the two boundary conditions on Fin which are coherent with the flower domain structure.
We now use the same argument as in the proof of (3.7) to study the connection

probability between P in
1 and P in

3 inside Fin in ω and ω′. The conditional law of ω in Fin is

(1 − λ)φξ
0
in

Fin
+ λφξ

1
in

Fin
with λ ∶= φξ

i∪ζ0

F∩G [P out
1

Fout←Ð→ P out
3 ∣Fin,Fout],

while that of ω′ dominates

(1 − λ′)φξ
0
in

Fin
+ λ′φξ

i
in

Fin
with λ′ ∶= φξ

i∪ζ1

F∩G [P out
1

Fout←Ð→ P out
3 ∣Fin,Fout].

Thus, λ′ − λ may be lower bounded by the probability that P out
1 and P out

3 are connected
in Fout to the two primal petals of G , but not to each other. By Theorem 2.1, we conclude
that λ′ − λ >

⌢ 1, and by Lemma 3.7 that

P[ω′ ∈ {P in
1

Fin←Ð→ P in
3 } but ω ∉ {P in

1
Fin←Ð→ P in

3 } ∣Fin,Fout] >⌢ 1. (4.34)

Finally, reveal the configurations on Fout.
Let H be the event that in Fout:
• P out

1 is connected to P1 in ω,
• P out

3 is connected to P ′
1 in ω,

• P3 is connected to P ′
3 in ω,

• P2, P ′
2 and P out

4 are connected in ω∗, and
• P4, P ′

4 and P out
2 are connected in ω∗.

In other words, H is the event that the connection between P in
1 and P in

3 inside Fin is
pivotal for A4(F ,G ). See Figure 9 for an illustration. Theorem 2.1 and the well-separation
of F , Fout and G imply that

P[H ∣Fin,Fout and (ω,ω′) on Fin] >⌢ 1. (4.35)

Now, since A4(F ,G ) implies the occurrence of Ã4(F ,G ), we conclude that

P[Ã4(F ,G )] − P[A4(F ,G )] ≥ P[(Fin,Fout) exist, P out
1

Fin←Ð→ P out
3 in ω′ but not in ω, H].

Finally, (4.34), (4.35) and Lemma 3.4 together imply that the right-hand side is larger
than c0 > 0. This concludes the proof of (4.33) when F and G are 1/2-well-separated.
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P1

P2

P3

P4

P ′
1

P ′
4

P ′
2

P ′
3

P out
1

P out
2

P out
3

P out
4

Fin

Figure 9: In the graph F ∩ G , we first explore the double four-petal flower domain
(Fin,Fout), then reveal the configurations in Fin and Fout. IfH occurs (see the blue paths),
then A4(F ,G ) depends on the connection inside Fin between its primal petals. If this
connection occurs in ω′ but not in ω, then the configurations are in Ã4(F ,G )∖A4(F ,G ).

Proof when F and G are not 1/2-well-separated. We will construct the coupling P
between φξ

i,ζ0

F∩G and φξ
i,ζ1

F∩G in two steps. We start by exploring the outer flower domain F

between Λr and Λ5r/8 in ω and the inner flower domain G from Λ2r to Λ7r/8 also in ω. Say
that (F ,G ) is good if

• F and G each contain exactly four petals and are 1/2-well-separated;
• the four petals of F are connected in F ∖F to the corresponding petals of F by

paths of alternating types in ω;
• the four petals of G are connected in G ∖G to the corresponding petals of G by paths

of alternating types in ω.
If (F ,G ) is not good, complete (ω,ω′) inside F ∩G using an arbitrary increasing coupling.
When (F ,G ) is good, the first case may be applied to F and G , and provides a way to
complete (ω,ω′) inside F ∩ G so that

P[Ã4(F ,G ) ∖A4(F ,G ) ∣ (F ,G ) good] >⌢ 1,

Moreover, notice that in this case A4(F ,G ) and Ã4(F ,G ) occur if and only if A4(F ,G )
and Ã4(F ,G ), respectively, do. By summing the display above, we conclude that

P[Ã4(F ,G )] − P[A4(F ,G )] >⌢ P[(F ,G ) good].

Finally, it is a standard consequence of the RSW theory (specifically of the separation of
arms) that

P[(F ,G ) good] >⌢ P[A4(F ,G )],

where the constant in >
⌢ does not depend on F and G . The last two displays provide the

desired conclusion. ◻
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Corollary 4.15 For ρ large enough, p ∈ (0,1) and r < R ≤ L(p) with R = (ρ2 + 2)kr, any
outer flower domain F on Λr with exactly four petals and any i ∈ {0,1}, there exists an
increasing coupling P of φξ

i∪0
F∩ΛR

and φξ
i∪1

F∩ΛR
such that

P[Ã4(F ,R)] ≥ (1 + δ
2)
k P[A4(F ,R)], (4.36)

where δ > 0 is the constant given by Lemma 4.14.

Proof The proof proceeds by induction on k. Consider the value of ρ > 1 fixed; it will be
chosen at the end of the proof and it will be apparent that it is independent of p, r, R
or F . The case k = 0 is trivially true.

Fix k ≥ 0 and assume that (4.36) holds for this value of k; we will now prove (4.36)
for k + 1. Let F be an inner flower domain on Λr and fix boundary conditions ξ ∈ {ξ0, ξ1}
on ∂F . The coupling P is built in three steps:

Step 1: Explore the inner flower domain from ∂Λ2rρ to ∂Λ2r and the outer one from ∂Λ2rρ

to ∂Λ2rρ2 in ω; call these Gin and Gout, respectively. We will abuse notation by identify-
ing (Gin,Gout) with the entire configuration (ω,ω′) on G c

in ∩ G c
out. Say that (Gin,Gout) is

good if both Gin and Gout have exactly four petals P in
1 , . . . , P

in
4 and P out

1 , . . . , P out
4 , respec-

tively, and if in ω ∩ (G c
in ∩ G c

out) there exist open paths connecting P in
1 to P out

1 and P in
3

to P out
3 and dual-open paths connecting P in

2 to P out
2 and P in

4 to P out
4 . As before, we use

the notation ζ0
in, ζ

1
in for the two boundary conditions on Gin coherent with it being a flower

domain, and ζ0
out and ζ1

out for those on Gout.

Stage 2: If (Gin,Gout) is not good, we sample the rest of the configurations according to
an arbitrary increasing coupling. If (Gin,Gout) is good, observe that the law of ω in Gout,
conditionally on the revealed set, is a linear combination

(1 − λ)φζ
0
out∪0

Gout∩ΛR
+ λφζ

1
out∪0

Gout∩ΛR
where λ ∶= φξ∪0

F∩ΛR
[P in

1
Gin←→ P in

3 ∣ (Gin,Gout)].

Moreover, the conditional law of ω′ dominates

(1 − λ)φζ
0
out∪1

Gout∩ΛR
+ λφζ

1
out∪1

Gout∩ΛR
, (4.37)

for the same value λ.
Since Ã4(Gout,R) is increasing in ω′ and decreasing in ω, we may use (4.36) for k

(which is our induction hypothesis) applied between Gout and ΛR, once with the boundary
conditions ζ0

out on Gout and once with the boundary conditions ζ1
out, to produce an increasing

coupling of ω and ω′ on Gout so that

P[Ã4(Gout,R)∣ (Gin,Gout) good] ≥ (1 + δ
2)
k P[A4(Gout,R)∣ (Gin,Gout) good]. (4.38)

Step 3: Finally, we sample (ω,ω′) in Gin ∩F according to a specific coupling between the
measures in this region, with boundary conditions induced by the previously revealed parts
of ω and ω′, respectively. Recall that this stage is reached only if (Gin,Gout) is good and
that the revealed configurations suffice to decide whether Ã4(Gout,R) occurred or not.

If Ã4(Gout,R) did not occur, complete the coupling in an arbitrary increasing way.
If Ã4(Gout,R) did occur, then the boundary conditions induced by the already revealed
parts of ω on Gin are equal to ζ0

in. Indeed, in ω ∩Gout, P out
1 and P out

3 are disconnected from
each other due to the dual arms. On the contrary, the boundary conditions induced by the
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revealed region of ω′ on Gin dominate ζ1
in, since in ω′ ∩ Gout, P out

1 and P out
3 are connected

to ∂ΛR, which is wired. Thus, we may apply Lemma 4.14 to continue the coupling so that

P[Ã4(F ,Gin)∣ (Gin,Gout) good and Ã4(Gout,R)]
≥ (1 + δ)P[A4(F ,Gin)∣ (Gin,Gout) good and Ã4(Gout,R)]. (4.39)

This concludes the construction of the coupling P; next we show that P satisfies (4.36).

If (Gin,Gout) is good and Ã4(Gout,R) and Ã4(F ,Gin) both occur, then so does Ã4(F ,R).
By (4.38), (4.39), and the fact that (Gin,Gout) are determined by ω alone, we find

P[Ã4(F ,R)]
≥ (1 + δ)(1 + δ

2)
k ∑
(Gin,Gout) good

φξ∪0
F [(Gin,Gout)]φξ∪0

F [A4(Gout,R) ∩A4(F ,Gin)∣ (Gin,Gout)]

= (1 + δ)(1 + δ
2)
k ∑
(Gin,Gout) good

φξ∪0
F [(Gin,Gout)]φξ∪0

F [A4(F ,R)∣ (Gin,Gout)]

= (1 + δ)(1 + δ
2)
kφξ∪0

F [A4(F ,R) and (Gin,Gout) good]. (4.40)

The first equality is due to the fact that, conditionally on a good (Gin,Gout), A4(F ,R)
occurs if and only if both A4(Gout,R) and A4(F ,Gin) do. The last equality is obtained
directly by summation.

Observe now that for A4(F ,R) to occur, Gin and Gout need to have at least four petals
each. Moreover, if they each have exactly four petals, then these need to be connected in
such a way that (Gin,Gout) is good. Thus

φξ∪0
F [A4(F ,R), (Gin,Gout) not good] ≤φξ∪0

F [A4(F ,R),Gin has at least 6 petals]
+φξ∪0

F [A4(F ,R),Gout has at least 6 petals]. (4.41)

We will argue that both of the terms in the right-hand side are small compared to the
quantity φξ,0F [A4(F ,R)], provided ρ is large enough.

Indeed, due to the quasi-multiplicativity of the four-arm event – here applied to the
slightly unusual event A4(F ,R) – and the mixing property (Mix), there exists a universal
constant C (that does not depend on F , p, r or R) such that

φξ∪0
F [A4(F ,R),Gin has at least 6 petals] ≤ Cφξ∪0

F [A4(F ,2r)]φξ∪0
F [A4(2ρr,R)]π6(2r,2ρr)

≤ C2φξ∪0
F [A4(F ,R)]π6(2r,2ρr)

π4(2r,2ρr)
.

Due to Theorem 2.1, ρ > 0 may be chosen independently of F , p, r or R so that

C2π6(2r,2ρr)
π4(2r,2ρr)

≤ δ/4.

Assuming this is the case, and by the same reasoning for the second term of (4.41), we find

(1 + δ)φξ,0F [A4(F ,R), (Gin,Gout) good] ≥ (1 + δ/2)φξ,0F [A4(F ,R)],

which, when inserted in (4.40), proves (4.36) for R = (ρ2 + 2)k+1r. ◻
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Proof of (4.32) Fix δ > 0 and ρ given by Corollary 4.15. Due to Theorem 1.6(ii), it
suffices to prove the statement for R = 2(ρ2 + 2)kr. From now on, fix such values r and R.

We use the same notation as in the proof of Corollary 4.15 and construct a coupling P
between φ0

ΛR
and φ1

ΛR
similar to that of the previous proof.

First, explore the double four-petal flower domain between Λr and Λ2r; call it (Gin,Gout).
If no such double four-petal flower domain exists, proceed with an arbitrary coupling.
If (Gin,Gout) exists, use the coupling provided by Corollary 4.15 to complete (ω,ω′) in Gout

so that,

P[A4(Gout,R) ∣ (Gin,Gout)] ≥ (1 + δ
2)
k P[A4(Gout,R) ∣ (Gin,Gout)]. (4.42)

Finally, use an arbitrary increasing coupling inside Gin.
When (Gin,Gout) exists and Ã4(Gout,R) occurs, the boundary conditions imposed by

the revealed portions of ω and ω′ are equal to ζ0
in and dominate ζ1

in, respectively. Using
Theorem 3.6 and Lemma 3.4, we conclude that

∆p(r,R) = P[ω′ ∈ C (Λr), ω ∉ C (Λr)]
>
⌢ P[Ã4(Gout,R), (Gin,Gout) exists]
>
⌢ (1 + δ

2)
kP[A4(Gout,R), (Gin,Gout) exists]

>
⌢ (R/2r)επ4(r,R),

where ε = log(1 + δ
2)/ log (ρ2 + 2) > 0. ◻

5 Derivatives in terms of ∆p

5.1 Derivatives for crossing and arm events

In this section we obtain expressions for the derivatives of probabilities of crossing events
and arm events in terms of ∆p. In addition, we upper bound the derivative of the mixing
rate ∆p by similar expressions. The relevant results are Proposition 5.1 and 5.6, respectively.
These will hold within the critical window, and are instrumental in proving the main
stability results Theorem 1.4 and (1.16).

We start by a proposition which states a slightly weaker form of Corollary 1.7, but
extends the expression to logarithmic derivatives of probabilities of arm events.

Proposition 5.1 Fix η > 0. For p ∈ (0,1) and every η-regular quad (D , a, b, c, d) at
scale R ≤ L(p),

R2∆p(R) +
L(p)

∑
`=R

`∆p(`)∆p(R, `) <⌢ d
dpφp[C (D)] <⌢

R

∑
`=1

`∆p(`) +
L(p)

∑
`=R

`∆p(`)∆p(R, `), (5.1)

where the constants in <
⌢ depend on η. Moreover, for any σ ∈ {0, 1}k and any r ≤ R ≤ L(p),

R2∆p(R) +
L(p)

∑
`=R

`∆p(`)∆p(R, `) <⌢ d
dp logφp[Aσ(r,R)] <⌢

R

∑
`=1

`∆p(`) +
L(p)

∑
`=R

`∆p(`)∆p(R, `),

where the constants in <
⌢ depend on σ.
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After proving Proposition 1.8 in the next section, we may use the quasi-multiplicativity
of ∆p to replace the first term ∑`≤R `∆p(`) in the upper bounds above by R2∆p(R), hence
deducing an up to constant estimate on the derivative. This is stated in Corollary 7.1.

Remark 5.2 The formula (5.1) for the derivative of the crossing probability of D is
significantly different than the one for percolation, since edges far from D – which correspond
to the second term in the formula – may contribute substantially. Indeed, if we accept the
asymptotic ∆(r,R) ≍ (r/R)ι, and if ι < 1, then the edges at distance L(p) contribute most
to (5.1); when ι > 1 however, the derivative is governed by the contribution of edges close
to D . See Section 8.2.4 for consequences of these two types of behaviour.

The proof of Proposition 5.1 is based on the following lemma, which controls the
influence of each edge on a crossing event. Below, we call e a (open) r-pivotal in ω
for a crossing event in (D , a, b, c, d) if ω contains a crossing of D from (ab) to (cd),
but ω ∩ (D ∖Λr(e)) does not. Call this event Pivr,e(D).

Lemma 5.3 There exists c > 0 such that, for any η > 0, the following holds. For p ∈
(0,1), R ≤ L(p), every η-regular quad (D , a, b, c, d) of size R and every edge e at a
distance n from ∂D ,

∆p(R) <⌢ Covp[ωe;C (D)] <⌢
3R

∑
r=n/2

∆p(r)
r

φp[Pivr,e(D)] if n ≤ 2R, (5.2)

Covp[ωe;C (D)] ≍ ∆p(n)∆p(R,n) if 2R ≤ n ≤ 2L(p), (5.3)

Covp[ωe;C (D)] <⌢ ∆p(L(p))∆p(R,L(p))e−cn/L(p) if n ≥ 2L(p), (5.4)

where the constants in ≍ and <
⌢ depend on η.

The same bounds hold with Covp[ωe;Aσ(r,R)]/φp[Aσ(r,R)] instead of Covp[ωe;C (D)],
with constants which depend on σ; n should then be replaced with the distance from e
to ∂Ann(r,R).

Remark 5.4 Due to the choice of D , all edges e inside D are in case (5.2). By (RSW),
φp[Pivr,e(D)] is uniformly bounded away from 0 for all R ≤ r ≤ 2R. These terms of the
sum account for a contribution of order at least ∆p(R) to the right-hand side of (5.2).
When e is in the “bulk” of D (that is at a distance of order R from Dc), the lower and
upper bounds in (5.2) are comparable.

In addition we point out that the same results hold for covariances under a measure φξG
for any sub-graph G of Z2 that contains Λ2R, any boundary conditions ξ, and any edge e
closer to D than to Gc. The proof below adapts readily.

Theorem 1.6(i) is a particular case of Lemma 5.3.

Proof of Theorem 1.6(i) Apply (5.2) and observe that the right-hand side is smaller
than ∑Rr=ηR 1

r∆p(r) <⌢ ∆p(R). ◻
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x

0
Λn/2

Λn/4(x)

D

Figure 10: In blue, the edges discovered until τ1. In red, the edges discovered between τ1

and τ2. Finally in green, the edges that are discovered afterwards. Note that the domain
D is a priori much smaller than the box Λn/2.

Proof of Lemma 5.3 We will prove here formulas for the crossing of a quad (D , a, b, c, d);
the proof for arm events is similar and entails standard adaptations. Write C instead
of C (D). Recall that

Cov[ωe;C ] = φ[ωe](φ[C ∣ωe = 1] − φ[C ]) ≍ φ[C ∣ωe = 1] − φ[C ∣ωe = 0].

We will prove each of the equations separately, starting with the second.

Proof of (5.3): Construct an increasing coupling P between φ[⋅ ∣ωe = 0] and φ[⋅ ∣ωe = 1]
producing configurations ω and ω′ as follows: the coupling contains three stages based on
Theorem 4.1 (ii), Lemma 3.14 and Theorem 4.8, respectively. We refer to Figure 10 for a
picture.

1. Apply the coupling inside Λn/4(e) between φ[⋅ ∣ωe = 0] and φ[⋅ ∣ωe = 1] using the
procedure of Theorem 4.1(ii), up to the associated stopping time, which we denote
by τ1. If τ1 =∞, continue the coupling using an arbitrary increasing coupling. Recall
that when τ1 < ∞, Fτ1 is a 1/2-well-separated outer flower domain on Λn/4 and
that ω[τ1] and ω

′
[τ1]

induce a boosting pair of boundary conditions on Fτ1 .

2. Continue the coupling on Λc
n/2 between φ

ω′[τ1]
Fτ1

and φ
ω[τ1]
Fτ1

using the procedure of
Lemma 3.14, up to the associated stopping time, which we denote by τ2. If τ2 =∞,
continue the coupling using an arbitrary increasing coupling. Recall that when τ2 <∞,
Fτ2 is a 1/2-well-separated inner flower domain on Λn/2 and that ω[τ2] and ω′

[τ2]
induce a boosting pair of boundary conditions on Fτ2 .

3. Complete the coupling inside Fτ2 using an arbitrary increasing coupling of φ
ω′[τ2]
Fτ2

and φ
ω[τ2]
Fτ2

.
For the upper bound observe that, since D ⊂ Λn/2 and Λn/2(e) are disjoint, if ζ and ζ ′ are
the boundary conditions induced on Fτ1 , Theorem 4.8 gives

φ[C ∣ωe = 1] − φ[C ∣ωe = 0] ≤ (φ1
Λn/2[C ] − φ0

Λn/2[C ])P[ζ ≠ ζ ′] <⌢ ∆p(R,n/2)∆p(n). (5.5)

Finally, ∆p(R,n/2) may be replaced by ∆p(R,n) due to (4.24). For the lower bound,
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Theorem 4.8 gives

φ[C ∣ωe = 1] − φ[C ∣ωe = 0] = P[ω′ ∈ C , ω ∉ C ]

≥ E[1{τ2<∞}(φ
ω′[τ2]
Fτ2

[C ] − φω[τ2]
Fτ2

[C ])]

>
⌢ P[τ1 <∞]P[τ2 <∞ ∣ τ1 <∞]∆p(R,n/2).

The second term above is of constant order by Lemma 3.14. The first term is of or-
der ∆p(1, n/4) by Theorem 4.8. Since ∆p(1, n/4) ≥ ∆p(n) and ∆p(R,n/2) ≥ ∆p(R,n), we
obtain the result. ◇
Proof of (5.4): We focus here on the case p < pc; when p > pc the proof is obtained by
duality. Construct the following coupling P between φp[⋅ ∣ωe = 0] and φp[⋅ ∣ωe = 1]:

1. Use the coupling given by Theorem 4.1(ii) between φp[⋅ ∣ωe = 0] and φp[⋅ ∣ωe = 1]
inside ΛL(p)(e); let ξ and ξ′ be the boundary conditions induced by the revealed
configurations ω and ω′ on the boundary of Z2 ∖ΛL(p)(e);

2. Continue the coupling in Z2∖ΛL(p) using the decision tree that explores the connected
components of ΛL(p)(e) in ω′ (see Example 2 of Section 2.3); let ζ, ζ ′ be the boundary
conditions induced by the revealed regions of ω and ω′ on ∂ΛL(p);

3. Use an arbitrary increasing coupling of φζΛL(p),p
and φζ

′
ΛL(p),p

.
If ξ = ξ′, then ω and ω′ are identical in the complement of ΛL(p)(e). Moreover, as explained
in Section 2.3, for ζ to differ from ζ ′, ω′ must contain a connection between ΛL(p)(e)
and ΛL(p). Thus, we find

φp[C ∣ωe = 1] − φp[C ∣ωe = 0] ≤ E[1{ξ≠ξ′}1ω′∈{ΛL(e)←→ΛL(p)}(φ
ζ′
ΛL,p

[C ] − φζΛL,p[C ])] (5.6)

<
⌢ ∆p(L(p))φ1

Z2∖ΛL(p),p[ΛL(p) ←→ ΛL(p)(e)]∆p(R,L(p)).

In the second inequality we used the monotonicity of boundary conditions (CBC) and
Theorem 4.8. Finally, due to the mixing property of Proposition 2.9 and Proposition 2.12,
the second term of the last product is bounded above by exp[−cn/L(p)] for some positive
constant c. ◇
Proof of (5.2): For the lower bound, translate D and e such that e ∉ ΛηR/2 and ΛηR/2 ⊂ D .
Since D is assumed η-regular, this is possible. We produce a coupling P between φp[⋅ ∣ωe = 0]
and φp[⋅ ∣ωe = 1] as follows.

1. Explore the double four-petal flower domain (Fin,Fout) in ω between ΛηR/4 and
ΛηR/8; if no such double four-petal flower domain exists, reveal the rest of the
configurations in arbitrary order.

2. Continue P by sampling ω and ω′ inside Fin.
3. Reveal the configurations in Fout.
Now, if (Fin,Fout) exists, the argument of (5.3) shows that

φ[P out
1

Fout←Ð→ P out
3 ∣ωe = 1,Fin,Fout] − φ[P out

1
Fout←Ð→ P out

3 ∣ωe = 0,Fin,Fout] >⌢ ∆p(R).

Indeed, e is at a distance comparable to R from (Fin,Fout); for details see the proof of
point (3.7) of Theorem 3.6. Note that this is simply a statement on the conditional probabil-
ity of the connections between the petals P1 and P3, we do not reveal the configurations ω
and ω′ on Fout.

Then, as in the proof of (3.7), the previous estimate gives that

φ[P in
1

Fin←Ð→ P in
3 ∣ωe = 1,Fin,Fout] − φ[P in

1
Fin←Ð→ P in

3 ∣ωe = 0,Fin,Fout] >⌢ ∆p(R).
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Let H be the event that P out
1 and P out

3 are connected in ω ∩Fout ∩D to the arcs (ab)
and (cd), respectively, while P out

2 and P out
4 are connected in ω∗ ∩Fout ∩D to the arcs (bc)

and (da) respectively. By Theorem 2.1,

φ[H ∣ (Fin,Fout) and (ω,ω)′ on F c
out] >⌢ 1.

Finally, when H occurs, D is crossed if and only if P in
1 and P in

3 are connected inside Fin.
As a consequence, the two displays above and Lemma 3.4 conclude that

φp[C ∣ωe = 1] − φp[C ∣ωe = 0]

>
⌢ P[(Fin,Fout) exists]P[P in

1
ω′∩Fin←ÐÐÐ→ P in

3 but P in
1 /ω∩Fin←ÐÐ→ P in

3 ∣ (Fin,Fout) exists]
>
⌢ ∆p(R).

We turn to the upper bound. For s > ⌈logn⌉, let Ps = Piv2s,e(D) ∖Piv2s−1,e(D), and
set Ps = Piv2s,e(D) when s = ⌈logn⌉. These events partition C , and we find that

Covp(ωe,C ) = ∑
s>logn

(φ[ωe∣Ps] − φ[ωe])φp[Ps]

≤ ∑
s>logn

(φ1
Λ2s−1(e)

[ωe] − φ0
Λ2s−1(e)

[ωe])φp[Piv2s,e(D)]

<
⌢ ∑
r≥n/2

1
r∆p(r)φp[Pivr,e(D)].

where the first inequality is based on the spatial Markov property, the fact that Ps is
measurable in the edges outside Λ2s−1 and the inclusion Ps ⊂ Piv2s,e(D). The second
is a simple reindexing of the sum that uses (4.24) and the monotonicity in r of the
events Pivr,e(D). To obtain the upper bound in (5.2), it suffices to notice that Pivr,e(D)
may not occur for r ≥ 3R. ◻

Remark 5.5 The upper bounds in (5.3) and (5.4) may be shown to apply to any event H
which depends only on the edges in ΛR. Indeed, for H increasing the proof above applies
mutatis mutandis. When H is not increasing, some additional care needs to be taken when
bounding ∣φ[H ∣ωe = 1] − φ[H ∣ωe = 0]∣ in (5.5) and (5.6). Notice, however, that in both
equations one may produce a coupling of φ[⋅ ∣ωe = 0] and φ[⋅ ∣ωe = 1] that produces equal
configurations inside ΛR with probability 1 −O(∆p(R)) and 1 −O(∆p(R,n)), respectively.
As a consequence, the terms on the right-hand side in (5.3) and (5.4) bound from above the
distance in total variation between the restrictions of φ[⋅ ∣ωe = 1] and φ[⋅ ∣ωe = 0] to ΛR.

Proof of Proposition 5.1 We focus here on the expression for the crossing probability
of a quad; the proof for the derivatives of probabilities of arm events is identical.

Fix p and some η-regular quad (D , a, b, c, d) at scale R ≤ L(p). By grouping the
contributions of different edges depending on their distance to the origin and the boundary
of ΛR, and using Lemma 5.3 we have

d
dpφp[C (D)] = 1

p(1 − p)∑e
Covp(ωe,C (D)) >⌢ R2∆p(R) +

L(p)

∑
n=R

n∆p(n)∆p(R,n),

since there are order R2 edges in the case (5.2) and order n edges at distance n from ∂D .
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For the upper bound we use the three upper-bounds of Lemma 5.3. We split the
edges into three categories: those at a distance less than 2R from ∂D , those at a distance
between 2R and L(p) from ∂D , and those at a distance larger than L(p) from ∂D .

For the two last categories, keeping in mind that there are O(n) edges at a distance
exactly n ≥ 2R from ∂D , and applying (5.3) and (5.4), we have

∑
e∶dist(e,∂D)≥2R

Covp(ωe,C (D)) <⌢
2L(p)

∑
n=2R

n∆p(n)∆p(R,n) + ∑
n≥2L(p)

n∆p(L(p))∆p(R,L(p))e−cn/L(p)

<
⌢ R

2∆p(R) +
L(p)

∑
n=R

n∆p(n)∆p(R,n). (5.7)

Indeed, the second sum of the middle term may be ignored due to the exponential factor.
The first term in the second line is only important in the particular situation when R is
very close to L(p).

We turn to the edges in the first category: those close to ∂D . We refer to Figure 11
for an illustration. Fix n ≤ 2R. We start by studying the contribution to the derivative
of the edges at a distance n of the arc (ab) (the cases of other arcs (bc), (cd) and (da)),
and we precisely focus on the term in the right-hand side of (5.2) for these edges and
corresponding to some fixed n/2 ≤ r ≤ 3R. Consider a family of vertices a = x0, . . . , xk
found counterclockwise along (ab) at a `∞ distance r from each other, with the last
vertex xk at distance at most r of b (when r is large k is equal to 0). Consider the event Ei
that (xi−4xi−3) is dual connected to (da) and (xi+3xi+4) is connected to (cd), with the
convention that if i ≤ 4/η or i ≥ k − 4/η then Ei is the full event. We claim that, for
every e ⊂ Λr(xi),

φp[Pivr,e(D)] <⌢ φp[Ei].

Indeed, the inequality is trivial when i ≤ 4/η or i ≥ k − 4/η since E is the full event. For
the remaining values of i (which exist only when r ≪ ηR), observe that for Pivr,e(D) to
occur, Λ2r(xi) needs to be connected by a primal path to (cd) and by dual paths to (bc)
and (da). In particular, the interface starting from d and delimiting the primal cluster
of (cd) in D necessarily hits Λ2r(xi) before hitting the arc (ab). Let Γ be the section of
this interface from d up to the first time it hits Λ2r(xi). Conditionally on Γ, one may
use Theorem 2.1 to construct a dual path connecting Γ to (xi−4xi−3) and a primal path
connecting Γ to (xi+3xi+4) with probability uniformly bounded away from zero. These
paths, together with Γ, induce the connections required by Ei.

Notice now that any edge at distance n from (ab) is contained in at least one Λr(xi).
Conversely there are O(r) vertices in each Λr(xi) at a distance exactly n from (ab). Thus,
summing over the edges e at a distance n from (ab) gives

∑
e∶dist(e,(ab))=n

φp[Pivr,e(D)] <⌢ r
k

∑
i=0

φp[Ei] <⌢ r,

where the second inequality is due to the fact that at most O(1) events Ei can occur
simultaneously.

One may do the same with edges at a distance n of (bc), (cd) and (da). Finally,
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r

Figure 11: A depiction of the points x0, . . . , xk (note that xk is not necessarily equal to b).
The occurrence of Pivr,e(D) for some e ∈ Λr(xi) induces the existence of the exploration
path Γ (in red). When orienting Γ in the direction of its exploration, that is from d to
Λ2r(xi), Γ has dual open edges on its right and primal ones on its left. Thus, conditionally
on Γ, the blue paths occur with uniformly positive probability, and induce the occurrence
of Ei.

summing the previous displayed equation over r and using (5.2), we find

∑
e∶dist(e,∂D)≤2R

Covp(ωe,C (D)) <⌢
2R

∑
n=1

3R

∑
r=n/2

1
r∆p(r) ∑

e∶dist(e,∂D)=n

φp[Pivr,e(D)]

<
⌢

2R

∑
n=1

3R

∑
r=n/2

∆p(r) <⌢
R

∑
r=1

r∆p(r).

The above combined with (5.7) implies the upper bound in (5.1). ◻

5.2 Derivative for the mixing rate

Proposition 5.6 For every p and two edges e and f at a distance R ≤ L(p) of each other,

∣ d
dp log Covp(ωe, ωf)∣ <⌢

R

∑
`=1

`∆p(`) +
L(p)

∑
`=R

`∆p(`)∆p(R, `). (5.8)

Exactly as for crossing events, one may use the next section to replace ∑`≤R `∆p(`)
by R2∆p(R); see Corollary 7.1 of Section 7.

Remark 5.7 Since Covp(ωe, ωf) was shown in (5.3) to be comparable to ∆p(R)2, the
above should be understood as a bound on the logarithmic derivative of ∆p(R). Indeed, (5.8)
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combined with (5.3) yields

∣ log
∆p(R)
∆pc(R) ∣

<
⌢ ∫

p

pc
(
R

∑
`=1

`∆u(`) +
L(u)

∑
`=R

`∆u(`)∆u(R, `))du, (5.9)

for all p and R ≤ L(p). This inequality will be useful when R is of the same order as L(p),
in which case the terms with R ≤ ` ≤ L(p) may be absorbed by the first sum on the right-hand
side.

Proof Fix p, e and f as in the statement. Then

d
dpCovp(ωe, ωf) = ∑

g∈E
φp[ωeωfωg] − φp[ωeωf ]φp[ωg] − φp[ωfωg]φp[ωe] (5.10)

− φp[ωeωg]φp[ωf ] + 2φp[ωe]φp[ωf ]φp[ωg].

We will write these terms differently, depending on the position of g. First, consider an
edge g ∈ ΛR/2(e); the corresponding term may be written as

φp[ωf ](φp[ωeωg ∣ωf ] − φp[ωg ∣ωf ]φp[ωe] − φp[ωe∣ωf ]φp[ωg] − φp[ωeωg] + 2φp[ωe]φp[ωg]).
(5.11)

Write ` for the distance between e and g and set G ∶= Λ3`/2(e). For any event A depending
only on the edges in G, we have

φp[A] =∑
ξ

φp[Bξ]φξG,p[A] and φp[A ∣ωf ] =∑
ξ

φp[Bξ ∣ωf ]φξG,p[A],

where the sum is over all boundary conditions ξ imposed on G by the configuration outside
of G, and Bξ is the event that the boundary conditions induced on G are ξ. Thus, (5.11)
may be written as

φp[ωf ]∑
ξ

(φp[Bξ ∣ωf ] − φp[Bξ])(φξG,p[ωeωg] − φ
ξ
G,p[ωg]φp[ωe] − φ

ξ
G,p[ωe]φp[ωg] + φp[ωe]φp[ωg]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
F (ξ)

).

By adding and subtracting φξG,p[ωe]φ
ξ
G,p[ωg], we find

F (ξ) = CovξG,p(ωe, ωg) + (φξG,p[ωg] − φp[ωg])(φ
ξ
G,p[ωg] − φp[ωg]).

where CovξG stands for the covariance under the measure φξG,p. Next, we apply Lemma 5.3
to φξG,p instead of φp – notice that the choice of G ensures that both e and g are at a
distance of order ` from ∂G, and the lemma does indeed apply as explained in Remark 5.4
– to obtain

CovξG(ωe, ωg) <⌢ ∆p(`)2.

In addition, for any ξ, Theorem 4.8 yields

φξG,p[ωg] − φp[ωg] <⌢ ∆p(`) and φξG,p[ωe] − φp[ωe] <⌢ ∆p(`).

Then, (5.11) may be bounded above by

∑
ξ

∥F ∥∞ ⋅ ∣φp[Bξ ∣ωf ] − φp[Bξ]∣ <⌢ ∆p(R)∆p(`,R)∆p(`)2 ≍ ∆p(`)∆p(R)2, (5.12)
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since the total variation distance between the restrictions of φp[⋅ ∣ωf ] and φp to G is
bounded by a universal multiple of ∆p(R)∆p(`,R), as shown in Lemma 5.3 (see also
Remark 5.5). The second equivalence is given by the quasi-multiplicativity of ∆p (4.31).

Edges g ∈ ΛR/2(f) have the same contribution to (5.11) due to symmetry. Finally, we
consider edges g that are outside ΛR/2(e) ∪ΛR/2(f); write r for the distance between g
and e. Let G be the domain formed of the edges at a distance at least R/4 from the
segment uniting e and f ; notice that g is at a distance at least R/4 from G. Applying the
same argument as in the first case, with the roles of ωf and ωg inverted, we find that the
term corresponding to g in (5.10) is

φp[ωg]∑
ξ

(φp[ξ ∣ωg] − φp[ξ])(CovξG,p(ωe, ωf) + (φξG,p[ωe] − φp[ωe])(φ
ξ
G,p[ωf ] − φp[ωf ]))

<
⌢ ∆p(` ∧L(p))∆p(R, ` ∧L(p))e−cr/L(p)∆p(R)2

≍ ∆p(R)∆p(` ∧L(p))2e−cr/L(p), (5.13)

where the sum in the left-hand side is over all the boundary conditions ξ on G imposed
by the configuration outside of G. Indeed, by Lemma 5.3, the total variation distance
between the restrictions of φ[⋅ ∣ωg] and φ to G is bounded by a universal multiple of ∆p(`∧
L(p))∆p(R, ` ∧L(p))e−cr/L(p), while each term in the second parentheses of the left-hand
side is bounded by multiples of ∆p(R)2.

Summing now over g and using (5.12) and (5.13), we find

d
dpCovp(ωe, ωf) <⌢

R/2

∑
`=1

`∆p(`)∆p(R)2 + ∑
`>R/2

`∆p(R)∆p(` ∧L(p))2e−cr/L(p)

<
⌢ ∆p(R)2(

R

∑
`=1

`∆p(`) +
L(p)

∑
`=R

`∆p(R, `)∆p(`)).

In the second inequality, we use the exponential term to eliminate all terms with ` > L(p)
and (4.17) and (4.24) to adjust the range of ` in the sum. Finally, divide by Covp(ωe, ωf) ≍
∆p(R)2 to obtain the desired result. ◻

6 Lower bound on ∆p(r,R): proof of Proposition 1.8

In this section, we prove Proposition 1.8. The section will be divided in two as the
case 1 ≤ q < 4 is quite different from the case q = 4.

6.1 Lower bound on ∆p(r,R) for 1 ≤ q < 4

In this section, we assume that 1 ≤ q < 4. We will prove the following stronger statement.

Proposition 6.1 Fix 1 ≤ q < 4. There exists δ = δ(q) > 0 such that for p ∈ (0,1)
and r ≤ R ≤ L(p),

π4(p, r,R) >⌢ (r/R)2−δ. (6.1)

This implies (1.20) since ∆p(r,R) ≥ π4(p, r,R) by the observation at the beginning of
Section 4.5 (one does not even require the polynomial improvement (1.17)). Let us mention
that (6.1) is expected to fail for q = 4, which explains why the case q = 4 needs to be treated
separately.
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Proof By symmetry, we only need to treat the case p ≥ pc. The case p = pc was obtained
in a recent paper [DMT20, Prop. 6.8]. The argument extends readily to our setting.

Indeed, if E denotes the event that Λ3R contains both an open circuit and a dual open
circuit surrounding Λ2R, with the open one being connected to ∂Λ4R, then it is shown
in [DMT20] that

π4(p, r,R) ≥ φp[E] inf
D
φD ,p[Mr(D ,R)],

where the infimum is taken over all simply connected domains containing Λ2R and contained
in Λ3n and Mr(D ,R) is an increasing random variable defined in [DMT20, Sec. 1.5]. When
R ≤ L(p), Theorem 2.1 implies that φp[E] >⌢ 1. Moreover, since Mr(D ,R) is increasing,

inf
D
φD ,p[Mr(D ,R)] ≥ inf

D
φD ,pc[Mr(D ,R)] >⌢ (R/r)δ0 ,

for some universal δ0 > 0, where the last inequality is given by [DMT20, Prop. 1.4].
Combining the above displays produces the desired bound. ◻

Remark 6.2 The proof looks simple but we wish to insist that the whole difficulty of the
argument is in [DMT20].

6.2 Lower bound on ∆p(r,R) for q = 4

The reasoning of the previous section does not apply for q = 4, as it is expected that

π4(p, r,R) ≍ ( rR)2

(see Remark 6.11). Nevertheless, this is not contradictory with the fact that ∆p(r,R) ≥
δ( rR)2−δ as we know from Section 4.5 that ∆p(r,R) is polynomially larger than π4(p, r,R).
Since we do not currently know how to prove that π4(p, r,R) ≍ ( rR)2, we adopt a direct
approach to prove Proposition 1.8, that does not involve the comparison to π4(p, r,R).

Proof of (1.20) The lower bound on ∆p(r,R) follows directly from the combination of
the next two propositions, which respectively correspond to the required bound at pc and
the stability of ∆p below the characteristic length. ◻

Proposition 6.3 (Lower bound at pc) For q = 4, there exists δ0 > 0 such that for
every R ≥ 2r > 0,

∆pc(r,R) >⌢ π2(r,R)(r/R) >⌢ (r/R)2−δ0 . (6.2)

Proposition 6.4 (Stability of ∆) For q = 4, every p and 2 ≤ r ≤ R ≤ L(p),

∆p(r,R) ≍ ∆pc(r,R). (6.3)

The section is divided as follows. The proof makes use of the parafermionic observable
introduced by Smirnov [Smi10], we therefore start by recalling this notion. Then, we prove
each proposition in a separate section, in the order in which they are stated.
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6.2.1 Parafermionic observable: a crash-course

Since the parafermionic observable is used only in this section, we give minimal details
and refer to the literature, for instance the review article [Dum17] and the research
paper [DMT20] (which is implementing a reasoning very similar to the present one, with
similar notations). We also recommend that the reader take a look at Figures 12.

Parafermionic observables are usually defined in Dobrushin domains, but in the present
study we limit ourselves to situations where the wired arc is reduced to a single point,
and therefore the domain has free boundary conditions. We do, however, authorise the
domains to be non-simply-connected.

Fix a finite connected subgraph Ω of Z2 and a vertex x ∈ Ω with a neighbour x′ in the
infinite connected component of Z2 ∖Ω. Recall that Ω◇ is spanned by the edges of (Z2)◇
bordering the faces of (Z2)◇ that contain vertices of Ω. As such the vertices of Ω◇ have
either degree 2 or 4 in Ω◇ (here one should be careful when looking at a vertex of Ω◇ that
is corresponding to an edge outside of Ω with both endpoints in Ω: in this case we think
of this vertex as being split into two “prime ends” of degree 2 in Ω◇, but this case does
not occur for domains considered in this paper). Let ex be the first edge of Ω◇ bordering
the face of (Z2)◇ containing x, when going around said face in clockwise order, starting
from xx′.

For a configuration ω on Ω, let ω be the loop configuration on Ω◇ associated to ω. In
the loop configuration, the loop passing through ex is called exploration path; it is denoted
by γ = γ(ω) and is oriented counterclockwise, so as to have primal open edges on its left
and dual-open ones on its right. For an edge e ∈ γ, let Wγ(e, ex) be the winding of γ
between e and ex, that is the number of left turns minus the number of right turns taken
by γ when going from e to ex multiplied by π/2.

Definition 6.5 For (Ω, x) as above, the parafermionic observable F = FΩ,x is defined for
any (medial) edge e of Ω◇ by

F (e) ∶= φ0
Ω,pc,4[Wγ(e, ex)eiWγ(e,ex)

1e∈γ].

The parafermionic observable satisfies a very special property first observed in [Smi10]
(see also [Dum17, Thm. 5.16] for a statement with a similar notation). For every vertex
of Ω◇ with four incident edges in Ω◇,

4

∑
i=1

η(ei)F (ei) = F (e1) − iF (e2) − F (e3) + iF (e4) = 0, (6.4)

where e1, e2, e3 and e4 are the four edges incident to v, indexed in clockwise order, and η(ei)
is the complex number of norm one with same direction as ei and orientation from v towards
the other endpoint of ei. Summing this relation over all vertices of Ω◇ of degree four, we
obtain that

∑
e∈C

η(e)F (e) = 0, (6.5)

where C is the set of medial-edges of Ω◇ having exactly one endpoint of degree two in Ω◇,
and η(e) is the complex number of modulus one, collinear with the edge e and oriented
towards the outside of Ω.

Remark 6.6 This relation should be understood as stating that the contour integral of the
parafermionic observable along the boundary of Ω◇ is 0. While it is common to use the
above in simply connected domains, we insist that (6.5) is valid for any Ω as above (it is
important that x is on the exterior face).
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Figure 12: The primal and dual graphs in plain and dashed black lines. In bold (plain
and dashed respectively), the configurations ω and ω∗. The graph Ω◇ is in red and the
configuration ω in blue. The path γ(ω) is in bold blue. We also presented two examples
of edges e and e′, one for which the corresponding vertex of the primal graph has degree
three, and one for which it has degree two.

For random-cluster models with general values of q between 1 and 4, and the loop O(n)
models, a similar property was used to obtain estimates for the two-point functions, see
e.g. [DS12, DST17, DGPS17, DMT20]. Here, we propose a new use of this property.

For q = 4, the complex phase of the observable (that is eiWγ(e,ex)) is invariant under
addition of factors 2π to the winding. Therefore, it is (almost) determined by the orientation
of e. Indeed, for any oriented edge e and any ω such that γ passes through e

η(e)eiWγ(e,ex) =
⎧⎪⎪⎨⎪⎪⎩

+1 if γ is oriented like e,
−1 if γ is oriented opposite to e.

(6.6)

Moreover, for y ∈ ∂Ω (exclude from this explanation the situation where y has exactly
two opposite neighbours in Ω), there exist two edges e, e′ ∈ C bordering the face of (Z2)◇
containing y such that γ passes through e if and only if it passes through e′, see Figure 12.
When this happens and y is not equal to x, e and e′ may be chosen such that γ always
passes first through e towards the exterior of Ω, then through e′, towards the interior.
Finally, γ performs 4−dy positive π/2 turns between the passage through e and e′, where dy
is the degree of y inside Ω. Thus,

Wγ(e, ex) = Wγ(e′, ex) + (4 − dy)π/2. (6.7)

When y = x, the two contributions to (6.5) of e and e′ are 0 and 3π/2, respectively.
Inserting (6.6) and (6.7) into (6.5) yields

∑
y∈∂Ω
y≠x

(4 − dy)φ0
Ω[A(x, y)] = 3π

2 , (6.8)

where A(x, y) is the event that γ passes between y and its neighbour outside Ω. When y
has a neighbour in the infinite component of Ωc, then A(x, y) = {x←→ y}, but since we do
not ask Ω to be simply connected, this is not always the case for other y.

A more sophisticated analysis yields (6.8) also when some y ∈ C have exactly two
opposite neighbours in Ω.
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6.2.2 Lower bound on ∆pc(r,R) at pc: proof of Proposition 6.3

The second inequality follows from (2.4), we therefore focus on the first one. By subtract-
ing (6.8) for Ω = ΛR and Ω = Ann(r,R) with x = (0,R), we find

∑
y∈∂ΛR

(4 − dy)[φ0
ΛR

[A(x, y)] − φ0
Ann(r,R)[A(x, y)]] = ∑

y∈∂Λr

(4 − dy)φ0
Ann(r,R)[A(x, y)]. (6.9)

We will now estimate the terms on the left and right-hand sides of the above.

Remark 6.7 It is reasonable to expect that the left-hand side is of order Rπ+1 (R)2∆pc(r,R),
while the right one of order rπ+1 (R)π+1 (r)π2(r,R), which would produce the desired result.
Nevertheless, we are not able to prove this due to boundary terms near corners of the
inner box, which we cannot control. Instead, we will use a more sophisticated strategy. Let
us mention that the conjectural scaling limit of the model suggests that π+1 (r,R) ≍ (r/R)
and π2(r,R) ≍

√
r/R, which would imply that ∆pc(r,R) ≍

√
r/R.

First, on the right-hand side, the event A(x, y) occurs if and only if x and y are connected
in ω and Λr and ΛR are connected by a path in ω∗. Quasi-multiplicativity implies that

∑
y∈∂Λr

(4 − dy)φ0
Ann(r,R)[A(x, y)] ≍ π+1 (R)π2(r,R) ∑

k≤r/2

φ0
U[(k,0)←→ ∂Λr], (6.10)

where U ∶= {x ∈ Z2 ∶ x1 ≤ 0 or x2 ≤ 0} is the lower-left three-quarter plane.
On the left-hand side, for y ∈ ∂ΛR, A(x, y) corresponds to the event that x and y are

connected. Also, the measure φ0
Ann(r,R)

may be viewed as the measure in ΛR conditioned
on the event {Λr ≡ 0} that every edge with one endpoint in Λr−1 is closed. The previous
study of ∆pc(r,R) thus implies that for any r ≤ R/2,
φ0

ΛR
[A(x, y)] − φ0

ΛR
[A(x, y) ∣Λr ≡ 0] ≍ ∆pc(r,R)[φ0

ΛR
[A(x, y)] − φ0

ΛR
[A(x, y) ∣ΛR/2 ≡ 0]].

We deduce that

∑
y∈∂ΛR

(4 − dy)[φ0
ΛR

[A(x, y)] − φ0
Ann(r,R)[A(x, y)]] ≍ ∆pc(r,R)ΣR, (6.11)

where
ΣR ∶= ∑

y∈∂ΛR

(4 − dy)[φ0
ΛR

[A(x, y)] − φ0
ΛR

[A(x, y) ∣ΛR/2 ≡ 0]] (6.12)

is a constant that depends on R only. Inserting (6.10) and (6.11) into (6.9) gives

∆pc(r,R)ΣR ≍ π+1 (R)π2(r,R) ∑
k≤r/2

φ0
U[(k,0)←→ ∂Λr],

for any r ≤ R/2. Divide the relation above for an arbitrary r ≤ R/2 with the same relation
for r = R/2 (we use that ∆pc(r/2,R) ≍ ∆pc(r,R)) to find

∆pc(r,R) ≍ π2(r,R)
∑k≤r/2 φ0

U[(k,0)←→ ∂Λr]
∑k≤R/4 φ

0
U[(k,0)←→ ∂ΛR]

>
⌢ π2(r,R)(r/R). (6.13)

The inequality above is obtained by summing over j = 0, . . . ,R/r and k = 1, . . . , r/2 the
inequality below :

φ0
U[(k + rj/2,0)←→ ∂ΛR] ≤ φ0

U[(k,0)←→ ∂Λr],
which is a direct consequence of the comparison between boundary conditions (CBC).

Remark 6.8 Applying (6.13) with r = 1, the comparison between boundary conditions (CBC)
and (2.4) imply that

π1(R)∆pc(R) >⌢
π1(R)π2(R)

∑k≤R/4 φ
0
U[(k,0)←→ ∂ΛR]

≥ π1(R)π2(R)
1
4Rπ1(3R/4)

>
⌢ π2(R)/R >

⌢ R
c−2.
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ΛR

ΛR/4

ΛR/8

Ω = Ω(ω)

γ(ω)ex
x

∂inΩ

Figure 13: In grey the domain H (which is an topological R-annulus) carved by the
event F (in blue). In red, the exploration path γ = γ(ω) going around the boundary
vertex x.

6.2.3 Stability of ∆p(r,R): proof of Proposition 6.4

The proof is based on the following quantity. Call a subgraph Ω of Z2 an topological R-
annulus if it is of the form ΛR ∖H with H a simply connected domain such that ΛR/8 ⊂
H ⊂ ΛR/4; see Figure 13. The boundary of Ω is split into ∂ΛR and ∂inΩ ∶= ∂Ω ∖ ∂ΛR. Set

NΩ(p) ∶= ∑
y∈∂inΩ

φ0
Ω,p[y ←→ ∂ΛR/2].

The first observation is the following lemma stating that for q = 4 the quantity NΩ(p) does
not depend on the choice of the R-annulus Ω, or on the choice of p such that R ≤ L(p).

Lemma 6.9 For every p ≥ pc and R ≤ L(p),

sup
Ω

NΩ(p∗) ≍ sup
Ω

NΩ(pc) ≍ inf
Ω

NΩ(pc) ≍ inf
Ω

NΩ(p), (6.14)

where the infimum and supremum are taken over topological R-annuli.

Proof We start by proving that

sup
Ω

NΩ(pc) ≍ ΣR/π+1 (R) ≍ inf
Ω

NΩ(pc), (6.15)

where ΣR was introduced in (6.12) in the previous section.
Fix Ω an topological R-annulus and set x ∶= (0,R). Then, due to (2.1), for every y ∈ ∂inΩ,

φ0
Ω,pc[y ←→ x and ∂inΩ

∗←→ ∂ΛR] ≍ π+1 (R)φ0
Ω,pc[y ←→ ∂ΛR/2].
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In particular, we have that

NΩ(pc) ≍
1

π+1 (R) ∑y∈∂inΩ

φ0
Ω,pc[A(x, y)]. (6.16)

Subtracting (6.8) for the domains ΛR and Ω, and following the proof of Proposition 6.3,
we find that

∑
y∈∂inΩ

φ0
Ω,pc[A(x, y)] ≍ ΣR,

which concludes the proof of (6.15).
We now prove that for every p and R ≤ L(p),

inf
Ω

NΩ(p) <⌢ R2π4(p,R) <⌢ sup
Ω

NΩ(p), (6.17)

where the infimum and supremum are taken over topological R-annuli. Note that this
inequality implies the result. Indeed, sinceNΩ(p) is increasing in p and π4(p∗,R) = π4(p,R)
(by duality), the previous inequality implies that for p ≥ pc and R ≤ L(p) = L(p∗),

sup
Ω

NΩ(pc) ≥ sup
Ω

NΩ(p∗) >⌢ R2π4(p∗,R) = R2π4(p,R) >⌢ inf
Ω

NΩ(p) ≥ inf
Ω

NΩ(pc),

which combines with (6.15) to give the result. We now focus on the proof of (6.17). We
proceed similarly to [DMT20, Prop 6.8], but from inside out.

Let F be the event that in Ann(R/8,R/4) there exists an open circuit surrounding ΛR/8

which is connected to ΛR/8, as well as a dual-open circuit, which is necessarily outside of
the open one; see Figure 13. If F occurs, let H = H (ω) be the graph formed of the union
of all open clusters that intersect ΛR/8, along with all finite components of Z2 minus the
said union. Then, due to the definition of F , ΛR/8 ⊂ H ⊂ ΛR/4. Write Ω(ω) = ΛR ∖H for
the random topological R-annulus formed by removing H .

When the measure φ0
ΛR,p

is conditioned on F ∩ {Ω(ω) = Ω}, its restriction to Ω is φ0
Ω,p.

Notice that if y ∈ ∂inΩ is connected to ∂ΛR/2 by an open path, then a four arm event to
distance R/8 occurs around y. Thus, using the quasi-multiplicativity (Mix) and Theorem 2.1
(to bound the probability of F from below), we find that

R2π4(p,R) >⌢ φΛR,p[NΩ(ω)(p)1F ] >⌢ inf
Ω

NΩ(p).

Conversely, the separation of arms for the four-arm event and Theorem 2.1 show that
for each y ∈ Ann(5R/32,7R/32),

φΛR,p[F ∩ {y ∈ ∂inΩ(ω)} ∩ {y ←→ ∂ΛR/2}] >⌢ π4(p,R).

Summing over all y we find

R2π4(p,R) <⌢ φΛR,p[NΩ(ω)(p)1F ] ≤ sup
Ω

NΩ(p).

◻

Remark 6.10 The previous proof shows as a byproduct that π4(p,R) ≍ π4(R) for every R ≤
L(p). It is somehow surprising that the stability of π4 below the correlation length can be
directly extracted from the parafermionic observable. Recall, however, that this is only valid
for q = 4.
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Λ8k+1(zk+1)

Λ8k(zk)

Ω

y

∂inΩ

Figure 14: By sliding the boxes along a given path one by one from the exterior towards y,
one finds the first time that the twice larger box Λ2⋅8k(zk) disconnects y from the boundary.
Note that by construction the first time it stops cannot be the quite the same for different
k. In particular, the box Λ8k/2(zk) being at a distance 8k/2 of the boundary of Λ8k(zk), it
is also at such a distance of ∂inΩ. Since on contrary Λ8`/2(z`) is within a distance 8` × 3/2
of it, we immediately deduce that the two boxes do not intersect as soon as ` < k.

Remark 6.11 The previous proof also implies that R2π4(R) is of the order of NΩ(pc)
for every topological R-annulus Ω. In particular, taking Ω = ΛR/8 gives that

R2π4(R) ≍ Rπ+1 (R). (6.18)

The conjectural scaling limit of the model suggests that π+1 (R) ≍ R−1, which would imply
that π4(R) ≍ R−2. We see that in this case the fact that ∆pc(R) ≫ π4(R) is crucial for the
bound (6.2).

Proof of Proposition 6.4 We treat the case p > pc; the case p < pc can be done similarly.
Fix R ≤ L(p). The inequality (5.9) implies that

∣ log
∆p(r,R)
∆pc(r,R) ∣

<
⌢ ∫

p

pc
(
R

∑
`=1

`∆u(`))du

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(A)

+∫
p

pc
(
L(u)

∑
`=R

`∆u(`)∆u(R, `))du

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(B)

and we need to prove that (A) and (B) are bounded by constants that are independent of R
and p > pc. The bound on (B) is easy to obtain since (5.1) shows that (B) <⌢ φp[C (ΛR)]−
φpc[C (ΛR)] ≤ 1. We therefore focus on (A).

Choose the topological R-annulus Ω minimizing NΩ(p) and observe that by Lemma 6.9,
NΩ(p) ≍NΩ(pc). We claim that

d
du logNΩ(u) >⌢

R

∑
`=1

`∆u(`). (6.19)

Observe that (6.19) implies that (A) <⌢ logNΩ(p) − logNΩ(pc) <⌢ 1 which concludes the
proof of the proposition. Thus, we only need to prove (6.19), which we do next.
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Start by observing that

d
du logNΩ(u) = ∑

y∈∂inΩ

d
duφ

0
Ω,u[y ←→ ∂ΛR/2] = 1

u(1−u) ∑
y∈∂inΩ

∑
e∈Ω

Cov[y ←→ ∂ΛR/2, ωe]. (6.20)

Fix some y ∈ ∂inΩ and set N ∶= ⌊log8R⌋. Then, there exist points z1, . . . , zN−2 in Ω such
that for each k, Λ8k(zk) ⊂ Ω but y is not connected to ∂ΛR in the subgraph Ω ∖Λ2⋅8k(zk);
the latter condition includes the situation where y ∈ Λ2⋅8k(zk). See Figure 14 and its
caption for an explanation of this elementary fact. For k < `, since Λ2⋅8k(zk) intersects the
boundary of Ω, but Λ8`(z`) ⊂ Ω, we conclude that Λ8k/2(zk) and Λ8`/2(z`) do not intersect.
Thus, the boxes (Λ8k/2(zk))k≤N−2 are pairwise disjoint.

Now, for any e ∈ Λ8k/2(zk) for one such k, a direct application of Theorem 4.8 implies
that

Cov[y ←→ ∂ΛR/2, ωe] ≍ ∆u(8k)φ0
Ω,u[y ←→ ∂ΛR/2].

Summing over e and keeping in mind that all covariances in (6.20) are non-negative gives

d
duφ

0
Ω,u[y ←→ ∂ΛR/2] >⌢

N−2

∑
k=1

∑
e∈Λ

8k/2(zk)
Cov[y ←→ ∂ΛR/2, ωe]

>
⌢

N−2

∑
k=1

82k∆u(8k)φ0
Ω,u[y ←→ ∂ΛR/2]

>
⌢ (

R

∑
`=1

`∆u(`))φ0
Ω,u[y ←→ ∂ΛR/2].

For the last inequality, we used the fact that ∆u(`) ≍ ∆u(8k) for any 8k ≤ ` ≤ 8k+1. Finally,
summing over y, we find

d
duNΩ(u) >⌢ NΩ(u)

R

∑
`=1

`∆u(`),

which concludes the proof of (6.19) and of the whole proposition. ◻

7 Proofs of the stability theorems

In this section, we prove stability results for crossing probabilities, arm events and ∆p.
First, observe that due to the previous section, Propositions 5.1 and 5.6 immediately lead
to the following corollary.

Corollary 7.1 (i) Fix η > 0. For every p ∈ (0,1) and every η-regular quad (D , a, b, c, d)
at scale R ≤ L(p),

d
dpφp[C (D)] ≍ R2∆p(R) +

L(p)

∑
`=R

`∆p(`)∆p(R, `), (7.1)

where the constants in ≍ depend on η.
(ii) For every p ∈ (0,1), σ ∈ {0,1}k and r ≤ R ≤ L(p),

d
dp logφp[Aσ(r,R)] ≍ R2∆p(R) +

L(p)

∑
`=R

`∆p(`)∆p(R, `), (7.2)
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where the constants in ≍ depend on σ.
(iii) For every p ∈ (0,1) and two edges e and f at a distance R ≤ L(p) of each other,

∣ d
dp log Covp(ωe, ωf)∣ <⌢ R2∆p(R) +

L(p)

∑
`=R

`∆p(`)∆p(R, `). (7.3)

Proof By (1.20) and (1.15), for any p ∈ (0,1) and R ≤ L(p), ∑R`=1 `∆p(`) <⌢ R2∆p(R).
Insert this into Propositions 5.1 and 5.6 to obtain the desired results. ◻

We next prove the stability of crossing probabilities and arm events probabilities stated
in Theorem 1.4.

Proof of Theorem 1.4 Fix p ≠ pc. We prove (1.9); the stability for arm events can
be deduced similarly. Fix some η-regular discrete quad (D , a, b, c, d) at some scale R ≥ 1.
The inequality (1.9) is trivial when R > L(p), and we focus on the case where R ≤ L(p).
Applying (5.1) to u between pc and p, we find,

d
duφu[C (D)] ≍ R2∆u(R) +

L(p)

∑
`=R

`∆u(`)∆u(R, `) +
L(u)

∑
`=L(p)

`∆u(`)∆u(R, `)

<
⌢ ( R

L(p))
δ [L(p)2∆u(L(p)) +

L(u)

∑
`=L(p)

`∆u(`)∆u(L(p), `)], (7.4)

where the inequality is due to a simple computation based on the quasi-multiplicativity of
∆p and the two inequalities from (1.20) (the constant δ is actually given by this displayed
equation). The terms for ` ≥ L(p) are dominated by the corresponding sum in the second
line.

Corollary 7.1 applied to C (ΛL(p)) together with (7.4) imply that

d
duφu[C (D)] <⌢ ( R

L(p))
δ d

duφu[C (ΛL(p))].

Integrate the above between pc and p to find

∣φp[C (D)] − φpc[C (D)]∣ <⌢ ( R
L(p))

δ ∣φp[C (ΛL(p))] − φpc[C (ΛL(p))]∣ ≤ ( R
L(p))

δ.

◻

Remark 7.2 One may also obtain the following improvement of (1.10) (similar to (1.9)):

exp[−C(R/L(p))δ] ≤ π1(p,R)
π1(pc,R) ≤ exp[C(R/L(p))δ] for all R ≤ L(p), (7.5)

where δ,C > 0 are universal constants depending only on q.
Moreover, since Corollary 7.1 applies to logarithmic derivatives of any arm event

probabilities, (7.5) also applies to πσ(p,R) and π+σ(p,R), with C depending on the color
sequence σ. Notice, however, that we do not claim to prove stability for probabilities of
arm events in the half-plane with boundary conditions strictly on the half-plane.

We now turn to the proof of the stability of ∆p. Let us note that for q = 4, the stability
of ∆p was proved also in Section 6.2, as a step towards (1.20).
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Proof of Theorem 1.6(iii). Fix p ≠ pc, R ≤ L(p) and two edges e and f at a distance R
of each other. For u between p and pc, Corollary 7.1 gives

∣ d
du log Covu(ωe, ωf)∣ <⌢ R2∆u(R) +

L(u)

∑
`=R

`∆u(`)∆u(R, `) <⌢ d
duφu[C (ΛR)].

By integrating the above between pc and p, we find

Covp(ωe, ωf)
Covpc(ωe, ωf)

≍ 1. (7.6)

Apply now (5.3) to deduce that

∆p(R) ≍
√

Covp(ωe, ωf) ≍
√

Covpc(ωe, ωf) ≍ ∆pc(R).

◻

Remark 7.3 It will come to no surprise to the reader that the same type of improved
stability as in (7.5) may be shown for the covariance. Getting the same result for ∆p itself
seems more difficult as we crucially rely on an up-to-constant relation between ∆p and the
covariance, and that the derivative of ∆p itself is less obvious.

8 Derivation of the scaling relations

This section is dedicated to proving the scaling relations (Theorems 1.9, 1.10 and 1.11).
The proof of the near-critical scaling relations (Theorem 1.11) is based on the stability
below the characteristic length (Theorem 1.4 and Theorem 1.6(iii)). With the latter results
at our disposal, the proofs of the critical and near-critical scaling relations (1.22)–(1.27)
are very close to those for Bernoulli percolation and contain no significant innovation. For
this reason, we are voluntarily quick on these proofs, trying to merely recall the crucial
ingredients.

The main novelties in this section are the independent proof of the scaling relation
involving the magnetic field (Section 8.3), and the derivation of the scaling relation
involving α.

8.1 Scaling relations at criticality: proof of Theorem 1.9

In this section we work with p = pc and we drop it from the notation. We will prove a
stronger result, which implies (1.22) when taking x ∈ ∂ΛR.

Lemma 8.1 Fix 1 ≤ q ≤ 4. For every R ≥ 1 and every x ∈ ΛR,

π1(R)2 <
⌢ φZ2[0 Λ2R←Ð→ x,0←→ ∂ΛR] ≤ φZ2[0←→ x] <⌢ π1(∣x∣)2. (8.1)

Proof The middle inequality is obvious. For the right one, observe that if 0 and x are
connected, then 0 ←→ ∂Λr and x ←→ ∂Λr(x), where r ∶= ⌊∣x∣/3⌋. The invariance under
translations of φZ2 , the mixing property (Mix) and (2.5) give that

φZ2[0←→ x] <⌢ π1(r)2 <
⌢ π1(∣x∣)2.
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We now prove the left inequality. The FKG inequality (FKG) implies that

φZ2[0 Λ2R←→ x,0←→ ∂ΛR] ≥ φZ2[AR,0←→ ∂Λ2R, x←→ ∂Λ3R(x)]
≥ φZ2[AR]π1(2R)π1(3R)
>
⌢ π1(R)2,

where we used (RSW’) and (2.5). ◻

Recall that C is the cluster of 0. Let rad(C) ∶= max{r ∶ C intersects ∂Λr} be the radius
of C.

Lemma 8.2 For every R ≥ 1,

R2π1(R) <⌢ φZ2[∣C∣ ∣R ≤ rad(C) < 4R] ≤
√
φZ2[∣C∣2 ∣R ≤ rad(C) < 4R] <⌢ R2π1(R). (8.2)

Proof Fix n ≥ 1. The inequality in the middle is the Cauchy-Schwarz inequality. For the
first one, observe that (8.1) and (RSW’) imply that

φZ2[∣C∣1R≤rad(C)<4R] ≥ ∑
x∈ΛR

φZ2[0 Λ2R←Ð→ x,Λ2R /←→ ∂Λ4R] >⌢ ∣ΛR∣π1(R)2.

Divide the above by φZ2[R ≤ rad(C) < 4R] ≤ π1(R) to obtain the first inequality in (8.2).
We turn to the last inequality of (8.2). We have

φZ2[∣C∣21R≤rad(C)<4R] ≤ ∑
x,y∈Λ4R

φZ2[0←→ x,0←→ y,0←→ ∂ΛR].

Fix x, y ∈ Λ4R and assume first that ∣x∣ ≤ ∣y∣ ≤ ∣x − y∣. Set ` ∶= ∣x∣ and k ∶= ∣y∣. Observe that
the event on the right induces the following events which are listed along with the order –
up to constants – of their probabilities (which are obtained thanks to (2.5)):

• 0←→ ∂Λ`/4 – of probability of order π1(`);
• x←→ ∂Λ`/4(x) – of probability of order π1(`);
• y ←→ ∂Λk/4(y) – of probability of order π1(k);
• ∂Λmin{2`,k/4} ←→ ∂Λk – of probability of order π1(k)/π1(`);
• ∂Λmin{2k,R} ←→ ∂ΛR – of probability of order π1(R)/π1(k).

Several iterations of the mixing property (Mix) imply that

φZ2[0←→ x,0←→ y,0←→ ∂ΛR] <⌢ π1(`)π1(k)π1(R). (8.3)

Observe now that for 1 ≤ ` ≤ k ≤ 4R, there are 8` vertices x ∈ Z2 with ∣x∣ = ` and 8k
vertices y with ∣y∣ = k. Thus,

∑
x,y∈Λ4R

∣x∣≤∣y∣≤∣x−y∣

φZ2[0←→ x,0←→ y,0←→ ∂ΛR] <⌢ ∑
1≤`≤k≤4R

`π1(`)kπ1(k)π1(R) <⌢ R4π1(R)3,

where in the last line we used that

R

∑
k=1

kπ1(k) <⌢ R2π1(R) (8.4)
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which is a consequence of (2.4) and (2.5). The same upper bound may be obtained for any
of the other five possible orderings of ∣x∣, ∣y∣, ∣x − y∣. Overall, we conclude that

φZ2[∣C∣21R≤rad(C)<4R] <⌢ R4π1(R)3,

which gives the result by dividing by

φZ2[R ≤ rad(C) < 4R] ≥ φZ2[0←→ ∂ΛR,ΛR /←→ ∂Λ2R] >⌢ π1(R), (8.5)

where in the last inequality we used the mixing property (Mix) and (RSW’). ◻

Proof of Theorem 1.9 Lemma 8.1 applied with R = 2∣x∣ and (2.5) directly imply (1.22).
We turn to the proof of (1.23). Fix R ≥ 1 and r ∶= ϕ(R). Let us start with the lower bound
on φZ2[∣C∣ ≥ R]. Let c ∈ (0,1) be the constant appearing in the first bound <

⌢ of (8.2).
Then, using the definition of ϕ, (8.2), the Paley–Zygmund inequality and (8.5), we find
that

φZ2[∣C∣ ≥ c
2R] ≥ φZ2[∣C∣ ≥ c

2r
2π1(r)]

≥ φZ2[∣C∣ ≥ 1
2φZ2(∣C∣ ∣ r ≤ rad(C) < 4r)]

>
⌢

φZ2[∣C∣ ∣ r ≤ rad(C) < 4r]2

φZ2[∣C∣2 ∣ r ≤ rad(C) < 4r] φZ2[r ≤ rad(C) < 4r]

>
⌢ φZ2[r ≤ rad(C) < 4r]
>
⌢ π1(r).

This concludes the proof of the lower bound since (2.5) implies that φ( c2R) ≍ φ(R) = r.
We turn to the complementary upper bound. Using the Markov inequality in the third

line and the definition of ϕ and (8.1) in the fourth, we obtain that

φZ2[∣C∣ ≥ R] = φZ2[∣C∣ ≥ R, rad(C) > r] + φZ2[∣C∣ ≥ R, rad(C) ≤ r]
≤ π1(r) + φZ2[∣C ∩Λr ∣ ≥ R]

≤ π1(r) +
1

R
∑
u∈Λr

φZ2[0←→ u]

<
⌢ π1(r) +

1

r2π1(r)
∑
u∈Λr

π1(∣u∣)2 <
⌢ π1(r),

where the last inequality follows from (2.4) via the following computation

1

k

r

∑
k=1

kπ1(k)2

rπ1(r)2
<
⌢

1

r

r

∑
k=1

(k/r)1−2c <
⌢ 1.

◻

8.2 Scaling relations in the near-critical regime: proof of Theorem 1.11

By Theorem 1.3 and (2.5), we have that L(p) ≍ ξ(p) and π1(L(p)) ≍ π1(ξ(p)), so we only
need to show (1.25)–(1.28) with L(p) instead of ξ(p).
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8.2.1 Proof of (1.25) (scaling relation between β, ν, and ξ1)

On the one hand, the stability below the characteristic length (Theorem 1.4) gives

θ(p) ≤ π1(p,L(p)) <⌢ π1(L(p)).

On the other hand, the FKG inequality (FKG), (RSW’), and Corollary 2.14 imply that

θ(p) ≥ φp[0←→ ∂Λ2L(p),AL(p),ΛL(p) ←→∞] >⌢ π1(p,2L(p)) ≥ π1(2L(p)) >⌢ π1(L(p)).

8.2.2 Proof of (1.26) (scaling relation between γ, ν and ξ1)

We start with the case p < pc. First, Proposition 2.12 can be improved to

cπ1(R)2 exp[−C ∣x∣/L(p)] ≤ φp[0←→ x] ≤ Cπ1(R)2 exp[−c∣x∣/L(p)], (8.6)

where R ∶= min{∣x∣, L(p)} and c,C > 0 are uniform constants. Indeed, one simply needs to
combine the proofs of Proposition 2.12 and Lemma 8.1 in a standard fashion.

Now, (1.26) follows by summing (8.6) over every x ∈ Z2 and using that, by (2.4),

π1(R) ≤ C(L(p)/R)1/2−cπ1(L(p)). (8.7)

We now turn to the case p > pc.
The only additional difficulty comes from the fact that we need to force 0 and x not to

be connected to infinity. For the lower bound, sum over every x ∈ ΛL(p)/2 the following
inequality

φp[0←→ x,0 /←→∞] ≥ φp[ΛL(p) /←→∞]φ0
ΛL(p),p[0←→ x] ≥ cπ1(R)2,

where the first inequality is due to the spatial Markov property (SMP), and the second
inequality follows (RSW), (p-MON) and an argument similar to Lemma 8.1.

For the upper bound, let A∗
x be the event that there exists a circuit in ω∗ surrounding 0

and x. The FKG inequality in the first inequality, Corollary 2.14 and (CBC) in the second,
and a reasoning similar to Lemma 8.1 in the third (based on (Mix) and Theorem 1.4)
imply that

φp[0←→ x,0 /←→∞] ≤ φp[0←→ x]φp[A∗
x]

<
⌢ φ

1
ΛR,p

[0←→ ∂ΛR/2]2 exp(−c∣x∣/L)
<
⌢ π1(R)2 exp(−c∣x∣/L).

Summing this inequality over x ∈ Z2 gives the upper bound.

8.2.3 Proof of (1.27) (scaling relation between ι and ν)

Assume p > pc, the case p < pc is identical. Write L = L(p). Use Corollary 7.1 and integrate
the derivative of g(p) ∶= φp[C (ΛL)] between pc and p to get

∫
p

pc
L2∆u(L)du <

⌢ g(p) − g(pc) <⌢ 1. (8.8)

In the other direction, let p0 ∈ [pc, p] be such that L(p0) = RL(p) for some R > 1.
Theorem 1.4 and the definition of L(p) implies that

g(p) − g(p0) ≥ g(p) − g(pc) −CR−ε >
⌢ 1 (8.9)
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provided that R is large enough. For u ∈ [p0, p], Corollary 7.1, together with the quasi-
multiplicativity property Theorem 1.6(ii), implies

g′(u) <⌢ L(u)2∆u(L(u)) <⌢ L2∆u(L).

(Note that the constant in <
⌢ depends on R.) Integrating the previous displayed equation

between p0 and p and then using (8.9) gives

1 <
⌢ g(p) − g(p0) <⌢ ∫

p

p0
L2∆u(L)du ≤ ∫

p

pc
L2∆u(L)du.

Together with (8.8), the previous displayed equation and the stability of ∆u(L) given by
Theorem 1.6(iii) show that

1 ≍ ∫
p

pc
L2∆u(L)du ≍ (p − pc)L2∆pc(L),

which concludes the proof.

8.2.4 Proof of (1.28) (scaling relation between ι and α)

A straightforward computation involving (1.11) shows that

f ′′(p) = 2
d

dp
φp[ωe] = 2∑

f

Covp(ωe, ωf),

where e is a fixed edge of Z2 and the sum is over all edges f . By Lemma 5.3 applied to D
formed of the single edge e, we find

Covp(ωe;ωf) ≍ ∆p(` ∧L(p))2e−c`/L(p) ≍ ∆pc(` ∧L(p))2e−c`/L(p),

where ` is the distance between e and f . For the second equivalence, we use Theorem 1.6(iii).
Summing the displayed equation above over all edges f , we conclude that

f ′′(p) ≍
L(p)

∑
`=1

`∆pc(`)2,

as required.

Remark 8.3 The above shows that if the phase transition is of second order (meaning
that f ′′(p) diverges as p tends to pc), then ∑` `∆p(`)2 diverges, which, using the interpre-
tation of crossing probabilities in terms of ∆p(`), implies that the crossing probabilities of
quads for the infinite-volume measure are not differentiable at pc.

Remark 8.4 When ∑`≥1 `∆(`)2 converges, the computation above simply proves that f ′′(p)
remains bounded uniformly in p. Nevertheless, it is easy to deduce by differentiating one
more time that for p ≠ pc (we drop p from the notation),

f ′′′(p) ≤∑
f,g

φ[ωeωfωg] − φ[ωeωf ]φ[ωg] − φ[ωfωg]φ[ωe] − φ[ωeωg]φ[ωf ] + 2φ[ωe]φ[ωf ]φ[ωg]

<
⌢ ∑
`≤L(p)

`∆(`)∆(`′, `)∑
`′≤`

`′∆(`′)2 <
⌢ L(p)4∆(L(p))3 <

⌢

1

∣p − pc∣3L(p)2
.

If one defines α in this framework by the formula f ′′′(p) = ∣p − pc∣−α−1−o(1), we deduce
that α ≤ 2 − 2ν. The converse bound does not follow by the same computation since the
summand on the first line is not of definite sign; at the time of writing the matching lower
bound on f ′′′(p) remains unproved.
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8.3 Scaling relation with magnetic field: proof of Theorem 1.10

We insist one last time on the fact that this section is independent of the rest of the paper.
Below, we work with the graph Z2 with the addition of the ghost. We drop pc and q but
keep h in the notation except when it is equal to 0, in which case we omit it as well. We
start by a lemma relating certain quantities at h = 0 with the corresponding quantities
at h ≥ 0.

Set π̃1(h,R) ∶= φ1
ΛR,h

[0↔ ∂ΛR], where connections need to occur in Z2. Additionally,
let A∗

R be the event that there exists a dual circuit in Ann(R,2R) surrounding ΛR and

β(h,R) ∶= φ1
Ann(R,2R),h[A

∗
R].

Finally, for C > 1, define

hc(R) = hc(R,C) ∶= inf {h > 0 ∶ ∃ r ≤ R such that π̃1(h, r) > Cπ̃1(r) or β(h, r) < C−1β(r)}.

Lemma 8.5 For any C > 1, there exists ε > 0 such that for every R,

hc(R)R2π1(R) ≥ ε. (8.10)

Due to the definition of hc, crossing estimates as in Theorem 2.1 apply in the regime
of (r, h) with r ≤ R and h ≤ hc(R). Indeed, the crossing probabilities in the primal
model increase with h, which ensures the lower bounds. For the upper bounds, observe
that β(h, r) involves the boundary conditions that render dual crossings least likely.
Theorem 2.1 applied at pc combined with the definition of hc(R) implies the uniform
positivity of β(r, h) for r ≤ R and h ≤ hc(R). The FKG inequality and the monotonicity of
boundary conditions imply lower bounds for crossing probabilities in the dual model, as
claimed.

As a consequence, a similar proof to that of Lemma 8.1 applies for all r ≤ R and 0 ≤
h ≤ hc(R), and yields

φ1
Ann(r,2r),h[y ←→ ∂Λ2r] <⌢ π1(dist(y, ∂Ann(r,2r))) for y ∈ Ann(r,2r) and

φ1
Λr,h[0←→ y,0←→ ∂Λr] <⌢ π1(r)π1(∥y∥ ∧ dist(y, ∂Λn)) for y ∈ Λr, (8.11)

where the constants in <
⌢ depend on C.

Proof of Lemma 8.5 Fix C > 1 and r ≤ R. All constants in the signs <
⌢ below are

allowed to depend on C, but not on r or R. The differential formula [Gri06, Thm. 3.12]
reads

d
dh π̃1(h, r) = 1

1−e−h ∑
y∈Λr

φ1
Λr,h[0↔ ∂Λr, ωyg = 1] − φ1

Λr,h[0↔ ∂Λr]φ1
Λr,h[ωyg = 1]. (8.12)

Let us analyse the right-hand side of the above. Recall that C is the cluster of the origin for
the connectivity in Z2. First we show that the vertices y ∉ C have a negative contribution
to (8.12). Fix some y ∈ Λr. For a set C ⊂ Λr containing 0 and y ∉ C ,

φ1
Λr,h[0↔ ∂Λr, ωyg = 1,C = C ] = φ1

Λr,h[φ
1
Λr,h(ωyg = 1 ∣C = C )10↔∂Λr1C=C ]

≤ φ1
Λr,h[ωyg = 1]φ1

Λr,h[0↔ ∂Λr,C = C ].
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The first inequality is due (SMP) and (CBC) since φ1
Λr,h

[⋅ ∣C = C ] is a random-cluster
measure with free boundary conditions on (Λr ∖C ) ∪ {g}, and is stochastically dominated
by the restriction of φ1

Λr,h
to (Λr ∖C ) ∪ {g}.

Summing the above over every C ⊂ Λr, we find that

φ1
Λr,h[0↔ ∂Λr, ωyg = 1] − φ1

Λr,h[ωyg = 1]φ1
Λr,h[0↔ ∂Λr] ≤ φ1

Λr,h[0↔ y,0↔ ∂Λr, ωyg = 1].

Plugging this inequality in (8.12) gives

d
dh π̃1(h, r) ≤ 1

1−e−h ∑
y∈Λr

φ1
Λr,h[0↔ y,0↔ ∂Λr, ωyg = 1] ≤ ∑

y∈Λr

φ1
Λr,h[0↔ y,0↔ ∂Λr],

where the second inequality comes from (SMP), which implies that

φ1
Λr,h[ωvg = 1 ∣0↔ y,0↔ ∂Λr] ≤ 1 − e−h.

Now, assuming that h ≤ hc(R), (8.11) applies, and we conclude that

d
dh π̃1(h, r) <⌢ ∑

y∈Λr

π1(r)π1(∥y∥ ∧ dist(y, ∂Λr)) <⌢ rπ1(r)
r/2

∑
k=1

π1(k) <⌢ r2π1(r)2.

The second inequality uses the fact that there are at most order r vertices at distance k
from 0 or ∂Λr; the third one is a standard consequence of (2.4) and (2.5). Keeping in mind
that π1(r) ≤ π̃1(h, r), the above implies

d
dh log π̃1(h, r) <⌢ r2π1(r). (8.13)

A similar computation, where C is replaced by the cluster of ∂Λ2r implies that

− d
dh logβ(h, r) <⌢ ∑

y∈Ann(r,2r)

φ1
Ann(r,2r),h[y↔ ∂Λ2r] <⌢ r2π1(r). (8.14)

We are now in a position to conclude. Let c0 be a constant larger than the constants
involved in the inequalities <

⌢ in (8.13) and (8.14). Then, for ε > 0, integrate these two
inequalities for h between 0 and h′ = min{hc(R), ε/(R2π1(R))}. We find

log π̃1(h, r) − log π̃1(r)
logβ(r) − logβ(h, r) } ≤ c0h

′r2π1(r) ≤ εc0.

Now, for ε < (logC)/c0, the above shows that h′ < hc(R), which implies (8.10). ◻

Proof of Theorem 1.10 Fix h > 0. Again, C is the cluster of the origin when considering
connections in Z2 only. We start with the lower bound. We have

φh[0←→ g] ≥ φh[0←→ g, ∣C∣ ≥ 1/h] >⌢ φh[∣C∣ ≥ 1/h] ≥ φ0[∣C∣ ≥ 1/h] ≥ π1(ϕ(1/h)),

where the fourth inequality is due to (1.23), the third to monotonicity in h (h-MON),
and the second to the fact that conditioned on ∣C∣ ≥ 1/h, there is a positive probability
for 0 to be connected to g. This last property can be easily deduced from the finite
energy property, which states that every edge connecting Z to g has a probability larger
than (1 − e−h)/(1 + (q − 1)e−h) and smaller than h of being open, regardless of the states
of other edges.
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Let us now derive the upper bound. Let ε be the quantity given by Lemma 8.5 for
some fixed C > 1. Choose R to be the largest integer such that hR2π1(R) ≤ ε. Notice that
this implies that h ≤ hc(R). We deduce that

φh[0←→ g] ≤ π1(h,R) + φh[0←→ g, 0 /←→ ∂ΛR]
≤ π1(h,R) + ∑

y∈ΛR

φh[0←→ y, ωyg = 1]

≤ π1(h,R) + h ∑
y∈ΛR

φh[0←→ y],

where the last inequality uses the finite energy property. Now, use that h ≤ hc(R) to
deduce that π1(h,R) <⌢ π1(R) and that, similarly to Lemma 8.1, φh[0 ←→ y] <⌢ π1(∣y∣)2.
We deduce from the above that

φh[0←→ g] <⌢ π1(R) + h ∑
y∈ΛR

π1(∣y∣)2 <
⌢ π1(R) + hR2π1(R)2 <

⌢ π1(R),

where in the second inequality we used a computation similar to (1.26). Observe that,
with the notation of Theorem 1.9, R = ϕ(ε/h) >⌢ ϕ(1/h), so

φh[0←→ g] <⌢ π1(ϕ(1/h)),

which concludes the proof. ◻
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