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Abstract. We study the class of monotone, two-state, deterministic cellular au-

tomata, in which sites are activated (or ‘infected’) by certain configurations of

nearby infected sites. These models have close connections to statistical physics,

and several specific examples have been extensively studied in recent years by

both mathematicians and physicists. This general setting was first studied only

recently, however, by Bollobás, Smith and Uzzell, who showed that the family of

all such ‘bootstrap percolation’ models on Z2 can be naturally partitioned into

three classes, which they termed subcritical, critical and supercritical.

In this paper we determine the order of the threshold for percolation (com-

plete occupation) for every critical bootstrap percolation model in two dimen-

sions. This ‘universality’ theorem includes as special cases results of Aizenman

and Lebowitz, Gravner and Griffeath, Mountford, and van Enter and Hulshof,

significantly strengthens bounds of Bollobás, Smith and Uzzell, and complements

recent work of Balister, Bollobás, Przykucki and Smith on subcritical models.
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1. Introduction

An important and challenging problem in statistical physics, probability theory

and combinatorics is to understand the typical global behaviour of so-called ‘lattice

models’, including cellular automata, percolation models, and spin models. Al-

though these models are defined in terms of local interactions between the sites

of the lattice, it is typically observed in simulations that, in fixed dimensions, the

macroscopic behaviour of the models does not seem to depend on the precise nature

of these local interactions. Indeed, since the breakthrough work of Kadanoff [29]

and the development of the renormalization group framework by Wilson [38], this

phenomenon of universality has been widely predicted to occur throughout statisti-

cal physics (see, for example, [21,30,33]). Despite this, it has been proved rigorously

in only a small handful of cases. One example of a model for which universality is

partially understood is the Ising model, for which it was proved recently that the

critical exponents exist and are equal on a large class of planar graphs [17,22].

Cellular automata are interacting particle systems whose update rules are local

and homogeneous. Since their introduction by von Neumann [37] almost 50 years

ago, many particular such systems have been investigated, but no general theory

has been developed for their study, and for many simple examples surprisingly lit-

tle is known. In this paper we develop such a general theory for monotone, two-

dimensional cellular automata with random initial configurations, which may also

be thought of as monotone versions of the Glauber dynamics of the Ising model with

arbitrary local interactions. The study of this general class of models was initiated

only recently by Bollobás, Smith and Uzzell [13], although many special cases had

been studied earlier, beginning with the work of Chalupa, Leath and Reich [16] in

1979. We refer to these models as bootstrap percolation, but we emphasize that they

are vastly more general than the family of models that usually bears this name.

The class of models we study is defined as follows. Fix d ∈ N and let U =

{X1, . . . , Xm} be an arbitrary finite collection of finite subsets of Zd \ {0}. We

call U the update family of the process, each X ∈ U an update rule, and the process

itself U-bootstrap percolation. Let the lattice Λ be either Zd or Zdn (the d-dimensional

discrete torus). Now given a set A ⊂ Λ of initially infected sites, set A0 = A, and

define for each t > 0,

At+1 = At ∪
{
x ∈ Λ : x+X ⊂ At for some X ∈ U

}
.

Thus, a site x becomes infected at time t+ 1 if the translate by x of one of the sets

of the update family is already entirely infected at time t, and infected sites remain

infected forever. The set
⋃
t>0At of eventually infected sites is the closure of A,

denoted by [A]. We say that A percolates if [A] = Λ.

As mentioned above, this model was first introduced (in its full generality) only

recently, in [13], although various special cases were introduced and studied much

earlier by several different authors; see for example [16, 18, 19, 23, 24]. Indeed, the
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general class of U -bootstrap percolation models is easily seen to include as specific

examples all previously studied bootstrap percolation models on lattice graphs. For

example, the update family of the classical r-neighbour model on Zd, the most

well-studied of all models [1, 3, 4, 14, 15, 27], consists of the
(

2d
r

)
r-subsets of the 2d

nearest neighbours of the origin. The r-neighbour models are themselves examples

of threshold models, which, in their full generality, consist of the r-element subsets

of an arbitrary finite set Y ⊂ Zd \ {0}. With a single exception [32], only centrally

symmetric sets Y had been studied before the work of [13]. The lack of symmetry

in the general setting causes all previously-developed techniques to break down, and

overcoming this obstacle is one of the main tasks of this paper.

Motivated by applications to statistical physics, we shall study the global be-

haviour of the U -bootstrap process acting on random initial sets. Specifically, let us

say that a set A ⊂ Λ is p-random if each of the sites of Λ is included in A indepen-

dently with probability p. The key question is that of how likely it is that a random

set A percolates on the lattice Λ; in particular, one would like to know how large p

must be before percolation becomes likely. The point at which this phase transition

occurs is measured by the critical probability,

pc(Λ,U) := inf
{
p : Pp

(
A percolates in U -bootstrap percolation on Λ

)
> 1/2

}
,

where Pp denotes the product probability measure on Λ with density p.1

For the r-neighbour model on Zdn, with d fixed and n→∞, a great deal is known

about the critical probability. Up to a constant factor, the threshold was determined

by Aizenman and Lebowitz [1] for r = 2, by Cerf and Cirillo [14] for d = r = 3, and

by Cerf and Manzo [15] for all remaining 2 6 r 6 d. The constant factor was later

improved to a 1 + o(1) factor by Holroyd [27] in the case d = 2, by Balogh, Bollobás

and Morris [4] for d = 3, and by Balogh, Bollobás, Duminil-Copin and Morris [3] for

all d > 4. The r-neighbour model has also attracted attention on lattices with the

dimension d tending to infinity (for example the hypercube) [5, 6], and on graphs

other than lattices, including trees [7, 11] and random graphs [8, 28].

For lattice models other than the r-neighbour model, considerably less is known.

Among the exceptions are two-dimensional balanced, symmetric threshold models

with star-neighbourhoods2, for which the critical probability was determined up to

a constant factor by Gravner and Griffeath [24], and asymptotically by Duminil-

Copin and Holroyd [18]. Some results about the critical probabilities of a rather

limited number of so-called unbalanced models are also known; these were proved

by Mountford [32], the authors of the present paper [9], van Enter and Hulshof [36],

Duminil-Copin and van Enter [19], all in two dimensions, and by van Enter and

Fey [35] in three dimensions.

1Thus a p-random set is one chosen according to the distribution Pp.
2These terms are defined below.
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For the remainder of the paper, with the exception of a brief discussion of higher

dimensions in Section 9, we restrict our attention to the case d = 2. As we shall

see shortly, one of the key properties of the U -bootstrap process is that its rough

global behaviour depends only on the action of the process on discrete half-planes.

In order to make this statement precise, let us introduce a little notation. For each

u ∈ S1, let Hu := {x ∈ Z2 : 〈x, u〉 < 0} be the discrete half-plane whose boundary is

perpendicular to u. We say that u is a stable direction if [Hu] = Hu and we denote

by S = S(U) ⊂ S1 the collection of stable directions.

The following classification of two-dimensional update families was proposed by

Bollobás, Smith and Uzzell [13].

Definition 1.1. An update family U is:

• subcritical if every semicircle in S1 has infinite intersection with S;

• critical if there exists a semicircle in S1 that has finite intersection with S,

and if every open semicircle in S1 has non-empty intersection with S;

• supercritical if there exists an open semicircle in S1 that is disjoint from S.

The justification of the above definition was completed in two stages. First,

in their original paper, Bollobás, Smith and Uzzell [13] proved that the critical

probabilities of supercritical families are polynomial, while those of critical families

are polylogarithmic. Later, Balister, Bollobás, Przykucki and Smith [2] proved that

the critical probabilities of subcritical models are bounded away from zero. The

combination of the results of [13] and [2] may be summarized as follows3:

• if U is subcritical then lim inf
n→∞

pc(Z2
n,U) > 0;

• if U is critical then pc(Z2
n,U) = (log n)−Θ(1);

• if U is supercritical then pc(Z2
n,U) = n−Θ(1).

In this paper we significantly strengthen the bounds of [13] by determining the

threshold pc(Z2
n,U) up to a constant factor for every critical update family. This

result, which may be thought of as a universality statement for two-dimensional

critical bootstrap percolation, was previously known only in the case of one very re-

strictive subclass of critical models [1,24], namely the symmetric, balanced threshold

models, and just two other specific models [32, 36].

The form of the threshold function depends on two properties of U : the ‘difficulty’

of U , and whether or not U is ‘balanced’. In order to explain what these terms mean,

first we need a quantitative measure of how hard it is to grow in each direction.

Let Q1 ⊂ S1 denote the set of rational directions on the circle4, and for each

u ∈ Q1, let `+
u be the subset of the line `u := {x ∈ Z2 : 〈x, u〉 = 0} consisting of

3Our asymptotic notation is mostly standard; however, for the avoidance of ambiguity, precise

definitions are given in Section 2.5.
4That is, the set of all u ∈ S1 such that u has rational or infinite gradient with respect to the

standard basis vectors.
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(a) (b)

Figure 1. Two examples of critical models, paused during their evo-

lution on Z2. In (a), the Duarte model, an unbalanced model with

drift; in (b), a balanced critical model.

the origin and the sites to the right of the origin as one looks in the direction of u.

Similarly, let `−u := (`u \ `+
u ) ∪ {0} consist of the origin and the sites to the left of

the origin. Note that the line `u is infinite for every u ∈ Q1.

Definition 1.2. Given u ∈ Q1, the difficulty of u is

α(u) :=

{
min

{
α+(u), α−(u)

}
if α+(u) < ∞ and α−(u) < ∞

∞ otherwise,

where α+(u) (respectively α−(u)) is defined to be the minimum (possibly infinite)

cardinality of a set Z ⊂ Z2 such that [Hu ∪ Z] contains infinitely many sites of `+
u

(respectively `−u ). It follows from simple properties of stable sets (see Section 2.4)

that α(u) > 0 if and only if u is a stable direction. Now let C denote the collection

of open semicircles of S1. We define the difficulty of U to be

α = α(U) := min
C∈C

max
u∈C

α(u). (1)

In Section 2 we discuss why these definitions of the difficulty of a direction under

the action of U and of the difficulty of U itself are the natural ones. The final

definition we need is as follows.

Definition 1.3. A critical update family U is balanced if there exists a closed semi-

circle C such that α(u) 6 α for all u ∈ C. It is said to be unbalanced otherwise.

The distinction between the open semicircles in the definition of α and the closed

semicircles in the definition of balanced is subtle but important. It turns out that

growth under the action of balanced critical families is completely two-dimensional,
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while growth under the action of unbalanced critical families is asymptotically one-

dimensional. Despite this, the analysis of unbalanced families presents by far the

greater number of difficulties.

The following theorem is the main result of this paper.

Theorem 1.4. Let U be a critical two-dimensional bootstrap percolation update

family.

(i) If U is balanced, then

pc
(
Z2
n,U

)
= Θ

(
1

log n

)1/α

.

(ii) If U is unbalanced, then

pc
(
Z2
n,U

)
= Θ

(
(log log n)2

log n

)1/α

.

On the infinite lattice (where the critical probability is zero), one can state an

essentially equivalent version of Theorem 1.4 in terms of the infection time of the

origin. To be precise, given A ⊂ Z2, define

τ = τ(A,U) := min
{
t > 0 : 0 ∈ At

}
to be the time at which the origin is infected in the U -bootstrap process on Z2 with

A0 = A. We write ‘with high probability’ to mean ‘with probability tending to 1’.5

For a proof of the following theorem, see the arXiv version of this paper [10].

Theorem 1.5. Let U be a critical two-dimensional bootstrap percolation update

family, and let A be a p-random subset of Z2.

(i) If U is balanced, then, with high probability as p→ 0,

pα log τ = Θ(1).

(ii) If U is unbalanced, then, with high probability as p→ 0,

pα
(

log
1

p

)−2

log τ = Θ(1).

We noted earlier that various special cases of Theorem 1.4 have already been

proved in the literature. The critical probability of the 2-neighbour model was

established by Aizenman and Lebowitz [1] using methods that have become central

to the study of bootstrap percolation, including the ‘rectangles process’ and the

notion of a ‘critical droplet’ (see Section 2 for details). Mountford [32] determined

the critical probability of the Duarte model, which is the unbalanced threshold model

consisting of all two-element subsets of{
(−1, 0), (0, 1), (0,−1)

}
.

5Moreover, we say that Z = Θ
(
f(p)

)
with high probability, where Z is a random variable, if

there exist constants c, C > 0 (not depending on p) such that cf(p) 6 Z 6 Cf(p) with high

probability.
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His proof was based on martingale techniques, which makes it unique among proofs

of this type of theorem. Gravner and Griffeath [24] generalized the result of Aizen-

man and Lebowitz to a class of balanced, symmetric threshold models, using some-

what non-rigorous methods. The critical probability of one further unbalanced

model, namely the one consisting of all three-element subsets of{
(−2, 0), (−1, 0), (0, 1), (0,−1), (1, 0), (2, 0)

}
,

was determined by van Enter and Hulshof [36], correcting an assertion of Gravner

and Griffeath [24]. Until now, the models studied by Mountford [32] and by van

Enter and Hulshof [36] were the only two unbalanced models whose critical proba-

bilities were known, and they were, respectively, the unique such examples of ‘drift’

and ‘non-drift’ unbalanced models.6

One property that all of these previously studied models share, and one that

simplifies the problem enormously, is that of symmetry. In all but the Duarte model,

the symmetry is particularly strong, in that X ∈ U if and only if −X ∈ U . The

symmetry of the Duarte model is weaker (the useful property is that there exists

a parallelogram of stable directions {u,−u, v,−v} ⊂ S), but it is enough to make

a significant difference to the proof. An important aspect of the general models

that we study – perhaps the most important aspect – is the lack of any symmetry

assumptions. Indeed, it is little exaggeration to say that the main task of this paper

(as was that of [13]) is to handle the lack of symmetry, which causes all previously

known techniques to break down.

In all of the above cases (namely, the 2-neighbour model of Aizenman and Lebowitz,

the symmetric, balanced threshold models of Gravner and Griffeath, the Duarte

model of Mountford, and the unbalanced model of van Enter and Hulshof) – but in

no other fundamentally different cases – the critical probability has now been deter-

mined up to a 1 + o(1) factor. These results are due to Holroyd [27], Duminil-Copin

and Holroyd [18], the authors of the present paper [9] and Duminil-Copin and van

Enter [19], respectively, and in some cases, even sharper results are known [20,25,31].

Obtaining similarly sharp bounds for the general model is likely to be an important,

but extremely difficult, direction for future research.

The organization of the rest of the paper is as follows. In Section 2 we give an

outline of the proof, we introduce some notation, and we recall a number of basic

facts about U -bootstrap percolation from [13]. In Section 3 we lay the ground-

work for the proofs of the upper bounds of Theorem 1.4, which are then proved in

Sections 4 (balanced case) and 5 (unbalanced case). In Section 6 we define three

different notions of ‘approximately internally filled’ sets and prove a number of de-

terministic properties of such sets. In Section 7 we deduce the lower bound in the

balanced case. The hardest part of the proof is the lower bound in the unbalanced

6These terms are explained in Section 2, but roughly speaking, the term ‘drift’ refers to the

phenomenon that occurs when u ∈ S is such that α(u) =∞ but min
{
α−(u), α+(u)

}
<∞, which

in certain cases causes the growth to be biased in one direction.
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case, which is contained in Section 8. Finally, we end the paper with some open

problems, including a discussion of the problem in higher dimensions.

2. Outline of the proof

Let us begin by explaining why α(u) is the right definition of the difficulty of

growing in a direction u ∈ S1. The key fact is that there is a sense (which is

formalized in Lemma 3.4) in which α(u) measures how hard it is to infect an entire

new line in direction u, rather than merely an infinite subset of the line. More

specifically, while the definition of α(u) only guarantees that there exist sets of α(u)

sites that will infect infinitely many new sites on the line `u (with the help of Hu),

one can show that only boundedly many copies of this set are needed to infect the

whole line. (This is false without the condition that both α−(u) and α+(u) are

finite.)

Next let us see why the quantity α = α(U) defined in (1) is the constant one

should expect to see in the exponent of the critical probability in Theorem 1.4. In

order to do this, we need the definition of a droplet, which is just a polygon in Z2.

Droplets will be our means of controlling the growth of a set of infected sites.

Definition 2.1. Let T ⊂ Q1 be finite. A T -droplet is a non-empty set of the form

D =
⋂
u∈T

(
Hu + au

)
for some collection {au ∈ Z2 : u ∈ T }.

Reinterpreted in terms of droplets, the definition of α in (1) is equivalent to the

statement that there exist finite T -droplets for some set T ⊂ S such that α(u) > α

for all u ∈ T , but that the same is not true if α is replaced by any larger quantity.

In other words, any finite set of infected sites is contained in a closed droplet such

that a ‘cluster’ of at least α sites is needed to create non-localized new infections.

In the other direction, the condition that there exists an open semicircle C ⊂ S1

such that every u ∈ C has difficulty at most α, which is implied by the definition of

α, means that there is an interval of directions having difficulty at most α just large

enough for there to exist infinite sequences of nested droplets such that it is possible

to grow between consecutive droplets using only sets of α sites. (Note that in the

general model, unlike in symmetric bootstrap models, droplets do not necessarily

grow in all directions.)

Before continuing with the outline of the proof, let us record two conventions that

we use throughout the paper. First, U will always denote a fixed critical update

family, unless explicitly stated otherwise. Using results from Section 2.4, this is

equivalent to the statement that 1 6 α < ∞. Second, A will always denote a

p-random subset of either Z2 or Z2
n. We emphasize that, since we will usually be

working with droplets on a scale much smaller than n, most of the time we will not

have to worry about the difference between these two settings.
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2.1. Upper bounds. The overall approach of the proofs of the upper bounds mir-

rors that of previous works (see for example [1, 24, 36]). First we obtain a lower

bound of the form exp
(
− O(p−α)

)
for the probability that a droplet at a particu-

lar intermediate scale (which is roughly p−Θ(1)) is (almost) internally filled, where

‘internally filled’ is defined as follows.

Definition 2.2. A set X ⊂ Z2 is internally filled by A if X ⊂ [X ∩ A]. The event

that X is internally filled by A is denoted I(X).

We remark that in the older bootstrap percolation literature this event was re-

ferred to as X being ‘internally spanned’ by A. However, following [3, 4], we will

reserve that term for a different notion, see Definition 2.4 below.

As alluded to before Definition 2.2, we will in fact usually show that certain

droplets are not quite exactly internally filled, but almost internally filled, where

we use this terminology informally to mean that sites within distance O(1) may be

used to help fill the droplet. The resulting loss of independence is not a problem,

because the events are increasing and we bound them using Harris’s inequality.

The key step in the proof is a bound of the form

Pp
(
Dm ⊂

[
Dm−1 ∪ (Dm+1 ∩ A)

])
>
(
1− (1− pα)Ω(m)

)O(1)
,

where D0 ⊂ D1 ⊂ · · · is a certain sequence of nested droplets. This bound corre-

sponds to the intuition that it is enough to find somewhere along each side of the

droplet a bounded number of sets of α sites contained in A. Once we have this

bound, we then deduce that with high probability there exists an internally filled

copy of this intermediate droplet in Z2
n, and that with high probability this droplet

grows to infect the whole torus.

All of what we have just said assumes to some extent that the family is balanced.

If it is unbalanced then the droplets in the nested sequence (Dm)∞m=0 are somewhat

different: the sides (in the directions of growth) cannot grow linearly with m (as in

the balanced case), but instead all have the same length, and as a consequence the

droplets are much less ‘regular’ (for example, the initial droplet has width λ and

height λp−α log(1/p), where λ is a large constant, while in the balanced case it has

constant size). The growth also features an extra step, in which an extremely long

rectangular droplet grows a triangle of infected sites on its side.

Two key deterministic properties of the growth process are needed to make the

above ideas work, for both balanced and unbalanced families. The first we have

already discussed: the statement that a bounded number of sets of α sites are enough

to infect an entire new line; we refer to this principle as ‘voracity’, see Section 3.1.

The second is the ability to grow to the corners of droplets, not just to within a

bounded distance of the corners. This is in general not possible with T a subset of

the stable set S. However, using the idea of ‘quasi-stability’ introduced in [13], one

can show that it can be done if a certain set of unstable directions is included in T ,

see Section 3.2 for the details.
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2.2. The lower bound for balanced families. The lower bound for balanced

update families is also not too difficult, but again requires refined versions of argu-

ments from [13]. In order to sketch the proof, let us first briefly recall the argument

of Aizenman and Lebowitz [1] for the 2-neighbour model. Their key lemma states

that if A ⊂ Z2
n percolates, then for every 1 6 k 6 n, there exists an internally filled

rectangle of semi-perimeter between k and 2k. Using the simple and well-known

extremal result that such an internally filled rectangle contains at least k initially

infected sites, the bound follows from a straightforward calculation.

The key lemma of Aizenman and Lebowitz is proved via the so-called ‘rectangles

process’, which is an algorithm for determining the exact closure of a finite set under

the 2-neighbour process. The algorithm proceeds by breaking down the bootstrap

process into steps, each of which corresponds to the joining of two nearby rectangles

into a larger rectangle. (Note that rectangles are closed under the 2-neighbour

process.) One significant obstacle in the analysis of the general model is the lack of

a corresponding exact algorithm. Our solution is to use a process analogous to the

rectangles process but rather more complicated. This process is an adaptation of

the ‘covering algorithm’ of Bollobás, Smith and Uzzell [13], and we use it in order

to prove lemmas corresponding to those of [1]. Roughly speaking, we shall treat

clusters of α nearby sites as seeds, cover each with a small S-droplet, and combine

them pairwise into larger droplets if they are sufficiently close to interact in the

U -bootstrap process. The crucial deterministic property of the covering algorithm

is that the remaining infections (those not in α-clusters) contribute a negligible

amount to the set of eventually infected sites; this is proved in Lemma 6.11.

2.3. The lower bound for unbalanced families. The proofs of the previous three

parts of the theorem are essentially refinements of established techniques. For this

final part of the theorem, however, these techniques do not seem to be useful, and

instead we introduce several substantial new ideas, including iterated hierarchies,

the u-norm, and icebergs (see below). We mention these ideas only briefly in this

section, focusing instead on the broad structure of the proof, and on some of the

most important definitions. A much fuller outline of the proof is given at the start

of Section 8 (see also Section 6).

The first observation we make (see Lemmas 2.9 and 6.2) is that there exist opposite

stable directions u∗ and −u∗ that both have difficulty at least α + 1. We set

SU =
{
u∗,−u∗, ul, ur

}
,

where ul and ur are stable directions on different sides of u∗, each of difficulty at

least α, and we consider only SU -droplets. Let us rotate our perspective so that

u∗ is vertical, and write h(D) and w(D) for the height and width of an SU -droplet

respectively.

As in the balanced case, first we need an approximate rectangles process, which

will allow us to say that if a large droplet is internally filled then it must contain
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droplets at all scales that are ‘approximately internally filled’. The covering algo-

rithm is no longer useful to us because it is too crude to capture the biased nature of

the geometry of unbalanced models. Instead we use a second algorithm, the ‘span-

ning algorithm’, which is an adaptation of an idea introduced by Cerf and Cirillo

in [14] and subsequently developed in [3,4,15,18]. The algorithm uses the following

notion of connectedness and the subsequent notion of being ‘internally spanned’,

which is an approximation to being internally filled.

Definition 2.3. Let κ be a sufficiently large constant, to be defined explicitly in (14).

Define a graph Gκ with vertex set Z2 and edge set E(Gκ) =
{
xy : ‖x − y‖2 6 κ

}
.

We say that a set S ⊂ Z2 is strongly connected if it is connected in the graph Gκ.

Definition 2.4. Let T ⊂ S be finite. A T -droplet D is internally spanned by A if

there is a strongly connected set L ⊂ [D ∩A] such that D is the smallest T -droplet

containing L. We will write I×(D) for the event that D is internally spanned.7

As noted above, many previous authors have used the term ‘internally spanned’ to

mean (what we refer to as) ‘internally filled’. We reemphasize that our terminology

(which follows [3, 4], and seems to us more natural) is different.

The spanning algorithm allows us to break down the formation of an internally

spanned droplet into intermediate steps in the same way that the original rectangles

process allowed Aizenman and Lebowitz [1] to break down the formation of an

internally filled droplet. Using the spanning algorithm we are able to say that if a

large droplet is internally spanned, then it contains internally spanned droplets at

all smaller scales. The scale we are particularly interested in is the ‘critical’ scale,

which for unbalanced models has the following specific meaning.

Definition 2.5. Let U be unbalanced and let ξ > 0 be a small positive constant.

An SU -droplet D is critical if either of the following conditions holds:

(T ) w(D) 6 3p−α−1/5 and ξ
pα

log 1
p
6 h(D) 6 3ξ

pα
log 1

p
;

(L) p−α−1/5 6 w(D) 6 3p−α−1/5 and h(D) 6 ξ
pα

log 1
p
.

Why might this be the right definition? It is certainly not surprising that the

droplet should be long and thin; this is the nature of unbalanced growth, as suggested

by the proof of the upper bound in Section 5. The height h = ξ
pα

log 1
p

is such that

an initial rectangle of height h and constant width will fail to grow sideways (that

is, perpendicular to u∗) by a constant distance with probability roughly pO(ξ), and

therefore one would expect the rectangle to grow sideways only to distance p−O(ξ).

The width w = p−α−1/5 is such that the probability the rectangle grows to distance w

is sufficiently small to compensate for the number of choices for the initial rectangle.

The reason for there being two types of critical droplet is that the spanning algorithm

cannot control the width and the height of the critical droplet simultaneously.

7Note that the event I×(D) also depends on T . However, we will only use this notation when

T = SU , and so we trust this will therefore not cause the reader any confusion.
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In order to bound the probability that a critical dropletD is internally spanned, we

shall show that, if the droplet is of type (T ), then it is unlikely that [D∩A] contains

a strongly connected set joining the (−u∗)-side of D to the u∗-side, while if it is of

type (L), then instead it is unlikely that [D ∩ A] contains a strongly connected set

joining the ul-side to the ur-side. (The u-side of a droplet is defined precisely below.)

These events are called ‘vertical crossings’ and ‘horizontal crossings’ respectively.

There are several complications that occur while bounding the probabilities of

such crossings. Consider first vertical crossings, and note that, since α(u∗) > α+ 1,

we have either min
{
α+(u∗), α−(u∗)

}
> α + 1, or

max
{
α+(u∗), α−(u∗)

}
= ∞ and min

{
α+(u∗), α−(u∗)

}
> 1, (2)

and similarly for −u∗. Since the former case is much easier to handle, let us assume

in this sketch that (2) holds. (In this case we say the model exhibits drift.)

For concreteness, suppose that α−(u∗) = ∞ and α+(u∗) = 1. Since we have a

pair {u∗,−u∗} of opposite stable directions, we may partition the droplet D into

many smaller sub-droplets of the same width, and bound the probability that each

is vertically crossed (possibly with help from above and below) independently, since

these events depend on disjoint sets of infected sites. In order to bound these crossing

probabilities, we need several new ideas. First, we need a method of controlling

the range of the U -bootstrap process assisted by a half-plane. We achieve this by

introducing (in Section 6.3) a third algorithm for approximating the closure of a set

of sites, which we call the ‘u-iceberg algorithm’. Second, we need a close-to-best-

possible bound for the probability that certain smaller sub-droplets are internally

spanned (following [4], we call these sub-droplets ‘savers’). In order to obtain such a

bound, we induct on the size of the droplet being crossed. (This means the proof for

vertical crossings at a given scale depends on us having obtained sufficiently strong

bounds for both vertical and horizontal crossings at the scale below.) Finally, we

need to deal with the ‘stretched geometry’ of drift models; we do so by introducing

a family of norms (the ‘u-norms’) that compress this geometry until it resembles

Euclidean space, and we also introduce a new concept of (‘weak’) connectedness;

see Sections 8.2 and 8.3 respectively for the details.

Now consider horizontal crossings, and observe that we no longer have symmetry,

since −ul and −ur are in general not stable directions. This prevents us from parti-

tioning into sub-droplets as with vertical crossings, and so to overcome this we use

the ‘hierarchy method’, which was introduced by Holroyd in [27] and subsequently

developed in [3, 4, 19, 25]. We would like to emphasize that the reason for our use

of hierarchies is different to that of all previous works: here, the reason is the lack

of symmetry between ul and ur (which is also why we do not need them for verti-

cal crossings); previously the reason has been to prove sharp thresholds for critical

probabilities in symmetric settings.

In order to use hierarchies, we need three further ingredients: a bound on the

probability that ‘seeds’ (which are small sub-droplets) are internally spanned; a
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bound on the probabilities of certain (p times shorter) horizontal crossing events; and

a bound on the number of hierarchies with a given number of ‘big seeds’. For these

we use the induction hypothesis (once again, we need sufficiently strong bounds for

both vertical and horizontal crossings at the scale below), and the method described

above for vertical crossings (although the details are somewhat simpler in this case).

Since our use of induction on the size of the droplet amounts to iterating the above

argument α times, we refer to this as the ‘method of iterated hierarchies’.

2.4. Basic facts about U-bootstrap percolation. The U -bootstrap process ex-

hibits a number of particularly simple and elegant properties, some of which we now

recall from [13]. We begin with a description of the stable set S. We write [v, w] for

the closed interval of directions between v and w taken anticlockwise starting from

v, and we say that [v, w] is rational if {v, w} ⊂ Q1.

Lemma 2.6 (Theorem 1.10 of [13]). The stable set S is a finite union of rational

closed intervals of S1.

The converse to Lemma 2.6 is also true (and is part of Theorem 1.10 of [13]): if

S ⊂ S1 is any set consisting of a finite union of rational closed intervals, then there

exists an update family U such that S = S(U). We shall not use this converse.

The following simple properties of directions of infinite difficulty, which were

proved in [13], will also be useful. For completeness, we sketch the proofs.

Lemma 2.7. Let [v, w] ⊂ S with v 6= w be a connected component of S, and let

u ∈ [v, w] ∩Q1. Then

α+(u) < ∞ ⇔ u = v and α−(u) < ∞ ⇔ u = w.

In particular, if u ∈ S ∩Q1, then α(u) <∞ if and only u is an isolated point of S.

Proof. We will show first that α+(v) <∞. To do so, observe that there exist unsta-

ble directions arbitrarily close to (and to the right of) v. Choose such a direction v′

sufficiently close to v, and choose X ∈ U such that X ⊂ Hv′ . Since the elements of

X all lie within a finite distance of the origin, and v′ was chosen sufficiently close

to v, it follows that X ⊂ Hv ∪ `−v . Now, if Z is a set of consecutive sites of `v that

contains X \Hv, then [Hv ∪ Z] ∩ `+
v is infinite, as required.

In order to prove that α+(u) = ∞ for every u ∈ (v, w] ∩ Q1, we will first show

that (for each such u) there exists u′ ∈ (v, u) such that Hu ∪Hu′ is closed under the

U -bootstrap process. To do so, simply choose u′ closer to u than any u′′ ∈ S1 \ {u}
perpendicular to a vector in the set{

x− y : x, y ∈
⋃
X∈U

X ∪ {0}, x 6= y
}
.

That we can do this follows easily from the fact that U is a finite collection of finite

sets. Now, suppose that there exists a rule X ∈ U such that X ⊂ Hu ∪ Hu′ . Since
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u, u′ ∈ S, there must exist x, y ∈ X with x 6∈ Hu and y 6∈ Hu′ . But now x − y is

perpendicular to a vector in the interval (u′, u), which contradicts our choice of u′.

Next, let u ∈ (v, w] ∩ Q1, and choose u′ ∈ (v, u) such that Hu ∪ Hu′ is closed.

Now, for any finite set Z ⊂ Z2, there exists y ∈ `u such that y + Z ⊂ Hu′ , and

therefore [Hu ∪ (y + Z)] ⊂ Hu ∪ Hu′ . It follows that [Hu ∪ Z] ∩ `+
u is finite, and

hence α+(u) = ∞, as required. The remaining claims now follow by symmetry, or

are immediate from the definitions. �

Let us note, for emphasis, that the proof above also implies the following lemma.

Lemma 2.8. If u ∈ Q1 and α−(u) < ∞, then there exists X ∈ U such that

X ⊂ Hu ∪ `+
u , and hence `u ⊂ [Hu ∪ `+

u ].

Proof. By Lemma 2.7, there exist unstable directions arbitrarily close to (and to

the left of) u. Choose such a direction v sufficiently close to u, and choose X ∈ U
such that X ⊂ Hv. Since the elements of X all lie within a bounded distance of the

origin, it follows that X ⊂ Hu ∪ `+
u , as required. �

We are now in a position to deduce the existence of opposite stable directions u∗

and −u∗ claimed earlier for unbalanced families U .

Lemma 2.9. Let U be an unbalanced critical update family. Then there exists

u∗ ∈ Q1 such that

min
{
α(u∗), α(−u∗)

}
> α + 1.

Proof. By the definition of α, there exists an open semicircle C ∈ C such that

α(u) 6 α for every u ∈ C. Moreover, since U is critical we have α < ∞. Thus, if

one of the endpoints of C has difficulty at most α, then it is an isolated point of S,

by Lemma 2.6. Hence, rotating C slightly, we obtain a closed semicircle C ′ such that

α(u) 6 α for all u ∈ C ′. But this contradicts our assumption that U is unbalanced,

hence both endpoints of C have difficulty at least α + 1, as required. �

One final simple but important fact is that if u is not stable then Hu grows to fill

the whole of Z2.

Lemma 2.10 (Lemma 3.1 of [13]). If u 6∈ S, then [Hu] = Z2.

Thus for every u ∈ S1 we have the dichotomy [Hu] ∈
{
Hu,Z2}.

2.5. Definitions and notation. In this subsection we collect for ease of reference

various conventions, definitions and notation that we shall use throughout the paper.

2.5.1. Constants, and asymptotic notation. All constants, including those implied

by the notation O(·), Ω(·) and Θ(·), are quantities that may depend on U (and

other quantities where explicitly stated) but not on p. The parameter p will always

be assumed to be sufficiently small relative to all other quantities. Our asymptotic

notation is mostly standard, although we just remark that if f and g are positive

real-valued functions of p, then we write f(p) = Ω
(
g(p)

)
if g(p) = O

(
f(p)

)
, and we
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write f(p) = Θ
(
g(p)

)
if both f(p) = O

(
g(p)

)
and g(p) = O

(
f(p)

)
. Furthermore,

if c1 and c2 are constants, then c1 � c2 � 1 means that c2 is sufficiently large,

and c1 is sufficiently large depending on c2, and 1 � c1 � c2 > 0 means that c1 is

sufficiently small, and c2 is sufficiently small depending on c1. (This last piece of

notation is somewhat non-standard; we trust it will not cause any confusion.)

2.5.2. Measuring sizes and distances. The unadorned norm ‖ · ‖ always denotes the

Euclidean norm on R2, and 〈·, ·〉 always denotes the Euclidean inner product. As

remarked above, in Section 6 we will define a family of norms on R2 called the

‘u-norms’, which will be signified with a subscript u thus: ‖ · ‖u.
Now, for u ∈ S1 and a finite set K ⊂ Z2, define the u-projection of K,

π(K, u) := max
{
〈x− y, u〉 : x, y ∈ K

}
. (3)

Also, let

diam(K) := max
{
π(K, u) : u ∈ S1

}
= max

{
‖x− y‖2 : x, y ∈ K

}
be the diameter of K. Owing to the biased nature of the geometry, in the unbalanced

setting the diameter is usually not a useful measure of the size of K. Instead, we

work with the height

h(K) := π(K, u∗) = max
{
〈x− y, u∗〉 : x, y ∈ K

}
,

and the width

w(K) := π(K, u⊥) = max
{
〈x− y, u⊥〉 : x, y ∈ K

}
,

where {u∗,−u∗} ⊂ S is the pair of opposite stable directions with difficulty strictly

greater than α given by Lemma 2.9, and u⊥ ∈ S1 is either of the two unit vectors

that are orthogonal to u∗. We will also make frequent use of the following constant,

which we think of as being the ‘diameter’ of U :

ν := max
{
‖x− y‖ : x, y ∈ X ∪ {0}, X ∈ U

}
. (4)

We will define another constant ρ, which captures a different aspect of the “range”

of the U -bootstrap process, in Section 6.

Occasionally we shall want to talk about the distance between a site and a set of

sites, or between two sets of sites. We use the following standard conventions:

‖x− Y ‖ := min
{
‖x− y‖ : y ∈ Y

}
,

and ‖X − Y ‖ := min
{
‖x− y‖ : x ∈ X, y ∈ Y

}
,

whenever X and Y are finite subsets of Z2. We also use analogous conventions for

other measures of distance, such as the ‘u-norms’ and inner products.
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2.5.3. Subsets of the plane. If u ∈ Q1, then the collection of non-empty discrete

lines {{
x ∈ Z2 : 〈x− a, u〉 = 0

}
: a ∈ Z2

}
is a discrete set, naturally indexed by Z. Thus, we may set `u(0) := `u and (for each

j ∈ Z) let `u(j) denote the jth non-empty discrete line in the direction of u.

For each u ∈ S1 and a ∈ R2, we define the discrete half-planes

Hu(a) :=
{
x ∈ Z2 : 〈x− a, u〉 < 0

}
.

If a ∈ Z2 then we have Hu(a) = Hu + a, but this is false otherwise (since Hu ⊂ Z2).

Recall (cf. Definition 2.1) that a T -droplet is a non-empty set of the form

D =
⋂
u∈T

Hu(au)

for some collection {au ∈ R2 : u ∈ T }. For each u ∈ T , the u-side of a T -droplet D

is defined to be the set

∂(D, u) := D ∩ `u(i), (5)

where i is maximal subject to the set being non-empty. Finally, note that we can

consider droplets (even those with diameter larger than n) as subsets of Z2
n by taking

all x = (x1, x2) ∈ Z2
n such that (x1 + in, x2 + jn) ∈ D for some i, j ∈ Z.

2.6. Probabilistic lemmas. We end the section by recalling the correlation in-

equalities of Harris [26], and van den Berg and Kesten [34]. For definitions of in-

creasing events and disjoint occurrence, and for proofs of both inequalities, see [12].

Lemma 2.11. (Harris’s inequality) If A and B are increasing events then

Pp(A ∩ B) > Pp(A) · Pp(B).

We write A ◦ B for the event that A and B occur disjointly.

Lemma 2.12. (The van den Berg–Kesten inequality) If A and B are increasing

events then

Pp(A ◦ B) 6 Pp(A) · Pp(B).

We shall apply Harris’s inequality frequently throughout the paper, but the van

den Berg–Kesten inequality only once, in Lemma 8.9.

3. Voracity and quasi-stability

In Section 2 we mentioned that there were two important deterministic concepts

that we needed in order to make our upper bound proofs work. These were the

notions of ‘voracious sets’ and ‘quasi-stable directions’. In this section we intro-

duce and develop these ideas, in preparation for the proofs of the upper bounds of

Theorem 1.4 in the two sections to follow.
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3.1. Voracity and the infection of new lines. We begin by studying sets of

infected sites that are sufficient for stable half-planes to grow.

Definition 3.1. Let u ∈ Q1, and let Z ⊂ Z2 be a set of size |Z| = α(u). If

[Hu ∪ Z] ∩ `u is infinite, then we say that Z is voracious for u.

The definition of α(u) implies there exists at least one voracious set for every

u ∈ S. We would like to show (see Lemma 3.4, below) that a bounded number of

voracious sets on the u-side of a (finite) droplet D are sufficient to infect all but

a bounded number of sites on the line adjacent to the u-side of D. The following

definition will be useful.

Definition 3.2. A homothetic copy of a set S is a set

Y = a+ kS =
{
y ∈ Z2 : y = a+ kb for some b ∈ S

}
for some a ∈ Z2 and non-zero k ∈ Z.

Note that if a ∈ `u, then a homothetic copy of `+
u is an infinite subset of the line

`u. As a warm-up for the (slightly technical) finite setting, let’s begin by proving

the infinite version of the statement we require.

Lemma 3.3. Let u ∈ Q1 be such that α(u) 6 α and let Z be voracious for u. Then

[Hu ∪ Z] ∩ `u contains a homothetic copy of `+
u .

Proof. We may assume that u is stable, since otherwise the lemma is trivial, and

that [Hu ∪ Z] contains infinitely many sites of `+
u , since Z is voracious. Since Z is

finite, there exists a ∈ Z2 such that [Hu ∪Z] ⊂ Hu(a). Recall from (4) the definition

of ν, and partition Hu(a) \Hu into disjoint congruent rectangles . . . , R−1, R0, R1, . . .,

each of the same width s > 2ν, with Ri immediately to the right of Ri−1 for each

i ∈ Z, and such that Z ⊂ R0, noting that this is possible if s is sufficiently large.

Set Li = Ri ∩ [Hu ∪ Z] for each i ∈ Z.

Now, the condition that [Hu ∪ Z] ∩ `+
u is infinite and the definition of ν together

imply that Li is non-empty for every i > 0. Since there are only finitely many

possible configurations for Li, there exist j > 0 and r > 1 such that Lj = Lj+r.

Furthermore, since the set Li is the final configuration inside Ri, and since if i > 0

then no sites to the right of Ri (outside of Hu) are initially infected, it must be that

if i > 0 then Li+1 depends only on Li. It follows that(
Lj, . . . , Lj+r−1

)
=
(
Lj+r, . . . , Lj+2r−1

)
=
(
Lj+2r, . . . , Lj+3r−1

)
= . . . ,

and this is sufficient to prove the lemma. �

By taking suitable translates of the voracious set Z in Lemma 3.3, it is clear that

we can infect the whole of either `+
u or `−u . We can then use Lemma 2.8 to return

back along the line and infect the rest of `u.

Let us now turn to the finite setting, applicable to the growth of a new row on

the side of a droplet. Recall that we denote by ∂(D, u) the u-side of a T -droplet D.
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In the lemma below we will also need the following notion: define the u-outside of

a T -droplet D to be the set ∂◦(D, u) of points of `u(i + 1) that lie within distance

1 of D, where ∂(D, u) = D ∩ `u(i). Let us also say that a set Z lies above the

u-side of D if the orthogonal projection of its convex hull onto the continuous line

(perpendicular to u) through ∂(D, u) intersects ∂(D, u).

The following lemma says that a bounded number of voracious sets are sufficient

(together with Hu) to infect all but a bounded number of sites of the u-outside of

a droplet D, and that moreover we may choose any suitable translation of each

voracious set.

Lemma 3.4. Let T ⊂ Q1 be a finite set, let u ∈ T satisfy α(u) 6 α, and let Z

be voracious for u. Then there exist µ > 0, r ∈ N, and b ∈ `u, such that for every

T -droplet D, there exist a1, . . . , ar ∈ ∂◦(D, u) such that the following holds.

Suppose that k1, . . . , kr ∈ Z are such that Z + aj + kjb is above the u-side of D,

and at distance at least µ from the corners of D, for every 1 6 j 6 r. Then the set[
D ∪ (Z + a1 + k1b) ∪ · · · ∪ (Z + ar + krb)

]
contains all elements of ∂◦(D, u) at distance at least µ from the corners.

Proof. First, choose a constant µ0 > 0 to be sufficiently large so that, for every

X ∈ U and u ∈ T , we have y + (X ∩ Hu) ⊂ D for every T -droplet D, and

every y ∈ ∂◦(D, u) at distance at least µ0 from the corners. Now fix u ∈ T with

α(u) 6 α, and let Z be voracious for u, so (without loss of generality) we may

assume that [Hu ∪ Z] contains infinitely many sites on the line `+
u . Define the

sequence . . . , R−1, R0, R1, . . . of rectangles (each of constant width s > 2ν) as in the

proof of Lemma 3.3, and set

Li = Ri ∩ [Hu ∪ Z]

for each i ∈ Z. Recall that Z ⊂ R0, and define t0 = min
{
t > 0 : L0 ⊂ (Hu ∪ Z)t

}
,

i.e., the number of steps of the U -bootstrap process it takes to infect L0, starting

from Hu ∪ Z. Since ‘information’ can only travel distance ν in one step of the

process, it follows that if R0 is at distance at least t0ν + µ0 from the corners of D,

then L0 ⊂ [D ∪ Z]. Next, for each i > 1, define

ti = min
{
t > 0 : Li ⊂ (Hu ∪ Li−1)t

}
i.e., the number of steps of the U -bootstrap process it takes to infect Li, starting

from Hu ∪ Li−1. Note that ti is finite, and moreover, since the Lj are periodic there

exists a constant T such that ti 6 T for every i > 1. Therefore, if Li−1 ⊂ [D ∪ Z]

and Ri is at distance at least Tν + µ0 from the corners of D, then Li ⊂ [D ∪ Z].

It follows that [D∪Z]∩∂◦(D, u) contains the intersection with ∂◦(D, u) of a homo-

thetic copy of `+
u with bounded difference. More precisely, there exists a ∈ ∂◦(D, u)

and b ∈ `u, where ‖a− Z‖ and ‖b‖ are both at most some constant depending on u

and Z, but not on D, such that [D ∪Z]∩ ∂◦(D, u) contains every element of a+ b`+
u

that is in ∂◦(D, u), and at distance at least Tν + µ0 from the corners of D.
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Hence there exist r ∈ N (depending on b) and a1, . . . , ar ∈ ∂◦(D, u) such that the

following holds: if k1, . . . , kr ∈ Z are such that the set Z + aj + kjb is above the

u-side of D and sufficiently far from the corners of D for every 1 6 j 6 r, then the

set

Y :=
[
D ∪ (Z + a1 + k1b) ∪ · · · ∪ (Z + ar + krb)

]
contains ν consecutive elements of ∂◦(D, u) at distance at least µ0 from the corners.

Now, by Lemma 2.8 there exist update rules X+ and X− contained in Hu ∪ `+
u and

Hu ∪ `−u respectively. Note that X+ \Hu is contained in the first ν sites of `+
u , and

similarly for X− \Hu and `−u . Hence Y in fact contains all elements of ∂◦(D, u) that

are at distance at least µ0 from the corners, as required. �

As a consequence of Lemma 3.4, one would expect that a T -droplet D would

‘grow by one step in direction u’ with probability at least(
1− (1− pα)Ω(m)

)O(1)
,

where m is the length of the side of D corresponding to u. This is almost true;

however, as the presence of the constant µ in Lemma 3.4 suggests, we have a problem

near the corners of D: we may need sites not in D but still below the (extended)

u-side of D in order to infect the last O(1) sites. We resolve this problem using

another idea from [13]: that of quasi-stable directions.

3.2. Quasi-stability. In many of the simpler bootstrap models, the droplets used

as bases for growth are taken with respect to the set of stable directions. Droplets

for the 2-neighbour model are rectangles – or, put another way, they are taken

with respect to the set S = {e1,−e1, e2,−e2} of stable directions. Similarly, for

balanced threshold models with symmetric star-neighbourhoods8 droplets can be

taken with respect to the set of stable directions, and the droplets are therefore

2k-gons consisting of pairs of parallel sides, for some k > 2. In this case S-droplets

are suitable bases for growth because, when new infections spread in both directions

along each edge of the droplet, the set that results is a new, slightly larger droplet.

The same is not true in general: indeed, as noted above, we may fail to infect

some of the sites near the corners of D due to boundary effects. The solution to this

problem as used by Bollobás, Smith and Uzzell [13] was to introduce a number of

quasi-stable directions, which are not stable directions, but which nevertheless are

treated as such. Thus, droplets are taken with respect to a certain superset of the

stable set. For a comprehensive discussion of quasi-stability, we refer the reader to

Section 5.1 of [13].

The next lemma is Lemma 5.3 of [13]. Since the lemma is so fundamental to the

proofs of the upper bounds of Theorem 1.4, we give the (short) proof here (which

is also similar to that of Lemma 2.7) in full. Recall that [u, v] denotes the interval

8We say that Y is a symmetric star-neighbourhood if x ∈ Y implies that that −x ∈ Y , and

moreover that every vertex of Z2 on the straight line between x and −x is in Y .
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of directions in S1 between u to v, taken anticlockwise starting from u. Given a

set T ⊂ S1, we say that u and v are consecutive elements of T if u 6= v and

T ∩ [u, v] = {u, v} (note that the order of u and v matters in this definition).

Lemma 3.5. There exists a finite set Q ⊂ Q1 such that for every pair u, v of

consecutive elements of S ∪ Q there exists an update rule X such that

X ⊂
(
Hu ∪ `u

)
∩
(
Hv ∪ `v

)
.

Proof. Form Q by taking the two unit vectors u and −u perpendicular to x (con-

sidered as a vector) for every site x ∈ X and every update rule X ∈ U . Formally,

Q :=
⋃
X∈U

⋃
x∈X

{
u ∈ S1 : 〈u, x〉 = 0

}
.

`v

`u

v

u

`w

w

x

w′

(
Hu ∪ `u

)
∩
(
Hv ∪ `v

)

Figure 2. Since w is unstable, there exists X ∈ U with X ⊂ Hw. If

x ∈ X lies in the region between `w and `u, then the direction w′ would

be in Q, by construction, which contradicts u and v being consecutive

in S ∪ Q. Thus X ⊂ (Hu ∪ `u
)
∩
(
Hv ∪ `v

)
, as required. Note that

the figure is completely general: [u, v] is at most a semicircle, by the

definition of SQ.

Now suppose u and v are consecutive elements of S ∪Q and let w ∈ [u, v] \ {u, v}.
Since w is not stable, there exists an update rule X ⊂ Hw. Suppose the conclusion

of the lemma fails, so

X 6⊂
(
Hu ∪ `u

)
∩
(
Hv ∪ `v

)
.

Then without loss of generality there exists x ∈ X such that 〈x, v〉 < 0 and 〈x, u〉 >
0. But this implies that there exists w′ ∈ S1 perpendicular to x with w′ ∈ [u, v] \
{u, v}, contradicting the construction of Q. (See Figure 2.) �

It follows immediately from the lemma that when droplets are taken with respect

to suitable finite subsets of S ∪ Q, there are rules that allow the droplets to grow

along their sides all the way to the corners: droplets grow into droplets.
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4. The upper bound for balanced families

In this section we shall prove the following theorem, which is the upper bound of

Theorem 1.4 for balanced families.

Theorem 4.1. Let U be critical and balanced. Then

pc(Z2
n,U) = O

(
1

log n

)1/α

.

Recall that if U is balanced then there exists a closed semicircle C ⊂ S1 such that

α(u) 6 α for all u ∈ C. Since α(u) < ∞ for every u ∈ C, every stable direction

u ∈ C must be isolated, by Lemma 2.6. This implies the existence of a closed arc

C ′ such that C ( C ′ ( S1 and such that α(u) 6 α for all u ∈ C ′. We write u+ for

the left endpoint of C ′ and u− for the right endpoint; we may assume that these are

rational.

Let Q be the set of quasi-stable directions given by Lemma 3.5 and set

SQ :=
(
S ∪ Q ∪ {u−, u+}

)
∩ C ′ and S ′Q := SQ \ {u−, u+}.

These sets are finite, since Q and S ∩C ′ are both finite by construction. Throughout

this section droplets will be taken with respect to the set SQ.

Choose a collection of vectors {au ∈ R2 : u ∈ SQ} and sufficiently large positive

constants {du > 0 : u ∈ S ′Q} such that the sequence of SQ-droplets

Dm :=
⋂

u∈{u−,u+}

Hu(au) ∩
⋂
u∈S′Q

Hu(au +mduu) (6)

for m = 0, 1, 2, . . . have the following properties (see Figure 3):

(i) D0 is sufficiently large relative to the du;

(ii) for every m > 0 and every consecutive pair u, v ∈ S ′Q, the intersection9 of

the lines `u + au + mduu and `v + av + mdvv lies on a (continuous) line

L+
u = L−v ;

(iii) the lines L+
u all intersect at the point x0 ∈ R2, which is also the intersection

point of the sides of D0 corresponding to u− and u+.

9These are discrete lines and may have empty intersection. If this is the case then we mean

instead the intersection of the corresponding continuous lines; this may not be an element of Z2.
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D0

D1 \D0

x0

L+
u = L−v

u+

u−

v

u

Figure 3. The sequence of droplets D0 ⊂ D1 ⊂ D2 ⊂ · · · .

The key lemma in our proof of Theorem 4.1 will be the following bound on the

probability that a droplet grows by a constant distance.

Lemma 4.2. Let m ∈ N. Then

Pp
(
Dm ⊂

[
Dm−1 ∪ (Dm+1 ∩ A)

])
>
(
1− (1− pα)Ω(m)

)O(1)
.

Note that the constants implicit in the right-hand side of the inequality above

depend on our choice of droplets, and hence on U , but not on the probability p.

Before proving Lemma 4.2, let us show that it implies the following lower bound on

the probability that a large droplet is almost internally filled.

Lemma 4.3. Let m ∈ N. Then

Pp
(
Dm ⊂

[
Dm+1 ∩ A

])
> exp

(
−O

(
p−α
))
.

Proof. Noting that all the events we are considering are increasing, it follows from

Harris’s inequality (Lemma 2.11) that

Pp
(
Dm ⊂

[
Dm+1 ∩ A

])
> Pp

(
I(D0) ∩

m⋂
k=1

{
Dk ⊂

[
Dk−1 ∪ (Dk+1 ∩ A)

]})

> Pp
(
I(D0)

) m∏
k=1

Pp
(
Dk ⊂

[
Dk−1 ∪ (Dk+1 ∩ A)

])
.
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Thus, by Lemma 4.2, we have

Pp
(
Dm ⊂

[
Dm+1 ∩ A

])
> pO(1)

∞∏
k=1

(
1− (1− pα)Ω(k)

)O(1)

> pO(1) exp

(
−O(1)

∞∑
k=1

− log
(

1− e−Ω(pαk)
))

> pO(1) exp

(
−O
(
p−α
) ∫ ∞

0

− log
(
1− e−z

)
dz

)
> exp

(
−O

(
p−α
))
,

where for the final inequality we used the fact that
∫∞

0
− log

(
1− e−z

)
dz <∞. �

From here, the deduction of Theorem 4.1 is straightforward.

Proof of Theorem 4.1. Let λ be a sufficiently large constant, and set

p =

(
λ

log n

)1/α

.

As usual, A is a p-random subset of Z2
n. We shall show that [A] = Z2

n with high

probability as n→∞, which is more than enough to prove the theorem.

To avoid some technical issues, let us ‘sprinkle’ the initially infected sites in two

rounds; that is, we take A(1) and A(2) to be independent p-random subsets of Z2
n,

and redefine the set of initially infected sites to be A = A(1) ∪ A(2). This means we

are actually including sites in A with probability 2p− p2, but this does not matter

because we have freedom over the infection probability up to a constant factor. We

use the first round of sprinkling to find an almost internally filled copy of Dm, where

m := (log n)3, and the second round to show that the copy of Dm grows (with high

probability) to fill the torus.

Let us define the following events:

E :=
⋃
x∈Z2

n

{
x+Dm ⊂

[
(x+Dm+1) ∩ A(1)

]}
is the event that x+Dm is ‘almost internally filled’ by A(1), for some x ∈ Z2, and

F (x) :=
{
Z2
n ⊂

[
(x+Dm) ∪ A(2)

]}
is the event that Z2

n is internally filled by (x+Dm)∪A(2). The events E and F (x) are

independent, so by the comments above, it will suffice to show that Pp(Ec) = o(1)

and that Pp
(
F (x)c

)
= o(1) for each fixed x ∈ Z2

n.

To bound Pp(Ec), observe first that there exists a collection of Ω
(
n2/m2

)
sites

x ∈ Z2
n such that the sets x+Dm+1 are pairwise disjoint. By Lemma 4.3, it follows

that

Pp
(
Ec
)
6
(

1− exp
(
−O(p−α)

))Ω(n2/m2)

6 exp
(
− n2+o(1)e−O(logn)/λ

)
= o(1)
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since λ is sufficiently large.

To bound Pp
(
F (x)c

)
, observe that x + Dλn = Z2

n if λ is sufficiently large. By

Lemma 4.2 and Harris’s inequality (which we need because the ‘wrap-around’ effect

of the torus causes loss of independence), it follows that, for any x ∈ Z2
n,

Pp
(
F (x)

)
>

λn+1∏
k=m

(
1−

(
1− pα

)Ω(k)
)O(1)

>
(

1−
(
1− pα

)Ω(m)
)O(n)

> exp
(
−O

(
e−Ω(pαm) · n

))
= 1− o(1),

as claimed. By the comments above, this completes the proof of the theorem. �

Our only remaining task is to prove Lemma 4.2. Having already established the

deterministic lemmas of the previous section, the idea of the proof is simple. In

order to grow from Dm to Dm+1 it is sufficient for a bounded number of events to

occur, each event having failure probability at most (1− pα)Ω(m). These events are

all very loosely speaking of the form ‘there exists in A a translate of a given set of α

sites somewhere along one of the edges of the droplet’. Since any set of α sites is a

subset of A with probability pα, and since there are Ω(m) possible disjoint translates

of that set, we obtain the desired bound on the probability.

For the sake of completeness, we now present a rigorous proof of Lemma 4.2. We

begin by giving a name to the sets that we shall use to grow the droplets. Let D be

an SQ-droplet with Dm−1 ⊂ D ⊂ Dm, let u ∈ S ′Q, and let Z be an arbitrary (but

fixed) set that is voracious for u. Let µ > 0, r ∈ N, b ∈ `u and a1, . . . , ar ∈ ∂◦(D, u)

be given by Lemma 3.4, applied to SQ, u, Z and D (so µ, r and b depend on u and

Z, but not D). We will use the following sets in order to infect ∂◦(D, u).

Definition 4.4. For each 1 6 j 6 r, an (α, u, j)-cluster for D is a set of the form

Z + aj + kb

for some k ∈ Z. We say that an (α, u, j)-cluster for D is suitable if it lies above the

u-side of D, and at distance at least µ from the corners of D.

The following deterministic lemma is a straightforward consequence of Lemma 3.4

and 3.5.

Lemma 4.5. For each 1 6 j 6 r, let Z(j) be a suitable (α, u, j)-cluster for D. Then

∂◦(D, u) ⊂
(
D ∪

r⋃
j=1

Z(j)
)
. (7)

Proof. By Lemma 3.4, the right-hand side of (7) contains all sites in ∂◦(D, u) at

distance at least µ from the corners. In particular, since D0 was assumed to be

sufficiently large, it follows that an interval of at least ν consecutive sites of ∂◦(D, u)

are infected. Now, using Lemma 3.5, we can also infect the elements of ∂◦(D, u)

near the corners of D. �
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Lemma 4.2 is a simple consequence of Lemma 4.5.

Proof of Lemma 4.2. Observe that for every SQ-droplet D with Dm−1 ⊂ D ⊂ Dm,

and every u ∈ S ′Q and 1 6 j 6 r = r(u), there are at least Ω(m) disjoint suitable

(α, j)-clusters. Since each (α, j)-cluster is contained in A with probability pα, it

follows by Lemma 4.5 and Harris’s lemma that

Pp
(
∂◦(D, u) ⊂

[
D ∪ (Dm+1 ∩ A)

])
>
(
1− (1− pα)Ω(m)

)O(1)
.

Hence, since a bounded number of steps of this form suffice to infect Dm, using

Harris’s lemma once again we obtain

Pp
(
Dm ⊂

[
Dm−1 ∪ (Dm+1 ∩ A)

])
>
(
1− (1− pα)Ω(m)

)O(1)
,

as required. �

5. The upper bound for unbalanced families

In this final section on upper bounds we prove the following general theorem,

which in particular implies the upper bound in Theorem 1.4 for unbalanced families.

Theorem 5.1. Let U be a critical update family. Then

pc(Z2
n,U) = O

(
(log log n)2

log n

)1/α

.

The theorem does not require the hypothesis that U is unbalanced, although of

course it is only under this assumption that the result is tight up to the implicit

constant. It may be helpful in this section to think of U as being unbalanced, even

though this is not strictly necessary.

By the definition of α, there exists an open semicircle C ⊂ S1 such that α(u) 6 α

for all u ∈ C. Let u⊥ be the midpoint of C, let u∗ and −u∗ be the left and right

endpoints of C respectively, and note that α+(u∗) < ∞ (and similarly α−(−u∗) <
∞) by Lemma 2.7. Thus, by Lemma 2.8, there exists a finite set of consecutive sites

Z ⊂ `u∗ such that `+
u∗ ⊂ [Hu∗ ∪ Z]. Define α∗ to be the (minimum, say) size of such

a set Z.

Let Q be the set of quasi-stable directions given by Lemma 3.5, and set

SQ :=
(
(S ∪ Q) ∩ C

)
∪ {u∗,−u∗,−u⊥} and S ′Q := (S ∪ Q) ∩ C.

As in the previous section, both of these sets are finite. In this section all droplets

will be SQ-droplets. Since the growth process will predominantly take place in

directions parallel to the vectors u⊥ and u∗, to simplify the notation we rotate the

lattice Z2 so that u∗ is directed vertically upwards. The discrete rectangle with

opposite corners (a, b) and (c, d) is thus defined to be

R
(
(a, b), (c, d)

)
:=
{
xu⊥ + yu∗ ∈ Z2 : x, y ∈ R, a 6 x 6 c and b 6 y 6 d

}
.
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The sequences of droplets will be defined in terms of the following quantities:

m1(p) :=
λ1

pα
log

1

p
, m2(p) := p−λ2 , m3(p) = p2α∗m2(p) and m4(p) := λ1n,

where λ1 � λ2 � 1 are sufficiently large positive constants and n = n(p), to be

specified later (see (9)), satisfies

log n 6 p−λ2/2. (8)

Let

R0 := R
(

(0, 0),
(
λ1,m1(p)

))
, R1 := R

(
(0, 0),

(
2m2(p) + λ1,m1(p)

))
,

R2 := R
((
m2(p), 0

)
,
(
m2(p) + λ1,m1(p) +m3(p)

))
,

and R3 := R
((
m2(p), 0

)
,
(
m4(p),m1(p) +m3(p)

))
.

be rectangles, and let

T :=
{
xu⊥ + yu∗ ∈ Z2 : 0 6 x 6 m2(p) + λ1 and 0 6 y −m1(p) 6 p2α∗x

}
be a triangle; see Figure 4.

1

2

3

u∗

u⊥

R0

R1
R3

R2

T

λ1
m2(p)

m1(p)

m3(p)
D

(1)
0

D
(3)
0

Figure 4. The growth mechanism in the unbalanced setting.

For technical reasons, we also need to use the rectangles

R′1 := R
(

(0, 0),
(
4m2(p),m1(p)

))
and R′3 := R

((
m2(p), 0

)
,
(
2m4(p),m1(p) +m3(p)

))
.

which are roughly twice as long as R1 and R3 respectively.
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Figure 4 illustrates the growth mechanism we use to prove Theorem 5.1. It comes

in five stages, and, as in the previous section, we use sprinkling to maintain inde-

pendence between the different stages.

• Stage 0. We find a copy of R0 contained in A.
• Stage 1. The infection spreads in the direction u⊥ from R0 and fills the rec-

tangle R1. This occurs in a similar way to growth in balanced models, except

that the rows are not increasing in size.
• Stage 2. The infection spreads in the direction u∗ from R1, using infected sites

in the triangle T to fill R2.
• Stage 3. Exactly as in Stage 1, the infection spreads in the direction u⊥ from

R2 to fill R3.
• Stage 4. Now, R3 is a ‘strip’ that wraps around the torus and either covers

Z2
n, or returns to its starting point. In the latter case, the infection spreads in

direction u∗ from R3 (like in Stage 2) to infect the rest of Z2
n.

Our task is to make the above sketch precise. We postpone the proof of the

following key lemma until later in the section.

Lemma 5.2. The event{
R3 ⊂

[
R0 ∪

(
(R′1 ∪ T ∪R′3) ∩ A

)]}
occurs with high probability as p→ 0.

From here, the deduction of Theorem 5.1 is relatively straightforward, the main

complication being the possibility that R3 6= Z2
n.

Proof of Theorem 5.1. The proof is similar to the proof of Theorem 4.1 for balanced

families. Let λ > 0 be sufficiently large, and set

p =

(
λ(log log n)2

log n

)1/α

. (9)

We shall show that [A] = Z2
n with high probability as n→∞.

As before, we sprinkle in two rounds, each round using probability p (which, also

as before, is permissible, if a slight abuse of notation), and denote by A(1) and A(2)

the sites infected in each round. There are (crudely) at least n choices of x ∈ Z2
n

such that the sets x+R0 are disjoint, and the probability that x+R0 6⊂ A(1) for all

such x is at most (
1− pO(m1(p))

)n
. (10)

Noting that

pO(m1(p)) = exp

(
− O(1)

pα

(
log

1

p

)2
)
>

1√
n

since λ is sufficiently large, it follows that (10) tends to 0 as n→∞.



28 B. BOLLOBÁS, H. DUMINIL-COPIN, R. MORRIS, AND P.J. SMITH

Now fix x such that x + R0 ⊂ A(1), and in fact without loss of generality let us

assume that x = 0. By Lemma 5.2,

Pp
(
R3 ⊂

[
R0 ∪

(
(R′1 ∪ T ∪R′3) ∩ A(2)

)])
= 1− o(1),

since the condition on n in (8) holds with our definition of p. If R3 = Z2
n then

we are done; otherwise, it follows (since λ1 is sufficiently large) that R3 is a ‘strip’

that wraps around Z2
n a positive integer number of times before returning to its

starting point. Thus, in order to infect the remaining sites in Z2
n, it is enough, by

the definition of α∗, for the following event to occur: every line in Z2
n parallel to u⊥

contains α∗ consecutive sites. Indeed, this would ensure that the remaining lines

above the strip R3 are infected one-by-one. Since each line has length at least Ω(n),

and there are at most O(n) lines, the probability that this event fails is at most

O(n) ·
(
1− pα∗

)Ω(n)
= o(1),

and this completes the proof of the theorem. �

We have reduced our task to that of proving Lemma 5.2. As in the previous

section, given the framework of voracity and quasi-stability from Section 3, the idea

of the proof is simple. In Stage 1 of the process, the probability of advancing a

constant number of steps is(
1− (1− pα)Ω(m1(p))

)O(1)
6 (1− pΩ(λ1))O(1).

Since λ1 � λ2, the set should grow to fill R1, and for similar reasons, the infection

spreads out rightwards from R2 to fill R3. Both of these steps are almost the same

as the corresponding part of the proof for balanced models. The growth upwards

from R1 through T to fill R2 is a little different. Since the infection might only

spread rightwards when advancing row-by-row in the u∗ direction, each set of α∗

consecutive infected sites we find when growing upwards through T from R1 must

lie to the right of the previous set. Nevertheless, the probability of filling T (except

possibly for a small number of sites near the diagonal) is at least(
1− (1− pα∗)Ω(p−2α∗ )

)O(m3(p))
= 1− o(1).

Since the proof is easy but notationally a little technical, we encourage the reader

who is satisfied with the sketch above to skip ahead to Section 6.

We define two sequences of droplets as in (6), except with u+ = u∗ and u− = −u∗
(so the corresponding lines are now parallel), and with −u⊥ added to the set of

quasi-stable directions. Specifically, for each m ∈ Z and each i ∈ {1, 3}, define the

SQ-droplets

D(i)
m := Ri ∩

⋂
u∈S′Q

Hu

(
au +mduu

)
(11)

for some {au ∈ R2 : u ∈ S ′Q} and sufficiently large positive constants {du > 0 : u ∈
S ′Q} such that:



UNIVERSALITY OF TWO-DIMENSIONAL CRITICAL CELLULAR AUTOMATA 29

• Ri−1 ⊂ D
(i)
0 ;

• for every consecutive pair u, v ∈ S ′Q, there exists a horizontal line L+
u = L−v

(that is, one parallel to u⊥) that intersects Ri, such that for every m ∈ Z, the

intersection of `u + au +mduu and `v + av +mdvv lies on L+
u = L−v ;

• for each u ∈ S ′Q and each m ∈ N, the u-side of D
(i)
m has size Ω

(
mi(p)

)
.

Note that we shall also need to use D
(i)
m for those negative values of m for which the

droplet is non-empty, as well as for positive values of m.

The following lemma is essentially Lemma 4.2 applied to the droplets D
(i)
m , and

so the proof is omitted.

Lemma 5.3. Let i ∈ {1, 3} and m ∈ Z. Then

Pp
(
D(i)
m ⊂

[
Ri−1 ∪D(i)

m−1 ∪ (D
(i)
m+1 ∩ A)

])
>
(
1− (1− pα)Ω(mi(p))

)O(1)
. �

We now complete the proof of Lemma 5.2.

Proof of Lemma 5.2. We shall show that the event{
R1 ⊂

[
R0 ∪ (R′1 ∩ A)

]}
∩
{
R2 ⊂

[
R1 ∪ (T ∩ A)

]}
∩
{
R3 ⊂

[
R2 ∪ (R′3 ∩ A)

]}
occurs with high probability as p→ 0, which clearly implies the lemma. We begin by

deducing from Lemma 5.3 that the first and third parts of this event occur with high

probability as p→ 0. To see this, let i ∈ {1, 3} and observe that there exists m ∈ N
such that Ri ⊂ D

(i)
m ⊂ D

(i)
m+1 ⊂ R′i, if p is sufficiently small, where m = O

(
mi+1(p)

)
.

It follows from Lemma 5.3 that

Pp
(
D(i)
m ⊂

[
Ri−1 ∪ (D

(i)
m+1 ∩ A)

])
>
(

1− (1− pα)Ω(mi(p))
)O(mi+1(p))

> exp
(
−O

(
mi+1(p)

)
· exp

(
− Ω(mi(p) · pα)

))
= 1− o(1)

as p→ 0. Indeed, we have exp
(
− Ω(m1(p) · pα)

)
= pΩ(λ1) = o

(
1/m2(p)

)
, and

exp
(
− Ω(m3(p) · pα)

)
= exp

(
− Ω(p−λ2+2α∗+α)

)
<

1

n2
= o

(
1

m4(p)

)
,

where we used our assumptions that λ1 � λ2 � 1 and log n 6 p−λ2/2.

It remains to show that the event{
R2 ⊂

[
R1 ∪ (T ∩ A)

]}
occurs with high probability as p→ 0. To do so, consider the set Ui of the leftmost

p−2α∗ sites of T ∩ `u∗(i) for each line `u∗(i) that intersects T . Now, suppose that, for

every such line, the middle p−2α∗/3 sites of Ui contain a set of α∗ consecutive sites

of A. Then R2 ⊂
[
R1 ∪ (T ∩ A)

]
, by the definition of α∗. But this has probability

at least(
1− (1− pα∗)p−2α∗/3α∗

)m3(p)
> exp

(
− p−λ2 exp

(
− p−α∗/2)

))
= 1− o(1),

as required. �
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6. Approximately internally filled sets

In this section we lay the groundwork for the proofs of the lower bounds of The-

orem 1.4 by defining and proving basic properties of three of our key tools: the

covering, spanning and iceberg algorithms. These should all be thought of as ways

of using droplets to approximate the closure of A under the U -bootstrap process.

The covering algorithm, which we introduce in Section 6.1, replaces the rectangles

process in the balanced case, and allows us to find (if A percolates) a droplet of size

about log n containing Ω(log n) disjoint, strongly connected subsets of A of size α.

For unbalanced models, we use the spanning algorithm, introduced in Section 6.2,

to find an internally spanned critical droplet and to construct an iterated sequence

of ‘hierarchies’ for this droplet, see Section 8.1. For models with drift, we will in

addition require the iceberg algorithm, which we will introduce in Section 6.3, in

order to bound the range of the U -bootstrap process in certain directions with the

help of half-planes, see Section 8.2.

Having completed the proofs of the upper bounds of Theorem 1.4, we no longer

have any need for quasi-stable directions. In fact, henceforth all droplets will be

assumed to be taken with respect to one of two specific finite sets of stable directions,

according to whether U is balanced or unbalanced. The existence of these sets is

verified in the next two lemmas. For u ∈ Q1, let

ᾱ(u) := min
{
α+(u), α−(u)

}
, (12)

so ᾱ(u) = α(u) if and only if α+(u) and α−(u) are either both finite or both infinite.

Lemma 6.1. If U is a critical update family, then there exists a finite set SB ⊂ Q1

such that:

(i) ᾱ(u) > α for every u ∈ SB; and

(ii) SB ∩ C 6= ∅ for every open semicircle C ⊂ S1.

Although SB exists for any critical update family U , we emphasize that we will

only use this family of stable directions when U is balanced. We remark that con-

dition (ii) is equivalent to the origin lying in the interior of the convex hull of SB,

and also to SB-droplets being finite.

Proof. Observe first that, by Definition 1.2, there exists a finite set T ⊂ Q1, satis-

fying condition (ii), such that α(u) > α for all u ∈ T . Now, recall from Lemma 2.7

that α(u) = ᾱ(u) unless u is an endpoint of a non-trivial interval of S. However, if

this is the case for some u ∈ T , then there exist vectors u′ ∈ Q1 with ᾱ(u′) = ∞
arbitrarily close to u. Choosing such a u′ sufficiently close to u, and replacing u

by u′, we see that condition (ii) still holds. Repeating this for each u ∈ T with

α(u) 6= ᾱ(u), we obtain a set with the desired properties. �

It is easy to see that we may in fact take SB to have size 3, except when |S| = 4

and the elements of S are pairwise opposite, in which case we may take SB to have

size 4. We shall not need this observation, however.
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We next show that a suitable collection of stable directions exists when U is

unbalanced; the properties we need in this case are somewhat different.

Lemma 6.2. If U is unbalanced then there exists a finite set SU ⊂ Q1 such that:

(i) SU = {u∗,−u∗, ul, ur} for some u∗, ul, ur ∈ S1 such that ul lies in the open

semicircle to the left of u∗ and ur in the open semicircle to the right;

(ii) min
{
α(u∗), α(−u∗)

}
> α + 1; and

(iii) min
{
ᾱ(ul), ᾱ(ur)

}
> α.

Proof. Choose u∗ satisfying condition (ii) using Lemma 2.9, and then ul and ur

satisfying the remaining two conditions using Definition 1.2. In particular, note

that if one of the open semicircles bounded by u∗ and −u∗ contains an interval of

stable directions then we may choose any interior point of this interval, and if not,

then α(u) = ᾱ(u) for every u in the open semicircle. �

As mentioned before Lemma 6.1, we shall henceforth fix sets SB (if U is balanced)

and SU (if U is unbalanced) with the above properties. We also make the following

definition, which we will use extensively.

Definition 6.3. Given an update family U and a finite set K ⊂ Z2, we will write

D(K) for the unique minimal S∗-droplet10 containing K, where S∗ = SB if U is

balanced, and S∗ = SU if U is unbalanced.

Recall that in Section 2.5 we defined ν to be the diameter of U ,

ν = max
{
‖x− y‖ : x, y ∈ X ∪ {0}, X ∈ U

}
.

We will need the following additional measure of the range of the process:

ρ := sup
{
‖y − Z‖ : |Z| = α− 1, y ∈

[
Hu ∪ Z

]
\Hu, u ∈ SB

}
, (13)

where the supremum is taken over all choices of u, y and Z satisfying the stated

conditions. In order to prove that ρ is finite, we will need the following extremal

lemma from [13].

Lemma 6.4 (Lemma 4.7 of [13]). For any finite set Z ⊂ Z2, the closure [Z] is

contained in a collection of disjoint SB-droplets, each of diameter O(|Z|).

To prove Lemma 6.4, simply place an SB-droplet on each element of Z, and then

recursively unite any pair that lie within distance ν of each other by replacing them

by the smallest SB-droplet that contains both (cf. Definition 6.6 and Lemma 6.9,

below). It is now not too difficult to deduce that ρ is finite whenever U is balanced;

we record this important fact as the following lemma.

10Note that this is obtained by taking a tangent line to K in each direction of SB .
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Lemma 6.5. ρ <∞ for every critical update family U .

Proof. For each u ∈ SB, set ρ0(u) = 0, and for i = 1, . . . , α− 1, define

ρi(u) := sup
{
‖y − Z‖ : |Z| = i, y ∈

[
Hu ∪ Z

]
\Hu

}
.

We shall prove inductively that each ρi(u) is finite. Indeed, let 1 6 i 6 α − 1, and

assume that ρi−1(u) is finite. There are various cases to deal with.

First, choose a sufficiently large constant a > 0, and suppose that Hu(au)∩Z = ∅.
By Lemma 6.4, we have ‖y − Z‖ = O(|Z|) for every y ∈ [Z] =

[
Hu ∪ Z

]
\ Hu, as

required, where the last equality holds since a is sufficiently large. So let Z ⊂ Z2

with |Z| = i and Hu(au) ∩ Z 6= ∅. Now, if

Z 6⊂ Hu

(
3iau

)
,

then there exists a strip perpendicular to u of width 2a that contains no element of

Z, and separates some element of Z from Hu. Since Z contains at least one element

of Hu(au), it follows that there are elements of Z on both sides of this strip, and

these two sets of elements cannot interact, by the induction hypothesis (and since a

is sufficiently large). It follows that we are also done in this case.

We may therefore assume that Z ⊂ Hu

(
3iau

)
. Now, if [Hu∪Z]\Hu is infinite then

it must contain an infinite number of elements of some line `u(j) ⊂ Hu(3iau) \Hu,

in which case there exists a translate Z ′ of Z such that [Hu ∪ Z ′] ∩ `u is infinite.

But this contradicts our assumption that i < α 6 ᾱ(u) (since u ∈ SB, and using

Lemma 6.1), so in fact [Hu ∪ Z] \Hu is finite for every such Z.

Finally, observe that if there is an element of Z at distance more than 2ρi−1(u) + ν

from all other elements of Z, then this element does not interact with the others (by

the induction hypothesis), in which case we are again done. But now there are only

a bounded number of choices for Z (up to translation by an element of `u), and for

each of these [Hu ∪Z] \Hu is finite, so it follows that ρi(u) is finite, as required. �

The constant κ in Definition 2.3 of a strongly connected set will be defined dif-

ferently according to whether U is balanced or unbalanced as follows:

κ = κ(U) :=

{
2ρ+ ν if U is balanced, and

3ν if U is unbalanced.
(14)

Recall that sites x and y are said to be strongly connected if ‖x− y‖ 6 κ.

To simplify the presentation, we will work on the infinite lattice Z2. However, it

will be clear that the algorithms and lemmas below can be easily modified to the

setting of the torus Z2
n, modulo some (easily11 resolved, but distracting) technical

issues that arise when the droplets have diameter Θ(n). Since the droplets in our ap-

plications (see Sections 7 and 8.6) will all have diameter (log n)O(1), we can reassure

the concerned reader that these technical issues will not arise in practice.

11For example, we could simply set D(K) = Z2
n for any set K of diameter larger than εn for

some small constant ε > 0.
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6.1. The covering algorithm: balanced families. Throughout this subsection

we assume that U is balanced, and that all droplets are taken with respect to SB. We

will define the collection of α-covers of a finite set K, and use this definition to prove

two key lemmas: an ‘Aizenman–Lebowitz lemma’, which says that an α-covered

droplet contains α-covered droplets of all intermediate sizes, and an extremal lemma,

which says that an α-covered droplet contains many disjoint ‘α-clusters’. The proofs

of both lemmas are straightforward applications of the covering algorithm.

The key complication arising from the algorithm is that an α-cover of a set K does

not necessarily contain the closure of K under the U -bootstrap process. However,

an approximate version of this statement is true, and this is proved in Lemma 6.11.

Roughly speaking, the lemma says that one can obtain (a superset of) the closure

[K] from an α-cover of K via only ‘local’ modifications.

We define an α-cluster to be any strongly connected set of α sites. These will be

our basic building blocks in the covering algorithm. Recall that if U is balanced,

then D(K) denotes the unique minimal SB-droplet containing K.

Definition 6.6 (The α-covering algorithm). Let U be balanced. Suppose that we

are given:

• K, a finite set of infected sites in Z2;

• B1, . . . , Bk0 , a maximal collection of disjoint α-clusters in K;

• D0 = {D0
1, . . . , D

0
k0
}, a collection of copies of a fixed, sufficiently large SB-

droplet D̂, such that Bj ⊂ D0
j for each j = 1, . . . , k0.

Set t := 0 and repeat the following steps until STOP:

1. If there are two droplets Dt
i , D

t
j ∈ Dt and an x ∈ Z2 such that the set

Dt
i ∪Dt

j ∪ (x+ D̂) (15)

is strongly connected, then set

Dt+1 :=
(
Dt \ {Dt

i , D
t
j}
)
∪
{
D(Dt

i ∪Dt
j)
}
,

and set t := t+ 1.

2. Otherwise set T := t and STOP.

The output of the algorithm is the family D := {DT
1 , . . . , D

T
k }, where k = k0 − T .

Thus, at each step of the algorithm, we take two nearby droplets in our collection,

and replace them by the smallest SB-droplet containing their union. Let us fix from

now on a sufficiently large SB-droplet D̂ as in the covering algorithm. In particular,

in Lemma 6.11 we shall need that D̂ contains a ball of radius 2ακ.

Definition 6.7. We say that D = {D1, . . . , Dk} is an α-cover of a finite set K ⊂ Z2

if D is a possible output of the α-covering algorithm with input K. We say that a

droplet D is α-covered by A if the single droplet D = {D} is an α-cover of D ∩ A.
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We will show (see Lemmas 6.9 and 6.12, below) that if [A] = Z2
n then there exists

an α-covered droplet of diameter roughly log n, and that such a droplet must contain

at least Ω(log n) disjoint α-clusters. It will then be relatively straightforward to

deduce the lower bound in Theorem 1.4 for balanced update families, see Section 7.

The first important property of the α-covering algorithm is given by the following

lemma. We call this result an ‘Aizenman–Lebowitz lemma for α-covered droplets’,

since the corresponding result for the 2-neighbour process was first proved in [1].

Let λ be a sufficiently large constant, depending on D̂.

Lemma 6.8. Let D be an α-covered droplet. Then for every λ 6 k 6 diam(D)

there exists an α-covered droplet D′ ⊂ D such that k 6 diam(D′) 6 3k.

Proof. The lemma is an immediate consequence of two simple observations: that

the droplets Dt
i ∈ Dt obtained during the α-covering algorithm are all α-covered,

and that at each step of the algorithm,

max
{

diam(Dt
i) : Dt

i ∈ Dt
}

at most triples in size, provided that this maximum is at least an absolute constant

(depending on D̂).

To prove the first observation, simply run the algorithm on Dt
i ∩A, using the same

α-clusters. To prove the second, observe that if droplets Dt
i and Dt

j are united in

step t of the algorithm, then by definition there exists x ∈ Z2 such that the distance

between Dt
i and x + D̂, and that between Dt

j and x + D̂, are at most κ. Since for

any two intersecting droplets D1 and D2 we have the easy geometric inequality

diam
(
D(D1 ∪D2)

)
6 diam(D1) + diam(D2),

it follows that

diam
(
D(Dt

i ∪Dt
j)
)
6 diam

(
Dt
i

)
+ diam

(
Dt
j

)
+O(1), (16)

where the implicit constant depends on κ and D̂. This completes the proof of the

observation, and hence the lemma. �

The algorithm also admits the following extremal result, which says that the num-

ber of initial α-clusters in an α-covered droplet must be at least linear in the diameter

of the droplet. It is precisely because of the existence of this result that we use the

α-covering algorithm in the balanced setting, rather than the spanning algorithm

defined below, for which there is no correspondingly strong extremal lemma.

Lemma 6.9 (Extremal lemma for α-covered droplets). Let D be an α-covered drop-

let. Then D ∩ A contains Ω
(

diam(D)
)

disjoint α-clusters.

Proof. The algorithm begins with k0 disjoint α-clusters, and ends with D = {D}.
At each step of the algorithm the number of droplets is reduced by 1, and the sum

of the diameters of the droplets increases by at most a constant, by (16). Hence

diam(D) 6 k0 diam(D̂) +O(k0),
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and so k0 = Ω
(

diam(D)
)
, as required. �

It remains to show that if [A] = Z2
n, then there exists a large α-covered droplet.

The main step is Lemma 6.11, below, which shows that an α-cover D of a set K is

a reasonable approximation of the closure [K]. The basic idea is simple: since all

α-clusters are contained in some droplet of D, the remaining ‘dust’ of infected sites,

i.e., the set

K \ (D1 ∪ · · · ∪Dk),

should contribute only locally to the set of eventually infected sites. We remark

that a simplified version of the covering algorithm was used in [13], not requiring

Lemma 6.11, and in most cases resulting in non-optimal bounds.

Before stating Lemma 6.11, let us note that we can replace half-planes by SB-

droplets in the definition (13) of ρ.

Lemma 6.10. Let U be balanced, let D be an SB-droplet, and let Y ⊂ Z2
n have size

at most α− 1. Then ‖x− Y ‖ 6 ρ for all x ∈ [D ∪ Y ] \D.

Proof. Let {au ∈ Z2 : u ∈ SB} be a collection of vectors such that

D =
⋂
u∈SB

Hu(au),

and let x ∈ [D ∪ Y ] \ D. Since x /∈ D, there exists u ∈ SB such that x /∈ Hu(au).

But
∣∣Y \Hu(au)

∣∣ 6 α− 1, and

x ∈ [Hu(au) ∪ Y ] \Hu(au),

so ‖x− Y ‖ 6 ρ by the definition of ρ. �

We are now ready to prove the key property of α-covers.

Lemma 6.11. Let U be a balanced update family, let K ⊂ Z2 be a finite set, let

D = {D1, . . . , Dk} be an α-cover of K, and set Y := K \
(
D1 ∪ · · · ∪Dk

)
. Then

‖x− Y ‖ 6 ρ

for every x ∈ [K] \
(
D1 ∪ · · · ∪Dk

)
.

Proof. We prove a slightly stronger statement: setting

X =
⋃
D∈D

D and Z =
[
X ∪ Y

]
,

we shall show that the same conclusion holds with [K] replaced by Z.

To begin, we partition Y into a collection Y1, . . . , Ys of maximal strongly connected

components, so in particular if y ∈ Yi and z ∈ Yj for some i 6= j, then

‖y − z‖ > κ = 2ρ+ ν. (17)

(Note that the sets Yi are uniquely defined.) By the definition of an α-cover, we

must have |Yi| 6 α− 1, and hence diam(Yi) 6 (α− 2)κ, for every i ∈ [s].
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For the clarity of what follows, we shall forget the labelling of the elements of D
given in the statement of the lemma, so that we may reuse the notation Di. Since

D̂ contains a ball of radius 2ακ, we may assume that

‖D −D′‖ > 2ακ (18)

for every distinct pair D,D′ ∈ D. Thus, for each i ∈ [s] there is at most one droplet

Di ∈ D such that Yi and Di are strongly connected, since κ + diam(Yi) + κ 6 ακ.

(Of course we may have Di = Dj for distinct i and j.). If there is no such Di then

set Di = ∅. In particular, if D ∈ D and D 6= Di, then

‖Yi −D‖ > κ. (19)

Now set Y ′i := [Di ∪ Yi] \Di for each i ∈ [s], so that

‖x− Yi‖ 6 ρ (20)

for all x ∈ Y ′i and all i ∈ [s], by Lemma 6.10.

We claim that

X ∪ Y ′1 ∪ · · · ∪ Y ′s = Z; (21)

that is, that the set on the left-hand side is closed. Since the left-hand side may be

re-written as

X ∪ [D1 ∪ Y1] ∪ · · · ∪ [Ds ∪ Ys],

and each of these sets is closed individually (in the case of X this follows from (18)

and the fact that κ > ν), it is enough to show that if x ∈ Y ′i , and either y ∈ D for

some D ∈ D with D 6= Di, or y ∈ Y ′j with i 6= j, then x and y are not close enough

to interact; that is, ‖x− y‖ > ν. Indeed, if x ∈ Y ′i and y ∈ D for some D ∈ D with

D 6= Di, then

‖x− y‖ > ‖Yi −D‖ − ‖x− Yi‖ > κ− ρ = 2ν

by (19) and (20). On the other hand, if x ∈ Y ′i and y ∈ Y ′j , with i 6= j, then

‖x− y‖ > ‖Yi − Yj‖ − ‖x− Yi‖ − ‖y − Yi‖ > κ− 2ρ = ν,

by (17) and (20). Thus, (21) holds.

We are now done, since we have shown that if x ∈ [K] \X, then x ∈ Y ′i for some

i ∈ [s], and we know that any such x satisfies ‖x− Yi‖ 6 ρ. �

In order to prove the lower bound in Theorem 1.4 for balanced update families,

we will in fact only need the following straightforward consequence of Lemma 6.11.

Lemma 6.12. Let U be a balanced update family, and let A ⊂ Z2
n. If [A] = Z2

n,

then there exists an α-covered droplet D with

log n 6 diam(D) 6 3 log n. (22)
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Proof. Run the α-covering algorithm on Z2
n, with initial set A. If at some point

we obtain an α-covered droplet D with diam(D) > log n, then choose the first such

droplet, and observe that it satisfies (22), by the proof of Lemma 6.8. (Alternatively,

choose any such droplet, and apply Lemma 6.8 to it.)

So suppose that the α-covering algorithm stops without creating any droplets of

diameter larger than log n, and let D = {D1, . . . , Dk} be the output of the algorithm.

Setting Y := A \
(
D1 ∪ · · · ∪Dk

)
, and applying Lemma 6.11, it follows that

‖x− Y ‖ 6 ρ

for every x ∈ [A] \
(
D1 ∪ · · · ∪Dk

)
. Since each strongly connected component of Y

has size at most α− 1, and κ = 2ρ+ ν, it follows that different strongly connected

components of Y do not interact with one another. Recalling that ‖Di−Dj‖ > 2ακ

for each i 6= j, it follows that [A] 6= Z2
n, which contradicts our assumption. �

6.2. The spanning algorithm: unbalanced families. Next we describe our sec-

ond analogue of the rectangles process, which will be a key tool in our analysis of

unbalanced models. Throughout this subsection we assume that U is unbalanced12

and that droplets are taken with respect to SU (so, in particular, D(K) now denotes

the smallest SU -droplet containing K). We remind the reader that we define the

algorithm in Z2 to avoid some (unimportant) technical details relating to strongly

connected sets of diameter Θ(n).

Recall from Section 2 that an SU -droplet D is said to be internally spanned by A

if there exists a strongly connected set L ⊂ [D ∩ A] such that D(L) = D. Given

a finite set K of infected sites, the output of the spanning algorithm is a minimal

collection D of internally spanned SU -droplets whose union contains K. At each

step of the algorithm we maintain a partition Kt = {Kt
1, . . . , K

t
k} of K such that

each set [Kt
j ] is strongly connected.

Definition 6.13 (The spanning algorithm). Let K = {x1, . . . , xk0} ⊂ Z2 be a set

of infected sites. Set K0 := {K0
1 , . . . , K

0
k0
}, where K0

j := {xj} for each 1 6 j 6 k0.

Set t := 0, and repeat the following steps until STOP:

1. If there are two sets Kt
i , K

t
j ∈ Kt such that the set[

Kt
i

]
∪
[
Kt
j

]
(23)

is strongly connected, then set

Kt+1 :=
(
Kt \ {Kt

i , K
t
j}
)
∪
{
Kt
i ∪Kt

j

}
,

and set t := t+ 1.

2. Otherwise set T := t and STOP.

12This is not strictly speaking necessary: unlike in the previous subsection, the results here hold

for T -droplets for any T ⊂ S such that T -droplets are finite. Nevertheless, the only applications

of the results in this subsection will be to unbalanced families, and it is useful to fix the set T .
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The output of the algorithm is the span of K,

〈K〉 :=
{
D
(
[KT

1 ]
)
, . . . , D

(
[KT

k ]
)}
,

where k = k0 − T .

The following lemma provides an alternative description of the span of a set K.

Lemma 6.14. For every finite set K, we have

〈K〉 =
{
D(L1), . . . , D(Lk)

}
, (24)

where L1, . . . , Lk are the strongly connected components of [K].

Proof. We shall show that the sets [KT
i ] are precisely the strongly connected com-

ponents of [K]. Indeed, it follows from (23) (and a simple induction on t) that [Kt
i ]

is strongly connected for every t ∈ [T ] and 1 6 i 6 k0 − t, and no two sets [KT
i ]

and [KT
j ] are strongly connected, since the algorithm stopped at step T . Moreover,

[K] =
⋃k
i=1[KT

i ], since κ (from the definition of strongly connected) is greater than ν

(the diameter of U), and so no site can be infected by two or more of these sets. �

It is now easy to deduce that we can use the spanning algorithm to determine

whether or not D is internally spanned.

Lemma 6.15. An SU -droplet D is internally spanned if and only if D ∈ 〈D ∩ A〉.

Proof. Applying Lemma 6.14 to K = D ∩A, we see that D ∈ 〈D ∩A〉 if and only if

D(L) = D for some strongly connected component L of [D ∩A]. But [D ∩A] ⊂ D,

since SU ⊂ S, and so this is equivalent to the event that D is internally spanned. �

We can now prove the ‘Aizenman–Lebowitz lemma for internally spanned drop-

lets’, which is the spanning analogue of Lemma 6.8 for α-covered droplets. For the

applications we shall need a slightly more general statement than before. Recall

that π(D, u) denotes the size of the projection of D in the direction u, and that λ

is a sufficiently large constant.

Lemma 6.16. Let D be an internally spanned SU -droplet, and let u ∈ S1. Then for

every λ 6 k 6 π(D, u), there exists an internally spanned SU -droplet D′ ⊂ D with

k 6 π(D′, u) 6 3k.

Proof. Apply the spanning algorithm to K = D ∩ A and observe that, for every

t 6 T and every 1 6 i 6 k0 − t, the droplet D([Kt
i ]) is internally spanned, since

Kt
i ⊂ D([Kt

i ]) ∩ A and [Kt
i ] is strongly connected.

We claim that

max
{
π
(
D([Kt

i ]), u
)

: Kt
i ∈ Kt

}
at most triples in size at each step, provided that this maximum is at least an

absolute constant. To see this, simply note that

π
(
D(D1 ∪D2), u

)
6 π(D1, u) + π(D2, u) +O(1), (25)
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for any pair of droplets D1 and D2 that are within distance O(1) of one another, and

that D([Y ]) = D(Y ) for any set Y , since SU ⊂ S. The lemma now follows easily, as

in the proof of Lemma 6.8. �

We can now deduce an extremal lemma which, while much weaker than the cor-

responding lemma for α-covered droplets (Lemma 6.9), is in fact tight up to the

implicit constant. This fact underlines how much we are ‘giving away’ in assuming

only that our droplets are spanned (rather than filled). Nevertheless, this lemma

will be sufficient to prove the base case (Lemma 6.18 below) of the main induction

argument (Lemma 8.3) for unbalanced models in Section 8.

Lemma 6.17. (Extremal lemma for internally spanned droplets.) Let D be an

internally spanned SU -droplet. Then |D ∩ A| = Ω
(

diam(D)
)
.

Proof. As in the proof of the previous lemma, we apply the spanning algorithm with

K = D ∩ A. The algorithm starts with k0 sets containing the individual elements

of D ∩ A, and it finishes with a collection

〈D ∩ A〉 =
{
D
(
[KT

1 ]
)
, . . . , D

(
[KT

k ]
)}

such that D ∈ 〈D ∩ A〉. At each step of the algorithm the number of sets in the

collection decreases by 1, and the sum of the diameters of the minimal droplets

containing those sets increases by at most a constant, by (25). Hence,

diam(D) 6
k∑
i=1

diam
(
D([KT

i ])
)
6 k0 diam

(
D([K0

1 ])
)

+O(k0) = O(k0),

which implies that k0 = Ω
(

diam(D)
)
, as required. �

Using Lemma 6.17, we can deduce a non-trivial bound on the probability that a

very small droplet is internally spanned. As noted before, this will form the base

case of our induction argument in Lemma 8.3.

Recall that I×(D) denotes the event that the SU -droplet D is internally spanned,

and that w(D) and h(D) denote its width and height respectively, as defined in

Section 2.5.

Lemma 6.18. For every η > 0, there exists δ > 0 such that the following holds. Let

D be an SU -droplet such that

min
{
w(D), h(D)

}
6 p−1+η.

Then

Pp
(
I×(D)

)
6 pδmax{w(D), h(D)}.

Proof. Let us write m(D) := min
{
w(D), h(D)

}
and M(D) := max

{
w(D), h(D)

}
.

Suppose the SU -droplet D is internally spanned. Then by Lemma 6.17, D ∩A must

contain at least Ω
(
M(D)

)
sites. The probability that this occurs is at most
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(
O
(
w(D) · h(D)

)
δ′ ·M(D)

)
pδ
′M(D) 6

(
O(1) ·m(D) · p

)δ′M(D)
6 pδM(D),

for some δ, δ′ > 0, as required. �

The final lemma of this subsection will be used in Section 8.1 as part of an

induction argument to prove the existence of ‘good and satisfied hierarchies’ for

internally spanned droplets; see the definitions and Lemma 8.7 contained within

that section for details.

Lemma 6.19. Let K ⊂ Z2, with 2 6 |K| < ∞, be such that [K] is strongly

connected. Then there exists a partition K = K1 ∪ K2 into non-empty (disjoint)

sets such that [K1], [K2] and [K1] ∪ [K2] are all strongly connected.

Proof. Run the spanning algorithm on K and consider the penultimate step. Since

[K] is strongly connected, and therefore 〈K〉 =
{
D
(
[K]
)}

by Lemma 6.14, we have

KT−1 =
{
K1, K2

}
for some K1 ( K and K2 ( K such that K = K1 ∪K2. By their construction in

the spanning algorithm, both [K1] and [K2] are strongly connected, and since K1

and K2 combine at the final step, so too is [K1] ∪ [K2]. �

6.3. The iceberg algorithm: unbalanced families with drift. Our third al-

gorithm will play a crucial role in the proof for update families that exhibit drift.

Assume that U is unbalanced and let {u∗,−u∗} ⊂ SU be the pair of stable directions

given by Lemma 6.2 (and originally by Lemma 2.9), so in particular

min
{
α(u∗), α(−u∗)

}
> α + 1.

Recall from Section 2.3 that U exhibits drift if either of ᾱ(u∗) or ᾱ(−u∗) is infinite.

We shall sometimes refer to u ∈ {u∗,−u∗} as a drift direction if ᾱ(u) = ∞. Let us

assume13 that α−(u∗) =∞, and observe that 1 6 α+(u∗) <∞.

When our droplet is growing in direction u∗ in a model with drift, it will tend to

form a triangle, as in Section 5. In order to control the growth in this direction,

we therefore need to ‘give away’ this triangle (in fact, a slightly larger one), and

bound the growth outside it. The point of the algorithm defined in this subsection

is exactly to control this outwards growth using ‘icebergs’, defined as follows.

Since α−(u∗) =∞, there exists a non-trivial interval [u∗, u0] such that α−(u) =∞
for every u ∈ [u∗, u0], by Lemma 2.7. Fix such a u0 sufficiently close to u∗, in the

following sense: we choose u0 to be closer to u∗ than any v ∈ S1 \{u∗} perpendicular

to x − y, where x, y ∈
⋃
X∈U X ∪ {0} and x 6= y. That we can choose such a u0

follows easily from the fact that U is a finite collection of finite sets. Finally, choose

u1 ∈ (u∗, u0) arbitrarily.

13If U does not exhibit drift then we shall not need the results proved in this section.
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Definition 6.20. Let u ∈ (u∗, u1]. A u-iceberg is any non-empty set J of the form

J =
(
Hu0(a) ∩Hu∗(b)

)
\Hu,

where a, b ∈ R2. If X is a finite set of sites such that X 6⊂ Hu, then denote by Ju(X)

the smallest u-iceberg such that X ⊂ Hu ∪ Ju(X).

O
(
γ/σ(u)

)
O(γ) J

u

u∗

u0

σ(u)

Figure 5. A u-iceberg J , together with bounds on its width and

height given by Lemma 6.25.

Thus a u-iceberg is a discrete triangle whose sides are perpendicular to −u, u∗

and u0; see Figure 5. The role of u1 is to ensure that that the angle between the

−u-side and the u0-side of a u-iceberg is uniformly bounded away from zero, which

will be important in Lemma 6.25. We make a simple but key observation, which

follows easily from the definition of u0, cf. the proofs of Lemmas 2.7 and 3.5.

Lemma 6.21. If J is a u-iceberg, then Hu ∪ J is closed.

Proof. Suppose there exists z 6∈ Hu ∪ J and a rule X ∈ U such that z+X ⊂ Hu ∪ J .

Since {u, u∗, u0} ⊂ S, we cannot have X ⊂ Hu or X ⊂ Hu0(a) ∩ Hu∗(b). Hence

there exist x, y ∈ z + X with x 6∈ Hu and y 6∈ Hu0(a) ∩ Hu∗(b). But now x − y is

perpendicular to a vector in the interval (u∗, u0), contradicting our choice of u0. �

We are now ready to introduce the iceberg algorithm, which is a modified version

of the covering algorithm allowing sites to be infected with the help of Hu. At each

step of the algorithm we have a collection W t of SU -droplets and u-icebergs; we

either take a droplet near Hu and replace it by the smallest u-iceberg containing

it, or we take two nearby sets in our collection, and replace them by either the

smallest u-iceberg containing their union (if they are sufficiently close to Hu), or by

the smallest droplet containing their union (otherwise).

Definition 6.22 (The u-iceberg algorithm). Let U be an unbalanced update family

that exhibits drift, and let u∗, u0 and u1 be as defined above, and let u ∈ (u∗, u1].

Suppose we are given:

• K =
{
x1, . . . , xk0

}
⊂ Z2 \Hu, a finite set of infected sites;

• W0 = {W 0
1 , . . . ,W

0
k0
}, a collection of copies of a fixed, sufficiently large SU -

droplet D̂U , such that xj ∈ W 0
j for each j = 1, . . . , k0.

Set t := 0 and repeat the following steps until STOP:
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1. If there is a droplet W t
i ∈ W t and an x ∈ Z2 such that the set

W t
i ∪ (x+ D̂U) ∪Hu

is strongly connected, then set

W t+1 :=
(
W t \ {W t

i }
)
∪
{
Ju(W

t
i )
}
,

and set t := t+ 1.

2. If not, but there are two sets W t
i ,W

t
j ∈ W t and an x ∈ Z2 such that the sets

W t
i ∪W t

j ∪ (x+ D̂U) and W t
i ∪W t

j ∪ (x+ D̂U) ∪Hu

are strongly connected, then set

W t+1 :=
(
W t \ {W t

i ,W
t
j}
)
∪
{
Ju(W

t
i ∪W t

j )
}
,

and set t := t+ 1.

3. If not, but there are two droplets W t
i ,W

t
j ∈ W t and an x ∈ Z2 such that the

set

W t
i ∪W t

j ∪ (x+ D̂U)

is strongly connected, then set

W t+1 :=
(
W t \ {W t

i ,W
t
j}
)
∪
{
D(W t

i ∪W t
j )
}
,

and set t := t+ 1.

4. Otherwise set T := t and STOP.

The output of the algorithm is the family W := {W T
1 , . . . ,W

T
k }.

Definition 6.23. Let u ∈ (u∗, u1]. We say that W = {W1, . . . ,Wk} is a u-iceberg

cover of a finite set K if W is a possible output of the u-iceberg algorithm with

input K. We say that an iceberg J is u-iceberg covered if W = {J} is a u-iceberg

cover of J ∩ A.

Before continuing, let us note that u-iceberg covers are closed.

Lemma 6.24. Let u ∈ (u∗, u1], let K ⊂ Z2 be a finite set, and let W be an u-iceberg

cover of K. Then the set

Hu ∪
⋃
W∈W

W

is closed under the U-bootstrap process.

Proof. Since the algorithm has terminated, no two elements of W are strongly con-

nected, and any element of W strongly connected to Hu must be a u-iceberg. The

lemma now follows by Lemma 6.21. �

We can now prove our extremal result for icebergs; the lemma is illustrated in

Figure 5. Let σ(u) denote the angle (in radians) between u and u∗.
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Lemma 6.25 (Extremal lemma for u-iceberg covers). Let u ∈ (u∗, u1], let J be a

u-iceberg covered u-iceberg, and let γ = |J ∩ A|. Then

w(J) 6 O
(
γ/σ(u)

)
and h(J) 6 O(γ),

where the implicit constants may depend on U (and the fixed directions u∗, u0 and

u1), but not on J , γ or u.

Proof. Note first that

T = O(γ), (26)

since at all but at most γ steps of the algorithm, |W t| is reduced by 1.

Let Dt and J t denote, respectively, the collections of droplets and u-icebergs in

W t, so W t = Dt ∪J t. In order to prove the bound on the width of J in the lemma,

we claim that, for each t 6 T ,∑
Dt∈Dt

h(Dt) + σ(u)
∑
Jt∈J t

w(J t) = O(t+ γ) = O(γ). (27)

The second equality is just (26). To see the first, note that the claim is clearly true

when t = 0, and that at each step the left-hand side of (27) increases by at most

O(1). Indeed, when two u-icebergs are replaced by another u-iceberg (as in step 2 of

the u-iceberg algorithm), or when two droplets are replaced by another droplet (as

in step 3 of the algorithm), this is clear, because the sums individually increase by at

most O(1) (as in (16)). When a droplet Dt is replaced by a u-iceberg (as in step 1 of

the algorithm), or a droplet Dt and a u-iceberg are replace by a u-iceberg (again as

in step 2 of the algorithm), the first sum in (27) decreases by h(Dt), and the second

(not including the factor of σ(u)) increases by at most
(
h(Dt) +O(1)

)
/σ(u).14 This

proves (27), and hence, since the first sum is non-negative and the output of the

u-iceberg algorithm is the single iceberg J , that

σ(u) · w(J) = O(γ),

which is the first part of the lemma.

For the second part, we claim that, for each t 6 T ,∑
Dt∈Dt

(
σ(u) · w(Dt) + h(Dt)

)
+
∑
Jt∈J t

h(J t) = O(t+ γ) = O(γ). (28)

As in the previous case, the second equality is just (26), and the claim is trivial when

t = 0. Therefore it is enough to prove that the left-hand side of (28) increases by at

most O(1) at each step. When two droplets are replaced by another droplet or two

u-icebergs are replaced by another u-iceberg, this is clear as before. On the other

hand, when a droplet Dt is replaced by a u-iceberg, or a droplet Dt and a u-iceberg

14The implicit constants here and subsequently may increase as the angle between u and u0
decreases, but this angle is bounded below by a function of u0 and u1 only, and the statement of

the lemma permits such a dependence.
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are replaced by a u-iceberg, the first sum decreases by σ(u) ·w(Dt) + h(Dt) and the

second sum increases by σ(u) · w(Dt) + h(Dt) +O(1). Thus we have

h(J) = O(γ),

and this completes the proof of the lemma. �

7. The lower bound for balanced families

In this section we complete the proof of the lower bound in Theorem 1.4 for

balanced update families. The proof is a straightforward consequence of the α-

covering algorithm, and the lemmas proved in Section 6.1.

Theorem 7.1. Let U be a balanced critical update family. Then

pc(Z2
n,U) = Ω

(
1

log n

)1/α

Proof. Let A be a p-random subset of Z2
n, where

p =

(
ε

log n

)1/α

,

for some sufficiently small constant ε = ε(U) > 0. We shall show that, with high

probability as n→∞, the U -bootstrap closure of A is not equal to Z2
n.

Indeed, by Lemma 6.12, if [A] = Z2
n then there exists an α-covered droplet D with

log n 6 diam(D) 6 3 log n,

and by Lemma 6.9 it follows that D ∩A contains at least δ log n disjoint α-clusters,

for some constant δ = δ(U) > 0.

Noting that D contains O
(

diam(D)2
)

= O(log n)2 distinct α-clusters, it follows

that the probability D is α-covered is at most(
O(log n)2

δ log n

)
pαδ logn 6

(
O
(
pα log n

))δ logn

6
1

n3
,

since ε is sufficiently small. Finally, since there are at most n2(log n)O(1) choices of

the droplet D having diameter at most 3 log n, it follows that

Pp
(
[A] = Z2

n

)
6 n2 · (log n)O(1) · 1

n3
= o(1),

as required. �

Note that we actually proved a stronger result than that stated in Theorem 7.1:

it follows from the proof above that if ε = ε(U) > 0 is a sufficiently small constant,

p =

(
ε

log n

)1/α

,

and A is a p-random subset of Z2
n, then with high probability all components of [A]

in the nearest-neighbour graph on Z2
n have diameter O(log n).
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8. The lower bound for unbalanced families

In this section we shall prove the following theorem, and hence complete the proof

of Theorem 1.4.

Theorem 8.1. Let U be an unbalanced critical update family. Then

pc(Z2
n,U) = Ω

(
(log log n)2

log n

)1/α

.

Throughout the section we assume that U is unbalanced, and that droplets are

taken with respect to the set SU = {u∗,−u∗, ur, ul} as per Lemma 6.2, where

min
{
α(u∗), α(−u∗)

}
> α + 1 and min

{
ᾱ(ul), ᾱ(ur)

}
> α,

and ul and ur are contained in opposite semicircles separated by u∗ and −u∗, with

ul to the left and ur to the right of u∗. We also let ξ > 0 be a sufficiently small

constant (which will depend in particular on the constant δ(2α + 1) defined below;

see (31)), and we fix

η :=
1

10α
. (29)

The main step in the proof of Theorem 8.1 is an upper bound on the probability

that a critical droplet is internally spanned. Recall from Definition 2.5 that in this

section a droplet D is said to be critical if its dimensions satisfy either

(T ) w(D) 6 3p−α−1/5 and ξ
pα

log 1
p
6 h(D) 6 3ξ

pα
log 1

p
, or

(L) p−α−1/5 6 w(D) 6 3p−α−1/5 and h(D) 6 ξ
pα

log 1
p
.

The key bound we shall prove is that there exists δ > 0 such that if D is a critical

droplet then

Pp
(
I×(D)

)
6 exp

(
− δ

pα

(
log

1

p

)2
)
. (30)

(Recall again that I×(D) is the event that the SU -droplet D is internally spanned.)

The proof of (30) will only be given towards the end of this section, in Lemma 8.33.

We build up to that proof gradually via an induction argument, at each step of

which we bound the probability that droplets of certain (increasingly large) sizes

are internally spanned.

During the course of this section we shall use a large number of constants, with

various dependencies. The main constants we shall use are δ(β), for 2 6 β 6 2α+ 1,

and the constants δ (which will appear in Lemma 8.33), ξ (from the definition of a

critical droplet), and ε (which will be used in the proof of Theorem 8.1 in Section 8.6).

These will be chosen so that

1 � δ(2) � · · · � δ(2α + 1) � ξ � δ � ε > 0, (31)

by which we mean that the constants are chosen from left to right, so that each

may depend on all previous constants. Later in the section we shall introduce two
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further sequences of constants. The relationships between these new constants and

those in (31) will be set out explicitly in (40) and (41), below.

Next we state the induction hypothesis.

Definition 8.2. For each β1, β2 ∈ N with β1 + β2 6 2α + 1, let IH(β1, β2) be the

following statement:

Let D be a droplet such that

w(D) 6 p−β1(1−2η)−η and h(D) 6 p−β2(1−2η)−η.

Then

Pp
(
I×(D)

)
6 pδmax{w(D), h(D)}, (32)

where δ = δ(β1 + β2).

We mention briefly that we would prefer the width and height conditions in Defini-

tion 8.2 to be w(D) 6 p−β1(1−η) and h(D) 6 p−β2(1−η) respectively, but for technical

reasons we cannot quite square the bound on the width between β1 = 1 and β1 = 2;

this is why the conditions take the slightly less elegant form above.

The specific induction statements that we shall prove are:

IH(β, β) ⇒ IH(β + 1, β) for all 1 6 β 6 α;

IH(β, β) ⇒ IH(β, β + 1) for all 1 6 β 6 α;(
IH(β + 1, β) ∧ IH(β, β + 1)

)
⇒ IH(β + 1, β + 1) for all 1 6 β 6 α− 1.

Note that IH(1, 1) is an immediate consequence of Lemma 6.18, and therefore to-

gether these statements will be enough to prove the following lemma.

Lemma 8.3. The assertions IH(α + 1, α) and IH(α, α + 1) both hold.

Lemma 8.3 alone is not enough to give the bound (30) that we want on internally

spanned critical droplets. However, the techniques and lemmas that we use to prove

Lemma 8.3 will be the same as those that we use in Lemma 8.33 to deduce (30).

The steps in the induction are of two types: horizontal steps of the form

IH(β1, β2) ⇒ IH(β1 + 1, β2),

and vertical steps of the form

IH(β1, β2) ⇒ IH(β1, β2 + 1).

Common to both is the key idea of crossings. Roughly speaking, these are events

that say that it is possible to ‘cross’ a parallelogram of sites from one side to the other

with ‘help’ from one of the sides in the form of an infected half-plane. The events

should be thought of in the context of a growing droplet: a combination of crossing

events, one for each side of the droplet, enable an internally filled droplet to grow

into a larger internally spanned droplet. We obtain bounds for the probabilities

of crossings by showing that, to a certain level of precision, the most likely way

these events could occur is via the droplet (or half-plane) advancing row-by-row,
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rather than via the merging of many smaller droplets. One could think of this as

saying that the growth mechanism we used to prove the upper bound for unbalanced

families in Theorem 5.1, which was indeed row-by-row, was essentially the ‘correct’

mechanism. For vertical crossings in the case of models with drift, our proof will

make use of the results of Section 6.3 on the iceberg algorithm to bound the range

of the U -bootstrap process in directions close to ±u∗. Full statements and proofs of

the crossing lemmas, together with precise definitions, are given in Section 8.3.

For the horizontal steps, in addition, we require the use of ‘hierarchies’ to bound

the extent of sideways growth at any given step. These are by now a standard tool

in the bootstrap percolation literature, so we omit many of the details.

There are six subsections in this section, which deal with the following aspects

of the proof: in the first we establish the hierarchies framework; in the second we

derive a bound on the range of the U -bootstrap process in the geometry of the u-

norm; in the third we prove the crossing lemmas; in the fourth we assemble the

different parts of the induction statement and prove Lemma 8.3; in the fifth we

deduce Lemma 8.33, which is the bound for internally spanned critical droplets; and

in the sixth and final subsection we complete the proof of Theorem 8.1.

8.1. Hierarchies. The use of hierarchies to control the formation of critical droplets

was introduced by Holroyd in [27] and has since developed into a standard technique

in the study of bootstrap percolation, see e.g. [3, 4, 18,19,25]. In this subsection we

recall some of the standard definitions and lemmas, making only minor adaptations

along the way to suit the general model. We are relatively brief with the details,

referring the reader instead to [27], and the more recent refinements in [19, 25], for

a more extensive introduction to the method.

The key result of this subsection is Lemma 8.9, which gives an upper bound for

the probability that a droplet D is internally spanned in terms of the family of

hierarchies of D.

Given a directed graph G and a vertex v ∈ V (G), we write N→G (v) for the set of

out-neighbours of v in G.

Definition 8.4. Let D be an SU -droplet. A hierarchy H for D is an ordered pair

H = (GH, DH), where GH is a directed rooted tree such that all of its edges are

directed away from the root vroot, and DH : V (GH)→ 2Z2
is a function that assigns

to each vertex of GH an SU -droplet, such that the following conditions are satisfied:

(i) the root vertex corresponds to D, so DH(vroot) = D;

(ii) each vertex has out-degree at most 2;

(iii) if v ∈ N→GH(u) then DH(v) ⊂ DH(u);

(iv) if N→GH(u) = {v, w} then 〈DH(v) ∪DH(w)〉 = {DH(u)}.

Condition (iv) is equivalent to the statement that DH(v) ∪ DH(w) is strongly

connected and that DH(u) is the smallest droplet containing their union. We shall

usually abbreviate DH(u) to Du.
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The next definition controls the absolute and relative sizes of the droplets cor-

responding to vertices of GH, which in turn allows us to control the number of

hierarchies. In order to limit the number of hierarchies as much as possible, we

choose the step size to be as large as possible, subject to the condition that we can

control the probability of each step.

Definition 8.5. Fix β ∈ N. A hierarchy H for an SU -droplet D is good if it satisfies

the following conditions for each u ∈ V (GH):

(v) u is a leaf if and only if w(Du) 6 p−β(1−2η)−η;

(vi) if N→GH(u) = {v} and |N→GH(v)| = 1 then

p−β(1−2η)−η/2 6 w(Du)− w(Dv) 6 p−β(1−2η)−η;

(vii) if N→GH(u) = {v} and |N→GH(v)| 6= 1 then w(Du)− w(Dv) 6 p−β(1−2η)−η;

(viii) if N→GH(u) = {v, w} then w(Du)− w(Dv) > p−β(1−2η)−η/2.

Next we relate the abstract family of good hierarchies defined above to the initial

set A of infected sites and to the U -bootstrap process. Given nested SU -droplets

D ⊂ D′, we write ∆(D,D′) for the event that D′ is internally spanned given that

D is internally filled. That is,

∆(D,D′) :=
{
D′ ∈ 〈D ∪ (D′ ∩ A)〉

}
.

The final two conditions below ensure that a good hierarchy for an internally spanned

droplet D accurately represents the growth of the initial sites D ∩ A.

Definition 8.6. A hierarchy H for an SU -droplet D is satisfied by A if the following

events all occur disjointly :

(ix) if v is a leaf then Dv is internally spanned by A;

(x) if N→GH(u) = {v} then ∆(Dv, Du) occurs.

Having established all of the properties of hierarchies that we need, we now show

that there exists a good and satisfied hierarchy for every internally spanned droplet.

The proof is almost identical to Propositions 31 and 33 of [27], which deal with the

2-neighbour setting, except that here we use the spanning algorithm in place of the

rectangles process. We are therefore rather brief with the details.

Lemma 8.7. Let D be an SU -droplet internally spanned by A. Then there exists a

good and satisfied hierarchy for D.

Proof. In order to prove the lemma we consider a suitable ‘contraction’ of the tree

given by the spanning algorithm. To that end, letD = 〈D∩A〉, and note that D ∈ D
by Lemma 6.15, since D is internally spanned. The proof will be by induction on

w(D), so note first that if w(D) 6 p−β(1−2η)−η then we may take V (GH) = {vroot}.
For the induction step, first we claim that there exists a pair of sequences,

D ∩ A ⊃ K0 ⊃ K1 ⊃ · · · ⊃ Km and D = D0 ⊃ D1 ⊃ · · · ⊃ Dm,
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such that |Km| = 1 and such that for every 1 6 i 6 m,

Di = D([Ki]) and [Ki] ∪ [Ki−1 \Ki] is strongly connected.

To construct these sequences, the idea is to run the spanning algorithm backwards,

choosing at each step the larger of the two droplets. We make this idea precise using

Lemma 6.19. Indeed, since D ∈ 〈D ∩ A〉, there exists a set K0 ⊂ D ∩ A such that

[K0] is strongly connected and D = D([K0]). Now, given Ki−1 such that [Ki−1] is

strongly connected, Lemma 6.19 gives a (non-trivial) partition Ki ∪K ′i of Ki−1 such

that [Ki], [K ′i] and [Ki] ∪ [K ′i] are all strongly connected. Set Di = D([Ki]) and

D′i = D([K ′i]), where w(Di) > w(D′i).

Now, let s > 1 be minimal such that either

w(Ds) 6 p−β(1−2η)−η or w(D)− w(Ds) >
p−β(1−2η)−η

2
,

and attach a vertex u corresponding to Ds to the root. If w(Ds) 6 p−β(1−2η)−η

and w(D) − w(Ds) 6 p−β(1−2η)−η, then our construction of H is complete. If

p−β(1−2η)−η/2 6 w(D)− w(Ds) 6 p−β(1−2η)−η, then we use the induction hypothesis

to construct a good and satisfied (by Ks) hierarchy H′ for Ds, and identify u with

the root of H′. Finally, if w(D) − w(Ds) > p−β(1−2η)−η then, by the minimality of

s, we have

w(Ds−1)− w(D′s) > w(Ds−1)− w(Ds) >
p−β(1−2η)−η

2
.

In this case we add a vertex v between u and the root, corresponding to Ds−1, and

add another vertex w attached to v, corresponding to D′s. Now, using the induction

hypothesis, we construct good and satisfied (by Ks and Ks−1 \ Ks respectively)

hierarchies H′ and H′′ for Ds and D′s, and identify u and w with the roots of H′
and H′′. It is straightforward to check that the hierarchies thus constructed satisfy

conditions (i)–(x), as required. �

Remark 8.8. We emphasize that the existence of a good and satisfied hierarchy for

D does not imply that D is internally spanned, since the intersection of the events

I×(Dv) and ∆(Dv, Du) does not imply that Du is internally spanned, and since we

do not insist that [(Dv ∪Dw)∩A] is strongly connected whenever N→GH(u) = {v, w}.
It is one of the key ideas of the proof that these approximations do not affect the

probability estimates too much.

The following fundamental bound on the probability that a droplet is inter-

nally spanned (cf. [27, Section 10] or [4, Lemma 20]) will be used in the proof

of Lemma 8.33 for type (L) critical droplets.

Let us write HD for the set of all good hierarchies for D, and L(H) for the set of

leaves of GH. We will write
∑

u→v and
∏

u→v for the sum and product (respectively)

over all pairs {u, v} ⊂ V (GH) such that N→GH(u) = {v}.
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Lemma 8.9. Let D be an SU -droplet. Then

Pp
(
I×(D)

)
6
∑
H∈HD

( ∏
u∈L(H)

Pp
(
I×(Du)

))(∏
u→v

Pp
(
∆(Dv, Du)

))
. (33)

Proof. If D is internally spanned then by Lemma 8.7 there exists a good and satisfied

hierarchy for D. Taking the union bound over good hierarchies, and noting that for

a fixed good hierarchy H the events I×(Du) (for u ∈ L(H)) and ∆(Dv, Du) (for

u → v) are increasing and occur disjointly, the result follows from the van den

Berg–Kesten inequality (Lemma 2.12). �

In order to use Lemma 8.9 we must bound the various probabilities that appear on

the right-hand side of (33), and the number of good hierarchies for D. A sufficiently

strong bound on Pp
(
I×(Du)

)
(for each leaf u ∈ L(H)) will follow immediately from

the induction hypothesis; we will bound Pp
(
∆(Dv, Du)

)
in Section 8.3, again using

the induction hypothesis, but this time the proof is considerably more difficult.

Since our bounds will depend on w(Du) (for u ∈ L(H)) and w(Du)− w(Dv) (when

N→GH(u) = {v}), the following simple lemma will be useful.

Lemma 8.10. Let D be an SU -droplet, and H ∈ HD. Then∑
u∈L(H)

w(Du) +
∑
u→v

(
w(Du)− w(Dv)

)
> w(D)−O

(
|V (GH)|

)
,

where the implicit constant depends only on U .

Proof. This follows by combining Definition 8.4 with the geometric inequality

w
(
D(D1 ∪D2)

)
6 w(D1) + w(D2) +O(1),

which holds for any pair of strongly connected droplets D1 and D2 (cf. (25)). �

Finally, to count the good hierarchies we partition the set HD according to the

number of ‘big seeds’, as follows:

Definition 8.11. If H is a hierarchy and v ∈ L(H), then we say that Dv is a seed

of H. If moreover w(Dv) > p−β(1−2η)−η/3, then we say that Dv is a big seed of H.

Remark 8.12. The alert reader may have noticed that if H is good and has at

least two vertices, then all seeds of H are big. We will require only the following

slightly weaker fact: that every non-leaf of GH lies ‘above’ a big seed. This latter

property holds for more general notions of a ‘good’ hierarchy (in particular, those in

which the ‘step-size’ is much smaller than the maximum size of a seed), and plays

an important role in some applications (see for example [25], where this method

was first introduced). Since applying this more general method does not create any

additional difficulties, we prefer to use this approach.

Let us denote by b(H) the number of big seeds in a hierarchy H, by Hb
D the set

of all good hierarchies for D that have exactly b big seeds, and by d(H) the depth

of the tree GH, i.e., the maximum length of a path from the root to a leaf in GH.
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Lemma 8.13. If D is an SU -droplet with h(D) = p−O(1), then∣∣Hb
D

∣∣ 6 exp

[
O

(
b · w(D) · pβ(1−2η)+η log

1

p

)]
.

Proof. By the definition of a good hierarchy, every vertex of GH that is not a leaf

must lie above a big seed. This immediately implies that∣∣V (GH)
∣∣ 6 2 · b(H)

(
d(H) + 1

)
. (34)

We claim that either GH has only one vertex (in which case
∣∣Hb

D

∣∣ = 1 and the lemma

holds trivially), or

d(H) = O
(
w(D) · pβ(1−2η)+η

)
. (35)

Indeed, this follows from the fact that every two steps up GH, the width of the

corresponding droplet increases by Ω
(
p−β(1−2η)−η). We therefore have |V (GH)| =

O
(
b · w(D) · pβ(1−2η)+η

)
for every H ∈ Hb

D.

Now, the number of choices for the tree GH is at most 2O(N), where N is our

bound on |V (GH)|. Moreover, for each u ∈ V (GH), there are at most p−O(1) possible

droplets Du. Hence∣∣Hb
D

∣∣ 6 exp

[
O

(
b · w(D) · pβ(1−2η)+η log

1

p

)]
,

as required. �

Let us record, for future reference, the following immediate consequence of (34)

and (35): ∣∣V (GH)
∣∣ = O

(
b(H) · w(D) · pβ(1−2η)+η

)
(36)

for every SU -droplet D, and every H ∈ HD.

8.2. The range of unbalanced models with drift. In this short section we

assume that U is an unbalanced model with drift and we use the results about u-

icebergs from Section 6.3 to prove a bound (see Lemma 8.15) on the range of the

U -bootstrap process helped by a half-plane Hu.

Recall from Section 6.3 that if α−(u∗) =∞ then we choose u0 ∈ S1 to the left of

and sufficiently close to u∗, so in particular α−(u) = ∞ for every u ∈ [u∗, u0]. We

also choose u1 ∈ (u∗, u0). Similarly, if α+(−u∗) =∞ then we choose a corresponding

u′0 ∈ S1 to the right of and sufficiently close to −u∗, and a corresponding u′1. Set

S+
U :=

{
[u∗, u1] if α−(u∗) = ∞
{u∗} otherwise

and S−U :=

{
[u′1,−u∗] if α+(−u∗) = ∞
{−u∗} otherwise,

and set

S±U := S+
U ∪ S

−
U and S ′U := {ul, ur} ∪ S±U .

Recall also that for each u ∈ S+
U , we defined σ(u) to be the angle between u and u∗,

and similarly for each u ∈ S−U . We define a norm ‖ · ‖u on R2 as follows.
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Definition 8.14. For each u ∈ S ′U , define

‖x‖u :=

{
|〈x, u∗〉|+ σ(u)|〈x, u⊥〉| if u ∈ S±U \ {u∗,−u∗},

‖x‖ if u ∈ {u∗,−u∗, ul, ur},
(37)

where, as always, the unadorned norm ‖ · ‖ denotes the Euclidean norm on R2.

We record for later use the inequalities15

|〈x, u〉| 6 ‖x‖u 6 2 · ‖x‖, (38)

which hold for every x ∈ R2. Let ρ : S ′U × N→ R be the function given by

ρ(u, γ) := sup
{∥∥y − Y ∥∥

u
: |Y | = γ − 1, y ∈

[
Hu ∪ Y

]
\Hu

}
. (39)

The key property that we need for the vertical crossings lemma, and the main result

of this section, is the following bound on ρ(u, γ), which is uniform in u.

Lemma 8.15. Let u ∈ S ′U and γ ∈ N, with γ 6 ᾱ(u). Then ρ(u, γ) is bounded

above by a constant that depends only on U and γ.

Proof. If u ∈ SU then ρ(u, γ) <∞ follows from the proof of Lemma 6.5; indeed, the

induction step in that proof holds for all u ∈ Q1 and i < ᾱ(u). Since |SU | = 4 <∞,

we may therefore assume that u ∈ S±U \ {u∗,−u∗}, and hence, by symmetry, that

u ∈ S+
U \ {u∗}. Note that this implies that α−(u∗) =∞.

Let Y ⊂ Z2 be a set of size γ − 1, and let W be an u-iceberg cover of K. The set

Hu ∪
⋃
W∈W

W

contains Y and is closed, by Lemma 6.24. Hence, if y ∈
[
Hu ∪ Y

]
\Hu, then y ∈ W

for some W ∈ W . But, by Lemma 6.25 and Definition 8.14, this implies that there

exists x ∈ W ∩ Y such that ‖x− y‖u = O(γ), where the implicit constant depends

only on U (and the fixed directions u∗, u0 and u1), as required. �

8.3. Crossing lemmas. In this subsection we will bound the probabilities of certain

‘crossing’ events, with a view to two specific applications. The horizontal crossings

lemma (Lemma 8.18) will enable us to bound the probability of events of the form

∆(D,D′), which in turn allows us to bound the probability that ‘long’ droplets are

internally spanned using the hierarchies bound of Lemma 8.9. The vertical crossings

lemma (Lemma 8.19) will enable us to bound (directly) the probability that ‘tall’

droplets are internally spanned.

Since there is significant overlap between the proofs for ‘horizontal’ and ‘vertical’

crossings, it will be convenient to work in the following (slightly) more general

framework.

15If u ∈ {u∗,−u∗, ul, ur} then both inequalities are trivial. If u ∈ S±U \ {u∗,−u∗} then note that

the left-hand side is at most cosσ · |〈x, u∗〉|+ sinσ · |〈x, u⊥〉|, which implies the first inequality, and

that σ(u) < 1, since u0 was chosen sufficiently close to u∗, which implies the second.



UNIVERSALITY OF TWO-DIMENSIONAL CRITICAL CELLULAR AUTOMATA 53

Definition 8.16. Let u ∈ S ′U . A finite set is a u-strip if it is a T -droplet, where

T = {u,−u, v,−v} and either

• u ∈ {ul, ur} and v = u∗ (a horizontal strip), or
• u ∈ S±U = S ′U \ {ul, ur} and v = u⊥ (a vertical strip).

Although it is convenient to define u-strips in terms of T -droplets, we stress again

that all sets described in this section as ‘droplets’ without reference to a set T are

assumed to be SU -droplets.

Recall that κ = 3ν when U is unbalanced, see (14), that we denote by Gκ the

graph with vertex set Z2 and edge set E =
{
xy : ‖x− y‖ 6 κ

}
, and that a strongly

connected component is defined to be a component in this graph. Recall also that

the u-projection π(K, u) of a finite set K ⊂ Z2 was defined in (3) by

π(K, u) = max
{
〈x− y, u〉 : x, y ∈ K

}
,

and that if D is a T -droplet and u ∈ T , then the u-side ∂(D, u) of D was defined

in (5) to be the set D ∩ `u(i), where i is maximal so that this set is non-empty.

Definition 8.17. Let u ∈ S ′U , let S be a u-strip, and let x ∈ ∂(S,−u). We say

that S is u-crossed if there exists a strongly connected set in [Hu(x)∪ (S ∩A)] that

intersects both Hu(x) and ∂(S, u).

Note that the half-plane Hu(x) does not depend on the choice of x ∈ ∂(S,−u).

Unless the precise position of the u-strip is important, we will usually assume that

the (−u)-side of the u-strip is a subset of `u.

Before continuing with the results of this subsection, we give a more complete

account of the relationships between the different constants of this section than

that given in (31). We mentioned that, during the course of the inductive proof of

Lemma 8.3, two sequences of constants would be defined, in addition to the constants

δ(β) already introduced in Definition 8.2. These sequences are δ′(2), . . . , δ′(2α+ 1),

which appear in the statements of Lemmas 8.18 and 8.19, and κ0(2), . . . , κ0(2α+ 1),

which appear in Definition 8.20. These constants will be chosen to have the following

relative sizes. First, for each 2 6 β 6 2α,

1 � δ(β) � 1

κ0(β)
� δ′(β) � δ(β + 1) > 0, (40)

and second,

δ(2α + 1) � 1

κ0(2α + 1)
� δ′(2α + 1) � ξ � δ � ε > 0. (41)

We emphasize again that these statements mean that the constants are chosen from

left to right, and that each is chosen to be sufficiently small depending on all previ-

ously chosen constants. Note that these two sets of relations subsume those in (31).

The main results of this subsection are Lemmas 8.18 and 8.19, below. One may

think of the lemmas as exchanging bounds on the probability that a droplet is

internally spanned for bounds on the probability that similarly sized u-strips are
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u-crossed, for some u. (It may be helpful, therefore, to think of the δ′(β) as being

to crossing u-strips as the δ(β) are to internally spanning SU -droplets.)

The first of the two lemmas bounds the probability of horizontal crossings.

Lemma 8.18. Let S be a u-strip, where u ∈ {ul, ur}.
(i) Let 1 6 β1 6 α and 1 6 β2 6 α, and suppose that IH(β1, β2) holds. If

ξ−1 6 π(S, u) 6 p−β1(1−2η)−η and h(S) 6 p−β2(1−2η)−η,

then S is u-crossed with probability at most pδ
′π(S,u), where δ′ = δ′(β1 + β2).

(ii) Suppose that IH(α, α + 1) holds. If

1 6 π(S, u) 6 p−α(1−2η)−η and h(S) 6
ξ

pα
log

1

p
,

then S is u-crossed with probability at most

π(S, u) · exp
(
− pO(ξ) · π(S, u)

)
,

where the implicit constant depends on κ0(2α + 1).

The second of our two main crossing lemmas deals with vertical crossings. Recall

that u∗ has difficulty at least α+ 1, and therefore either ᾱ(u∗) > α+ 1 or α−(u∗) =

∞. The behaviour of the U -bootstrap process differs markedly depending on which

of these two cases we are in. Note that, while the lemma is stated only for u ∈ S+
U ,

it is plain by symmetry that a similar statement holds for u ∈ S−U .

Lemma 8.19. Let u ∈ S+
U be such that either

u = u∗ and ᾱ(u∗) > α + 1, or

σ(u) = p1−η and α−(u∗) = ∞.

Let 1 6 β1 6 α + 1 and 1 6 β2 6 α, and suppose that IH(β1, β2) holds. If S is a

u-strip with

w(S) 6 p−β1(1−2η)−η, h(S) 6 p−β2(1−2η)−η, and π(S, u) > ξ−1,

then S is u-crossed with probability at most pδ
′π(S,u), where δ′ = δ′(β1 + β2).

Observe that if u∗ is not a drift direction (that is, if α−(u∗) <∞) then the lemma

says it is unlikely that a u∗-strip of an appropriate size is u∗-crossed – this is what

one would expect. If u∗ is a drift direction, on the other hand, then instead the

lemma is stated in terms of crossing u-strips, where σ(u) = p1−η. Why might this

be the natural direction in which to bound growth? Since u∗ is a drift direction,

α+(u∗) may be as small as 1, and therefore one would expect a triangle of sites of

slope p to form on the u∗-side of the droplet, similarly to the set T in Figure 4.

By rotating u∗ through an angle of p1−η, we are ‘giving away’ more sites than one

would expect to become infected, but not so many more that it adversely affects the

bound. We expand on these remarks before the proof of the lemma.
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The first step towards proving Lemmas 8.18 and 8.19 is a deterministic description

of the structure of S ∩ A when S is u-crossed, which is given by Lemma 8.22. We

partition the u-strip into consecutive u-strips S1, . . . , Sm of constant u-projection,

and we consider how the infection could spread from the (−u)-side of S (and the

adjacent half-plane Hu) to the u side of S. One of the key concepts we use will be

that of a ‘u-weak γ-cluster’, defined as follows.

Definition 8.20. Fix β1, β2 ∈ N with β1 + β2 6 2α + 1, and let κ0 = κ0(β1 + β2).

For each u ∈ S ′U and γ ∈ N, we say that:

(a) A set Z ⊂ Z2 is u-weakly connected if it is connected in the graph Gu,κ0 with

vertex set Z2 and edge set E(Gu,κ0) =
{
xy : ‖x− y‖u 6 κ0

}
.

(b) A u-weak γ-cluster is a set of γ sites that is u-weakly connected.

Note that we suppress the dependence on the pair (β1, β2) in the definition of a

u-weak γ-cluster; we trust that this will not cause any confusion. We remark that in

what follows we will always take γ 6 ᾱ(u), so if Y is a u-weak (γ − 1)-cluster, then

(by Lemma 8.15) taking the closure of Hu ∪ Y only causes ‘local’ new infections,

measured in the u-norm.

We can now define the deterministic structural property that we shall prove (in

Lemma 8.22, below) is implied by the event that S is u-crossed by A. The definition

is illustrated in Figure 6.

Definition 8.21. Fix β1, β2 ∈ N with β1 + β2 6 2α + 1, and let κ0 = κ0(β1 + β2).

Let u ∈ S ′U and γ ∈ N, and suppose that S is a u-strip. Let S1 ∪ · · · ∪ Sm+1 be a

partition of S into u-strips, with Si adjacent to Si+1 for each i ∈ [m],

3κ0γ 6 π(Si, u) = π(Sj, u) 6 4κ0γ

for each i, j ∈ [m], and π(Sm+1, u) < 4κ0γ.

A (u, γ)-partition for S ∩ A is a sequence (a1, . . . , ak) of positive integers with

a1 + · · ·+ ak = m, such that for each 1 6 j 6 k, setting tj = a1 + · · ·+ aj, either

• aj = 1 and Stj ∩ A contains a u-weak γ-cluster, or

• there exists an SU -droplet D internally spanned by
(
Stj−1+1 ∪ · · · ∪ Stj

)
∩ A,

where

max
{
w(D), h(D)

}
>
ajκ0

5
.

In the following lemma we need some upper bound on γ when ᾱ(u) = ∞. For

this purpose, set λ := 5α/η, and observe that

κ0(2) � ρ(u, γ) (42)

for every u ∈ S ′U and γ ∈ N such that γ 6 min{ᾱ(u), λ}. Indeed, ρ(u, γ) is bounded

above by a constant that depends only on U and α = α(U), by Lemma 8.15 and (29),

and κ0(2) was chosen in (40) to be sufficiently large (depending on U).

The following deterministic lemma, which says that every u-crossed strip has a

(u, γ)-partition, is the key step in the proof of Lemmas 8.18 and 8.19.
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γ

γ

γ

γ

D
urHur

Figure 6. A ur-crossed ur-strip S together with a possible (ur, γ)-

partition for S ∩ A in which a1 = a2 = a4 = a5 = 1 and a3 = 3.

Lemma 8.22. Let β1, β2 ∈ N with β1 + β2 6 2α + 1, and set κ0 = κ0(β1 + β2).

Suppose that u ∈ S ′U and γ ∈ N satisfy γ 6 min
{
ᾱ(u), λ

}
, and let S be a u-strip.

If S is u-crossed by A, then there exists a (u, γ)-partition for S ∩ A.

Roughly speaking, the proof of the lemma is as follows. We shall show that if

S1 ∩A does not contain a u-weak γ-cluster, then S1 cannot itself be u-crossed. Since

S is u-crossed, this will allow us to deduce that there exists a droplet D internally

spanned by S ∩A such that D ∩ S1 6= ∅, and moreover such that D extends at least

halfway across S1. We call such a droplet D a saver. Letting a1 be maximal such

that D ∩ Sa1 6= ∅, the result follows by induction on m.

Proof of Lemma 8.22. As noted above, the proof is by induction on m. If m = 0

there is nothing to prove, so let m > 1 and assume that the result holds for every

smaller non-negative value of m. If S1 ∩ A contains a u-weak γ-cluster then we are

done, since we may set a1 = 1 and observe that S \ S1 is u-crossed by A.

So assume that S1 ∩ A does not contain a u-weak γ-cluster, let Y1, . . . , Ys be the

collection of u-weakly connected components in S ∩ A that are each also u-weakly

connected to Hu, and set

Y := Y1 ∪ · · · ∪ Ys and Z := [Hu ∪ Y ] \Hu.

We claim that |Yi| 6 γ − 1 for each 1 6 i 6 s. Indeed, if |Yi| > γ then there exists

a u-weak γ-cluster Y ′ ⊂ Yi such that ‖y − Hu‖u 6 κ0γ for every y ∈ Y ′. Recalling

from (38) that 〈x, u〉 6 ‖x‖u for every x ∈ Z2, and that π(S1, u) > 2κ0γ, it follows

that Y ′ ⊂ S1. This contradicts our assumption that S1 ∩ A does not contain a

u-weak γ-cluster, and thus proves that |Yi| 6 γ − 1 for each 1 6 i 6 s, as claimed.

We next claim that

Hu ∪ Z = [Hu ∪ Y1] ∪ · · · ∪ [Hu ∪ Ys]. (43)
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To prove this, let

zi ∈ [Hu ∪ Yi] \Hu and zj ∈ [Hu ∪ Yj] \Hu,

and note that ‖zi − Yi‖u 6 ρ(u, γ) and ‖zj − Yj‖u 6 ρ(u, γ), by the definition of

ρ(u, γ). Hence

‖zi − zj‖ >
‖zi − zj‖u

2
>
κ0 − 2ρ(u, γ)

2
> ν,

where the first inequality follows from (38), the second by the triangle inequality,

and the third from (42), since γ 6 min{ᾱ(u), λ}. Therefore, the set

[Hu ∪ Y1] ∪ · · · ∪ [Hu ∪ Ys]

is closed (and contains Y ), which proves (43). Note that it follows from the above

argument that moreover

‖z − Y ‖u 6 ρ(u, γ) (44)

for every z ∈ Z.

We are now ready to prove our key claim, which says that, under our assumption

that S1 does not contain a u-weak γ-cluster, there exists a droplet that is internally

spanned by S ∩ A, and has large intersection with S1.

Claim 8.23. There exists a droplet D internally spanned by S ∩ A such that

|〈D −Hu, u〉| 6 2κ0γ and max
{
w(D), h(D)

}
>
κ0

5
,

where 〈D −Hu, u〉 = min
{
〈x− y, u〉 : x ∈ D, y ∈ Hu

}
.

Proof of Claim 8.23. The first step is to show that there exist z ∈ Hu ∪ Z and

w ∈ [S ∩ A \ Y ] with

‖w − z‖u 6 2 · ‖w − z‖ 6 2κ. (45)

Note that the first inequality follows by (38), so we just need to prove the second.

To do so, recall that S is u-crossed by A, which means that there exists a strongly

connected component L ⊂ [Hu ∪ (S ∩A)] that intersects both Hu and ∂(S, u). Note

that Hu ∪ Z does not intersect ∂(S, u), by (44), and since m > 1 implies that

π(S, u) > 3κ0γ. Now, either [Hu ∪ (S ∩A)] = [Hu ∪ Y ] ∪ [S ∩A \ Y ], in which case

there must exist z ∈ [Hu ∪ Y ] = Hu ∪ Z and w ∈ [S ∩ A \ Y ] with ‖w − z‖ 6 κ, or

[Hu ∪ (S ∩A)] 6= [Hu ∪ Y ] ∪ [S ∩A \ Y ], in which case there must exist z ∈ Hu ∪ Z
and w ∈ [S ∩ A \ Y ] with ‖w − z‖ 6 ν. Since κ = 3ν, in either case (45) holds.

Now, let D be the output of the spanning algorithm with input S ∩A \ Y , and let

D ∈ D be the droplet spanned by the strongly connected component of [S ∩A \ Y ]

containing w. If z ∈ Hu, then it follows by (45) and the u-norm bound in (38) that∣∣〈D −Hu, u〉
∣∣ 6 |〈w − z, u〉| 6 ‖w − z‖u 6 2κ 6 2γκ0.

On the other hand, if z ∈ Z then ‖z − Y ‖u 6 ρ(u, γ) � κ0, by (42) and (44).

Therefore, recalling that every y ∈ Y is within distance at most γκ0 of Hu in the
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x

wz

y

Z
D

S

Hu

Figure 7. The situation in the proof of Claim 8.23 is depicted as-

suming z ∈ Z. The size of the projection
∣∣〈D−Hu, u〉

∣∣ is at most the

total length of the dashed line in the u-norm.

u-norm, the triangle inequality and (38) gives

|〈D −Hu, u〉| 6 ‖w − z‖u + ‖z − Y ‖u + γκ0 6 2γκ0,

as required.

To bound the dimensions of D, let x ∈ D ∩ A \ Y , and observe that∥∥x− (Hu ∪ Y )
∥∥
u
> κ0

by the definition of Y . Using (44), it follows that∥∥x− (Hu ∪ Z)
∥∥
u
> κ0 − ρ(u, γ),

and hence, by (38),∥∥x− (Hu ∪ Z)
∥∥ > ∥∥x− (Hu ∪ Z)

∥∥
u

2
>
κ0 − ρ(u, γ)

2
.

However, by (45) and our choice of w, we also have∥∥w − (Hu ∪ Z)
∥∥ 6 ‖w − z‖ 6 κ.

Since x,w ∈ D, it follows that

max
{
w(D), h(D)

}
>
‖w − x‖

2
>

∥∥x− (Hu ∪ Z)
∥∥− ∥∥w − (Hu ∪ Z)

∥∥
2

>
κ0 − ρ(u, γ)− 2κ

4
>
κ0

5
,
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by the triangle inequality and (42), as required. �

To complete the proof of the lemma, simply set a1 = max{i : D ∩ Si 6= ∅},
and observe that S \ (S1 ∪ · · · ∪ Sa1) is u-crossed by A. It follows easily from

Claim 8.23, our choice of a1, and the fact that π(Si, u) > 3κ0γ for every i ∈ [m],

that max{w(D), h(D)} > a1κ0/5, as required. �

We next prove an upper bound, depending on u ∈ S ′U and on the size of S, on

the probability that a p-random subset of a u-strip S admits a (u, γ)-partition. In

order to simplify the statement, given u ∈ S ′U and a u-strip S, let gu(S) denote the

number of u-weak γ-clusters in a sub-strip S ′ ⊂ S of u-projection 4κ0γ.

Lemma 8.24. Let β1, β2 ∈ N with β1 + β2 6 2α + 1, set κ0 = κ0(β1 + β2), and

assume that IH(β1, β2) holds. Let u ∈ S ′U and γ ∈ N, with γ 6 min
{
ᾱ(u), λ

}
, and

let S be a u-strip with |S| 6 p−3α, and

ξ−1 6 π(S, u) 6 p−β(1−2η)−η, (46)

where β := min{β1, β2}. Then the probability that S ∩A admits a (u, γ)-partition is

at most

π(S, u) · max
06 j 6m

(
1−

(
1− pγ

)gu(S)
)m−j(

π(S, u)2 · p2α
)j
, (47)

where m = bπ(S, u)/5κ0γc.

Proof. We first deal with a technicality: the saver droplets need only be internally

spanned by the sites in S ∩A; they do not have to be contained in S, and therefore

their dimensions may be too large to use IH(β1, β2). Moreover, even if the savers are

contained in S, they may still have dimensions too large to use IH(β1, β2). However,

neither of these is a problem, as we now show. Let D be any saver droplet (so D is

internally spanned by S ∩ A) such that either

w(D) > p−β1(1−2η)−η or h(D) > p−β2(1−2η)−η. (48)

Then by Lemma 6.16, applied once with u = u∗ and again if necessary with u = u⊥,

there exists a droplet D′ ⊂ D, also spanned by sites in S ∩ A, such that either

w(D′) 6 p−β1(1−2η)−η and p−β2(1−2η)−η/3 6 h(D′) 6 p−β2(1−2η)−η,

or p−β1(1−2η)−η/3 6 w(D′) 6 p−β1(1−2η)−η and h(D′) 6 p−β2(1−2η)−η.

Therefore, by IH(β1, β2), we have Pp
(
I×(D′)

)
6 pδk/3, where δ = δ(β1 + β2) and

k := min
{
p−β1(1−2η)−η, p−β2(1−2η)−η}.

But k > π(S, u), since S satisfies (46), and therefore

Pp
(
I×(D′)

)
6 pδπ(S,u)/3.
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Hence, since there are at most p−7α distinct SU -droplets spanned by16 sites in S, it

follows that the probability S admits a (u, γ)-partition containing a saver droplet D

satisfying (48) is at most p−7α · pδπ(S,u)/3. Now, recalling from (40) and (41) that

π(S, u) > ξ−1 � κ0(β1 + β2) � δ(β1 + β2)−1,

it follows that

pδ(β1+β2)π(S,u)/3−7α 6 pδ(β1+β2)π(S,u)/4 6 p2αm,

and this is at most (47) (with j = m).

Let us therefore assume from now on that if D is a saver droplet in a (u, γ)-

partition of S, then the dimensions of D satisfy

w(D) 6 p−β1(1−2η)−η and h(D) 6 p−β2(1−2η)−η. (49)

Let S1 ∪ · · · ∪ Sm′+1 be a partition of S into u-strips as in Definition 8.21, and note

that we have m′ > m, since ‖Si−Si+1‖ 6 1 for each i ∈ [m′]. Note also that m > 1,

since π(S, u) > ξ−1 � κ0(β1 + β2), and γ 6 λ.

Next, observe that for each 1 6 i 6 m, the probability that Si ∩ A contains a

u-weak γ-cluster is at most

1−
(
1− pγ

)gu(S)
, (50)

by Harris’s inequality, since by definition there are at most gu(S) such sets in Si.

Now, as noted above, there are at most p−7α distinct SU -droplets that are in-

ternally spanned by a subset of S, and by IH(β1, β2) and (49), each such droplet

D is internally spanned with probability at most pδa, where δ = δ(β1 + β2) and

a = max{w(D), h(D)}. Thus, for each a ∈ [m] and 0 6 t 6 m− a, the probability

that there is a droplet D with max{w(D), h(D)} > aκ0(β1 + β2)/5 such that D is

internally spanned by (St+1 ∪ · · · ∪ St+a) ∩ A is at most

pδ(β1+β2)κ0(β1+β2)a/5−7α 6 p2αa, (51)

since κ0(β1 + β2)� δ(β1 + β2)−1.

Finally, note that there are at most π(S, u)2j partitions of m′ containing at least

m′ − j ones. By (50) and (51), and taking a union bound over j, it follows that S

admits a (u, γ)-partition with probability at most

π(S, u) · max
06 j 6m

(
1−

(
1− pγ

)gu(S)
)m−j(

π(S, u)2 · p2α
)j
,

as claimed. �

We shall now apply Lemmas 8.22 and 8.24 three times: once to prove Lemma 8.18

for horizontal crossings, and twice to prove Lemma 8.19 for vertical crossings, once

each for drift and non-drift directions. We begin with horizontal crossings.

16Recall that D might not be contained in S; however, any SU -droplet spanned by sites in S is

contained in the smallest SU -droplet that contains S, which has size O(|S|).
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Proof of Lemma 8.18. Suppose first that IH(β1, β2) holds, where 1 6 β1 6 α and

1 6 β2 6 α, and let S be a u-strip, where u ∈ {ul, ur} and

ξ−1 6 π(S, u) 6 p−β1(1−2η)−η and h(S) 6 p−β2(1−2η)−η.

If S is u-crossed by A, then, recalling that ᾱ(u) > α, it follows by Lemma 8.22 that

there exists a (u, α)-partition for S ∩ A.

Let S1∪ · · · ∪Sm′+1 be a partition of S into u-strips as in Definition 8.21, and note

that there are at most O
(
h(S)

)
u-weak α-clusters in each sub-strip Si, where the

implicit constant depends on κ0 = κ0(β1 +β2). It therefore follows from Lemma 8.24

that S ∩ A admits a (u, α)-partition with probability at most

π(S, u) · max
06 j 6m

(
1−

(
1− pα

)O(h(S))
)m−j(

π(S, u)2 · p2α
)j
, (52)

where m = bπ(S, u)/5κ0αc. Since h(S) 6 p−β2(1−2η)−η and 1 6 β2 6 α, we have17

1− (1− pα)O(h(S)) = O
(
pα−β2(1−2η)−η) 6 pη.

Also, since π(S, u) 6 p−β1(1−2η)−η and 1 6 β1 6 α, we have π(S, u)2 · p2α 6 pη.

Therefore, recalling that m � 1 (since π(S, u) > ξ−1 � κ0(β1 + β2)), it follows

that (52) is at most

π(S, u) · max
06 j 6m

pη(m−j) · pηj = π(S, u) · pηm 6 pδ
′π(S,u),

as required, where δ′ = δ′(β1 + β2) 6 η/6κ0(β1 + β2)α.

Now suppose that IH(α, α + 1) holds, and let S be a u-strip, where u ∈ {ul, ur}
and

1 6 π(S, u) 6 p−α(1−2η)−η and h(S) 6
ξ

pα
log

1

p
.

Then, exactly as above, it follows that (52) is an upper bound on the probability

that S is u-crossed by A. Since h(S) 6 ξ
pα

log 1
p
, we have

1− (1− pα)O(h(S)) 6 1− exp
(
−O

(
pα · h(S)

))
6 1− pO(ξ) 6 e−p

O(ξ)

,

where the implicit constant depends on κ0(2α+1). Also, since π(S, u) 6 p−α(1−2η)−η,

we have π(S, u)2 · p2α 6 pη, as before. Since π(S, u) = Θ(m), it follows that (52) is

at most

π(S, u) · max
06 j 6m

(
e−p

O(ξ)
)m−j

pηj 6 π(S, u) · exp
(
− pO(ξ) · π(S, u)

)
,

where the implicit constants depend on κ0(2α + 1), as required. �

Before proving Lemma 8.19, which bounds the probability of a vertical crossing,

let us first note the following bounds on the probability of the event ∆(D,D′), which

hold when w(D′)− w(D) is not too large, and follow easily from Lemma 8.18. We

will use these bounds, together with Lemma 8.9, first in Section 8.4 to prove the

17Here, and below, we use the inequality 1− ax 6 (1− x)a, which is valid if x 6 1 and a > 1.
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various induction steps, and then again in Section 8.5 to bound the probability that

a critical droplet is internally spanned.

Lemma 8.25. Let D ⊂ D′ be nested SU -droplets.

(i) Let 1 6 β1 6 α and 1 6 β2 6 α, and suppose that IH(β1, β2) holds. If

ξ−2 6 w(D′)− w(D) 6 p−β1(1−2η)−η and h(D′) 6 p−β2(1−2η)−η,

then

Pp
(
∆(D,D′)

)
6 pΩ(δ′)(w(D′)−w(D)),

where δ′ = δ′(β1 + β2), and the constant implicit in Ω(·) depends only on U .

(ii) Suppose that IH(α, α + 1) holds. If

ξ−2 6 w(D′)− w(D) 6 p−α(1−2η)−η and h(D′) 6
ξ

pα
log

1

p
,

then

Pp
(
∆(D,D′)

)
6 w(D′) · exp

(
− pO(ξ)

(
w(D′)− w(D)

))
,

where the implicit constant depends on κ0(2α + 1).

D

D′ Sr

D

D′
Sr

Figure 8. Two examples of the situation in Lemma 8.25 (note that,

as in the definition of Sr in the proof of the lemma, the ur-sides of

Sr and D′ are equal). The hatching indicates the sites that would

be assumed to be present for the purposes of the event that Sr is ur-

crossed. In both examples it is easy to see that the event ∆(D,D′)

implies that Sr is ur-crossed.

Proof. Let Sr ⊂ D′ be the unique maximal ur-strip whose ur-side is equal to that

of D′ and which does not intersect D (Sr may or may not be a subset of D′,

depending on the shapes and relative positions of D and D′; see Figure 8). Define

Sl similarly on the ul-side of D′. We claim that if the event ∆(D,D′) occurs,

then Sr is ur-crossed and Sl is ul-crossed. Indeed, ∆(D,D′) implies that there
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exists a strongly connected component L of [D ∪ (D′ ∩ A)] such that D′ is the

smallest SU -droplet containing L. Now choose x ∈ ∂(Sr,−ur), and observe that

L ⊂ [D ∪ (D′ ∩ A)] ⊂ [Hur(x) ∪ (Sr ∩ A)], and that L intersects both Hur(x) and

∂(Sr, ur), since the ur-sides of Sr and D′ are equal. Hence Sr is ur-crossed, as

claimed, and similarly Sl is ul-crossed.

Next, note the easy geometric inequalities: max
{
h(Sr), h(Sl)

}
6 h(D′), and

Ω
(
w(D′)− w(D)

)
= max

{
π(Sr, ur), π(Sl, ul)

}
6 w(D′)− w(D),

where the implicit constant depends only on U . Since w(D′) − w(D) > ξ−2, it

follows that max
{
π(Sr, ur), π(Sl, ul)

}
> ξ−1, since ξ was chosen sufficiently small

(depending on U). Hence, by Lemma 8.18, we have

Pp
(
∆(D,D′)

)
6 pΩ(δ′(β1+β2))(w(D′)−w(D))

under the assumptions of part (i), and that

Pp
(
∆(D,D′)

)
6 w(D′) · exp

(
− pO(ξ)

(
w(D′)− w(D)

))
under the assumptions of part (ii), as required. �

Finally, let us prove Lemma 8.19, which bounds the probability of a vertical

crossing. When ᾱ(u∗) > α+ 1 (the ‘non-drift’ case), in which case u = u∗, the proof

is straightforward; indeed, in this case the application of Lemma 8.22 is the same

as in the proof of Lemma 8.18. When α−(u∗) =∞ (the ‘drift’ case), and u ∈ S+
U is

such that σ(u) = p1−η, on the other hand, this naive approach no longer works, and

the proof in this case is conceptually a little more difficult, since it requires us to use

the stretched geometry of the u-norm in order to control the unbounded sideways

growth of small sets. This is the only point in the proof of Theorem 8.1 where we

specifically need the u-norm.

Proof of Lemma 8.19. Let 1 6 β1 6 α + 1 and 1 6 β2 6 α, and suppose that

IH(β1, β2) holds. Let u ∈ S+
U , and let S be a u-crossed u-strip with

w(S) 6 p−β1(1−2η)−η, h(S) 6 p−β2(1−2η)−η, and π(S, u) > ξ−1. (53)

We begin with the (easier) ‘non-drift’ case, for which the proof is almost identical

to that of Lemma 8.18.

Case 1: u = u∗ and ᾱ(u∗) > α + 1.

Since S is u-crossed by A, there exists a (u∗, α + 1)-partition for S ∩ A, by

Lemma 8.22. Let S1 ∪ · · · ∪ Sm′+1 be a partition of S into u-strips as in Defini-

tion 8.21, and note that π(S, u∗) = h(S), and that there are at most O
(
w(S)

)
u∗-weak (α + 1)-clusters in each sub-strip Si, where the implicit constant depends

on κ0 = κ0(β1 + β2). It therefore follows from Lemma 8.24 that S ∩ A admits a

(u∗, α + 1)-partition with probability at most

h(S) · max
06 j 6m

(
1−

(
1− pα+1

)O(w(S))
)m−j(

h(S)2 · p2α
)j
, (54)
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where m = bh(S)/5(α + 1)κ0(β1 + β2)c. Since w(S) 6 p−β1(1−2η)−η and 1 6 β1 6
α + 1, we have

1− (1− pα+1)O(w(S)) = O
(
pα+1−β1(1−2η)−η) 6 pη,

Also, since h(S) 6 p−β2(1−2η)−η and 1 6 β2 6 α, we have h(S)2 · p2α 6 pη. Thus,

noting that m� 1 (since h(S) > ξ−1 � κ0(β1 + β2)), it follows that (54) is at most

h(S) · max
06 j 6m

pη(m−j) · pηj = h(S) · pηm 6 pδ
′h(S) = pδ

′π(S,u),

as required, where δ′ = δ′(β1 + β2) 6 η/6(α + 1)κ0(β1 + β2).

We now turn to the ‘drift’ case.

Case 2: σ(u) = p1−η and α−(u∗) =∞.

Since S is u-crossed by A, and ᾱ(u) = ∞, by Lemma 8.22 there exists a (u, λ)-

partition for S ∩ A. By Lemma 8.24, this occurs with probability at most

π(S, u) · max
06 j 6m

(
1−

(
1− pλ

)gu(S)
)m−j(

π(S, u)2 · p2α
)j
, (55)

where m := bπ(S, u)/5λκ0(β1 + β2)c, and gu(S) denotes the number of u-weak λ-

clusters in a sub-strip S ′ ⊂ S of u-projection 4λκ0(β1 + β2). We claim that

gu(S) = O
(
w(S) · p−λ(1−η)

)
,

where the implicit constant depends on κ0(β1 + β2). Indeed, there are O
(
w(S)

)
choices for the first site in the u-weak λ-cluster, and at most O(1/σ) choices for

each of the remaining λ− 1 sites, as required. It follows that

1−
(
1− pλ

)gu(S)
6 O

(
w(S)

)
· p−λ(1−η) · pλ 6 O

(
w(S)

)
· p5α 6 p3α,

since w(S) 6 p−β1(1−2η)−η and 1 6 β1 6 α + 1, and recalling that λ = 5α/η.

Finally, note that π(S, u)2 · p2α 6 pη, since π(S, u) 6 2 · h(S) 6 2 · p−β2(1−2η)−η

and 1 6 β2 6 α. Thus, noting that m � 1 (since π(S, u) > ξ−1 � κ0(β1 + β2)), it

follows that (55) is at most

π(S, u) · max
06 j 6m

p3α(m−j) · pηj 6 π(S, u) · pηm 6 pδ
′π(S,u),

where δ′ = δ′(β1 + β2) 6 η/6λκ0(β1 + β2). This completes the proof of the lemma.

�

8.4. The induction steps. In this subsection we prove the induction steps. The

following lemma will be used to deduce the implications IH(β, β) ⇒ IH(β + 1, β)

and IH(β + 1, β) ∧ IH(β, β + 1)⇒ IH(β + 1, β + 1).

For convenience, we shall occasionally use the notation expp(x) := px.

Lemma 8.26. Let 1 6 β1 6 α and 1 6 β2 6 α with β2 6 β1 + 1, and suppose that

IH(β1, β2) holds. Let D be an SU -droplet such that

p−β1(1−2η)−η 6 w(D) 6 p−(β1+1)(1−2η)−η and h(D) 6 p−β2(1−2η)−η.
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Then

Pp
(
I×(D)

)
6 pΩ(δ′)w(D),

where δ′ = δ′(β1 + β2), and the implicit constant depends only on U .

Proof. We shall use the hierarchies framework from Section 8.1 with β = β1. To

begin, recall the bound from Lemma 8.9:

Pp
(
I×(D)

)
6
∑
H∈HD

( ∏
u∈L(H)

Pp
(
I×(Du)

))(∏
u→v

Pp
(
∆(Dv, Du)

))
. (56)

In order to use this bound, we need estimates for the probability that a seed is

internally spanned, the probability of the event ∆(Dv, Du), and the number of good

hierarchies for D.

First, for each u ∈ L(H) we have w(Du) 6 p−β1(1−2η)−η, by Definition 8.5. Also,

since Du ⊂ D, we have h(D) 6 p−β2(1−2η)−η. Hence, by IH(β1, β2),

Pp
(
I×(Du)

)
6 pδw(Du), (57)

where δ = δ(β1 + β2).

We bound the probability of the event ∆(Dv, Du) using Lemma 8.25. Recall that

w(Du) − w(Dv) 6 p−β1(1−2η)−η, by Definition 8.5, and note that h(Dv) 6 h(Du) 6
p−β2(1−2η)−η, since Du ⊂ D. However, in order to use Lemma 8.25, we also need

the lower bound w(Du) − w(Dv) > ξ−2, which Definition 8.5 does not guarantee.

Therefore, we can deduce from Lemma 8.25 that

Pp
(
∆(Dv, Du)

)
6 pΩ(δ′)(w(Du)−w(Dv)), (58)

where δ′ = δ′(β1 + β2), and the constant implicit in Ω(·) depends only on U , only for

those pairs {u, v} ⊂ V (GH) with N→GH(u) = {v} such that w(Du)− w(Dv) > ξ−2.

We now divide into two cases according to the number of big seeds of H (i.e., the

number of leaves u ∈ L(H) such that w(Du) > p−β1(1−2η)−η/3, see Definition 8.11).

The idea is as follows: if there are ‘few’ big seeds, then the number of hierarchies

is small enough (by Lemma 8.13) that we can uniformly bound the probability of

each; on the other hand, if there are ‘many’ big seeds, then the contribution to (56)

from the big seeds alone outweighs the combinatorial cost of counting the good

hierarchies. To be precise, set B := p−1+2η and let

H(1) :=
{
H ∈ HD : b(H) 6 B

}
and H(2) := HD \ H(1).

Bounding the sum over H ∈ H(2) is the simpler case. Indeed, observe that∑
H∈H(2)

∏
u∈L(H)

Pp
(
I×(Du)

)
6
∑
b>B

|Hb
D| · expp

(
δ · b · p−β1(1−2η)−η

3

)
,

using the notation expp(x) := px, and using (57) and the definition of a big seed.

Moreover, by Lemma 8.13, for each b we have∣∣Hb
D

∣∣ 6 expp

(
−O

(
b · w(D) · pβ1(1−2η)+η

))
6 expp

(
−O

(
b · p−1+2η

))
,
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since w(D) 6 p−(β1+1)(1−2η)−η. Hence, since β1 > 1,∑
H∈H(2)

∏
u∈L(H)

Pp
(
I×(Du)

)
6
∑
b>B

expp

(
δ · b · p−β1(1−2η)−η

4

)
6 pδw(D)/5, (59)

where the last step follows since B = p−1+2η and w(D) 6 p−(β1+1)(1−2η)−η.

To deal with H(1), first we use the two estimates (57) and (58) to obtain∑
H∈H(1)

( ∏
u∈L(H)

Pp
(
I×(Du)

))(∏
u→v

Pp
(
∆(Dv, Du)

))

6
∑
H∈H(1)

expp

(
δ
∑

u∈L(H)

w(Du) + Ω(δ′)

(∑
u→v

(
w(Du)−w(Dv)

)
− ξ−2|V (GH)|

))
,

(60)

where the final term in the exponential accounts for the fact that we can only use (58)

when w(Dv)− w(Du) > ξ−2. Now, by Lemma 8.10, we have∑
u∈L(H)

w(Du) +
∑
u→v

(
w(Du)− w(Dv)

)
> w(D)−O

(
|V (GH)|

)
for every H ∈ H(1), and by (36), we have∣∣V (GH)

∣∣ = O
(
B · w(D) · pβ1(1−2η)+η

)
= o

(
w(D)

)
.

Thus, recalling that δ(β1 + β2) > δ′(β1 + β2), the right-hand side of (60) is at most∑
H∈H(1)

pΩ(δ′)w(D) 6
∑
b6B

∣∣Hb
D

∣∣ · pΩ(δ′)w(D). (61)

Now, by Lemma 8.13, we have∣∣Hb
D

∣∣ 6 expp

(
−O

(
b · w(D) · pβ1(1−2η)+η

))
6 ew(D),

since b 6 B = p−1+2η and β1 > 1, so the right-hand side of (61) is at most

B · ew(D) · pΩ(δ′)w(D) 6 pΩ(δ′)w(D),

since B = p−1+2η 6 ew(D). Combining this bound with (56) and (59), and recalling

that δ(β1 +β2) > δ′(β1 +β2), it follows that Pp
(
I×(D)

)
6 pΩ(δ′)w(D), as required. �

Before we can prove a corresponding lemma for ‘tall’ droplets, we need one more

technical lemma, which says that if a droplet D is ‘crossed’ with help from both the

u∗-side and the (−u∗)-side, then, in a certain sense (which is made explicit in the

lemma), the droplet is at least ‘half crossed’ with help from just one side. This will

allow us to transfer from a droplet that is ‘crossed’ with help from both sides to a u-

crossed u-strip, for an appropriate u, see Lemma 8.28, below. One such application

of the lemma (in which some of the labelling is different) is shown in Figure 9.
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Let us say that an ordered partition D = D1 ∪ · · · ∪ Dt of a SU -droplet D is a

horizontal partition of D if each Di is a SU -droplet of the form D∩Hu∗(a)∩H−u∗(b)
for some a, b ∈ R2, and Di lies between Di−1 and Di+1 for every 2 6 i 6 t− 1.

Lemma 8.27. Let D′ = Du∗ ∪D ∪D−u∗ be a horizontal partition of a SU -droplet

D′, and suppose that

Z :=
[
Du∗ ∪ (D ∩ A) ∪D−u∗

]
(62)

contains a strongly connected component Z ′ such that Du∗ ∪D−u∗ ⊂ Z ′. Then there

exists a set L ⊂ D with h(L) > h(D)/2 − κ such that, for some u ∈ {u∗,−u∗},
L ∪Du is a strongly connected component of

[
Du ∪ (D ∩ A)

]
.

Proof. For each u ∈ {u∗,−u∗}, let Zu be the strongly connected component of[
Du∪ (D∩A)

]
containingDu, and note that Zu ⊂ D′, since D′ is a SU -droplet. If the

set Zu∗ ∪ Z−u∗ is strongly connected, then set Lu := Zu ∩D for each u ∈ {u∗,−u∗},
and observe that

h(Lu∗) + h(L−u∗) > h(D)− κ,
as required.

So suppose that Zu∗ ∪Z−u∗ is not strongly connected, and let Y be the collection

of strongly connected components of
[
(D ∩A) \ (Zu∗ ∪ Z−u∗)

]
. Then Zu ∪ Y is not

strongly connected for any u ∈ {u∗,−u∗} and Y ∈ Y , and thus

Y ∪
{
Zu∗ , Z−u∗

}
is precisely the collection of strongly connected components of Z. But Z contains

a strongly connected component containing both Du∗ and D−u∗ , and so this is a

contradiction, which completes the proof of the lemma. �

The next lemma will be used to deduce the implications IH(β, β)⇒ IH(β, β + 1)

and IH(β+ 1, β)∧ IH(β, β+ 1)⇒ IH(β+ 1, β+ 1), and also to bound the probability

that a critical droplet is internally spanned. It follows by combining Lemma 8.27

with our bound on the probability of a vertical crossing, Lemma 8.19.

Lemma 8.28. Let 1 6 β2 6 α and β2 6 β1 6 β2 + 1, and suppose that IH(β1, β2)

holds. Let D be an SU -droplet such that

w(D) 6 p−β1(1−2η)−η and h(D) > max
{
p1−2ηw(D), p−1+η

}
.

Then

Pp
(
I×(D)

)
6 pδ

′h(D)/8,

where δ′ = δ′(β1 + β2).

Proof. Let D = D1 ∪ · · · ∪Dm be a horizontal partition of D such that

12 ·max
{
p1−ηw(D), ξ−1

}
6 h(Di) 6 24 ·max

{
p1−ηw(D), ξ−1

}
for each 1 6 i 6 m; this is possible by the lower bound on h(D). For each 1 6 i 6 m,

define D
(i)
u∗ := D1 ∪ · · ·Di−1 and D

(i)
−u∗ := Di+1 ∪ · · ·Dm, so D = D

(i)
u∗ ∪Di ∪D(i)

−u∗ is

a horizontal partition of D.
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Di−1

Di+1

Di

Ti

Li

xi

Hu(xi)

−u∗

u∗

urul

Figure 9. The figure depicts the application of Lemma 8.27 in the

proof of Lemma 8.28 assuming α−(u∗) =∞. Ti is the minimal u-strip

such that Li ⊂ Ti ∪Hu(xi), where σ(u) = p1−η, and is u-crossed by A.

Now, if D is internally spanned, then for each 1 6 i 6 m the set

Z :=
[
D

(i)
u∗ ∪ (Di ∩ A) ∪D(i)

−u∗
]

contains a strongly connected component Z ′ such that D
(i)
u∗ ∪ D

(i)
−u∗ ⊂ Z ′. By

Lemma 8.27, it follows that there exists L ⊂ Di with h(L) > h(Di)/2 − κ such

that L ∪ D(i)
u is a strongly connected component of

[
D

(i)
u ∪ (Di ∩ A)

]
for some

u ∈ {u∗,−u∗}. Let Ei denote the event that such a set L exists in Di.

Claim 8.29. Pp(Ei) 6 pδ
′h(Di)/7 for each 1 6 i 6 m, where δ′ = δ′(β1 + β2).

Proof of Claim 8.29. Suppose that Ei occurs, and let Li ⊂ Di be such that h(Li) >
h(Di)/2− κ, and Li ∪Di−1 is a strongly connected component of

[
Di−1 ∪ (Li ∩A)

]
.

(We may assume this without loss of generality, since h(Di) > ξ−1 � κ > ν.) We

will divide into two cases according to whether or not u∗ is a drift direction.

Case 1: ᾱ(u∗) > α + 1.

Observe that the minimal u∗-strip Si containing Li is u∗-crossed.18 Note also that

w(Si) = w(Li) 6 w(D) 6 p−β1(1−2η)−η, and that

h(Si) 6 h(Di) 6 24 ·max
{
p1−ηw(D), ξ−1

}
6 p−β2(1−2η)−η,

18Indeed, Li ⊂ [Hu∗(x) ∪ (Si ∩ A)] for any x ∈ ∂(Si,−u∗), since Di−1 ⊂ Hu∗(x) and Li is a

strongly connected component of
[
Di−1 ∪ (Li ∩A)

]
.
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since β1 6 β2 + 1. Note also that

π(Si, u
∗) = h(Si) = h(Li) > h(Di)/3 > ξ−1,

since h(Di) > 3ξ−1 � κ. Therefore, Si satisfies the conditions of Lemma 8.19, and

is thus u∗-crossed with probability at most pδ
′h(Si) 6 pδ

′h(Di)/3.

Case 2: α−(u∗) =∞.

Let xi be the element of R2 at the intersection of the ul and (−u∗)-sides of Di,

let u ∈ S+
U be such that σ(u) = p1−η, and let Ti be the minimal u-strip such that

Li ⊂ Hu(xi) ∪ Ti,

see Figure 9. Observe that Ti is u-crossed by Di ∩ A; indeed, since Di−1 ⊂ Hu(xi)

and Li ⊂
[
Di−1 ∪ (Li ∩ A)

]
, it follows that Li ⊂ [Hu(xi) ∪ (Ti ∩ A)].

We next claim that w(Ti) and h(Ti) satisfy the conditions of Lemma 8.19. Indeed,

we have w(Ti) = w(Li) 6 w(D) 6 p−β1(1−2η)−η, and

h(Ti) 6 h(Di) + σ(u) · w(D) 6 p−β2(1−2η)−η,

since β1 6 β2 + 1, cf. Case 1. Moreover, we have

π(Ti, u) > h(Ti)− 2 · σ(u) · w(D) >
h(Ti)

2
>
h(Li)

2
> ξ,

since σ(u) = p1−η and h(Ti) > h(Li) > h(Di)/3 > 4 ·max
{
p1−ηw(D), ξ−1

}
. There-

fore, by Lemma 8.19, Ti is u-crossed with probability at most pδ
′h(Ti) 6 pδ

′h(Di)/6.

Finally, note that there are at most p−7α different possibilities for the u∗-strip Si
or u-strip Ti. Since h(Di) > ξ−1 � δ′(β1 + β2)−1, it follows that

Pp(Ei) 6 p−7α · pδ′h(Di)/6 6 pδ
′h(Di)/7,

as claimed. �

Finally, note that the events E1, . . . , Em are independent, since Ei depends only

on the set Di ∩ A. Therefore, by Claim 8.29,

Pp
(
I×(D)

)
6 expp

(
δ′

7

m∑
i=1

h(Di)

)
6 pδ

′h(D)/8,

and this completes the proof of the lemma. �

We are now ready to prove Lemma 8.3.

Proof of Lemma 8.3. We shall prove by induction on β1 + β2 that IH(β1, β2) holds

for every pair (β1, β2) ∈ N2 with

2 6 β1 + β2 6 2α + 1 and |β1 − β2| 6 1.

Observe first that IH(1, 1) follows from Lemma 6.18, since δ(2) was chosen (in (31))

to be sufficiently small (depending on η). The induction steps are of three different

types, which are dealt with in the following three claims.
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Claim 8.30. For each 1 6 β 6 α we have

IH(β, β) ⇒ IH(β + 1, β).

Proof. Let D be a droplet with

w(D) 6 p−(β+1)(1−2η)−η and h(D) 6 p−β(1−2η)−η.

We are required to show that Pp
(
I×(D)

)
6 pδmax{w(D),h(D)}, where δ = δ(2β + 1).

If w(D) 6 p−β(1−2η)−η then this follows immediately from IH(β, β) (since we chose

δ(2β + 1) 6 δ(2β) in (31)), so we may assume that w(D) > p−β(1−2η)−η. Now,

applying Lemma 8.26 with β1 = β2 = β, it follows that

Pp
(
I×(D)

)
6 pΩ(δ′(2β))w(D) 6 pδ(2β+1)w(D),

as required, since we chose δ(2β + 1)� δ′(2β) in (40). �

Claim 8.31. For each 1 6 β 6 α we have

IH(β, β) ⇒ IH(β, β + 1).

Proof. Let D be a droplet with

w(D) 6 p−β(1−2η)−η and h(D) 6 p−(β+1)(1−2η)−η.

We again need to show that Pp
(
I×(D)

)
6 pδmax{w(D),h(D)}, where δ = δ(2β + 1).

Note that if h(D) 6 p−β(1−2η)−η then this follows immediately from IH(β, β), as

before, so we may assume that h(D) > p−β(1−2η)−η, which implies that

h(D) > max
{
p1−2ηw(D), p−1+η

}
.

Hence, applying Lemma 8.28 with β1 = β2 = β, we obtain

Pp
(
I×(D)

)
6 pδ

′(2β)h(D)/8 6 pδ(2β+1)h(D),

as required, since we chose δ(2β + 1)� δ′(2β) in (40). �

Claim 8.32. For each 1 6 β 6 α− 1 we have(
IH(β + 1, β) ∧ IH(β, β + 1)

)
⇒ IH(β + 1, β + 1).

Proof. Let D be an SU -droplet with

w(D) 6 p−(β+1)(1−2η)−η and h(D) 6 p−(β+1)(1−2η)−η.

This time we are required to show that Pp
(
I×(D)

)
6 pδ(2β+2) max{w(D),h(D)}. Note

that, since we chose δ(2β + 2) 6 δ(2β + 1) in (31), this follows immediately from

IH(β, β + 1) if w(D) 6 p−β(1−2η)−η, and from IH(β + 1, β) if h(D) 6 p−β(1−2η)−η.

We may therefore assume that

min
{
w(D), h(D)

}
> p−β(1−2η)−η.

Suppose first that w(D) > h(D). Then, applying Lemma 8.26 with β1 = β and

β2 = β + 1, it follows that

Pp
(
I×(D)

)
6 pΩ(δ′(2β+1))w(D) 6 pδ(2β+2)w(D),
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as required, since we chose δ(2β + 2)� δ′(2β + 1) in (40).

On the other hand, if w(D) 6 h(D) then we have

h(D) > max
{
p1−2ηw(D), p−1+η

}
.

Hence, applying Lemma 8.28 with β1 = β + 1 and β2 = β, we obtain

Pp
(
I×(D)

)
6 pδ

′(2β)h(D)/8 6 pδ(2β+2)h(D),

as required, since we chose δ(2β + 2)� δ′(2β + 1) in (40). �

Together with IH(1, 1), these claims imply IH(α + 1, α) and IH(α, α + 1), which

completes the proof of the lemma. �

8.5. Internally spanned critical droplets. Recall from Definition 2.5 that we

call an SU -droplet D critical if one of the following holds:

(T ) w(D) 6 3p−α−1/5 and ξ
pα

log 1
p
6 h(D) 6 3ξ

pα
log 1

p
, or

(L) p−α−1/5 6 w(D) 6 3p−α−1/5 and h(D) 6 ξ
pα

log 1
p
,

where ξ > 0 is the (sufficiently small) constant chosen in (31). In this subsection we

will prove the following bound on the probability that a critical droplet is internally

spanned, which easily implies Theorem 8.1, see Section 8.6, below.

Lemma 8.33. There exists δ > 0 such that if D is a critical droplet then

Pp
(
I×(D)

)
6 exp

(
− δ

pα

(
log

1

p

)2
)
.

To prove the lemma for ‘tall’ droplets (type (T )), we simply apply Lemmas 8.3

and 8.28. For ‘long’ droplets (type (L)), on the other hand, we need to apply the

method of hierarchies, as in the proof of Lemma 8.26, together with Lemmas 8.3

and 8.25, which we use to bound the probabilities of the events in Definition 8.6.

Proof of Lemma 8.33. We will prove that the lemma holds with

δ =
ξ · δ′(2α + 1)

8
.

Let D be a critical droplet, and suppose first that D is of type (T ). Then, since

w(D) 6 3p−α−1/5 and h(D) > ξ
pα

log 1
p
, and recalling that η = (10α)−1, we have

w(D) 6 p−(α+1)(1−2η)−η and h(D) > max
{
p1−2ηw(D), p−1+η

}
.

We may therefore apply Lemma 8.28 with β1 = α+ 1 and β2 = α, since IH(α+ 1, α)

holds by Lemma 8.3. This gives

Pp
(
I×(D)

)
6 pδ

′(2α+1)h(D)/8 6 exp

(
− δ

pα

(
log

1

p

)2
)

for every δ 6 ξ · δ′(2α + 1)/8, as required.
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So suppose from now on that D is of type (L); in this case we will prove the

following much stronger bound:

Pp
(
I×(D)

)
6 exp

(
− p−α−1/6

)
. (63)

We apply the hierarchies framework, as in the proof of Lemma 8.26, but with β = α.

By Lemma 8.9, we have

Pp
(
I×(D)

)
6
∑
H∈HD

( ∏
u∈L(H)

Pp
(
I×(Du)

))(∏
u→v

Pp
(
∆(Dv, Du)

))
. (64)

Now, if u ∈ L(H), then since D is of type (L), and by Definitions 8.4 and 8.5,

w(Du) 6 p−α(1−2η)−η and h(Du) 6 h(D) 6
ξ

pα
log

1

p
6 p−(α+1)(1−2η)−η.

Since IH(α, α + 1) holds, by Lemma 8.3, it follows that

Pp
(
I×(Du)

)
6 pδ(2α+1)w(Du), (65)

for every u ∈ L(H).

Next, if N→GH(u) = {v}, then by Definitions 8.4 and 8.5 we have

w(Du)− w(Dv) 6 p−α(1−2η)−η and h(Dv) 6 h(Du) 6 h(D) 6
ξ

pα
log

1

p
,

as above. Since IH(α, α+ 1) holds, by Lemma 8.3, it follows by Lemma 8.25 that if

w(Du)− w(Dv) > ξ−2, then

Pp
(
∆(Dv, Du)

)
6 exp

(
− pO(ξ)

(
w(Du)− w(Dv)

))
, (66)

where the implicit constant depends on κ0(2α + 1).

As in Lemma 8.26, we divide into two cases according to whether H has many or

few big seeds. Thus, let B := p−2/3 and let

H(1) :=
{
H ∈ HD : b(H) 6 B

}
and H(2) := HD \ H(1).

Bounding the sum in (64) over H ∈ H(2) is again the easier case. Indeed, by (65),∑
H∈H(2)

∏
u∈L(H)

Pp
(
I×(Du)

)
6
∑
b>B

|Hb
D| · expp

(
δ(2α + 1) · b · p−α(1−2η)−η

3

)
, (67)

and by Lemma 8.13, for each b ∈ N we have∣∣Hb
D

∣∣ 6 expp

(
−O

(
b · w(D) · pα(1−2η)+η

))
6 expp

(
−O

(
b · p−1+2η

))
,

since w(D) 6 p−(α+1)(1−2η)−η. The right-hand side of (67) is therefore at most∑
b>B

expp

(
Ω
(
δ(2α + 1)

)
· b · p−α(1−2η)−η

)
6 exp

(
− p−α−1/3

)
, (68)

since η = (10α)−1 and B = p−2/3.
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For hierarchies with few big seeds, observe that by (65) and (66), we have∏
u∈L(H)

Pp
(
I×(Du)

) ∏
u→v

Pp
(
∆(Dv, Du)

)
6 exp

[
− pO(ξ)

( ∑
u∈L(H)

w(Du) +
∑
u→v

(
w(Du)− w(Dv)

)
− ξ−2|V (GH)|

)]
(69)

for each H ∈ H(1), since δ(2α + 1) log(1/p) > pO(ξ), and where the final term in

the exponential takes account of the condition w(Du) − w(Dv) > ξ−2, which was

assumed in the proof of (66). Now, recall that∑
u∈L(H)

w(Du) +
∑
u→v

(
w(Du)− w(Dv)

)
> w(D)−O

(
|V (GH)|

)
by Lemma 8.10, ∣∣V (GH)

∣∣ = O
(
B · w(D) · pα(1−2η)+η

)
= o

(
w(D)

)
,

by (36), and∣∣Hb
D

∣∣ 6 expp

(
−O

(
b · w(D) · pα(1−2η)+η

))
6 exp

(
p1/5w(D)

)
,

by Lemma 8.13, since α > 1, η = (10α)−1 and b 6 B = p−2/3. Hence, summing (69)

over H ∈ H(1), and using (64) and the bound (68) proved above for H ∈ H(1), it

follows that

Pp
(
I×(D)

)
6

B∑
b=1

∣∣Hb
D

∣∣ exp
(
− pO(ξ)w(D)

)
+ exp

(
− p−α−1/3

)
,

6 B exp
(
− pO(ξ)w(D)

)
6 exp

(
− p−α−1/6

)
,

since w(D) > p−α−1/5 and ξ > 0 was chosen to be sufficiently small. This proves (63),

and hence completes the proof of the lemma. �

8.6. The proof of Theorem 8.1. We need one final lemma in order to deduce

Theorem 8.1 from Lemma 8.33. It is a simple consequence of Lemma 6.16.

Lemma 8.34. If n > p−3α and [A] = Z2
n, then there exists a critical droplet that is

internally spanned by A.

Proof. Run the spanning algorithm on Z2
n, with initial set A. Since [A] = Z2

n, we

will (at some point in the algorithm) obtain an internally spanned droplet D0 with

max{w(D0), h(D0)} > p−2α. Let D0 be the first such droplet to appear in the

algorithm, and suppose first that w(D0) 6 3p−α−1/5, so h(D0) > p−2α. Since D0

is internally spanned, by applying Lemma 6.16 with u = u∗ and k = ξ
pα

log 1
p
, we

obtain an internally spanned droplet D ⊂ D0 with

ξ

pα
log

1

p
6 h(D) 6

3ξ

pα
log

1

p
, (70)



74 B. BOLLOBÁS, H. DUMINIL-COPIN, R. MORRIS, AND P.J. SMITH

so D is a type (T ) critical droplet.

On the other hand, if w(D0) > 3p−α−1/5 then we can apply Lemma 6.16 with

u = u⊥ and k = p−α−1/5 to obtain an internally spanned droplet D1 ⊂ D0 with

p−α−1/5 6 w(D1) 6 3p−α−1/5. (71)

If h(D1) 6 ξ
pα

log 1
p

then D1 is a type (L) critical droplet, in which case we are done,

so assume not. Now, applying Lemma 6.16 with u = u∗ and k = ξ
pα

log 1
p
, we obtain

an internally spanned droplet D ⊂ D1 such that (70) holds. Since w(D) 6 w(D1) 6
3p−α−1/5, by (71), it follows that D is a type (T ) critical droplet, as required. �

We now have all the tools we need to complete the proof of Theorem 8.1, and

hence Theorem 1.4.

Proof of Theorem 8.1. Let ε > 0 be the sufficiently small constant chosen in (31),

so in particular, ε� δ), set

p =

(
ε(log log n)2

log n

)1/α

,

and let A be a p-random subset of Z2
n. We claim that Pp

(
[A] = Z2

n

)
→ 0 as n→∞.

Indeed, if [A] = Z2
n then, by Lemma 8.34, there exists a critical droplet D that

is internally spanned by A. By Lemma 8.33, the probability that D is internally

spanned is at most

exp

(
− δ

pα

(
log

1

p

)2
)
,

and there are at most n2p−4α 6 n3 critical droplets in Z2
n. Hence

Pp
(
[A] = Z2

n

)
6 n3 exp

(
− δ

pα

(
log

1

p

)2
)
→ 0

as n→∞, as required, since ε� δ. This completes the proof of the theorem. �

9. Conjectures for higher dimensions

We conclude by briefly discussing the U -bootstrap percolation models in higher

dimensions. Fix an integer d > 2 and let U be a d-dimensional update family.

The definition of the stable set S = S(U) is the natural generalization of the two-

dimensional definition:

S :=
{
u ∈ Sd−1 : [Hd

u] = Hd
u

}
,

where

Hd
u :=

{
x ∈ Zd : 〈x, u〉 < 0

}
is the discrete half-space in Zd with normal u ∈ Sd−1. Observe that, as in two

dimensions, it is easy to show that the dichotomy [Hd
u] ∈

{
Hd
u,Zd

}
holds for any

unit vector u ∈ Sd−1.
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Let µ : L(Sd−1)→ R denote the Lebesgue measure on the collection of Lebesgue-

measurable subsets of Sd−1. Generalizing Definition 1.1, we classify d-dimensional

update familes as follows.

Definition 9.1. A d-dimensional update family is:

• subcritical if µ(C ∩ S) > 0 for every hemisphere C ⊂ Sd−1;

• critical if there exists a hemisphere C ⊂ Sd−1 such that µ(C ∩ S) = 0 and if

C ∩ S 6= ∅ for every open hemisphere C ⊂ Sd−1;

• supercritical if C ∩ S = ∅ for some open hemisphere C ⊂ S.

As in two dimensions, the subcritical/critical/supercritical trichotomy depends

only on the stable set S. However, we expect there to be a further subdivision of

critical families into d − 1 classes according to the value of r for which the model

behaves (broadly) like the classical r-neighbour model.

Conjecture 9.2. Let U be a d-dimensional bootstrap percolation update family.

(i) If U is subcritical then pc(Zd,U) > 0.

(ii) If U is critical then there exist r ∈ {2, . . . , d} and α ∈ Q such that

pc(Zdn,U) =

(
1

log(r−1) n

)α+o(1)

.

(iii) If U is supercritical then pc(Zdn,U) = n−Θ(1).

The conjecture for supercritical families is likely to be relatively straightforward,

since the lower bound is trivial, the main challenge being to find the correct gen-

eralization of quasi-stability to higher dimensions. The conjecture for subcritical

families was originally made by Balister, Bollobás, Przykucki and Smith [2]. For

critical families, one might hope to prove an even sharper result, along the lines of

Theorem 1.4, but even the much weaker bounds conjectured above appear to be far

out of reach with current techniques.
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76 B. BOLLOBÁS, H. DUMINIL-COPIN, R. MORRIS, AND P.J. SMITH

3. J. Balogh, B. Bollobás, H. Duminil-Copin, and R. Morris, The sharp threshold for bootstrap

percolation in all dimensions, Trans. Amer. Math. Soc. 364 (2012), no. 5, 2667–2701.

4. J. Balogh, B. Bollobás, and R. Morris, Bootstrap percolation in three dimensions, Ann. Probab.

37 (2009), no. 4, 1329–1380.

5. , Majority bootstrap percolation on the hypercube, Combin. Probab. Comput. 18 (2009),

no. 1–2, 17–51.

6. , Bootstrap percolation in high dimensions, Combin. Probab. Comput. 19 (2010), no. 5–

6, 643–692.

7. J. Balogh, Y. Peres, and G. Pete, Bootstrap percolation on infinite trees and non-amenable

groups, Combin. Probab. Comput. 15 (2006), no. 2, 715–730.

8. J. Balogh and B. Pittel, Bootstrap percolation on the random regular graph, Random Structures

Algorithms 30 (2007), no. 1–2, 257–286.

9. B. Bollobás, H. Duminil-Copin, R. Morris, and P.J. Smith, The sharp threshold for the Duarte

model, To appear, Ann. Probab.

10. , Universality of two-dimensional critical cellular automata, arXiv:1406:6680v2.

11. B. Bollobás, K. Gunderson, C. Holmgren, S. Janson, and M. Przykucki, Bootstrap percolation

on Galton-Watson trees, Electron. J. Probab. 19 (2014), 1–27.

12. B. Bollobás and O. Riordan, Percolation, Cambridge, 2006.

13. B. Bollobás, P.J. Smith, and A.J. Uzzell, Monotone cellular automata in a random environ-

ment, Combin. Probab. Comput. 24 (2015), no. 4, 687–722.

14. R. Cerf and E.N.M. Cirillo, Finite size scaling in three-dimensional bootstrap percolation, Ann.

Probab. 27 (1999), no. 4, 1837–1850.

15. R. Cerf and F. Manzo, The threshold regime of finite volume bootstrap percolation, Stochastic

Process. Appl. 101 (2002), no. 1, 69–82.

16. J. Chalupa, P.L. Leath, and G.R. Reich, Bootstrap percolation on a Bethe lattice, J. Phys. C

12 (1979), no. 1, L31–L35.

17. D. Chelkak and S. Smirnov, Universality in the 2D Ising model and conformal invariance of

fermionic observables, Invent. Math. 189 (2012), no. 3, 515–580.

18. H. Duminil-Copin and A.E. Holroyd, Finite volume bootstrap percolation with threshold rules

on Z2: balanced case, Preprint, available at http://www.unige.ch/~duminil/.

19. H. Duminil-Copin and A.C.D. van Enter, Sharp metastability threshold for an anisotropic

bootstrap percolation model, Ann. Probab. 41 (2013), no. 3A, 1218–1242.

20. H. Duminil-Copin, A.C.D. van Enter, and T. Hulshof, Higher order corrections for anisotropic

bootstrap percolation, Preprint, arXiv:1611.03294.

21. M.E. Fisher, Renormalization group theory: Its basis and formulation in statistical physics,

Rev. Mod. Phys. 70 (1998), 653–681.

22. A. Giuliani, R.L. Greenblatt, and V. Mastropietro, The scaling limit of the energy correlations

in non-integrable ising models, J. Math. Phys. 53 (2012), no. 9, 48pp.

23. J. Gravner and D. Griffeath, Threshold growth dynamics, Trans. Amer. Math. Soc. 340 (1993),

no. 2, 837–870.

24. , Scaling laws for a class of critical cellular automaton growth rules, Proceedings of the
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