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CONVERGENCE OF ISING INTERFACES
TO SCHRAMM’S SLE CURVES

DMITRY CHELKAKA,B, HUGO DUMINIL-COPINC, CLÉMENT HONGLERD,
ANTTI KEMPPAINENE, AND STANISLAV SMIRNOVA,C

Abstract. We show how to combine our earlier results to deduce strong convergence
of the interfaces in the planar critical Ising model and its random-cluster representation
to Schramm’s SLE curves with parameter κ = 3 and κ = 16/3 respectively.

1. Introduction and statement of the main theorems

In [16] Oded Schramm introduced SLE – a family of random fractal curves param-
eterized by κ > 0, which are obtained by running Loewner evolution with a speed κ
Brownian motion as the driving term. Schramm showed that those are the only possible
conformally invariant scaling limits of interfaces in 2D critical lattice models, and the
convergence to SLE was indeed proved in a number of cases, see [13, 17].

The 2D Ising model is one of the most studied models of an order-disordered phase
transition. Existence of a conformally invariant scaling limit at criticality in the sense of
correlation functions was postulated in the seminal physics paper [2] and used to deduce
unrigorously many of its properties since. Recently, one of us [17] has constructed discrete
holomorphic observables in the critical Ising model on bounded discrete domains (and
its random cluster representation), which have been shown to have conformally invariant
scaling limits in [18, 5]. This paved a way to an ongoing project of rigorously establishing
conformally covariant scaling limits for all critical Ising correlation functions, [11, 10, 4, 7].
On the other hand, it had a corollary that interfaces in the spin Ising model and its FK
(random cluster) counterpart converge to SLE(3) and SLE(16/3) in the sense of the
driving terms. Namely, discrete interfaces are given by Borel probability measures on
the space of driving terms with the uniform norm. As one passes to the scaling limit,
those measures converge weakly to the Brownian motions of the appropriate speeds.
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To study geometric features of the interfaces, it is important to strengthen the topology
of convergence to the uniform metric on the space of curves themselves. A possible way
to arrive to this convergence was suggested in [12], with a corollary that FK interfaces
converge to SLE(16/3) curves. In this paper, we provide a self-contained framework to
establish this stronger convergence both in the spin and the FK case, by combining the
setup from [12] with the crossing estimates from [5, 6] and the results on the observables
convergence from [18, 5].

Definition of the model. We discuss spin Ising and FK Ising models on the square lattice
Z2 (see [8] and references therein for background). The results can be generalized to
isoradial planar lattices as explained in [5]. For a finite subgraph G = (V,E) ⊂ Z2,
the spin Ising model on G at inverse temperature β is a random assignment of spins
σx ∈ {−1,+1} such that the configuration σ = (σx)x∈V has probability proportional to
exp(β

∑

(xy)∈E σxσy). The FK Ising model is its random-cluster counterpart obtained

via the Edwards-Sokal coupling, see e.g. [8]. More precisely, it is a dependent bond
percolation model on G: the probability of a configuration ω ⊂ E is proportional to
[p/(1− p)]o(ω)2 c(ω), where o(ω) and c(ω) are respectively the number of edges and con-
nected components (clusters) in ω, and where p = 1− e−2β . We consider the models at
the critical point βcrit =

1
2
log(1+

√
2) and pcrit =

√
2/(1+

√
2).

Interfaces for Dobrushin boundary conditions. Let Ω be a bounded simply connected
domain and a, b ∈ ∂Ω be two distinct boundary points (more accurately, two degenerate
prime ends, see [15, §2.4,2.5]) of Ω. We aim to approximate Ω (in any reasonable sense) by
subgraphs of the square grids δZ2 successively refined as δ → 0. Let Ωδ ⊂ δZ2 be a simply
connected (meaning connected and with connected complement) approximation, and aδ,
bδ be two vertices near a and b on the boundary ∂Ωδ. When going in counterclockwise
order, aδ and bδ define two arcs of ∂Ωδ denoted by (aδbδ) and (bδaδ).

For the spin Ising model, the boundary conditions “−1” on (aδbδ) and “+1” on (bδaδ)
are called Dobrushin boundary conditions in (Ωδ; aδ, bδ). These boundary conditions
generate a spin interface γδ – simple curve running from aδ to bδ that has spins “+1”
on its left side and spins “−1” on its right. For technical reasons (e.g. to avoid self-
touchings), we prefer to draw γδ on the auxiliary square-octagon lattice, with octagons
corresponding to the vertices of Ωδ. We assume γδ to be the rightmost (or the leftmost)
interface, but it could also turn arbitrarily in ambiguous situations with four alternating
spins around a face. As we obtain the same limit for all choices of γδ, the possible
differences are only microscopic.

For the FK Ising model, we consider free boundary conditions on (aδbδ) and wired
ones on (bδaδ), and call them Dobrushin boundary conditions in (Ωδ; aδ, bδ). In this case,
configurations are best seen together with their dual counterparts defined on the dual
graph G∗. In the dual model (which is again the critical FK Ising model) the boundary
conditions become dual-wired on (aδbδ) and dual-free on (bδaδ). Let γδ be the unique
interface (again, drawn on the auxiliary square-octagon lattice, see [12, Section 4.1]) that
separates the FK cluster on G connected to (bδaδ) and the FK cluster on G∗ connected
to (aδbδ).
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Statement of the theorems. We equip the space of continuous oriented curves by the
following metric:

d(γ1, γ2) = infφ1,φ2
||γ1 ◦ φ1 − γ2 ◦ φ2||∞, (1)

where the infimum is taken over all orientation-preserving reparameterizations of γ1,γ2.

Theorem 1 (Convergence of spin Ising interfaces). Let Ω be a bounded simply con-
nected domain with two distinct boundary points (degenerate prime ends) a,b. Consider
the interface γδ in the critical spin Ising model with Dobrushin boundary conditions on
(Ωδ; aδ, bδ). The law of γδ converges weakly, as δ → 0, to the chordal Schramm-Loewner
Evolution SLE(κ) running from a to b in Ω with κ = 3.

Theorem 2 (Convergence of FK Ising interfaces). Let Ω be a bounded simply con-
nected domain with two distinct boundary points (degenerate prime ends) a,b. Consider
the interface γδ in the critical FK Ising model with Dobrushin boundary conditions on
(Ωδ; aδ, bδ). The law of γδ converges weakly, as δ → 0, to the chordal Schramm-Loewner
Evolution SLE(κ) running from a to b in Ω with κ = 16/3.

Chordal Loewner evolution. Below we briefly explain the construction of Schramm’s
SLE curves and introduce the notation which is used in the next sections (see [13] for
further background). Let γD be some continuous non-self-crossing (though maybe self-
touching) curve running in the closed unit disc D and parameterized by s ∈ [0, 1] such
that γD(0) = −1 and γD(1) = +1. Let Φ : z 7→ i · (1+z)/(1−z) : D → H be the fixed
conformal map from D onto the upper half-plane H and γH = Φ(γD), thus γH starts at 0
and goes to ∞. Denote by Ks the hull of γH[0, s], i.e. the complement of the connected
component ofH\γH[0, s] containing∞, and let t(s) = hcap(Ks) be the half-plane capacity
of Ks. It is easy to see that t(s) is nondecreasing but there could be situations when it
remains constant (and, moreover, the hulls Ks remain the same) for a nonzero time, even
if γD is obtained as a limit of simple curves. E.g., (a) it might happen that, for some
s ∈ (0, 1), the tip γH(s) of the growing curve is not visible from ∞ (meaning that γH
explores some inner component of H \ γH([0, s])) or (b) γH(s+ ·) might travel along the
boundary of Ks for a nonzero time, not changing the hull. Also, it might happen that
(c) γD reaches +1 for the first time before s = 1 or (d) t(s) remains bounded as s → 1
(if γH goes to ∞ very close to R). We say that

γD can be fully described by the Loewner evolution if none of (a)-(d) happens and t(s) is
strictly increasing.

In this situation, let gt : Ht = H \ Ks(t) → H be the conformal map such that gt(w) =
w + 2t · w−1 +O(w−2) as w → ∞. The Loewner equation is

dgt(w)

dt
=

2

gt(w)−Wt
, w ∈ Ht, (2)

where Wt is a continuous function which is usually called a driving term. Schramm-
Loewner Evolutions – SLEs for short – are the random curves constructed in the upper
half-plane by solving the Loewner equation with Wt =

√
κBt, κ > 0, and then defined in

all other simply connected domains (Ω; a, b) with two marked boundary points (e.g. in
the unit disc (D;−1,+1)) via conformal maps.
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2. Tightness and crossing bounds

The proof of the main theorems starts with the extraction of subsequences from the
laws of the discrete interfaces in the topology associated to the metric (1). By recent
results of two of us [12] (which strengthen classical results of [1]) the tightness of the family
{γδ} follows once we can guarantee a crossing estimate called Condition G, see below.
This condition also guarantees that subsequential limits of γδ can be fully described by
the Loewner evolution with driving terms having finite exponential moments.

Let Ωδ
C
⊂ C be the polygonal domain (union of tiles) corresponding to Ωδ ⊂ δZ2 and

φδ : (Ωδ
C
; aδ, bδ) → (D;−1,+1) be some conformal maps. Note that until Section 3 we do

not need to normalize φδ in any specific way.

Theorem 3 ([12]). Let Ω be a bounded simply connected domain with two distinct de-
generate prime ends a and b. If the family of probability measures {γδ} satisfies the
Condition G given below, then both {γδ} and {γδ

D
} are tight in the topology associated

with the curve distance (1). Moreover, if γδ
D
is converging weakly to some random curve

γD, then the following statements hold:

(1) a.s., the curve γD can be fully described by the Loewner evolution and the cor-
responding maps gt satisfy the equation (2) with a driving process Wt which is
α-Hölder continuous for any α < 1

2
;

(2) the driving processes W δ
t corresponding to γδ

D
converge in law to Wt with respect

to the uniform norm on finite intervals; moreover, supδ>0 E[exp(ε|W δ
t |/

√
t )] < ∞

for some ǫ > 0 and all t.

Remark 1. The theorem combines several results from [12]. Note that, if the prime ends
a, b are degenerate, the convergence of γδ outside of their neighborhoods implies the con-
vergence of the whole curves.

Crossing bounds. We say that a curve γδ makes a crossing of an annulus A(z0, r, R) =

B(z0, R) \ B(z0, r), if it intersects both its inner and outer boundaries ∂B(z0, r) and
∂B(z0, R). We say that the crossing is unforced if it can be avoided by deforming the
curve inside of Ωδ

C
; in other words, if it occurs along a subarc of γδ contained in a

connected component of A(z0, r, R) ∩ Ωδ
C
that does not disconnect aδ and bδ.

Condition G The curves γδ are said to satisfy a geometric bound on unforced crossings,
if there exists C > 1 such that, for any δ > 0 and any annulus A(z0, r, R) with R/r > C
such that ∂B(z0, r) ∩ ∂Ωδ

C
6= ∅,

P[γδ makes an unforced crossing of A(z0, r, R)] < 1
2
.

Remark 2. Actually, the results of [12] are based on the stronger Condition G2: the
similar crossing bound should hold at any stopping time τ . As our interfaces γδ satisfy
the domain Markov property (γδ after time τ has the same distribution as the interfaces
in the slit domains Ωδ \ γδ[0, τ ]), it is sufficient to check “time zero” Condition G for all
domains Ωδ simultaneously, see [12, Section 2] for further discussion.

Condition G deals with crossings of the simplest possible geometric shapes but it is not
clear a priori if it is stable under conformal maps. One of the ways to prove this fact is
to use a larger class of shapes. Namely, instead of annuli one can consider all conformal
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rectangles Q, i.e. conformal images of rectangles {z : Re z ∈ (0, ℓ), Im z ∈ (0, 1)}. For
a given Q, we call “marked sides” the images of the segments [0, i] and [ℓ, ℓ + i] and
“unmarked” the other two sides, and call the (uniquely defined) quantity ℓ = ℓ(Q) the
extremal length of Q. We say that γδ makes a crossing of Q if γδ intersects both of its
marked arcs.

Condition C The curves γδ are said to satisfy a conformal bound on unforced crossings
if there exist L, η > 0 such that, for any δ > 0 and any conformal rectangle Q ⊂ Ωδ

C
that

does not disconnect aδ and bδ,

if ℓ(Q) > L and the unmarked sides of Q lie on ∂Ωδ
C
, then

P
[

γδ makes a crossing of Q
]

< 1− η.

Remark 3. It is shown in [12] that Conditions G and C are equivalent, in particular
Condition G is conformally invariant. Thus, if these conditions hold for the curves γδ,
then they hold for γδ

D
too.

There are two approaches to check that interfaces γδ fit within the setup described
above. The first is straightforward: to derive the needed uniform estimate for all shapes
(parts of annuli or conformal rectangles), including those with irregular boundaries. Re-
cently, three of us have proved such an estimate, following the ideas from [9] and relying
on the new discrete complex analysis techniques developed in [3].

Theorem 4 ([6]). For any L > 1 there exist η > 0 such that for any discrete domain
(Ωδ; aδ, bδ, cδ, dδ) with four marked boundary points and L−1 < ℓd(Ω

δ; (aδbδ), (cδdδ)) < L,
one has

η < P[there is an FK cluster connecting (aδbδ) and (cδdδ) inside of Ωδ] < 1− η

uniformly over all possible boundary conditions on ∂Ωδ, where ℓd denotes the discrete
extremal length.

Note that, in order to verify Condition C for FK Ising interfaces in polygonal domains
Ωδ

C
, one does not need to consider very small conformal rectangles near ∂Ωδ

C
as γδ never

visits 1
4
δ neighborhood of ∂Ωδ

C
due to our choice of the square-octagon lattice as the

graphical representation of the model, see [12, Section 4.1.4]. Thus, the result follows
from Theorem 4 since ℓd(Q) and ℓ(Q) are uniformly comparable.

The second approach is to use the monotonicity of crossing probabilities for specific
boundary conditions. In [12, Section 4.1.6], two of us have shown that it is enough
to consider only two particular types of regular annulus-like shapes with alternating
wired/free/wired/free boundary conditions. In this case, the needed estimate can be
easily extracted from [5, Theorem 1.3]. It is worthwhile noting that two approaches
described above have different advantages: the second does not require hard technicalities
while the first can be applied in more general situations, e.g. to the analysis of branching
interface trees.

Remark 4. As the crossing bound for the FK model with alternating boundary conditions
is proved, the upper bound for the probability of a “+1” crossing in the spin model with
“+1/free/−1/free/+1/free/−1/free” boundary conditions (and so, by monotonicity, with
“+1/−1/+1/−1” ones) can be derived using the Edwards-Sokal coupling, see [6].
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3. Identification of the limit via convergence of martingale observables

We identify the scaling limits of γδ along subsequences following the generalization of
the approach from [14], outlined in [17]. It requires the identification of the scaling limit
of a non-trivial martingale observable, known so far for but a few lattice models. We
sketch the proof of Theorem 1 starting with [5, Theorem 1.2], the similar derivation of
Theorem 2 from [18, Theorem 2.2] can be found in [8, Section 6.3].

From now onwards we fix the conformal maps φ : (Ω; a, b) → (D;−1,+1) and
φδ : (Ωδ

C
; aδ, bδ) → (D;−1,+1) so that φδ(z) → φ(z) as δ → 0 uniformly on compact

subsets of Ω. Let w(z) = Φ(φ(z)) and wδ(z) = Φ(φδ(z)).

Proof of Theorem 1 Let F δ
n be the discrete fermionic observable in the domain (Ωδ

n; γ
δ
n, b

δ),
appropriately normalized at bδ, where Ωδ

n denotes the connected component of the slit
domain Ωδ

C
\(γδ

0γ
δ
1...γ

δ
n) containing b

δ, see [5, Section 2.2.1]. Let gδt : H
δ
t = Φ(φδ(Ωδ

n)) → H

be the corresponding Loewner evolutions with driving terms W δ
t , reparameterized by the

capacity. Theorems 1.2 and 5.6 of [5] state that

|F δ
n(z)−M δ

t (z)| → 0 as δ → 0 uniformly over all possible domains Ωδ
n and all z in

the bulk of Ωδ
n, where M δ

t (z) = (∂z[−Gδ
t (w

δ(z))−1] )1/2 and Gδ
t (w) = gδt (w)−W δ

t .

Recall that, for a given δ > 0 and zδ in Ωδ, the value F δ
n(z

δ) is a martingale with respect
to the filtration (F δ

n)n≥0, where F δ
n is generated by the first n steps of γδ. It is easy to

see that, for all driving terms, ImGδ
t (w) ≥ 2

√
t, as long as Imw ≥ 3

√
t. In particular,

M δ
t (z) are uniformly bounded and equicontinuous on compact subsets of Ω, if δ is small

enough and t ≤ 1
9
(Imw(z))2.

Theorem 3 gives us both the convergence of curves γδ and their driving processes
W δ

t , at least along subsequences. Moreover, a.s., the limit can be fully described by the
Loewner evolution with a continuous driving process Wt. Using the convergence wδ → w,
the equicontinuity (in t) of gδt and the convergence of Gδ

t to Gt in the bulk of Ht (which
follows from the convergences of W δ

t to Wt), we conclude that

for any z ∈ Ω, the process Mt(z) = (∂z[−Gt(w(z))
−1])1/2, t ≤ T (z),

where Gt(w) = gt(w)−Wt and T (z) = 1
9
(Imw(z))2,

is a martingale with respect to the filtration (Ft)t≥0 generated by Wt.

Recall that Wt is continuous a.s., and let τ = τ(z) be the first time such that Imw(z) =
3(
√
τ+|Wτ |). Starting with the expansion Gt(w) = w−Wt+2t·w−1+O(w−2) as w → ∞,

one directly gets

Mt∧τ (z) = (w′
z)

1/2w−1 ·[1+Wt∧τ ·w−1+(W 2
t∧τ−3(t∧τ))·w−2+O(w−3)], w = w(z), (3)

where the O-bounds are uniform with respect to both t and z. Since (3) is a martingale for
any given z ∈ Ω andWt has a finite exponential moment, we can exchange the asymptotic
expansion with the conditional expectation and conclude that both coefficients Wt and
W 2

t −3t are martingales. As Wt is almost surely continuous, Lévy’s theorem implies that
Wt =

√
3Bt, where Bt is a standard Brownian motion, for any subsequential limit of the

curves γδ. �
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