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Abstract

We provide a new proof of the sharpness of the phase transition for
Bernoulli percolation and the Ising model. The proof applies to infinite-
range models on arbitrary locally finite transitive infinite graphs.

For Bernoulli percolation, we prove finiteness of the susceptibility in the
subcritical regime β < βc, and the mean-field lower bound Pβ[0 ←→ ∞] ≥
(β − βc)/β for β > βc. For finite-range models, we also prove that for any
β < βc, the probability of an open path from the origin to distance n decays
exponentially fast in n.

For the Ising model, we prove finiteness of the susceptibility for β < βc,
and the mean-field lower bound ⟨σ0⟩+β ≥

√
(β2 − β2

c )/β2 for β > βc. For
finite-range models, we also prove that the two-point correlation functions
decay exponentially fast in the distance for β < βc.

The paper is organized in two sections, one devoted to Bernoulli percolation,
and one to the Ising model. While both proofs are completely independent, we
wish to emphasize the strong analogy between the two strategies.

General notation. LetG = (V,E) be a locally finite (vertex-)transitive infinite
graph, together with a fixed origin 0 ∈ V . For n ≥ 0, let

Λn ∶= {x ∈ V ∶ d(x,0) ≤ n},

where d(⋅, ⋅) is the graph distance. Consider a set of coupling constants (Jx,y)x,y∈V
with Jx,y = Jy,x ≥ 0 for every x and y in V . We assume that the coupling
constants are invariant with respect to some transitively acting group. More
precisely, there exists a group Γ of automorphisms acting transitively on V such
that Jγ(x),γ(y) = Jx,y for all γ ∈ Γ. We say that (Jx,y)x,y∈V is finite-range if there
exists R > 0 such that Jx,y = 0 whenever d(x, y) > R.

1 Bernoulli percolation

1.1 The main result

Let Pβ be the bond percolation measure on G defined as follows: for x, y ∈ V ,
{x, y} is open with probability 1 − e−βJx,y , and closed with probability e−βJx,y .
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We say that x and y are connected in S ⊂ V if there exists a sequence of vertices
(vk)0≤k≤K in S such that v0 = x, vK = y, and {vk, vk+1} is open for every 0 ≤ k <K.
We denote this event by x S←→ y. For A ⊂ V , we write x S←→ A for the event that
x is connected in S to a vertex in A. If S = V , we drop it from the notation.
Finally, we set 0←→∞ if 0 is connected to Λcn for all n ≥ 1. The critical parameter
is defined by

βc ∶= inf{β ≥ 0 ∶ Pβ[0←→∞] > 0}.

Theorem 1.1. 1. For β > βc, Pβ[0←→∞] ≥ β−βc
β .

2. For β < βc, the susceptibility is finite, i.e.

∑
x∈V

Pβ[0←→ x] <∞.

3. If (Jx,y)x,y∈V is finite-range, then for any β < βc, there exists c = c(β) > 0
such that

Pβ[0←→ Λcn] ≤ e−cn for all n ≥ 0.

Let us describe the proof quickly. For β > 0 and a finite subset S of V , define

ϕβ(S) ∶= ∑
x∈S

∑
y∉S

(1 − e−βJx,y)Pβ(0
S←→ x). (1.1)

This quantity can be interpreted as the expected number of open edges on the
“external boundary” of S that are connected to 0 by an open path of vertices in
S. Also introduce

β̃c ∶= sup{β ≥ 0 ∶ ϕβ(S) < 1 for some finite S ⊂ V containing 0}. (1.2)

In order to prove Theorem 1.1, we show that Items 1, 2 and 3 hold with β̃c in
place of βc. This directly implies that β̃c = βc, and thus Theorem 1.1.

The quantity ϕβ(S) appears naturally when differentiating the probability
Pβ[0 ←→ Λcn] with respect to β. Indeed, a simple computation presented in
Lemma 1.4 provides the following differential inequality

d

dβ
Pβ[0←→ Λcn] ≥ 1

β inf
S⊂Λn
0∈S

ϕβ(S) ⋅ (1 − Pβ[0←→ Λcn]). (1.3)

By integrating (1.3) between β̃c and β > β̃c and then letting n tend to infinity,
we obtain Pβ[0←→∞] ≥ β−β̃c

β .
Now consider β < β̃c. The existence of a finite set S containing the origin

such that ϕβ(S) < 1, together with the BK-inequality, imply that the expected
size of the cluster the origin is finite.
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1.2 Comments and consequences

Bibliographical comments. Theorem 1.1 was first proved in [AB87] and [Men86]
for Bernoulli percolation on the d-dimensional hypercubic lattice. The
proof was extended to general quasi-transitive graphs in [AV08]. The first
item was proved in [CC87].

Nearest-neighbor percolation. We recover easily the standard results for nearest-
neighbor model by setting Jx,y = 0 if {x, y} ∉ E, Jx,y = 1 if {x, y} ∈ E, and
p = 1 − e−β . In this context, one can obtain the inequality Pp[0 ←→ ∞] ≥
p−pc

p(1−pc)
for p ≥ pc by introducing

ϕp(S) = p∑
x∈S

∑
y∉S

{x,y}∈E

Pp[0
S←→ x].

This lower bound is slightly better than Item 1 of Theorem 1.1 and is
provided by little modifications in our proof (see [DT15] for a presentation
of the proof in this context).

Site percolation. As in [AB87], the proof may be adapted to site percolation
on transitive graphs. In this context, one can obtain the inequality Pp[0←→
∞] ≥ 1

d−1
p−pc
1−pc

(d is the degree of G) for p ≥ pc by introducing

ϕp(S) = ∑
x∈S

∑
y∉S

{x,y}∈E

Pp[0
S←→ x].

Finite susceptibility against exponential decay. Finite susceptibility does
not always imply exponential decay of correlations for infinite-range models.
Conversely, on graphs with exponential growth, exponential decay does
not imply finite susceptibility. Hence, in general, the second condition of
Theorem 1.1 is neither weaker nor stronger than the third one.

Percolation on the square lattice. On the square lattice, the inequality pc ≥
1/2 was first obtained by Harris in [Har60] (see also the short proof of
Zhang presented in [Gri99]). The other inequality pc ≤ 1/2 was first proved
by Kesten in [Kes80] using a delicate geometric construction involving cross-
ing events. Since then, many other proofs invoking exponential decay in
the subcritical phase (see [Gri99]) or sharp threshold arguments (see e.g.
[BR06]) have been found. Here, Theorem 1.1 provides a short proof of
exponential decay and therefore a short alternative to these proofs. For
completeness, let us sketch how exponential decay implies that pc ≤ 1/2:
item 3 implies that for p < pc the probability of an open path from left to
right in a n by n square tends to 0 as n goes to infinity. But self-duality
implies that this does not happen when p = 1/2, thus implying that pc ≤ 1/2.

Lower bound on βc. Since ϕβ({0}) = ∑y∈V 1−e−βJ0,y , we obtain a lower bound
on βc by taking the solution of the equation ∑y∈V 1 − e−βJ0,y = 1.
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Behaviour at βc. Under the hypothesis that ∑y∈V J0,y <∞, the set

{β ≥ 0 ∶ ϕβ(S) < 1 for some finite S ⊂ V containing 0 }

defining β̃c in Equation (1.2) is open. In particular, we have that at β =
βc = β̃c, ϕβ(S) ≥ 1 for every finite S ∋ 0. This implies the following classical
result.

Proposition 1.2 ([AN84]). We have ∑
x∈V

Pβc[0←→ x] =∞.

Proof. Simply write

(∑
y∈V

1 − e−βcJ0,y) ⋅ ∑
x∈V

Pβc[0←→ x] ≥ ∑
n≥1

ϕβ(Λn) =∞.

Semi-continuity of βc. Consider the nearest-neighbor model. Since β̃c is de-
fined in terms of finite sets, one can see that β̃c is lower semi-continuous
when seen as a function of the graph in the following sense. Let G be an
infinite locally finite transitive graph. Let (Gn) be a sequence of infinite
locally finite transitive graphs such that the balls of radius n around the
origin in Gn and G are the same. Then,

lim inf β̃c(Gn) ≥ β̃c(G). (1.4)

The equality βc = β̃c implies that the semi-continuity (1.4) also holds for
βc (this also followed from [Ham57] and the exponential decay in subcriti-
cal, but the definition of β̃c illustrates this property readily). The locality
conjecture, due to Schramm and presented in [BNP11], states that for any
ε > 0, the map G ↦ βc(G) should be continuous on the set of graphs with
βc < 1 − ε. The discussion above shows that the hard part in the locality
conjecture is the upper semi-continuity.

Dependent models. For dependent percolation models, the proof does not ex-
tend in a trivial way, mostly due to the fact that the BK inequality is not
available in general. Nevertheless, this new strategy may be of some use.
For instance, for random-cluster models on the square lattice, a proof (see
[DST15]) based on the strategy of this paper and the parafermionic observ-
able offers an alternative to the standard proof of [BD12a] based on sharp
threshold theorems.

Oriented percolation. The proof applies mutatis mutandis to oriented perco-
lation.

Percolation with a magnetic field. In [AB87], the authors consider a perco-
lation model with magnetic field defined as follows. Add a ghost vertex
g ∉ V and consider that {x, g} is open with probability 1 − e−h, indepen-
dently for any x ∈ V . Let Pβ,h be the measure obtained from Pβ by adding
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the edges {x, g}. An important results in [AB87] is the following mean-
field lower bound which is instrumental in the study of percolation in high
dimensions (see e.g. [AN84]).

Proposition 1.3 ([AB87]). There exists a constant c > 0 such that for any
h > 0,

Pβc,h[0←→ g] ≥ c
√
h.

In Section 1.5, we provide a short proof of this proposition, using the same
strategy as in our proof of Theorem 1.1.

1.3 Proof of Item 1

In this section, we prove that for every β ≥ β̃c,

Pβ[0←→∞] ≥ β − β̃c
β

. (1.5)

Let us start by the following lemma.

Lemma 1.4. Let β > 0 and Λ ⊂ V finite,

d

dβ
Pβ[0←→ Λc] ≥ 1

β inf
S⊂Λ
0∈S

ϕβ(S) ⋅ (1 − Pβ[0←→ Λc]). (1.6)

Before proving this lemma, let us see how it implies (1.5). By setting f(β) =
Pβ[0 ←→ Λc] in (1.6), and observing that ϕβ(S) ≥ 1 for any β > β̃c, we obtain
the following differential inequality:

f ′(β)
1 − f(β) ≥ 1

β
, for β ∈ (β̃c,∞). (1.7)

Integrating (1.7) between β̃c and β implies that Pβ[0 ←→ Λc] = f(β) ≥ β−β̃c
β for

every Λ ⊂ V . By letting Λ tend to V , we obtain (1.5).

Proof of Lemma 1.4. Let β > 0 and Λ. Define the following random subset of Λ:

S ∶= {x ∈ Λ such that x /←→ Λc}.

Recall that {x, y} is pivotal for the configuration ω and the event {0 ←→ Λc}
if ω{x,y} ∉ {0 ←→ Λc} and ω{x,y} ∈ {0 ←→ Λc}. (The configuration ω{x,y}, resp.
ω{x,y}, coincides with ω except that the edge {x, y} is closed, resp. open.)

Russo’s formula ([Rus78] or [Gri99, Section 2.4]) implies that

d

dβ
Pβ[0←→ Λc] = ∑

{x,y}

Jx,yPβ[{x, y} pivotal] (1.8)

≥ 1
β ∑

{x,y}

(1 − e−βJx,y)Pβ[{x, y} pivotal and 0 /←→ Λc]

≥ 1
β ∑
S∋0

∑
{x,y}

(1 − e−βJx,y)Pβ[{x, y} pivotal and S = S].
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In the second line, we used the inequality t ≥ 1 − e−t for t ≥ 0. Observe that
the event that {x, y} is pivotal and S = S is nonempty only if x ∈ S and y ∉ S,
or y ∈ S and x ∉ S. Furthermore, the vertex in S must be connected to 0 in
S. We can assume without loss of generality that x ∈ S and y ∉ S. Rewrite
the event that {x, y} is pivotal and S = S as {0

S←→ x} ∩ {S = S}. Since the
event {S = S} and {0

S←→ x} are measurable with respect to the state of edges
having one endpoint in V ∖S, and edges having both endpoints in S respectively.
Therefore, the two events above are independent. Thus,

Pβ[{x, y} pivotal and S = S] = Pβ[0
S←→ x]Pβ[S = S].

Plugging this equality in the computation above, we obtain

d

dβ
Pβ[0←→ Λc] ≥ 1

β ∑
S∋0

ϕβ(S)Pβ[S = S]

≥ 1
β( inf

S∋0
ϕβ(S)) ⋅∑

S∋0

Pβ[S = S].

The proof follows readily since

∑
S∋0

Pβ[S = S] = Pβ[0 ∈ S ] = Pβ[0 /←→ Λc] = 1 − Pβ[0←→ Λc].

Remark 1.1. In the proof above, Russo’s formula is possibly used in infinite vol-
ume, since the model can be infinite-range. There is no difficulty resolving this
technical issue (which does not occur for finite-range) by finite volume approxi-
mation. The same remark applies below when we use the BK inequality.

1.4 Proof of Items 2 and 3

In this section, we show that Items 2 and 3 in Theorem 1.1 hold with β̃c in place
of βc.

Lemma 1.5. Let β > 0, and u ∈ S ⊂ A and B ∩ S = ∅. We have

Pβ[u
A←→ B] ≤ ∑

x∈S

∑
y∉S

(1 − e−βJx,y)Pβ[u
S←→ x]Pβ[y

A←→ B].

Proof of Lemma 1.5. Let u ∈ S and assume that the event u A←→ B holds. Con-
sider an open path (vk)0≤k≤K from u to B. Since B ∩ S = ∅, one can define the
first k such that vk+1 ∉ S. We obtain that the following events occur disjointly
(see [Gri99, Section 2.3] for a definition of disjoint occurrence):

• u is connected to vk in S,
• {vk, vk+1} is open,
• vk+1 is connected to B in A.

The lemma is then a direct consequence of the BK inequality applied twice (vk
plays the role of x, and vk+1 of y).
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Let us now prove the second item of Theorem 1.1. Fix β < β̃c and S such
that ϕβ(S) < 1. For Λ ⊂ V finite, introduce

χ(Λ, β) ∶= max{∑
v∈Λ

Pβ[u
Λ←→ v] ; u ∈ Λ}.

For every u, let Su be the image of S by a fixed automorphism sending 0 to u.
Lemma 1.5 implies that for every v ∈ Λ ∖ Su,

Pβ[u
Λ←→ v] ≤ ∑

x∈Su

∑
y∉Su

Pβ[u
Su←→ x](1 − e−βJx,y)Pβ[y

Λ←→ v].

Summing over all v ∈ Λ ∖ Su, we find

∑
v∈Λ∖Su

Pβ[u
Λ←→ v] ≤ ϕβ(S)χ(Λ, β).

Using the trivial bound Pβ[u←→ v] ≤ 1 for v ∈ Λ ∩ Su, we obtain

∑
v∈Λ

Pβ[u
Λ←→ v] ≤ ∣S∣ + ϕβ(S)χ(Λ, β).

Optimizing over u, we deduce that

χ(Λ, β) ≤ ∣S∣
1 − ϕβ(S)

which implies in particular that

∑
x∈Λ

Pβ[0
Λ←→ x] ≤ ∣S∣

1 − ϕβ(S)
.

The result follows by taking the limit as Λ tends to V .

We now turn to the proof of the third item of Theorem 1.1. A similar proof
was used in [Ham57]. Let R be the range of the (Jx,y)x,y∈V , and let L be such
that S ⊂ ΛL−R. Lemma 1.5 implies that for n ≥ L,

Pβ[0←→ Λcn] ≤ ∑
x∈S

∑
y∉S

(1 − e−βJx,y)Pβ[0
S←→ x]Pβ[y ←→ Λcn]

≤ ϕβ(S)Pβ[0←→ Λcn−L].

In the last line, we used that y is connected to distance larger than or equal
to n − L since 1 − e−βJx,y = 0 if x ∈ S and y is not in ΛL. By iterating, this
immediately implies that

Pβ[0←→ Λcn] ≤ ϕβ(S)⌊n/L⌋.

7



1.5 Proof of Proposition 1.3

Let us introduce M(β,h) = Pβ,h[0←→ g].

Lemma 1.6 ([AB87]).
∂M

∂β
≤ (∑

x∈V

J0,x)M
∂M

∂h
. (1.9)

Proof. Consider a finite subset Λ of V . Russo’s formula leads to the following
version of (1.8):

∂Pβ,h[0←→ Λc ∪ {g}]
∂β

= ∑
{x,y}

Jx,y Pβ,h[{x, y} pivotal].

The edge {x, y} is pivotal if, without using {x, y}, one of the two vertices is
connected to 0 but not to Λc ∪ {g}, and the other one to Λc ∪ {g}. Without loss
of generality, let us assume that x is connected to 0, and y is not. Conditioning
on the set

S = {z ∈ Λ ∶ z ←→ Λc ∪ {g} without using {x, y}},

we obtain

Pβ,h[{x, y} pivotal] ≤ Pβ,h[y↔ Λc ∪ {g}] ⋅ Pβ,h[0←→ x,0 /←→ Λc ∪ {g}].

Plugging this inequality in (1.8) and letting Λ tend to V , we find

∂M

∂β
≤ ( ∑

{0,y}

J0,y)M (∑
x∈V

Pβ,h[0←→ x,0 /←→ g]).

We conclude by observing that if C denotes the cluster of 0 in V , we find

∂M

∂h
= ∂

∂h
(1 −

∞

∑
n=0

Pβ,h[∣C∣ = n]e−nh) =
∞

∑
n=0

nPβ,h[∣C∣ = n]e−nh

=
∞

∑
n=0
∑
x∈V

Pβ,h[0←→ x, ∣C∣ = n]e−nh = ∑
x∈V

Pβ,h[0←→ x,0 /←→ g].

Another differential inequality, which is harder to obtain, usually comple-
ments (1.9):

M ≤ h∂M
∂h

+M2 + βM ∂M

∂β
. (1.10)

This other inequality may be avoided using the following observation. The dif-
ferential inequality (1.6) is satisfied with Pβ[0 ←→ Λc] replaced by Pβ,h[0 ←→
{g} ∪Λc], thus giving us for β ≥ βc and h ≥ 0,

∂M

∂β
≥ 1
β (1 −M)
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(at β = βc, we use the fact that ϕβc(S) ≥ 1 for every finite S ∋ 0, see the comment
before Proposition 1.2). When β ≥ βc this implies that

1 −M ≤ β
∂M

∂β
≤ β (∑

x∈V

J0,x)M
∂M

∂h
, (1.11)

which immediately implies the following mean-field lower bound: there exists a
constant c > 0 such that for any h > 0,

Pβc,h[0←→ g] =M(βc, h) ≥ c
√
h.

Remark 1.2. While (1.11) is slightly shorter to obtain that (1.10), the later is
very useful when trying to obtain an upper bound on M(βc, h).

2 The Ising model

2.1 The main result

For a finite subset Λ of V , consider a spin configuration σ = (σx ∶ x ∈ Λ) ∈ {−1,1}Λ.
For β > 0 and h ∈ R, introduce the Hamiltonian

HΛ,β,h(σ) ∶= − β ∑
x,y∈Λ

Jx,yσxσy − h∑
x∈Λ

σx.

Define the Gibbs measures on Λ with free boundary conditions, inverse-temperature
β and external field h ∈ R by the formula

⟨f⟩Λ,β,h =
∑

σ∈{−1,1}Λ

f(σ) exp[−HΛ,β,h(σ)]

∑
σ∈{−1,1}Λ

exp[−βHΛ,β,h(σ)]

for f ∶ {−1,1}Λ Ð→ R. Let the infinite-volume Gibbs measure ⟨⋅⟩β,h be the weak
limit of ⟨⋅⟩Λ,β,h as Λ↗ V . Also write ⟨⋅⟩+β for the weak limit of ⟨⋅⟩β,h as h↘ 0.

Introduce
βc ∶= inf{β > 0 ∶ ⟨σ0⟩+β > 0}.

Theorem 2.1. 1. For β > βc, ⟨σ0⟩+β ≥
√

β2−β2
c

β2 .

2. For β < βc, the susceptibility is finite, i.e.

∑
x∈V

⟨σ0σx⟩+β <∞.

3. If (Jx,y)x,y∈V is finite-range, then for any β < βc, there exists c = c(β) > 0
such that

⟨σ0σx⟩+β ≤ e−cd(0,x) for all x ∈ V.

This theorem was first proved in [ABF87] for the Ising model on the d-
dimensional hypercubic lattice. The proof presented here improves the constant
in the mean-field lower bound, and extends to general transitive graphs.
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The proof of Theorem 2.1 follows closely the proof for percolation. For β > 0
and a finite subset S of V , define

ϕS(β) ∶= ∑
x∈S

∑
y∈V ∖S

tanh(βJx,y)⟨σ0σx⟩S,β,0,

which bears a resemblance to (1.1). Similarly to (1.2), set

β̃c ∶= sup{β ≥ 0 ∶ ϕβ(S) < 1 for some finite S ⊂ V containing 0}.

In order to prove Theorem 2.1, we show that Items 1, 2 and 3 hold with β̃c in
place of βc. This directly implies that β̃c = βc, and thus Theorem 2.1. The proof
of Theorem 2.1 proceeds in two steps.

As for percolation, the quantity ϕβ(S) appears naturally in the derivative of a
“finite-volume approximation” of ⟨σ0⟩β,h. Roughly speaking (see Lemma 2.6 for a
precise statement), one obtains a finite-volume version of the following inequality:

d

dβ
⟨σ0⟩2

β,h ≥ 2
β inf
S∋0

ϕβ(S) ⋅ (1 − ⟨σ0⟩2
β,h).

This inequality implies, for every β > β̃c,

⟨σ0⟩β,h ≥
√

β2−β̃2
c

β2

and therefore Item 1 by letting h tend to 0.
The remaining items follow from an improved Simon’s inequality, proved

below.

Remark 2.1. The proof uses the random-current representation. In this context,
the derivative of ⟨σ0⟩2

β,h has an interpretation which is very close to the differential
inequality (1.6). In some sense, percolation is replaced by the trace of the sum of
two independent random sourceless currents. Furthermore, the strong Simon’s
inequality plays the role of the BK inequality for percolation.

2.2 Comments and consequences

1. The random-cluster model (also called Fortuin-Kasteleyn percolation) with
cluster weight q = 2 is naturally coupled to the Ising model (see [Gri06] for
details). The previous theorem implies exponential decay in the subcritical
phase for this model.

2. Exactly like in the case of Bernoulli percolation, the critical parameter of
the random-cluster model on the square lattice with q = 2 can be proved
to be equal to

√
2/(1 +

√
2) using the exponential decay in the subcritical

phase together with the self-duality.

3. The previous item together with the coupling with the Ising model im-
plies that βc = 1

2 log(1 +
√

2) on the square lattice (see [Ons44, BD12b] for
alternative proofs).
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4. Exactly as for Bernoulli percolation, we get that ϕβc(S) ≥ 1 for any finite
set S ∋ 0, which implies the following classical proposition.

Proposition 2.2 ([Sim80]). We have ∑
x∈V

⟨σ0σx⟩+βc =∞.

Proof. Use Griffiths’ inequality (2.1) below to show that for x ∈ Λn ∖Λn−1,

⟨σ0σx⟩+βc ≥ ⟨σ0σx⟩βc,0 ≥ ⟨σ0σx⟩Λn,βc,0

so that
(∑
y∈V

tanh(βJ0,y)) ⋅ ∑
x∈V

⟨σ0σx⟩+βc ≥ ∑
n≥1

ϕβc(Λn) =∞.

5. The equality βc = β̃c implies that βc is lower semi-continuous with respect
to the graph (see the discussion for Bernoulli percolation).

6. In [ABF87], the authors also prove the following result.

Proposition 2.3 ([ABF87]). There exists a constant c > 0 such that for
any h > 0,

⟨σ0⟩βc,h ≥ ch1/3.

We present in Section 2.6 a short proof of this proposition, using the same
strategy as in our proof of Proposition 1.3.

2.3 Preliminaries

Griffiths’ inequality. The following is a standard consequence of the second
Griffiths’ inequality [Gri67]: for β > 0, h ≥ 0 and S ⊂ Λ two finite subsets of V ,

⟨σ0⟩S,β,h ≤ ⟨σ0⟩Λ,β,h. (2.1)

Random-current representation. This section presents a few basic facts on
the random-current representation. We refer to [Aiz82, AF86, ABF87] for details
on this representation.

Let Λ be a finite subset of V and S ⊂ Λ. We consider an additional vertex
g not in V , called the ghost vertex, and write P2(S ∪ {g}) for the set of pairs
{x, y}, x, y ∈ S ∪ {g}. We also define Jx,g = h/β for every x ∈ Λ.

Definition 2.4. A current n on S (also called a current configuration) is a
function from P2(S∪{g}) to {0,1,2, ...}. A source of n = (nx,y ∶ {x, y} ∈ P2(S∪
{g})) is a vertex x ∈ S ∪ {g} for which ∑y∈S nx,y is odd. The set of sources of n
is denoted by ∂n. We say that x and y are connected in n (denoted by x

n←→ y)
if there exists a sequence of vertices v0, v1, . . . , vK in S ∪ {g} such that v0 = x,
vK = y and nvk,vk+1

> 0 for every 0 ≤ k <K.
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For a finite subset Λ of V and a current n on Λ, define

w(n) = w(n, β, h) ∶= ∏
{x,y}∈P2(Λ∪{g})

(βJx,y)nx,y

nx,y!
.

From now on, we will write ∑∂n=A for the sum running on currents on S with
sources A. Sometimes, the current n will be on S′ ⊂ S (and therefore the sum
will run on such currents), but this will be clear from context.

An important property of random currents is the following: for every subset
A of Λ, we have

⟨∏
a∈A

σa⟩Λ,β,h
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑∂n=Aw(n)
∑∂n=∅w(n) if A is even,

∑∂n=A∪{g}w(n)
∑∂n=∅w(n) if A is odd.

(2.2)

We will use the following standard lemma on random currents.

Lemma 2.5 (Switching Lemma, [Aiz82, Lemma 3.2]). Let A ⊂ Λ and u, v ∈
Λ ∪ {g}. Let F be a function from the set of currents on Λ to R. We have

∑
∂n1=A∆{u,v}
∂n2={u,v}

F (n1 + n2)w(n1)w(n2) = ∑
∂n1=A
∂n2=∅

F (n1 + n2)w(n1)w(n2)I[u
n1+n2←→ v],

(2.3)
where ∆ is the symmetric difference between sets.

Backbone representation for random currents. Fix a finite subset Λ of
V . Choose an arbitrary order of the oriented edges of the lattice. Consider
a current n on Λ with ∂n = {x, y}. Let ω(n) be the edge self-avoiding path
from x to y passing only through edges e with ne odd which is minimal for
the lexicographical order on paths induced by the previous ordering on oriented
edges. Such an object is called the backbone of the current configuration. For the
backbone ω with endpoints ∂ω = {x, y}, set

ρΛ(ω) = ρΛ(β,h,ω) ∶=
∑∂n={x,y}w(n)I[ω(n) = ω]

∑∂n=∅w(n) .

The backbone representation has the following properties (see (4.2), (4.7) and
(4.11) of [AF86] for P1, P2 and P3 respectively):
P1 ⟨σxσy⟩Λ,β,h = ∑∂ω={x,y} ρΛ(ω).
P2 If the backbone ω is the concatenation of two backbones ω1 and ω2 (this is

denoted by ω = ω1 ○ ω2), then

ρΛ(ω) = ρΛ(ω1)ρΛ∖ω1(ω2),
where ω1 is the set of bonds whose state is determined by the fact that ω1

is an admissible backbone (this includes bonds of ω1 together with some
neighboring bonds).

P3 For the backbone ω not using any edge outside T ⊂ Λ, we have

ρΛ(ω) ≤ ρT (ω).
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2.4 Proof of Item 1

In this section, we prove that for every β ≥ β̃c,

⟨σ0⟩+β ≥
√

β2−β̃2
c

β2 . (2.4)

In order to do so, we will based our analysis on the following lemma.

Lemma 2.6. Let β > 0, h > 0 and Λ a finite subset of V . Then,

d

dβ
⟨σ0⟩2

Λ,β,h ≥ 2c(Λ, β, h) [ 1
β inf
S∋0

ϕβ(S)(1 − ⟨σ0⟩2
Λ,β,h) − ε(Λ, β, h)], (2.5)

where
c(Λ, β, h) ∶= inf

y∈Λ

⟨σ0⟩Λ,β,h

⟨σy⟩Λ,β,h

and

ε(Λ, β, h) ∶= ∑
x∈Λ

∑
y∉Λ

Jx,y(⟨σ0σx⟩Λ,β,h − ⟨σ0⟩Λ,β,h⟨σx⟩Λ,β,h).

To conclude the proof, fix β1, β2 > β̃c. Integrating (2.5) between β1 and β2

for Λ equal to the box Λn of size n, and then letting Λn go to infinity, implies
that

⟨σ0⟩2
β2,h − ⟨σ0⟩2

β1,h ≥ ∫
β2

β1

2
β (1 − ⟨σ0⟩2

β,h)dβ,

where the inequality above follows from Fatou’s lemma together with

lim
n→∞

⟨σ0⟩Λn,βi,h = ⟨σ0⟩βi,h (by weak convergence),

lim
n→∞

c(Λn, β, h) = 1 (see Remark 2.2 below),

lim
n→∞

ε(Λn, β, h) = 0 (see Remark 2.3 below).

The proof of (2.4) follows easily by letting h tend to 0.

Remark 2.2. To see that c(Λn, β, h) tends to 1, observe that Griffiths’ inequality
(2.1) implies that ⟨σy⟩Λn,β,h ≤ ⟨σ0⟩Λ2n,β,h (we use the invariance under translation
and the fact that the translate of Λ2n centered at y contains Λn). Therefore, for
every n ≥ 1, we have

⟨σ0⟩Λn,β,h

⟨σ0⟩Λ2n,β,h
≤ c(Λn, β, h) ≤ 1. (2.6)

Together with the fact that ⟨σ0⟩Λn,β,h tends to ⟨σ0⟩β,h as n tends to infinity, (2.6)
implies that c(Λn, β, h) tends to 1.

Remark 2.3. To see that ε(Λn, β, h) tends to 0, first observe that the GHS in-
equality [GHS70] implies that ⟨σ0⟩Λ,β,h is a concave function of h. We deduce
that

∑
x∈Λ

⟨σ0σx⟩Λ,β,h − ⟨σ0⟩Λ,β,h⟨σx⟩Λ,β,h =
∂

∂h
⟨σ0⟩Λ,β,h ≤

⟨σ0⟩Λ,β,h

h
≤ 1

h
.
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Applied to Λ = Λn, this gives in particular that for each k,

∑
x∈Λn−k

∑
y∈V ∖Λn

Jx,y⟨σ0σx⟩Λn,β,h − ⟨σ0⟩Λn,β,h⟨σx⟩Λn,β,h ≤
1

h
( ∑
y∈V ∖Λk

J0,y),

which can be made arbitrarily small (uniformly in n) by setting k large enough.
Now, a second use of the GHS inequality [GHS70] implies that

∑
x∈Λn∖Λn−k

⟨σ0σx⟩Λn,β,h − ⟨σ0⟩Λn,β,h⟨σx⟩Λn,β,h ≤
⟨σ0⟩Λn,β,h − ⟨σ0⟩Λn,β,h

h

≤ ⟨σ0⟩Λn,β,h − ⟨σ0⟩Λn−k,β,h

h
,

where ⟨⋅⟩Λnβ,h is the measure with inverse-temperature β, and magnetic field hx
depending on x which is equal to h for x ∈ Λn−k and 0 in Λn ∖ Λn−k. In the
second line, we used Griffiths inequality to show that ⟨σ0⟩Λn−k,β,h ≤ ⟨σ0⟩Λn,β,h.
For each fixed k, the term on the right converges to 0 as n tends to infinity by
weak convergence.

In order to prove Lemma 2.6, we use a computation similar to one provided
in [ABF87].

Proof of Lemma 2.6. Let β > 0, h > 0 and a finite subset Λ of V . Set

Z ∶= ∑
∂n=∅

w(n).

The derivative of ⟨σ0⟩Λ,β,h is given by the following formula

d

dβ
⟨σ0⟩Λ,β,h = ∑

{x,y}⊂Λ

Jx,y(⟨σ0σxσy⟩Λ,β,h − ⟨σ0⟩Λ,β,h⟨σxσy⟩Λ,β,h).

Using (2.2) and the switching lemma, we obtain

d

dβ
⟨σ0⟩Λ,β,h =

1

Z2 ∑
{x,y}⊂Λ

Jx,y ∑
∂n1={0,g}∆{x,y}

∂n2=∅

w(n1)w(n2)I[0
n1+n2

/←→ g].

If n1 and n2 are two currents such that ∂n1 = {0, g}∆{x, y}, ∂n2 = ∅ and 0 and g
are not connected in n1 +n2, then exactly one of these two cases holds: 0

n1+n2←→ x

and y
n1+n2←→ g, or 0

n1+n2←→ y and x
n1+n2←→ g. Since the second case is the same as

the first one with x and y permuted, we obtain the following expression,

d

dβ
⟨σ0⟩Λ,β,h =

1

Z2 ∑
x∈Λ
y∈Λ

Jx,yδx,y, (2.7)

where

δx,y = ∑
∂n1={0,g}∆{x,y}

∂n2=∅

w(n1)w(n2)I[0
n1+n2←→ x, y

n1+n2←→ g,0
n1+n2

/←→ g]

(see Fig. 1 and notice the analogy with the event involved in Russo’s formula,
namely that the edge {x, y} is pivotal, in Bernoulli percolation).
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0

x
y

g

Figure 1: A diagrammatic representation of δx,y: the solid lines represent the
backbones, and the dotted line the boundary of the cluster of 0 in n1 + n2.

Given two currents n1 and n2, and z ∈ {0, g}, define Sz to be the set of
vertices in Λ ∪ {g} that are not connected to z in n1 + n2. Let us compute δx,y
by summing over the different possible values for S0:

δx,y = ∑
S⊂Λ∪{g}

∑
∂n1={0,g}∆{x,y}

∂n2=∅

w(n1)w(n2)I[S0 = S,0
n1+n2←→ x, y

n1+n2←→ g,0
n1+n2

/←→ g]

= ∑
S⊂Λ∪{g}
s.t. y,g∈S

and 0,x∈Λ∖S

∑
∂n1={0,g}∆{x,y}

∂n2=∅

w(n1)w(n2)I[S0 = S, y
n1+n2←→ g].

Since 0 and x are not connected to y in n1 + n2 (recall that y ∈ S), we deduce
that y must be connected to g in n1 because of the constraints on sources. Thus,
the indicator I[y n1+n2←→ g] equals 1 for any currents n1 and n2 satisfying S0 = S.
Therefore,

δx,y = ∑
S⊂Λ∪{g}
s.t. y,g∈S

and 0,x∈Λ∖S

∑
∂n1={0,g}∆{x,y}

∂n2=∅

w(n1)w(n2)I[S0 = S]. (2.8)

Let us now focus on the following claim, which enables us to remove the sources
y and g.

Claim 1: Let S ⊂ Λ containing y and g but neither x nor 0. We have

∑
∂n1={0,g}∆{x,y}

∂n2=∅

w(n1)w(n2)I[S0 = S] (2.9)

≥ 1

⟨σy⟩Λ,β,h
∑

∂n1={0}∆{x}
∂n2=∅

w(n1)w(n2)I[S0 = S, y
n1+n2←→ g].
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Proof of Claim 1. Let

Θ = ∑
∂n1={0,g}∆{x,y}

∂n2=∅

w(n1)w(n2)I[S0 = S].

When S0 = S, the two currents n1 and n2 vanish on every {u, v} with u ∈ S and
v ∉ S. Thus, for i = 1,2, we can decompose ni as

ni = nSi + nΛ∖S
i ,

where nAi denotes the current

nAi ({u, v}) =
⎧⎪⎪⎨⎪⎪⎩

ni({u, v}) if u, v ∈ A,
0 otherwise.

Note that ∂nAi = A ∩ ∂ni and w(ni) = w(nΛ∖S
i )w(nSi ).

Since I[S0 = S] does not depend on nS1 , the decomposition n1 = nS1 + nΛ∖S
1

gives

Θ = ∑
∂nΛ∖S

1 ={0}∆{x}
∂n2=∅

w(nΛ∖S
1 )w(n2)I[S0 = S]( ∑

∂nS
1 ={y,g}

w(nS1 )).

Using (2.2), we find

Θ = ∑
∂nΛ∖S

1 ={0}∆{x}
∂n2=∅

w(nΛ∖S
1 )w(n2)I[S0 = S]⟨σy⟩S,β,h( ∑

∂nS
1 =∅

w(nS1 )).

Multiply the expression above by ⟨σy⟩Λ,β,h ≥ ⟨σy⟩S,β,h (which follows from (2.1)),
and then decompose n2 into nS2 and nΛ∖S

2 to find

⟨σy⟩Λ,β,hΘ ≥ ∑
∂nΛ∖S

1 ={0}∆{x}
∂n2=∅

w(nΛ∖S
1 )w(n2)I[S0 = S]⟨σy⟩2

S,β,h( ∑
∂nS

1 =∅

w(nS1 ))

= ∑
∂nΛ∖S

1 ={0}∆{x}

∂nΛ∖S
2 =∅

w(nΛ∖S
1 )w(nΛ∖S

2 )I[S0 = S]⟨σy⟩2
S,β,h

( ∑
∂nS

1 =∅

∂nS
2 =∅

w(nS1 )w(nS2 ))

= ∑
∂nΛ∖S

1 ={0}∆{x}

∂nΛ∖S
2 =∅

w(nΛ∖S
1 )w(nΛ∖S

2 )I[S0 = S]

( ∑
∂nS

1 ={y,g}

∂nS
2 ={y,g}

w(nS1 )w(nS2 ))

= ∑
∂n1={0}∆{x}∆{y,g}

∂n2={y,g}

w(n1)w(n2)I[S0 = S].
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The switching lemma (2.3) applied to F = I[S0 = S] implies

⟨σy⟩Λ,β,hΘ ≥ ∑
∂n1={0}∆{x}

∂n2=∅

w(n1)w(n2)I[S0 = S, y
n1+n2←→ g].

Inserting (2.9) into (2.8) gives us

δx,y ≥
1

⟨σy⟩Λ,β,h
∑

∂n1={0}∆{x}
∂n2=∅

w(n1)w(n2)I[y
n1+n2←→ g,0

n1+n2

/←→ g].

We now decompose over the possible values of Sg (recall that Sg is the set of
vertices not connected to g):

δx,y ≥
1

⟨σy⟩Λ,β,h
∑
S⊂Λ

∑
∂n1={0}∆{x}

∂n2=∅

w(n1)w(n2)I[Sg = S, y
n1+n2←→ g,0

n1+n2

/←→ g]

= 1

⟨σy⟩Λ,β,h
∑
S⊂Λ

s.t. 0,x∈S
and y∈Λ∖S

∑
∂n1={0}∆{x}

∂n2=∅

w(n1)w(n2)I[Sg = S]. (2.10)

In the second line, we used the constraint on the sources, which implies that x
is connected to 0, and therefore, belong to Sg.

We now focus on a second claim, which enables us to remove the sources 0
and x.

Claim 2: Let S ⊂ Λ containing 0 and x but neither y nor g. We have

∑
∂n1={0}∆{x}

∂n2=∅

w(n1)w(n2)I[Sg = S] = ∑
∂n1=∅
∂n2=∅

w(n1)w(n2)⟨σ0σx⟩S,0 I[Sg = S].

Proof of Claim 2. For currents n1 and n2 such that Sg = S, n1 can be decom-
posed as n1 = nS1 + n

Λ∪{g}∖S
1 as we did for S0 = S in the previous claim. Using

that w(n1) = w(nS1 )w(nΛ∪{g}∖S
1 ) together with the fact that I[Sg = S] does not

depend on nS1 , we find that

∑
∂n1={0}∆{x}

∂n2=∅

w(n1)w(n2)I[Sg = S]

= ∑
∂n

Λ∪{g}∖S
1 =∅

∂n2=∅

w(nΛ∪{g}∖S
1 )w(n2)I[Sg = S]( ∑

∂nS
1 ={0}∆{x}

w(nS1 ))

= ∑
∂n

Λ∪{g}∖S
1 =∅

∂n2=∅

w(nΛ∪{g}∖S
1 )w(n2)I[Sg = S]( ∑

∂nS
1 =∅

w(nS1 ))⟨σ0σx⟩S,β,0

= ∑
∂n1=∅
∂n2=∅

w(n1)w(n2)⟨σ0σx⟩S,β,0 I[Sg = S].
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In the third line we used (2.2) and in the fourth line, we recombined nS1 with
n

Λ∪{g}∖S
1 .

Inequality (2.10) and Claim 2 imply that for any x, y ∈ Λ,

δx,y ≥
1

⟨σy⟩Λ,β,h
∑
S⊂Λ

s.t. 0,x∈S
and y∈Λ∖S

∑
∂n1=∅
∂n2=∅

w(n1)w(n2)⟨σ0σx⟩S,β,0 I[Sg = S].

By plugging the inequality above in (2.7), we find
d

dβ
⟨σ0⟩2

Λ,β,h = 2⟨σ0⟩Λ,β,h
d

dβ
⟨σ0⟩Λ,β,h

≥ 2

Z2 ∑
S⊂Λ
S∋0

∑
x∈S
y∈Λ∖S

⟨σ0⟩Λ,β,h

⟨σy⟩Λ,β,h
∑

∂n1=∅
∂n2=∅

w(n1)w(n2)Jx,y⟨σ0σx⟩S,β,0I[Sg = S]

≥ 2

Z2 ∑
S⊂Λ
S∋0

( ∑
x∈S
y∈Λ∖S

⟨σ0⟩Λ,β,h

⟨σy⟩Λ,β,h
Jx,y⟨σ0σx⟩S,β,0)( ∑

∂n1=∅
∂n2=∅

w(n1)w(n2)I[Sg = S])

≥ 2c(Λ, β, h)
Z2 ∑

S⊂Λ
S∋0

( ∑
x∈S
y∈Λ∖S

Jx,y⟨σ0σx⟩S,β,0)( ∑
∂n1=∅
∂n2=∅

w(n1)w(n2)I[Sg = S]).

Using that Jx,y ≥ 1
β tanh(βJx,y) gives that

∑
x∈S
y∈Λ∖S

Jx,y⟨σ0σx⟩S,β,0 ≥ 1
βϕβ(S) − ∑

x∈S
y∈V ∖Λ

Jx,y⟨σ0σx⟩S,β,0.

We deduce that
d

dβ
⟨σ0⟩2

Λ,β,h ≥ 2c(Λ, β, h)( 1

β
⋅ ∑
S⊂Λ
S∋0

ϕβ(S) ⋅
1

Z2 ∑
∂n1=∅
∂n2=∅

w(n1)w(n2)I[Sg = S]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(A)

− ∑
S⊂Λ
S∋0

∑
x∈S

y∈V ∖Λ

Jx,y⟨σ0σx⟩S,β,0
1

Z2 ∑
∂n1=∅
∂n2=∅

w(n1)w(n2)I[Sg = S]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(B)

) (2.11)

Taking the infimum over all the ϕβ(S) and then using (2.3) and (2.2) one more
time, we obtain that

(A) ≥ inf
S∋0

ϕβ(S) (1 − ⟨σ0⟩2
Λ,β,h).

Now, summing on S after applying Claim 2 (backward compared to the last use
of Claim 2) gives that

(B) = ∑
x∈Λ

y∈V ∖Λ

Jx,y
1

Z2 ∑
∂n1={0}∆{x}

∂n2=∅

w(n1)w(n2)(1 − I[0 n1+n2←→ g])

= ∑
x∈Λ

y∈V ∖Λ

Jx,y(⟨σ0σx⟩Λ,β,h − ⟨σ0⟩Λ,β,h⟨σx⟩Λ,β,h),
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where, in the second line, we used (2.3) and (2.2) one last time. Plugging the
expressions for (A) and (B) obtained above in (2.11) implies the claim.

2.5 Proof of Items 2 and 3

In this section, we show that Items 2 and 3 in Theorem 2.1 hold with β̃c in place
of βc.

We need a replacement for the BK inequality used in the case of Bernoulli
percolation. The relevant tool for the Ising model will be a modified version of
Simon’s inequality. The original inequality can be found in [Sim80], see also
[Lie80] for an improvement. (Those previous versions do not suffice for our
application).

Lemma 2.7 (Modified Simon’s inequality). Let S be a finite subset of V con-
taining 0. For every z ∈ V ∖ S,

⟨σ0σz⟩+β ≤ ∑
x∈S

∑
y∉S

tanh(βJx,y)⟨σ0σx⟩S,β,0⟨σyσz⟩+β.

Proof. Fix h ≥ 0 and Λ a finite subset of V containing S. We introduce the ghost
vertex g as before.

We consider the backbone representation of the Ising model on Λ∪{g} defined
in the previous section. Let ω = (vk)0≤k≤K be a backbone from 0 to z (it may
go through g). Since z ∉ S, one can define the first k such that vk ∈ Λ ∖ S and
set y = vk. Also set x to be the vertex of S visited last by the backbone before
reaching y. The following occurs:

• ω goes from 0 to x staying in S ∪ {g},
• then ω goes from x to y either in one step by using the edge {x, y} or in

two steps by going through {x, g} and then {g, y},
• finally ω goes from y to z in Λ ∪ {g}.

Call ω1 the part of the walk ω from 0 to x, ω2 the walk from x to y, and ω3 the
reminder of the walk ω.

Using Property P1 of the backbone representation, we can write

⟨σ0σz⟩Λ,β,h = ∑
∂ω={0,z}

ρΛ(ω).

Then, P2 applied with ω1 and ω2 ○ ω3 and then with ω2 and ω3 implies that
⟨σ0σz⟩Λ,β,h is bounded from above by

∑
x∈S

∑
y∈Λ∖S

∑
∂ω1={0,x}

ρΛ(ω1)( ∑
∂ω2={x,y}

ρΛ∖ω1(ω2)( ∑
∂ω3={y,z}

ρΛ∖ω1○ω2(ω3))).

P1 and then Griffiths’ inequality (2.1) imply that

∑
∂ω3={y,z}

ρΛ∖ω1○ω2(ω3) = ⟨σyσz⟩Λ∖ω1○ω2,β,h ≤ ⟨σyσz⟩Λ,β,h.

Inserting this in the last displayed equation gives

⟨σ0σz⟩Λ,β,h ≤ ∑
x∈S

∑
y∈Λ∖S

( ∑
∂ω1={0,x}

ρΛ(ω1)( ∑
∂ω2={x,y}

ρΛ∖ω1(ω2)))⟨σyσz⟩Λ,β,h.
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Since ω2 uses only vertices x, y and g, P3 and then P1 lead to

∑
∂ω2={x,y}

ρΛ∖ω1(ω2) ≤ ∑
∂ω2={x,y}

ρ{x,y}(ω2) = ⟨σxσy⟩{x,y},β,h

which gives

⟨σ0σz⟩Λ,β,h ≤ ∑
x∈S

∑
y∈Λ∖S

( ∑
∂ω1={0,x}

ρΛ(ω1))⟨σxσy⟩{x,y},β,h⟨σyσz⟩Λ,β,h.

Finally, P3 can be used with the fact that ω1 ⊂ S ∪ {g} to show that

⟨σ0σz⟩Λ,β,h ≤ ∑
x∈S

∑
y∈Λ∖S

( ∑
∂ω1={0,x}

ρS(ω1))⟨σxσy⟩{x,y},β,h⟨σyσz⟩Λ,β,h

≤ ∑
x∈S

∑
y∈Λ∖S

⟨σ0σx⟩S,β,h ⟨σxσy⟩{x,y},β,h ⟨σyσz⟩Λ,β,h

(we used P1 in the second line). Let Λ tend to V to obtain

⟨σ0σz⟩β,h ≤ ∑
x∈S

∑
y∈V ∖S

⟨σ0σx⟩S,β,h ⟨σxσy⟩{x,y},β,h ⟨σyσz⟩β,h.

Let now h tend to 0 to find

• ⟨σ0σz⟩β,h and ⟨σyσz⟩β,h tend to ⟨σ0σz⟩+β and ⟨σyσz⟩+β respectively.
• ⟨σ0σx⟩S,β,h tends to ⟨σ0σx⟩S,β,0 (since S is finite).
• ⟨σxσy⟩{x,y},β,h tends to ⟨σxσy⟩{x,y},β,0 = tanh(βJx,y).

Using one last time that S is finite, we deduce that

⟨σ0σz⟩+β ≤ ∑
x∈S

∑
y∈V ∖S

tanh(βJx,y)⟨σ0σx⟩S,β,0⟨σyσz⟩+β.

We are now in a position to conclude the proof. Let β < β̃c. Fix a finite set
S such that ϕβ(S) < 1. Define,

χn(β) ∶= sup{∑
z∈Λ

⟨σ0σz⟩+β ∶ Λ ⊂ V with ∣Λ∣ ≤ n}.

By the same reasoning as for percolation, Lemma 2.7 shows that

∑
z∈Λ

⟨σ0σz⟩+β ≤ ∣S∣ +∑
x∈S

∑
y∈V ∖S

tanh(βJx,y)⟨σ0σx⟩S,β,0( ∑
z∈Λ∖S

⟨σyσz⟩+β).

Using the invariance under translations and taking the supremum over sets Λ
of volume n, we immediately get that χn(β) < ∣S∣/[1 − ϕβ(S)] uniformly in n.
Letting n tend to infinity ∞ gives the second item.

We finish by the proof of the third item. Let R be the range of the (Jx,y)x,y∈V ,
and let L be such that S ⊂ ΛL−R. Lemma 2.7 implies that for any z with
d(0, z) ≥ n > L,

⟨σ0σz⟩+β ≤ ∑
x∈S

∑
y∈V ∖S

tanh(βJx,y)⟨σ0σx⟩S,β,0⟨σyσz⟩+β ≤ ϕβ(S) max
y∈ΛL

⟨σyσz⟩+β.

Note that d(y, z) ≥ n − L. If d(y, z) ≤ L, we bound ⟨σyσz⟩+β by 1, while if
d(y, z) > L, we apply the previous inequality to y and z instead of 0 and z. The
proof follows by iterating ⌊n/L⌋ times this strategy.
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2.6 Proof of Proposition 2.3

Let us introduceM(β,h) = ⟨σ0⟩β,h. Recall thatM(β,h) is differentiable in (β,h)
away from the line h = 0.

As in the case of percolation, the proof in [ABF87] invokes three inequalities
(the pages below refer to the numbering in [ABF87]): the differential inequality
(1.12) page 348,

∂M

∂β
≤ (∑

y∈V

J0,y)M
∂M

∂h
, (2.12)

the more difficult differential inequality (1.9) page 347, as well as (1.13) page
348. Below, we combine Lemma 2.6 with (2.12) to conclude the proof without
using (1.9) or (1.13) of [ABF87].

Since M(β,h) is differentiable for h > 0, we may pass to the limit Λ ↗ V in
Lemma 2.6 to get

M
∂M

∂β
≥ 2

β
(1 −M2)

for h > 0 and β ≥ βc (once again we used that ϕβ(S) ≥ 1 for any finite S ∋ 0 and
for any β ≥ βc, see the comment before Proposition 2.2). Together with (2.12),
we find

2

β
(1 −M2) ≤M ∂M

∂β
≤ (∑

y∈V

J0,y)M2 ∂M

∂h

which immediately implies that there exists a constant c > 0 such that for any
h > 0,

⟨σ0⟩βc,h =M(βc, h) ≥ ch1/3.

To conclude this article, let us recall the proof of (2.12) for completeness.

Lemma 2.8 ((1.12) page 348 of [ABF87]). On (0,1) × (0,∞), the function M
satisfies the following differential inequality:

∂M

∂β
≤ (∑

y∈V

J0,y)M
∂M

∂h
.

Proof. Let β > 0, h > 0. We have

∂M

∂β
= ∑

{x,y}

Jx,y(⟨σ0σxσy⟩β,h − ⟨σ0⟩β,h⟨σxσy⟩β,h).

The Griffith-Hurst-Sherman inequality [GHS70, (2.8)] gives

⟨σ0σxσy⟩β,h − ⟨σ0⟩β,h⟨σxσy⟩β,h ≤ (⟨σ0σx⟩β,h − ⟨σ0⟩β,h⟨σx⟩β,h)⟨σy⟩β,h
+ (⟨σ0σy⟩β,h − ⟨σ0⟩β,h⟨σy⟩β,h)⟨σx⟩β,h.

This implies that

∂M

∂β
≤ (∑

y∈V

J0,y)M (∑
x

⟨σ0σx⟩β,h − ⟨σ0⟩β,h⟨σx⟩β,h) = (∑
y∈V

J0,y)M
∂M

∂h
.
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