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Abstract

We provide a new proof of the sharpness of the phase transition
for nearest-neighbour Bernoulli percolation on Zd. More precisely,
we show that

• for p < pc, the probability that the origin is connected by an
open path to distance n decays exponentially fast in n.

• for p > pc, the probability that the origin belongs to an infinite
cluster satisfies the mean-field lower bound θ(p) ≥ p−pc

p(1−pc)
.

In [DT15], we give a more general proof which covers long-range
Bernoulli percolation (and the Ising model) on arbitrary transitive
graphs. This article presents the argument of [DT15] in the simpler
framework of nearest-neighbour Bernoulli percolation on Zd.

1 Statement of the result
Motivation. Bernoulli percolation was introduced by Broadbent and
Hammersley [BH57] as a model for liquid poured in a porous medium.
Since then, Bernoulli percolation has found many applications in statisti-
cal physics and beyond, and it has been one of the most studied models of
random graph.

In this model, each edge of the lattice Zd is open with probability p, and
closed with probability 1−p, thus giving us a random graph ωp given by the
vertices of Zd and the open edges. Of special interest for mathematicians
and physicists are the connectivity properties of ωp. For d ≥ 2, one may
show that there exists a critical parameter pc = pc(d) ∈ (0,1) separating
a supercritical phase p > pc where ωp almost surely contains an infinite
connected component from a subcritical phase p < pc where the connected
components of ωp are almost surely finite.

The definition of the subcritical phase implies that for p < pc, the prob-
ability of 0 being connected to distance n by edges in ωp decays to 0. This
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result was refined in the following way: [Men86] and [AB87] proved that
the probability is in fact smaller than exp(−cn) where c = c(p) > 0. This
result, sometimes referred to as the sharpness of the phase transition, is
a milestone in the area (many of the delicate properties of the subcritical
phase are based on this property). In this paper, we provide an alternative
(short) proof of this result.

Notation. Fix an integer d ≥ 2. We consider the d-dimensional hyper-
cubic lattice (Zd,Ed). Let Λn = {−n, . . . , n}d, and let ∂Λn ∶= Λn ∖ Λn−1

be its vertex-boundary. Throughout this paper, S always stands for a fi-
nite set of vertices containing the origin. Given such a set, we denote its
edge-boundary by ∆S, defined by all the edges {x, y} with x ∈ S and y ∉ S.

Consider the Bernoulli bond percolation measure Pp on {0,1}Ed for
which each edge of Ed is declared open with probability p and closed oth-
erwise, independently for different edges.

Two vertices x and y are connected in S ⊂ V if there exists a path of
vertices (vk)0≤k≤K in S such that v0 = x, vK = y, and {vk, vk+1} is open for
every 0 ≤ k < K. We denote this event by x S←→ y. If S = Zd, we drop it
from the notation. We set 0 ←→ ∂Λn if 0 is connected to a vertex in ∂Λn,
and 0←→∞ if 0←→ ∂Λn holds for all n.

Phase transition. The critical parameter for Bernoulli percolation is
usually defined by

pc ∶= sup{p ∈ [0,1] s.t. Pp[0←→∞] = 0}.

A new idea of this paper is to use a different definition of the critical
parameter. This new definition relies on the following quantity. For p ∈
[0,1] and 0 ∈ S ⊂ Zd, define

ϕp(S) ∶= p ∑
{x,y}∈∆S

Pp[0
S←→ x].

This can be interpreted as the expected number of open edges at the bound-
ary of S, that are connected to 0 in S. Based on this new quantity, we
introduce:

p̃c ∶= sup{p ∈ [0,1] s.t. there exists a finite set 0 ⊂ S ⊂ Zd with ϕp(S) < 1}.

We are now in a position to state our main result.

Theorem 1.1. For any d ≥ 1, p̃c = pc. Furthermore,

1. For p < pc, there exists c = c(p) > 0 such that for every n ≥ 1,

Pp[0←→ ∂Λn] ≤ e−cn.
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2. For p > pc,
Pp[0←→∞] ≥ p − pc

p(1 − pc)
.

Remarks.

1. On Z, we easily find that pc = p̃c = 1, and Item 2 is then irrelevant.

2. We refer to [DT15] for a detailed bibliography, and for a version of the
proof valid in greater generality. The aim of this paper is to provide
a proof in the simplest possible framework.

3. Theorem 1.1 was proved by Aizenman and Barsky [AB87] in the
more general framework of long-range percolation. In their proof,
they consider an additional parameter h corresponding to an external
field, and they derive the results from differential inequalities satisfied
by the thermodynamical quantities of the model. A different proof,
based on the geometric study of the pivotal edges, was obtained at
the same time by Menshikov [Men86]. These two proofs are also
presented in [Gri99].

4. In the definition of p̃c, the set of parameters p such that there exists a
finite set 0 ⊂ S ⊂ Zd with ϕp(S) < 1 is an open subset of [0,1]. Thus,
p̃c do not belong to this set, as illustrated below.

p1p̃c0

∀S, ϕp(S) ≥ 1∃S, ϕp(S) < 1

Therefore, we obtain that the expected size of the cluster of the origin
satisfies for every p ≥ pc,

∑
x∈Zd

Pp[0←→ x] ≥ 1

dp
∑
n≥0

ϕp(Λn) = +∞.

This result was originally proved in [AN84].

5. Since ϕp({0}) = 2dp, we obtain pc ≥ 1/2d.

6. Item 2 is called the mean-field lower bound for the infinite cluster
density. This is due to the fact that θ(p) ≍ p − pc holds as p ↘ pc
for Bernoulli percolation on a regular tree. This mean-field behavior
is expected to hold for Bernoulli percolation on Zd when d ≥ 6 (it is
proved for d ≥ 19 [HS90]).
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7. On the square lattice, the inequality pc ≥ 1/2 was first obtained by
Harris in [Har60] (see also the short proof of Zhang presented in
[Gri99]). The other inequality pc ≤ 1/2 was first proved by Kesten
in [Kes80] using a delicate geometric construction involving crossing
events. Since then, many other proofs invoking exponential decay in
the subcritical phase (see [Gri99]) or sharp threshold arguments (see
e.g. [BR06]) have been found. Here, Theorem 1.1 provides a short
proof of exponential decay and therefore a short alternative to these
proofs. For completeness, let us sketch how exponential decay implies
that pc ≤ 1/2: Item 1 implies that for p < pc the crossing probability
for a n by n square tends to 0 as n goes to infinity. But self-duality
implies that this does not happen when p = 1/2, thus implying that
pc ≤ 1/2.

2 Proof of the theorem
It is sufficient to show Items 1 and 2 with pc replaced by p̃c (since it imme-
diately implies the equality pc = p̃c).

2.1 Proof of Item 1

The proof of Item 1 (with p̃c in place of pc) can be derived from the BK-
inequality [vdBK85]. We present here an exploration argument, similar to
the one in [Ham57], which does not rely on the BK-inequality. Let p < p̃c.
By definition, one can fix a finite set S containing the origin, such that
ϕp(S) < 1. Let L > 0 such that S ⊂ ΛL−1.

Let k ≥ 1 and assume that the event 0←→ ∂ΛkL holds. Let

C = {z ∈ S s.t. 0
S←→ z}.

Since S∩∂ΛkL = ∅, there exists an edge {x, y} ∈ ∆S such that the following
events occur:

• 0 is connected to x in S,
• {x, y} is open,
• y is connected to ∂ΛkL in C c.

Using first the union bound, and then a decomposition with respect to
possible values of C , we find

Pp[0←→ ∂ΛkL]

≤ ∑
{x,y}∈∆S

∑
C⊂S

Pp[{0
S←→ x,C = C} ∩ {{x, y} is open} ∩ {y Zd

∖C←→ ∂ΛkL}]

= p ∑
{x,y}∈∆S

∑
C⊂S

Pp[0
S←→ x,C = C]Pp[y

Zd
∖C←→ ∂ΛkL].
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In the second line, we used the fact that the three events depend on different
sets of edges: the first event {0

S←→ x,C = C} depends on edges between
a vertex of C and one of S (which may be in C too), the second on the
state of {x, y} only and the third on the state of edges not sharing any
endpoint with C (this excludes the edge {x, y} or the edges involved in the
first event). As a consequence, these three events are independent. Since

y ∈ ΛL, one can bound Pp[y
Zd
∖C←→ ∂ΛkL] by Pp[0 ←→ ∂Λ(k−1)L] in the last

expression. Hence, we find

Pp[0←→ ∂ΛkL] ≤ ϕp(S)Pp[0←→ ∂Λ(k−1)L]

which by induction gives

Pp[0←→ ∂ΛkL] ≤ ϕp(S)k−1.

This proves the desired exponential decay.

2.2 Proof of Item 2

Let us start by the following lemma providing a differential inequality valid
for every p.

Lemma 2.1. Let p ∈ [0,1] and n ≥ 1,

d

dp
Pp[0←→ ∂Λn] ≥

1

p(1 − p) ⋅ inf
S⊂Λn
0∈S

ϕp(S) ⋅ (1 − Pp[0←→ ∂Λn]). (2.1)

Let us first see how it implies Item 2 of Theorem 1.1. Let n ≥ 1 and set
f(p) = Pp[0 ←→ ∂Λn]. For p ∈ (p̃c,1), ϕp(S) ≥ 1 for every S ∋ 0 so that the
differential inequality (2.1) becomes

f ′(p)
1 − f(p) ≥ 1

p(1 − p) .

Integrating this inequality between p̃c and p > p̃c gives

1 − f(p̃c)
1 − f(p) ≥ p

1 − p ⋅
1 − p̃c
p̃c

.

Using the trivial bound f(p̃c) ≥ 0, we find

Pp[0←→ ∂Λn] = f(p) ≥ 1 − p̃c(1 − p)
p(1 − p̃c)

= p − p̃c
p(1 − p̃c)

.

By letting n tend to infinity, we obtain the desired bound on Pp[0←→∞].
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Proof of Lemma 2.1. Recall that {x, y} is pivotal for the configuration ω
and the event {0←→ ∂Λn} if ω{x,y} ∉ {0←→ ∂Λn} and ω{x,y} ∈ {0←→ ∂Λn}.
(The configuration ω{x,y}, resp. ω{x,y}, coincides with ω except that the
edge {x, y} is closed, resp. open.) By Russo’s formula (see [Gri99, Section
2.4]), we have

d

dp
Pp[0←→ ∂Λn] = ∑

e⊂Λn

Pp[e is pivotal]

= 1

1 − p ∑e⊂Λn

Pp[e is pivotal, 0 /←→ ∂Λn].

Define the following random subset of Λn:

S ∶= {x ∈ Λn s.t. x /←→ ∂Λn}.

The boundary of S corresponds to the outmost blocking surface (which
can be obtained by exploring from the outside the set of vertices connected
to the boundary). When 0 is not connected to ∂Λn, the set S is always
a subset of Λn containing the origin. By summing over the possible values
for S , we obtain

d

dp
Pp[0←→ ∂Λn] =

1

1 − p ∑S⊂Λn
0∈S

∑
e⊂Λn

Pp[e is pivotal, S = S].

Observe that on the event S = S, the pivotal edges are the edges {x, y} ∈
∆S such that 0 is connected to x in S. This implies that

d

dp
Pp[0←→ ∂Λn] =

1

1 − p ∑S⊂Λn
0∈S

∑
{x,y}∈∆S

Pp[0
S←→ x, S = S].

The event {S = S} is measurable with respect to the state of edges having
one endpoint in Zd∖S, while {0

S←→ x} depends by definition on edges with
both endpoints in S. As a consequence, they are independent. We obtain

d

dp
Pp[0←→ ∂Λn] =

1

1 − p ∑S⊂Λn
0∈S

∑
{x,y}∈∆S

Pp[0
S←→ x]Pp[S = S]

= 1

p(1 − p) ∑S⊂Λn
0∈S

ϕp(S)Pp[S = S]

≥ 1

p(1 − p) inf
S⊂Λn
0∈S

ϕp(S) ⋅ Pp[0 /←→ ∂Λn],

as desired.

6



Acknowledgments This work was supported by a grant from the Swiss
NSF and the NCCR SwissMap also funded by the Swiss NSF.

References
[AB87] Michael Aizenman and David J. Barsky. Sharpness of the phase tran-

sition in percolation models. Comm. Math. Phys., 108(3):489–526,
1987.

[AN84] M. Aizenman and C. M. Newman. Tree graph inequalities and critical
behavior in percolation models. Journal of Statistical Physics, 36(1-
2):107–143, 1984.

[BH57] S. R. Broadbent and J. M. Hammersley. Percolation processes. I.
Crystals and mazes. Proc. Cambridge Philos. Soc., 53:629–641, 1957.

[BR06] Béla Bollobás and Oliver Riordan. A short proof of the Harris-Kesten
theorem. Bull. London Math. Soc., 38(3):470–484, 2006.

[DT15] H. Duminil-Copin and V. Tassion. A new proof of the sharpness of
the phase transition for Bernoulli percolation and the Ising model.
arXiv:1502.03050, 2015.

[Gri99] Geoffrey Grimmett. Percolation, volume 321 of Grundlehren der Math-
ematischen Wissenschaften [Fundamental Principles of Mathematical
Sciences]. Springer-Verlag, Berlin, second edition, 1999.

[Ham57] J. M. Hammersley. Percolation processes: Lower bounds for the criti-
cal probability. Ann. Math. Statist., 28:790–795, 1957.

[Har60] T. E. Harris. A lower bound for the critical probability in a certain
percolation process. Proc. Cambridge Philos. Soc., 56:13–20, 1960.

[HS90] Takashi Hara and Gordon Slade. Mean-field critical behaviour for
percolation in high dimensions. Comm. Math. Phys., 128(2):333–391,
1990.

[Kes80] Harry Kesten. The critical probability of bond percolation on the
square lattice equals 1

2 . Comm. Math. Phys., 74(1):41–59, 1980.

[Men86] M. V. Menshikov. Coincidence of critical points in percolation prob-
lems. Dokl. Akad. Nauk SSSR, 288(6):1308–1311, 1986.

[vdBK85] J. van den Berg and H. Kesten. Inequalities with applications to
percolation and reliability. J. Appl. Probab., 22(3):556–569, 1985.

Département de Mathématiques Université de Genève Genève,
Switzerland E-mail: hugo.duminil@unige.ch, vincent.tassion@unige.ch

7


	Statement of the result
	Proof of the theorem
	Proof of Item 1
	Proof of Item 2


