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We're working towards proving Poincaré duality for de Rham cohomology over a general base scheme.
But the proof is not easy, and it requires some preliminaries. In particular, and this may be slightly
surprising, at a key point we will make use of equivariant de Rham cohomology. The theory of equivariant
de Rham cohomology also gives a useful way of treating the cohomology of projective bundles, which
leads to Chern classes and Thom classes, and these will also play a role in our proof of Poincaré duality.

Moreover, we would like to produce counterexamples to the three claims of Deligne’s theorem in
characteristic p. Following a paper of Antieau-Bhatt-Matthew, “Counterexamples to HKR in character-
istic p” this can be done by first finding the counterexamples in equivariant de Rham cohomology, then
using an approximation argument to see that they also manifest in ordinary de Rham cohomology.

So it is well worth our time to make this detour into equivariant de Rham cohomology!

What is the idea of equivariant de Rham cohomology? First, equivariant means equivariant with
respect to some group action, so we should talk about groups. Suppose S is a fixed scheme, our “base
scheme”, and suppose G — S'is an S-group scheme. This means that:

1. For all T - S, the set Homg(T,G) = G(T) is equipped with a group structure, functorially in
the S-scheme T.

2. Or, equivalently by the Yoneda lemma, we equip G with a single "multiplication map” of S-

schemes
m:GxgG -G

satisfying the group axioms on T-valued points for all S-schemes T. (Alternatively, these axioms
can also be expressed diagramatically, for example associativity is the equality of two maps G xg

GxsG—G.)

3. If S and G are affine, this is also equivalent, by duality, to promoting the coordinate O(S)-algebra
O(G) to a Hopf algebra in O(.S)-modules, but we won't use this perspective.

Example 1. The following examples of group schemes will play a role for us. All except the last are
defined over an arbitrary base scheme S; actually they are defined over the universal base S = Spec(Z),
and their version over S is obtained by pullback. The last example is only defined over an IF,-scheme,
and is base-changed from its universal version over Spec(F,).

1. Foranyn > 1, define the group scheme G L,, by having its values on an affine scheme T' = Spec(B)
be
GL,,(B) = {invertible n x n matrices with coefficients in B}

with group structure of matrix multiplication. For a general scheme T we have GL,(T) =
Aut(O2"). This is an affine scheme with coordinate ring Z[x;j | 1 <i,j < n][det™*].



2. In particular, we have GL1 = G,, = Spec(Z[z,z7']), the multiplicative group scheme which
represents the functor sending a commutative ring B to the multiplicative group B> of units in
B. This is an abelian group scheme, so the “multiplication by n map” (which is raising to the nth
power in this case) is a homomorphism, and by taking the kernel we get another group scheme

tn, = ker(Gy, U Gm)-
This is also affine, with coordinate ring Z[z]/(z" - 1).

3. There is also the additive group scheme G, such that G,(B) = B with group law of addition; the
coordinate ring over 7 is Z[x].

4. If our base S has characteristic p, then raising to the p™* power is a homomorphism F : G, — G,
and its kernel is denoted
ap = ker(F:G, - Gy).

Over F), we have oy, = Spec(IF,[x]/2P).

Next we need not just a group, but something for the group to act on. Suppose X — S is an
S-scheme. A (left) G-action on X is the data of, for every S-scheme T, an action of the group G(T)
on X (T) which is functorial in T'; or equivalently by Yoneda, the data of a map a : G xg X - X
satisfying the axioms of a group action on T-points for all T'.

Example 2. The following examples of actions of group schemes will play a role for us.

1. For any G and X, we have the trivial action of G on X, where G(T) acts by the identity on
X(T) for all T. The most important action is (!) the trivial G-action on the terminal S-scheme

S.
2. For any homomorphism H — G of group schemes, we get an action of H on G by left translation.

3. If E - X is a vector bundle over an S-scheme, so E = Specx (Sym(E")) where £ is a locally
free sheaf of finite rank on X, we get an action of G,,, on E given by scalar multiplication coming
from the description of T-valued points

E(T)={(f,s) | f:T->X,sel(T;f*&).}

We can also restrict this action to the complement of the zero section E \ 0 and we still get a
G,,,-action.

Now, if we have a group scheme G acting on X, all over our implicit base S, then we want to define
an associated equivariant de Rham cohomology

dRx/s,c € D(5)

in the derived quasicoherent co-category of S. This should furthermore promote to a filtered object of
D(S) via some version of the Hodge filtration.
The main desiderata of this theory are as follows:

1. It is functorial in the scheme X with G-action;



2. If G acts freely on X with quotient X’ = G\X,* then we should have

dRX/S;G =~ dRX’/S~

In the end, we will essentially define dRy 5. by a formal reduction to the case of free actions. But for
motivation and orientation we will start from a more basic perspective, and only a posteriori see that
it amounts to formally reducing to the case of free actions. This is the perspective of modifying the
notion of quotient in such a manner that it behaves like the quotient by a free action, even when the
action is not free.

1 Warmup: quotients by G-actions in sets

We start with a question:
Question 3. What's so nice about free actions, anyway?

Let’s discuss this question in the category of sets. We can then transport it to more general settings
by the Yoneda embedding. A free G-action on a set X exhibits a certain nice regularity: intuitively
speaking, all the orbits are of the "same size” (precisely, they are all bijective with GG, and canonically
so up to translation), and this size is independent not just of the point & € X but even of the set X
and the free G-action on it as well. In this way there's a uniformity to free G-actions: they all resemble
one another.

In fact, this uniformity can be extended to arbitrary G-actions as well, but we have to redefine
what we mean by the orbits. Or rather, instead of talking about the orbits, i.e. the fibers of the map
to the quotient set X — G\ X, we should talk about the fibers of the map to the quotient groupoid
X - G\\X.

We can say what this groupoid quotient is both abstractly and concretely. Abstractly, a G-set X is
encoded by a functor

X : BG - Sets,

where BG is the category with one object having automorphism group G, and the quotient G\ X is the
colimit of this functor X. But we can view Sets as a full subcategory of the (2, 1)-category Groupoids
and take the colimit there instead, and this gives G\\X. We could of course go all the way to Anima
and take the colimit there for the “ultimate” quotient, but we would just get the same groupoid G\\X
anyway, so we might as well stop at Groupoids.

Concretely, G\\X can be modeled as the “action category” of G on X: the object set is X, and
the Hom-set from x to y is the set of g € G such that gx = y.

How to articulate that now all the orbits have the same size, independent of the action? We should
again consider the fibers of the map X — G\\X, but now “fiber" means fiber product of the form
* xc\\x X, calculated in Groupoids. Fixing a lift zo : * = X of the chosen basepoint in G\\ X, this
identifies with the groupoid of pairs (z € X, g € G) with gzy = x. Obviously the x is redundant data,
and this groupoid identifies with just the set G. This bijection is again canonical up to translations,
corresponding to the choice of lift z5. So taken in the appropriate groupoid-theoretic sense, we see that
all the fibers of X — G\\X look the same irrespective of the action, and look like the ordinary fibers in
the case of a free action.

1Quotients, even by free actions, need not exist in the category of schemes; one should really pass to algebraic spaces.
But when we discuss things more precisely this subtlety won't play a role.



Actually, there is an even better way of expressing this uniformity: there is a universal quotient by a
G-action, one from which every quotient is deduced by pullback. This is the case X = * of the terminal
set, where the quotient G\\* is the groupoid BG.

Lemma 4. Let G be a group and X be a set with G-action. The commutative square

X .
_—
G\\X — BG,

deduced from the G-equivariant map X — x, is a pullback square.

In fact, the story is even nicer: for a fixed groupoid Y, giving a map of groupoids Y — G\\* is the
same, via pullback of * - G\\*, as giving a groupoid Y with G-action together with an identification
G\\Y' ~ Y. Specializing to the case where Y is a set, we can come full circle:

Lemma 5. Let Y be a set.

1. The groupoid of maps Y — BG is equivalent to the groupoid of free G-sets Y' together with an
isomorphismY ~ G\Y".

2. More generally, for a G-set X, the groupoid of maps Y — G\\X identifies with the groupoid of
free G-sets Y' together with an isomorphismY ~G\Y' and a G-map Y' - X.

This shows the sense in which the general quotient G\\X essentially reduces to the case of free
actions. Note that the groupoid G\\X is determined by data of the groupoid of maps ¥ - G\\X from
sets Y; in fact already just Y = = suffices. In particular we actually get a new description of G\\X: it
is the groupoid of pairs (S, f) where S is a G-torsor (nonempty transitive G-set) and f: S - X is a
G-map. This is in fact a much better description than the original description as an action category.
Why? Because now the morphisms in the category are “the obvious ones’ given the nature of the
objects. This is just like as for our favorite categories: sets, abelian groups, etc., etc., and it contrasts
with the description of the action category, where our object set was X and this tells us nothing about
what the morphisms should be.

2 Back to schemes

Now we should feel like we understand how to take the quotient by a group action in the groupoid
sense, in the world of sets. What about the world of S-schemes? Suppose given an S-group scheme G
with an action on an S-scheme X. One can proceed rather formally and define a presheaf of groupoids

on S-schemes by
(G\X)(T) = G(T)O\\X(T).

This naive definition of G\\X as a presheaf would actually be sufficient for our purposes, but it does
have a fairly substantial drawback, at least from an aesthetic perspective. Namely, if G acts freely on
X with quotient X’ = G\ X, then while there is a natural map of presheaves on S-schemes

G\\X - X',



this map is not an isomorphism in general. Indeed, if it were an isomorphism, then we would learn
that the quotient map X — X’ has a section. But then acting by G on this section would given an
isomorphism of schemes with G-action G x X’ ~ X where G acts by translations purely on the first
factor in the source. However, not all free actions are of this trivial form, for example point 3 of Example
2 is a nontrivial free action when E has rank bigger than one, and the quotient is indeed a scheme: the
projective bundle.

Thus we have the dissatisfying situation where there are two different candidates for the “good
quotient”. But it's easy enough to modify the definition to make them collapse, at least in most
practical situations. We just have to sheafify with respect to the appropriate topology. We will assume
G is a flat quasicompact S-group scheme, which is therefore automatically faithfully flat because of
the identity section, and use the fpqc (=faithfully flat quasicompact, in French) topology. | will refer
to the Stacks Project https://stacks.math.columbia.edu/tag/03NV for the definition, basic properties,
and basic examples of fpqc covers and the fpqc topology on S-schemes. Probably the most important
result on the fpqc topology is the following, “descent for derived quasi-coherent sheaves”.

Theorem 6. The presheaf of oo-categories X — D(X) on schemes satisfies descent for the fpqgc
topology.

Remark 7. The basic idea of the proof is that equivalences in D(—) can be detected on pullback to
any fpgc cover. This is not difficult to show by looking on homology groups to reduce to the situation
in ordinary algebra. Why does that help? Given a cover, we can split it by pullback along an fpgc cover
(itself, essentially), and thus attempt to reduce the descent question to the case where the cover is split.
But when the cover is split the covering sieve is trivial and descent is thereby automatic. For the actual
proof, in fact of a generalization giving flat hyperdescent, you can see Lurie’s DAG VII.

This descent for D(-) is very robust and propagates to all sorts of other descent results. For
example, all of the following are also fpqc sheaves:

Example 8. 1. The presheaf X — QCoh(X), in other words the full subcategory of D(X) consist-
ing of those objects sitting in degree zero. (Use that flat base-changes preserve homology group
sheaves. )

2. The presheaves X — Perf(X) and X ~ Vect(X). (Pass to dualizable objects in respectively
D(-) and QCoh(-)).

3. The presheaf X — {relatively affine X-schemes Y — X }. (Pass to commutative algebra objects

in QCoh(-).)

4. The presheaf X ~ {relatively affine X -schemes Y — X satisfying property P}, where P is any
property of maps of schemes which is fpqc-local.”

5. The previous four examples were all sheaves of categories or co-categories. Here is a sheaf of sets.
For a scheme S and S-scheme X, the presheaf of sets T — Homg(T,X) on S-schemes is an
fpgc sheaf. (Reduce to the affine case, then look at hom sets in example 3.)

6. For any M € D(S), the presheaf (f : T — S) — f.(f*M) is an fpqc sheaf on S-schemes with
values in D(S). This follows by looking at mapping spaces in the above theorem giving descent
for D(-).

2 At this link https://stacks.math.columbia.edu/tag/02YJ you can find a long list of properties of morphisms of schemes
which are fpgc-local. This includes some of our favorite examples: smooth, etale, and flat.



Results of this type are referred to as “faithfully flat descent”.

Definition 9. Let S be a scheme, G — S a quasicompact flat S-group scheme acting on an S-scheme
X — S. We define the stack quotient G\\X to be the fpqc sheaf of groupoids on S-schemes given by
sheafifying the presheaf

T GD\X(T).

As in the case of sets, the study of these general quotients in essence reduces to the case where
X =%, where * means the terminal S-scheme S, namely there is a pullback diagram of fpqc sheaves of
groupoids

X .
|
G\X —— BG.

This follows from the discussion in the setting of groupoids, because sheafification commutes with
finite limits, for example pullbacks. The most pertinent question, therefore, is how to more concretely
describe the functor on S-schemes represented by BG? Here is an essentially tautological axiomatic
approach.

Lemma 10. Let S be a scheme and G a flat quasicompact S-group scheme. Suppose given an fqpc
sheaf of groupoids X on S-shemes. Giving an isomorphism X ~ BG is equivalent to giving:

1. a basepoint z: * - X
2. a group sheaf isomorphism G ~ w1 (X, x)
such that the sheafified myX is *, or equivalently every object is locally isomorphic to x.

In other words, BG classifies any kind of object where any two objects are locally isomorphic, and
there is a standard global model for that object which has automorphism group G.

Example 11. Take G = GL,, and let X be defined by setting X(T') to be the groupoid of sheaves of
Or-modules which are locally free of rank n (in the Zariski topology). Then this is not just a Zariski
sheaf but an fpqc sheaf by faithfully flat descent. Take the basepoint to be x(T) = O?”. This has
automorphism group G L,,, and any two objects in X (T') are locally isomorphic to x by definition, hence
we conclude that

X = BGL,,.

However, just as in the discussion of quotients of sets, there is a preferred description of BG. If we
have a map T' — BG, we can pull back * — BG and get a principal G-bundle over T in the sense of
the following definition.

Definition 12. Let S be a scheme, G — S a flat quasicompact S-group scheme, and T an S-scheme.
A principal G-bundle over T is a T-scheme T — T with G-action (covering the trivial action on T')
which is fpgc locally on T’ a trivial principal G-bundle.

A trivial principal G-bundle over T' is one of the form G x'I' - T', the projection map, with G acting
by translation purely on the first factor.



This is the in-families version of a G-torsor. It is also the most basic situation in which you have a
free G-action on a scheme where the quotient is also a scheme, and covers all reasonable examples.

Lemma 13. 1. Pulling back + - BG along a map T — BG gives an identification of BG(T') with
the groupoid of principal G-bundles over T .

2. More generally, pulling back X — G\\X gives an identification of (G\\X)(T) with the groupoid

of pairs consisting of a principal G-bundle over T' and a G-equivariant map from its total space
to X.

By definition, a principal G-bundle is fpqc locally trivial. But in some examples a smaller topology
suffices to trivialize a torsor. For example it follows from the alternate description of BGL,, given above
that in that case, every prinicipal G Ly-torsor is Zariski-locally trivial. Here is another general class of
examples. The method of argument is maybe more important than the result.

Proposition 14. Suppose G is a smooth S-group scheme. Then every principal G-bundle is étale-locally
trivial.

Proof. Trivializing a principal G-bundle is the same thing as giving a section. Every map acquires a
section after pullback along itself. Thus every principal G-bundle is trivialized on pullback along itself.
But now, smoothness is preserved by pullback and is fpqc local. It follows that an principal G-bundle is
smooth. Now it suffices to note that every smooth surjective map has étale local sections. This follows
directly from the definition of smooth in terms of being étale over affine space, since affine space has a
section. ]

Okay, now we can pretend we understand these so-called stack quotients G\\X. We would now
like to define equivariant de Rham cohomology as the de Rham cohomology of this quotient stack. We
extend de Rham cohomology to stacks in a naive way.

Definition 15. Suppose given a functor F : Sch‘/)g — C where C is a presentable oo-category. We define

FE\X)= lm F(T).
T-G\\X

In particular, this defines the de Rham cohomology of G\\ X, as a filtered object in D(S):

dRe\\x/s = lm dRpg.
T-G\\X
This is a limit over a rather large diagram category. (In fact, it's so large that it's not even a set,
so this definition isn't even well-defined in general. Note that we didn't bound the cardinality of the
S-schemes occurring. This is just a technical nuisance however. It doesn't matter in practice and |
won't get into it.) But if F has nice descent properties then we can use a smaller diagram instead.

Definition 16. 1. An fpqc atlas for G\\X is a collection of maps {T; - G\\X };c; from schemes
such that for any map T' - G\\X from a scheme, each pullback T; x\\x T' is represented by a
scheme, and together they form an fpqc cover of T'.

2. A smooth atlas for G\\X is a collection of maps {T; - G\\X };e; from schemes such that for
any map T'— G\\X from a scheme, each pullback T; xq\\x T is represented by a scheme, and
together they give an fpqc cover of T' where moreover all the constituent maps are smooth.



Example 17. 1. Since G itself is fpgc over S by assumption, it follows that the single map X —
G\\X constitutes an fpqc cover of G\\ X.

2. If G is smooth, then the single map X — G\\X is even a smooth atlas.

3. Somewhat surprisingly, even if G is not smooth there can be smooth atlases for G\\X. Actually
a general result of Artin says that if there's a finitely presented flat atlas, then there’s a smooth
atlas. In particular if G is finitely presented and flat there’s always a smooth atlas. For example,
for any n > 1 the map G,, - Bu, classifying the principal j,-bundle G, =" G,y, is a smooth
atlas for B, over any base scheme, but p, is not smooth in characteristic p (its coordinate ring
is not reduced).

Then we have the following, showing how to calculate F in terms of an atlas:

Lemma 18. 1. Suppose that F : Sch‘/’g — C is a sheaf for the fpgc topology. Then F(G\\X)
identifies with the limit over the Cech nerve of any fpqc atlas.

2. Suppose that F : Sch(/)g — C is a sheaf for the étale topology. Then F(G\\X) identifies with the
limit over the Cech nerve of any smooth atlas.

The proof is very formal and doesn't require much. The only thing to keep in mind for part 2 is that
étale descent implies smooth descent, because smooth surjective maps have étale local sections. Now,
here are two relevant examples:

Example 19. The functor F = D(-) of derived quasi-coherent sheaf co-category satisfies fpqgc descent.
Thus
D(G\\X) = 1<£n D(G" x X),
[n]eA

intuitively the G-equivariant quasicoherent sheaves on X.

For the sheaf of ordinary categories F = QCoh(-), this reduces to: an object in QCoh(G\\X) is
an object M € D(X) together with an isomorphism a* M ~ p* M satisfying a cocycle condition, where
a,p: G x X — X are the action and projection maps.

Example 20. The functor F = dR_ g with values in filtered objets in D(S) satisfies étale descent. This
follows from derived fpqc descent for quasi-coherent sheaves because on the étale site of any scheme
the sheaf of O-modules Q)P is quasi-coherent due to the base-change property for etale maps.

Note that we do not get fpqc descent for dR_;g in general, only étale descent, so for non-smooth
G this is a more subtle form of equivariant de Rham cohomology than the naive one.

The main point is then the following.

Theorem 21. Let S be a scheme, G — S a flat finitely presented group scheme over S, and X a
smooth S-scheme with G-action. Then

dFey\x/s = im dRrys.
T—-G\\X,T smooth over S

In other words, in the limit defining dR¢\\x/s we can restrict to schemes smooth over S.



Proof. By Artin's theorem, there is a smooth atlas Y - G\\X. We want to show that Y itself is smooth
over S; then all the elements of the Cech nerve will be smooth, and this is cofinal in the limit in the
statement of the theorem and the proof will be complete. But the map X — G\\X is finitely presented
faithfully flat, thus the pullback to Y is faithfully flat over Y, but on the other hand it's smooth over
X which is smooth. Thus Y admits a finitely presented faithfully flat map from a smooth S-scheme,
and it follows, not obviously, that Y itself is smooth. O

Now, this all sounds fine, especially for smooth GG, which is our main case of interest. But there is a
fly in the ointment. Namely, the associated gradeds of dRq\\x/s for the Hodge filtration are calculated
as

Yo[-pI(G\\X) = lim  p.Q7 [-p]
smooth T—-G\\X

where p, denotes the pushforward from T to S. There is a big difference here from the scheme case
in that QO itself is not a quasi-coherent sheaf. Indeed, for a quasicoherent sheaf, once you know the
sections on one affine the sections on another affine mapping to it are formally determined as the base-
change. But this is not the case for ¥ as we have smooth schemes of different dimension floating
around.

In the next lecture we'll state and prove Totaro's theorem, which gives a fix for this: a complex of
quasi-coherent sheaves on G'\\ X which also computes Q”[-p](G\\X/S).

Exercise 22. Suppose given a commutative ring R and an R-module M which is locally free of rank
n. Explicitly write down the coordinate ring of the corresponding principal G L,-bundle.
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