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In this lecture we'll fix a base scheme .S, a smooth S-group scheme GG, and a smooth S-scheme X
with an action of G. Recall from last time that we ended up with a definition/description of equivariant
de Rham cohomology (implicitly, over the base S) of the following form:

dRyx = lim dRy.
T->G\X

Here the index category consists of all smooth S-schemes with a map to the quotient stack G\\X
(we also saw that we can equivalently restrict to the Cech nerve of a single smooth atlas, for example
the one coming from X — G\\X.) Each dRy is naturally a filtered object in the derived quasicoherent
oo-category D(S) via the Hodge filtration, and thus so is dR¢y\ x. For p >0, the p'" associated graded
for this filtration is

gr'dRowx = lm £ [-p]]
T-G\X
where f:T — S is the structure map.

In the scheme case, this associated graded was Hodge cohomology, the derived pushforward to S
of the —p shift of a quasi-coherent sheaf (2P, The above expression is not of the same form, because
QP is not quasi-coherent on the site of all smooth schemes. Nonetheless, it's easy and formal to find a
derived quasi-coherent sheaf

“O2 7 € D(G\\X)

with the property that gr’dRe\\ x is the pushfoward of “Q7, . ”[-p] to S, namely we just set

G\\X
caQ]é\\Xw = LEI 9*|ng)p|
gT—>G\X

which tautologically fills the desired role.

This object is intrinsic to the stack G\\X, but it is not obvious how to get an explicit tractable
expression for it, or even decide in which degrees it lives (rarely will it live in degree zero). Our goal
today is to state and prove Totaro's theorem, which gives, in terms of G acting on X, an explicit and
functorial complex of quasi-coherent sheaves on G\\X which realizes to “Qg\\X” e D(G\\X).

The key to the construction of this complex is to look at the situation of a free action, or more
specifically a principal G-bundle T — T over a smooth S-scheme T'. In this case we're looking for a
complex of quasi-coherent sheaves on 1" which is a resolution of the quasi-coherent sheaf Q‘;/S, and the
key property we want this complex to have is that, in its incarnation as a complex of G-equivariant quasi-
coherent sheaves on T, it should make sense for an arbitrary smooth scheme with G-action replacing

T.



Of course, we should start with p =1, i.e. the Kahler differentials or cotangent sheaf. For intuition,
we can think in terms of the dual question and ask how to understand the tangent sheaf of the base of
a principal G-bundle in terms of the tangent sheaf of the total space. Differentiating the group action
at the identity e € G gives a natural map

g Tz

This is G-equivariant for the adjoint action, it is injective, and the quotient identifies with 7. This
should be geometrically reasonable; we're collapsing along the orbits of the G-action. This gives a
two-term complex resolving 77, and in the dual picture with differentials, it suggests the following.

Proposition 1. Let G be a smooth group scheme acting on the smooth scheme X, all over the implicit
base S. Then:

1. The sheaf of Kihler differentials Q% € QCoh(X) naturally descends to an object of QCoh(G\\X).

2. There is a natural map d : Q% — g* in QCoh(G\\X), where g* is defined as follows: let
g* = e*QL., with e the identity section. A priori this lives in QCoh(S), but via the adjoint action
of G on itself we can descend it to QCoh(BG) and then pull it back to G\\X.

3. If the G-action on X makes X into a principal G-bundle over a smooth scheme X' = G\\ X, then
the map d extends to a natural short exact sequence

0—>Q§</—>Q§(ig*—>0
in QCoh(G\\X).

Proof. Even the first claim is not so obvious, because at least naively we can’t simply argue that Qé{/s
is G-equivariant “by functoriality” as we could if the group G were discrete. Although it won't be part
of the formal proof, let’s first give a “sanity check” abstract argument for why such equivariant structure
should exist. Then we'll give the “official” argument by directly producing the descent data encoding
equivariance.

Remember the definition of Q%(/S' We consider the diagonal immersion

A: X - X xg X,

take its second infinitessimal neighborhood X(?) viewed as an augmented relatively affine X-scheme
(via the first projection, augmentation given by the diagonal), then take the complementary summand
of the augmentation of the associated quasicoherent O x-algebra. To promote Q}(/S to a G-equivariant
quasicoherent sheaf, by this description it's enough to promote the splitting diagram

X->x® L x

to a diagram of objects with G-action. By functoriality of the construction G/(S) certainly acts, and in
particular it acts on the S-valued points. But as the construction is compatible with pullbacks along
maps T' - S we get compatible actions of G(T") on the T-valued points for all T', whence the required
action.

Okay, now for the official description. It's based on the fact that Kahler differentials satisfy a
Kiinneth formula. Namely, if X and Y are S-schemes and p: X xY - X and ¢: X xY = Y are the



two projections (all products are implicitly taken in the category of S-schemes, so they're actually fiber
products over S), then
P © "Dy > oy

To produce the equivariance we need an isomorphism a*Qk ~ q*Q}X satisfying the cocycle identity,
where a,q : G x X — X are the action and second projection maps. However, note that G x X,
besides being expressed as the product of G and X in the tautological manner via the first and second
projections, can also be expressed as the product of G and X via the first projection and the action map.
Thus, by Kiinneth, a*Qk and q*Q}( are both complementary summands to p*QlG and are therefore
canonically identified. One checks the cocycle condition using triple Kiinneth on G x G x X.

To define the map d: Qﬁ( — g” of underlying quasicoherent sheaves on X, we consider the compo-
sition

" Qx = Qiux = P 0,
where the first map comes from functoriality of Kahler differentials, the second map is projection to the
appropriate Kiinneth compenent. Then we pull back the composite map along (e,id) : X - G x X to
get our desired d. One checks routinely that this commutes with the equivariance structures.

Finally, to check the third claim, we define the map Qﬁ(, - Qﬁ( using functoriality of Kahler dif-
ferentials. To check we get the required short exact sequence, since all the constructions are local on
X' we can reduce to the case where X = G x X’ with G-action on the first factor, and then the claim
results from the Kiinneth formula, which actually gives a natural splitting for our desired short exact
sequence. (Here one should identify Qf, with the constant bundle g* using left translation.) O

Thus we get our desired complex when p = 1: the two-term complex d : Qﬁ( - g% on G\\X always
exists, and when X is the total space of a principle G-bundle it is quasi-isomorphic to Qé\x- To pass

from Q! to QP, we want to know how, given a short exact sequence of finitely generated projective
R-modules
0O-K->M->N->0

over a commutative ring R, we can write A®K in terms of M — N, in such a way that the description also
makes sense without assuming the map is surjective, and moreover commutes with arbitrary basechange
along ring maps R — R’. The solution for this is to use the following general algebraic machinery of
“Koszul complexes” as explained in lllusie’s “Complexe contangent et déformations” .

Proposition 2. Suppose R is a commutative ring and d: M — N is a map of R-modules.

1. There is a unique structure of commutative differential graded R-algebra on the graded commu-
tative R-algebra
A*M ® Sym°®N,

M in degree —1 and N in degree —2, such that the differential agrees with our given d on elements
of M, and kills elements of N. Denote this CDGA by Kos(d).

2. Ifd": M"— N’ is another map of R-modules, then Kos(d® d') ~ Kos(d) ® Kos(d').
3. If N is flat and d is surjective, then the natural map of CDGA's
AN K-> AM®Sym*N

is a quasi-isomorphism, where K = ker(d) and the differential is trivial on the source.



Proof. For part 1, the uniqueness is clear as the CDGA is generated by N and M. Well-definedness
is a routine check similar to defining the differentials in the de Rham complex. For 2, on underlying
graded commutative algebras this follows from the universal property of alternating and symmetric
power algebras, and then the differentials must agree by uniqueness. For 3, by Lazard we can write NV
as a filtered colimit of finite free modules; pulling back to these and using the fact that all operations
commute with filtered colimits, we reduce to N = R®"™. Then the short exact sequence is split, so we
can write it as a direct sum of K = K - 0 and 0 > N = N. By 2 we are thus reduced to these separate
cases. In the first case the result is trivial. In the second case, by 2 again we can reduce to N = R and
then the result is visibly correct. O

Remark 3. There is an extra graded commutative algebra structure on Kos(d), where M and N both
have degree one. The differential preserves this extra grading, so Kos(d) breaks up as a direct sum
according to these extra degrees. In the situation of 3, this extra grading matches the grading on the
exterior algebra where K has degree one. Thus we get a resolution of AP K of the form

APM - AP IM@N - ... » SymPN
in degrees 0 to —p.

Corollary 4. Let X be a smooth scheme with an action of the smooth group scheme G. There is a
functorially attached extra-graded commutative differential graded quasicoherent sheaf on G\\ X

Kos(d: Q% - g*)

such that if X is the total space of a principal G-bundle over X' = G\\X, there is a natural graded
quasi-isomorphism
@20, [-p] > Kos(d: Qx ~g)

Proof. The Koszul complex construction commutes with base-changes along maps R — R/, so it auto-
matically passes to quasi-coherent sheaves. Thus this follows by combining the previous two proposi-
tions. ]

In extra grading degree p, this is gives a resolution of Q% [-p] which looks like this: it is a complex
of the form
Qg(eﬁzjgl@g*e...eSympg*
in degrees —p to —2p.
Now we can state and prove Totaro's theorem.

Theorem 5. Let X be a smooth scheme with an action of the smooth group scheme G. Write
|[Kos(d: Qx —g")|

for the graded commutative algebra object of D(G\\X) given by realizing the indicated graded CDGA.
Then there is a natural identification

@920V x [2]" = [Kos(d: 2y — 7)),

Y4
G\ X

and in particular
fo|Kos(d: Qx - g*)| = &ps0g9r’dRay x »

where f : G\\X — S. Thus we have an explicit quasi-coherent model for Hodge cohomology of quotient
stacks.



Proof. For every map T' - G\\X from a smooth scheme T', we have the natural and functorial iso-
morphism |Kos(d : Q% - g%)| = @205 [~p] in D(T) by Corollary 4, where T — T is the principal
G-bundle obtained by pulling back X — G\\X. By definition “Qg\\X[—p]” is the inverse limit of the
values of g,Qf.[-p] as we run over all maps g: T — G\\X from a smooth scheme T". By the previous
lecture, we also get the same result by taking the limit just with g running over the Cech nerve of some
fixed smooth cover, and we will make this simplification. We can even choose the canonical one coming
from X — G\\X to ensure functoriality in the initial data.

In any case, it therefore suffices to show the analogous limit claim for |[Kos(d : Q% — g*)|, namely
that

Kos(d:Qk »g)| > lim  g.[Kos(d: Ok — g*)],
gT—-G\\X

where again we can restrict to the Cech nerve of the canonical atlas if desired.

Because 7 : X — G\\X is a flat cover, we can test such equivalences in D(G\\X) on pullback to
X. By cohomology and base change,! @ commutes with the pushforwards on the right. Additionally,
7 being flat, 7* also commutes with the inverse limit on the right, because all the objects in question
are homologically bounded above, and in any given range of degrees a limit over A behaves like a finite
limit. In total this means we simply need to show the above claim on underlying objects of D(X)
without the equivariance, replacing g. by ¢’ where ¢’ : T — X is the pullback of g.

Now, filtering by bidegree we reduce to the analogous claim for each Q4 ® Sym?g*. By the projection
formula we can pull out the second factor, so we reduce to checking

Q%= lm  glOb].
gT->G\\X

But now as g runs over the Cech nerve of a smooth atlas, its pullback ¢’ runs over the Cech nerve of a
smooth cover. So the claim follows from smooth descent for 2P, which, as we explained in the previous
lecture, follows from étale descent which follows from quasi-coherence on the étale site. O

In the most basic special case of the trivial G-action on S, all terms in the Koszul complex except
the last one drop out as Q}g =0. Thus we get:

Corollary 6. Let G be a smooth group scheme. Then there is an isomorphism of graded algebra objects
of D(S), graded by p > 0:
®pgrdRpg = @p f+|Sym”g”|[-2p],

where f: BG — S is the structure map.

Thus understanding Hodge cohomology of classifying stacks reduces to understanding f,SymPg*.
In general, f. is the derived analog of G-fixed points, and it can introduce higher cohomology. But one
of Totaro’s remarks is that for GL,, over a general base this doesn't happen for these specific coefficient
systems SymPg*. We'll prove this later, but for now let’s just look at what it gives us. It means that

®pgr’dRpar,, = (EBpSymng[—Qp])G,

where g = Lie(GLy). Let's take S = Spec(R) affine. This lie algebra is My, the R-module of
n x n-matrices with R-coefficients, and the adjoint action of G is by conjugation. Thus, g¥ is the

Ywhich holds for g : T — G\\X as a formal consequence of the fact that it holds after pullback along any map
T’ — G\\X, which in turn is the usual scheme case.



linear functions on My, and accordingly &,Sym”g" is the polynomial functions on M, concretely
just the polynomials in n? variables interpreted as the coefficients of a generic matrix. Thus the ring
of invariants (EBpSymng)G, which gives the Hodge cohomology of BGL,, amounts to the ring of
invariant polynomials, i.e. those polynomials in the entries of a matrix which are independent of the
basis, i.e. which make sense purely for an endomorphism of a free module of rank n without choosing
a basis.

The result ends up being that every such polynomial is uniquely a polynomial in the coefficients of
the characteristic polynomial of the endomorphism, which correspond to the elements

ci € (GBpSymng)G

for 1 <i <n defined by ‘

ci(f) = tr(A'f)
for f an endomorphism of a free module of rank n. For example ¢,, gives the determinant and c¢; gives
the trace. So for the Hodge cohomology we'll have

@I,gT’deBGLn [ R[Cl, ... ,Cn]
with ¢; in homological degree —2¢ and graded degree 3.

Remark 7. Note that in any case there is a natural map (SymPg*)¢ — f.(SymPg*) by canonical
truncation, since the former is the top degree, degree zero part of the latter. So we have the classes
Cl,...,Cn in the Hodge cohomology of BGL,, even if we haven't given the argument that they freely
generate. By pullback along X — BGL,, these give Chern classes of vector bundles with values in
Hodge cohomology, namely given a locally free sheaf of finite rank £ on a smooth scheme X over a
commutative ring R we get natural classes

ci(€) e H(X; Q%/R).
In the next lecture we will lift these to de Rham cohomology:
ci(€) e F*H*dRx .

To finish this lecture we'll treat the case G = GL; = G,,. We'll show that there's no higher cohomol-
ogy by establishing an analog of the fact that the representation theory of G,, is semi-simple, and the
irreducible representations are just the integer powers of the tautological one-dimensional representation.

Lemma 8. For every M € D(BG,,), the unit map M — e.e*M admits a functorial splitting, where
e: S —» BG,, is the quotient map.

Proof. Let O(1) € QCoh(BG,,) denote the universal line bundle, and for n € Z set O(n) = O(1)®",
or the pullback of O(1) along the map BG,, - BG,, induced by functoriality from the multiplication
by n map in the abelian group sheaf G,,.

Then e: S - BG,, is relatively affine with coordinate algebra @®,,zO(n), i.e. on pullback to any
affine scheme it is affine with coordinate ring the pullback of @,70(n). This follows by unwinding
the correspondence between line bundles and G,,-torsors, a special case of the exercise in the previous
lecture.

From the projection formula it follows e.e*M ~ M ®e.e*O = M ® (®,20(n)) where the unit map
we want to split comes from the unit map O — &,,;z0O(n) of the algebra. So it suffices to project to
the degree zero part. O



Lemma 9. Let neZ. Then for f: BG,, - S, we have f.O(n) =0 forn=0 and 0 for n + 0.

Proof. We have maps
O0- f,0- fie,0=0

giving O as a summand of f,O. On the other hand O - ¢,0 = 8,0(n) is also the inclusion of a
summand, hence the same is true on f,. It follows that the summand O — f.O must be the whole
thing, and simultaneously we see that the complementary summand f. ®,.0 O(n) is zero, whence the
claims. O

Theorem 10. For every M € D(BG,,) the natural map
Onez My > M

is an iso, where M, = f*(f.(M ® O(-n))) ® O(n).

In fact, this description furnishes an equivalence D(BG,,) ~ Fun(Z°, D(S)) between representa-
tions of Gy, (in this sense) and Z-graded objects in D(S). Under this equivalence, f. corresponds to
picking out the degree zero component.

Proof. By the lemma, M is the summand of an object of the form e, N = &, N ® O(n), so we reduce
to that case. Then the first claim reduces, by a simple calculation, to the second lemma above.
The second claim is a simple consequence of the first claim. O

Corollary 11. For N € D(S), the natural map N — f.f*N is an iso.

In other words, if the action of G, is trivial, then the cohomology f. just gives the underlying object
e*. Thus for the Hodge cohomology of BG,, we deduce:

Theorem 12. Let S = Spec(R). Then
@097’ dRpG,, = Ops0R - ]
is a polynomial algebra on one generator c; of homological degree —2 and graded degree 1.
Proof. By Totaro's theorem and the above corollary,
®p>09T" dRBG,, = ®p20SymPg [-2p].

It suffices to note that g* is free of rank one with canonical generator coming from G,,, c Al and pulling
back dT" to 1 € Gyy,. ]

Exercise 13. Let n > 1. Apply Totaro'’s theorem to the presentation of B, as G;,\\G,, for the action
of Gy, on itself given by (\,z) » A" -z to calculate the Hodge cohomology of B, over an arbitrary
commutative ring R.



