Lecture 14: Chern classes and Thom classes

Dustin Clausen

June 15, 2021

Let’s pick up where we left off last time. Let S be a scheme. We've been considering the associated
graded for the Hodge filtration on equivariant de Rham cohomology over .S, which is accessible by
Totaro's theorem:

®p209T"dRe\\ x = [+ Kos(QY — g*)].

Here G is a smooth group scheme acting on a smooth scheme X and f: G\\X — S is the structure
map. When G = G,,, and X =5, only the pure symmetric power terms in the Koszul CDGA contribute,
and we saw that the pushforward f, just amounts to taking the underlying non-equivariant object, giving
the result

®ps09rTdRBg,, = ®ps0c; - Os[-2p]

where ¢ € H2gr'dRpg,, is the class corresponding to the canonical generator of Sym!g* = g*, namely
the pullback of dT ¢ Q}xl along the identity section element of G,,.

We would like to understand this class ¢; more explicitly. Abstractly, the data of ¢y is the same as
the data of a map of fpqc sheaves of groupoids on smooth S-schemes

BGy, — MapD(—)(O’ Ql[l])

In fact, and this should really be specified as part of the data of ¢, on the cocycle level this class ¢;
vanishes on pullback along S — BG,, (i.e. the corresponding characteristic class canonically vanishes
on trivial principal Gy,-bundles), so it is really a canonical class in relative Hodge cohomology. For the
above map of sheaves of groupoids, this means that it naturally promotes to a pointed map, where the
target is pointed by 0. Giving a pointed map from a groupoid of the form BG to a pointed groupoid
(X, x) is the same as giving a homomorphism from G to the automorphism group of z in X, i.e. moQ2X.
Thus the data of our ¢y is the same as the data of a map of presheaves of groups

Gy = Q!
on smooth S-schemes.

Lemma 1. The homomorphism G, - Q' corresponding to c1 is given (up to a sign which is probably
a matter of convention) by the “logarithmic derivative” homomorphism

)\,_,Q’
A

so-called because formally speaking % =dlog(N).



Proof. We have to unwind the construction of ¢;. Although we could do everything in the universal
case, it's probably easier to think in terms of ¢; being a characteristic class of principal G,,-bundles
T — T. Recall, in that guise, that it came from the short exact sequence of quasi-coherent sheaves on
T

0-Qp > Qr—g" 0,

namely we take the image of the canonical generator of g* under the associated boundary map for this
short exact sequence. To unwind the corresponding homomorphism G,,, - !, we're supposed to recall
that this short exact sequence gets a canonical splitting when the bundle is trivialized, thus giving a lift
of our canonical generator of g* to the middle term Qlf Given an element of G,, we can change the
trivialization, then take the difference of the two lifts to get an element of QIT

The canonical splitting came from the Kiinneth formula. To give the corresponding lift of we € g*,
we extend w, to an invariant one-form w € QlG then pull back to T via the projection. In the case
G = Gy, = Spec(R[t,t™']) the invariant one form corresponding to the canonical generator is %. When
we change the trivialization by a A € G,,, this replaces ¢t by At, and the difference is indeed

d(M\t) dt dx
At tA

as claimed. O
Corollary 2. The class ¢; € H*>gr'dRpg, canonically lifts to ¢; € H*F*'dRpg,, .

Proof. Since d(%) =0, we have a map of complexes of sheaves of abelian groups
G — (Ql 4024 ) - F210°[1]

extending dlog : G,, - Q', whence the desired ¢; by shifting up by one and passing to hypercohomology.
O

Corollary 3. We have
dRpg,, = ®nsoct - Os,

where c1 has homological degree —2. Moreover the Hodge filtration is the same as the ci-adic filtration,
ie.
FZdeBGm = Eanpc? . Os.

Now, let us move beyond the trivial G,, action on the terminal S-scheme S and go to some more
general G,,-actions. In the short term we'd like to present the calculation of the de Rham cohomology
of projective bundles

P(€) = Gm\\(A(E) \ Ox)

associated to locally free sheaves £ of finite rank on smooth S-schemes X. Here A(£) = Specx Symé,
so that points of A(£) amount to maps £ - O, i.e. global sections of £*, and points of P(£) amount
to iso classes of locally free of rank one quotients £ — L of £. (Caution: many sources take the dual
convention.)

But for this any several other purposes it's actually convenient to start with the variant

Gm\\A(E)



without removing the zero section. Note that when we remove the zero section the action is free, and
indeed A(E) \ Ox is the total space of a principal G,,-bundle over the scheme P(£). But the action on
0 is trivial and this means G,,\\A(&) is really just a stack, not a scheme.

But even more, we will also want to generalize our base S-scheme X to a base S-stack; in fact
this extra generality will be absolutely crucial for us as we'll see when discussing weighted homotopy
invariance. We've only talked about the so-called smooth quotient stacks, namely G\\X for smooth
group schemes G acting on smooth S-schemes X, and whenever we say smooth stack we will implicitly
mean stack of that form. Of course there is a more general notion, but none of our constructions will
leave the world of quotient stacks, and the universal case for all problems we consider will always be a
smooth quotient stack anyway, so let's not get in to that extra generality.

As discussed in Lecture 12, concepts such as vector bundle, projective bundle, de Rham cohomology,
and so forth are defined for stacks in the naive way: such an object over a stack X is the same as a
compatible family of such objects on all schemes mapping to X. All concepts we use will have smooth
descent, and then it's equivalent to just give the data of such a compatible family over the Cech nerve
of some smooth cover.

The following “weighted homotopy invariance” is an important remark of Totaro's. It shows that
even in characteristic p, the problem of the affine line having huge de Rham cohomology disappears
provided one takes into account equivariance for scalar multiplication.

Lemma 4. Let X be an S-stack and £ a locally free sheaf of finite rank r on X, and for k € Z let G,,
act on A(E) via (\,z) = Mz and = a section of £. Then if k # 0, the map

Gm\\A(E) = BG,,, x X
is an isomorphism on de Hodge cohomology, hence on filtered de Rham cohomology.

Proof. By descent, we can reduce to the case where X is a scheme and £ ~O". Then A(£) = A" x X,
and by Kiinneth we can reduce to the case X = 5. By Totaro’s theorem, we have

D209 ARG, \ar = ful 0s(Qr > g7)
with f: G, \\A" = S. We can factor this as the composition
Gm\\A" - BG,, - S,

where the first map is induced by the equivariant projection A” — S. Pushforward along the first map is
just remembering equivariance on the pushforward along A" — S, which is just global sections, with no
higher cohomology as A" is affine. On the other hand, pushforward along the second map just picks out
the weight zero part in terms of the equivalence between quasicoherent sheaves on BG,, and graded
quasi-coherent sheaves on S. So we just need to look at the Koszul complex and pick out the weight
zero part, i.e. the part on which the G,, action is trivial. On the Sym2g”* terms the action is trivial, so
those have weight zero. However, for
weQh,

we have that w is a linear combination of wedges of terms dt; where t; are the coordinates and the
coefficients in this linear combination are polynomials in the ¢;. By definition the ¢; have weight k, so
the weight of each dt; is also k£ and the weight of a homogeneous polynomial of degree d in the ¢; is
d-k, hence the weight of any w with p>0is >0 if k>0 and <0 if kK <0. In particular only the Sym9g*
terms remain after passing to weight zero components, whence the answer is the same as for BG,,, as
claimed. O



Using this we can treat the cohomology of projective bundles.

Theorem 5. Let X be a smooth S-stack and £ a locally free sheaf of rank r over X. Then as a filtered
dRx-module, dR[[D(g) is free of rank r on the classes

Ler(0(1),..cr(0(1))
with c1(O(1))? in homological degree —2i and filtration > i.
Proof. We can make a natural comparison map
& gdRx ® Og[-2i]{i} - dRp(¢)

by pulling back and multiplying with ¢1(O(1))?. To check it's an isomorphism, we can work locally and
thus assume X is a scheme and £ ~ O". Then by Kiinneth we reduce to X = 5. Thus we want to show
that

&7 O5[-20]{i} > dRprr

is an iso.

We will in fact prove the following more refined statement: there is a canonical nullhomotopy of
c1(O(1))" on P! (recall that ¢; was defined on the cocyle level, so the statement makes sense),
whence a lift to a class in relative de Rham cohomology

Thfr € dR(Gm\\AT re| Pr-1

in homological degree degree —2r and filtration > r; and moreover dRg, \\a~ rel -1 is a free filtered
dRpg,,-module on Th,. By the definitional long exact sequence expressing this relative de Rham
cohomology as the fiber of the restriction

dRGm\\AT g dR[PJ'r'—l

and the calculation of dRg, \\ar ~ dRpG,, from the previous lemma, this refined statement will indeed
imply the desired claim.
To produce Th, and prove it's a free generator as claimed, note that the Kiinneth theorem for
relative de Rham cohomology yields
ARG, \\a(Eoe") rel P(EoE") = ARG, \\A(€) rel P(€) ® ARG, \\A(&") rel P(7)>

whence
dR(Gm\\A"' rel pr-1 ®TdRGm\\A1 rel PO

reducing all claims to the case 7 = 1. But then P = S and we can just take our first chern class
definitionally viewed as a class in relative de Rham cohomology of BG,,, as discussed above. O

Now we can produce the theory of Chern classes.
Theorem 6. There exists an association
E Cz(g) € HQiFZidRX

for all locally free sheaves of finite rank £ on smooth S-stacks X and all i > 1, satisfying the following
properties:



1. If L is locally free of rank one, then c¢1(L) is the first Chern class as defined earlier using dlog.

2. 1f0 & - & - E" -0 is a short exact sequence of locally free sheaves of finite rank, then

(€)= 3 (&) -cr(EM

j+k=i
for all i >0, where we set ¢y = 1. (Cartan formula)
3 c(fE)=f"c(E) forallmaps f:Y — X andi>1.

Moreover, such an association satisfying these axioms is unique, even if we replace 2 by the following
weaker variant: that the conclusion holds if £ ~ &' @ E".

Proof. Since the rank of a vector bundle is constant on some disjoint union decomposition, and de
Rham cohomology takes disjoint unions to products, the theory is uniquely determined from the case of
vetor bundles of constant rank. So let’s focus on that.

Suppose given X and £ of rank r over X. By the version of the splitting principle which we'll prove

as a lemma afterwards, there are maps X Ly L Y’ and a vector bundle F on Y such that:
1. g F~E,
2. f*F~Ly1®...® L, with each L; locally free of rank one;
3. f*: F?’dRy — F?PdRy is injective on H* for all p.

Using axiom 3 for Chern classes it follows that Chern classes in general are determined by the case of
direct sums of line bundles. Then axioms 1 and 2 show that the theory of direct sums of line bundles
is uniquely determined as well.

Now let’s show existence. We'll use the Grothendieck construction of Chern classes. Given &£ of rank r
over X, consider the projective bundle P(£). By the lemma above the class ¢; (O(1))" € H2TFZ"dR]p(5)
can uniquely be written as a polynomial in the previous powers of ¢1(O(1)) with coefficients in dRx.
We define ¢;(£) to be (=1)™*! multiplied by the (r —4)*" coefficient.

It is clear that axiom 3 is satisfied, and axiom 1 is trivially verified (P(L£) = S, but the tautological
line bundle O(1) identifies with £.) For 2, again by the splitting principle we can reduce to the case
where the short exact sequence is split, and then to the case where all vector bundles occurring are
direct sums of line bundles. Thus we reduce to showing that on P(L1 ®...® L,), we have

ﬁ(cl((?(l)) -c1(£;)) = 0.

This is proved in exactly the same way we proved the relationship ¢;(O(1))" = 0 on P™"! in the
previous proof, namely by using Kiinneth in relative de Rham cohomology of stacks to reduce to the
case r = 1. O

We used the following variant of the splitting principle. In part 1 we don't need stacks, but for part
2 it's crucial we pass to stacks even if X is a scheme!

Lemma 7. 1. Suppose given a smooth S-stack X and a vector bundle £ of constant rank on X.
Then there is a map of stacks f : X' — X such that:



(a) f*: F*PdRx — F?PdRx injective on cohomology for all p;
(b) f*E admits a full flag, i.e. a filtration by sub-bundles where each quotient is a line bundle.

2. Furthermore, suppose given a smooth S-stack X and a filtered vector bundle £ on X. Then there

exist maps of stacks X Ly L Y’ and a filtered vector bundle F on'Y such that:

(a) g*F ~ & as filtered vector bundles,
(b) The pullback filtered vector bundle f*F admits a splitting;
(c) f*:F*PdRy — F*PdRy is injective on H* for all p. (In fact, we'll even get it to be an iso.)

Proof. For part 1 we can follow the standard argument: first pass to the projective bundle on £. Pullback
to the projective bundle is injective on cohomology as in 2 by the projective bundle formula. On pullback
this gets you a short exact sequence

0-&-€-0(1) -0,

and then you continue inductively with the projective bundle of £’, etc. Essentially, you build the object
on which you tautologically have a full filtration as desired, i.e. the moduli space of full flag, and check
that the injectivity 2 is satisfied.

For part 2, we could try the same thing and build the object on which you tautologically have a
splitting. For a filtration of length two, i.e. a short exact sequence 0 - &' — £ — £”, splittings exist
locally and the difference between any two splittings is a homomorphism &" — £’. Thus in general
the moduli space of splittings is a principal homogeneous space for the vector bundle Hom(&"”,£"). In
trying to verify the requisite injectivity on cohomology, we run into the issue that due to the lack of
homotopy invariance of de Rham cohomology, we can't easily control the de Rham cohomology of such
a principal homogeneous space.

But weighted homotopy invariance saves the day. We set Y = X x BG,, and extend & to a filtered
vector bundle F on Y by means of the weight one G,,-action by scalar multiplication. Proceeding by
induction on the length of the filtration, we can reduce to the situation of a short exact sequence as
above. We find that the moduli space of splittings is a principal homogeneous space for the vector bundle
over X x BG,,, which is Hom(&",£") as an underlying vector bundle over X, with G,,,-equivariance given
by scalar multiplication by A2, so the weight 2 action. In any case, by weighted homotopy invariance it
follows that the induced pullback map on filtered de Rham cohomology is an isomorphism, whence the
desired construction. O

Now, following Totaro, we can see that the de Rham cohomology of BG L, is “correct”.

Theorem 8. Let r > 1. Then dRpgy, is the polynomial algebra over Og on the classes c; for 1 <i<r,
the Chern classes of the tautological rank r vector bundle:

H*dRpgyr, = Ogler, ..., e

The class c; lives in homological degree —2i and filtration > i, actually the Hodge filtration on dRp¢g1,,
is given by saying that F'*P consists of the free sums of monomials []; c?" with ¥;i-n; > p.

Proof. The Chern classes themselves make a filtered multiplicative map from right to left; we claim it
is an iso. Consider the map
f:BG,, - BGL,



corresponding to the inclusion of diagonal matrices, or equivalently classifying
(L1,.., L) L1®...0L,.
We claim:
1. f* is injective on H* F*PdR for all p;

2. The image of f* lands inside the S.-invariants on H*F*PdRpgr for all p, where the symmetric
group S, acts by permuting the factors.

For 1, let's apply the version of the splitting principle used above to the universal bundle. We find that
there is a stack Y containing BG L, as a retract such that there is a map of stacks Y’ — Y, injective on
cohomology, such that the retraction Y — BGL, lifts along f when restricted to Y'. The conclusion
follows.

For 2, it suffices to note that f is S,-invariant up to homotopy because of homotopy-commutativity
of direct sum.

On the other hand, Kiinneth for stacks (follows by a simple argument using smooth atlas and
Kiinneth for schemes) shows that the cohomology of BG], is the polynomial ring on 7 variables, the
r different pullbacks of ¢;. Thus the above shows that the cohomology of BG L, identifies with some
subring of the ring of symmetric polynomials in these r variables. However, we know a priori this
subring contains the Chern classes. By the Cartan formula for Chern classes of direct sums, the ¢;
pull back to the elementary symmetric polynomials in these r variables. Now we conclude by the fact
from commutative algebra that every symmetric polynomial is uniquely polynomial in the elementary
symmetric polynomials. O

Finally, using this, we can produce a theory of Thom classes.

Theorem 9. There is a unique way to assign, to every vector bundle V- — X of rank r over a smooth
S-stack X, a class
Thy € HY F*"dRy e vox

such that:

1. For the universal locally free of rank one sheaf O(1) on BG,,, note that the corresponding total
space V = A(O(1)) is G,,\\A!, and the complement of the zero section is G, \\G,, = S. Recall
that ¢y is a class in de Rham cohomology of BG,, which is trivial on restriction to S. Thus by
pullback to G,,\\A'! it gives a candidate Thom class, and we demand that indeed Thg,,\\a1 = C1.

2. We have Thygw = Thy -Thw via the Kiinneth isomorphism dRy gw rel vesox = ARy rej vi0x ®
dRV rel V\Ox -

Moreover, promoting V' to the vector bundle G,,\\V — X x BG,,, using scalar multiplication as usual,
multiplication by Thg,,\\v gives an iso

dRGm\\V rel Gm\\V\OXxBGm = dRXXBGm [_2T]{r}7

i.e. we have a weighted Thom isomorphism.



Proof. Note that in the situation of the splitting principle lemma above, we also get injectivity on the
relative de Rham cohomology where the Thom class is supposed to live by the same reasoning. Thus
the theory is determined by the case where V' is a direct sum of line bundles; by axiom 2 we reduce to
line bundles themselves, and these are determined by axioms 1 and 3. Thus we have uniqueness.

For existence, we work in the universal case. For the tautological rank n vector bundle over BGL,,
the complement of the zero section identifies with the map BGL,_1 - BGL, classifying direct summing
with the trivial line bundle. The top Chern class ¢, vanishes on restriction to BGL,_1 for example by
the Whitney sum formula; thus it promotes to a class in relative de Rham cohomology (uniquely, as the
cohomology is concentrated in even degrees), and we take that as the definition of the Thom class in
the universal case. In general it is defined by pullback. By construction axioms 1 and 3 are satisfied.
For axiom 2, we note that the Cartan formula shows that the top Chern class is multiplicative.

As for the weighted Thom isomorphism, we can work locally, and it follows from weighted homotopy
invariance and the projective bundle formula. ]

Exercise 10. Recall from the end of the previous lecture that we directly produced candidate Chern
classes in Hodge cohomology from Totaro'’s theorem. Show these Chern classes (in essence defined by
Atiyah as an algebraic analog of Chern-Weil theory) satisfy the axioms for Chern classes stated in this
lecture, hence are “the” Chern classes as defined for example using the cohomology projective bundles
as in this lecture.



