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Let’s pick up where we left off last time. Let S be a scheme. We’ve been considering the associated
graded for the Hodge filtration on equivariant de Rham cohomology over S, which is accessible by
Totaro’s theorem:

⊕p≥0grpdRG//X ≃ f∗∣Kos(Ω1
X → g∗)∣.

Here G is a smooth group scheme acting on a smooth scheme X and f ∶ G//X → S is the structure
map. When G = Gm and X = S, only the pure symmetric power terms in the Koszul CDGA contribute,
and we saw that the pushforward f∗ just amounts to taking the underlying non-equivariant object, giving
the result

⊕p≥0grpdRBGm = ⊕p≥0cp1 ⋅ OS[−2p]

where c1 ∈H2gr1dRBGm is the class corresponding to the canonical generator of Sym1g∗ = g∗, namely
the pullback of dT ∈ Ω1

A1 along the identity section element of Gm.
We would like to understand this class c1 more explicitly. Abstractly, the data of c1 is the same as

the data of a map of fpqc sheaves of groupoids on smooth S-schemes

BGm →MapD(−)(O,Ω1[1]).

In fact, and this should really be specified as part of the data of c1, on the cocycle level this class c1
vanishes on pullback along S → BGm (i.e. the corresponding characteristic class canonically vanishes
on trivial principal Gm-bundles), so it is really a canonical class in relative Hodge cohomology. For the
above map of sheaves of groupoids, this means that it naturally promotes to a pointed map, where the
target is pointed by 0. Giving a pointed map from a groupoid of the form BG to a pointed groupoid
(X,x) is the same as giving a homomorphism from G to the automorphism group of x in X, i.e. π0ΩX.
Thus the data of our c1 is the same as the data of a map of presheaves of groups

Gm → Ω1

on smooth S-schemes.

Lemma 1. The homomorphism Gm → Ω1 corresponding to c1 is given (up to a sign which is probably
a matter of convention) by the “logarithmic derivative” homomorphism

λ↦ dλ

λ
,

so-called because formally speaking dλ
λ = dlog(λ).
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Proof. We have to unwind the construction of c1. Although we could do everything in the universal
case, it’s probably easier to think in terms of c1 being a characteristic class of principal Gm-bundles
T̃ → T . Recall, in that guise, that it came from the short exact sequence of quasi-coherent sheaves on
T

0→ Ω1
T → Ω1

T̃
→ g∗ → 0,

namely we take the image of the canonical generator of g∗ under the associated boundary map for this
short exact sequence. To unwind the corresponding homomorphism Gm → Ω1, we’re supposed to recall
that this short exact sequence gets a canonical splitting when the bundle is trivialized, thus giving a lift
of our canonical generator of g∗ to the middle term Ω1

T̃
. Given an element of Gm we can change the

trivialization, then take the difference of the two lifts to get an element of Ω1
T .

The canonical splitting came from the Künneth formula. To give the corresponding lift of ωe ∈ g∗,
we extend ωe to an invariant one-form ω ∈ Ω1

G then pull back to T̃ via the projection. In the case
G = Gm = Spec(R[t, t−1]) the invariant one form corresponding to the canonical generator is dt

t . When
we change the trivialization by a λ ∈ Gm this replaces t by λt, and the difference is indeed

d(λt)
λt

− dt
t
= dλ
λ

as claimed.

Corollary 2. The class c1 ∈H2gr1dRBGm canonically lifts to c1 ∈H2F ≥1dRBGm .

Proof. Since d(dλλ ) = 0, we have a map of complexes of sheaves of abelian groups

Gm → (Ω1 d→ Ω2 d→ . . .) = F ≥1Ω●[1]

extending dlog ∶ Gm → Ω1, whence the desired c1 by shifting up by one and passing to hypercohomology.

Corollary 3. We have
dRBGm = ⊕n≥0cn1 ⋅ OS ,

where c1 has homological degree −2. Moreover the Hodge filtration is the same as the c1-adic filtration,
i.e.

F ≥pdRBGm = ⊕n≥pcn1 ⋅ OS .

Now, let us move beyond the trivial Gm action on the terminal S-scheme S and go to some more
general Gm-actions. In the short term we’d like to present the calculation of the de Rham cohomology
of projective bundles

P(E) = Gm//(A(E) ∖ 0X)

associated to locally free sheaves E of finite rank on smooth S-schemes X. Here A(E) = SpecXSymE ,
so that points of A(E) amount to maps E → O, i.e. global sections of E∗, and points of P(E) amount
to iso classes of locally free of rank one quotients E → L of E . (Caution: many sources take the dual
convention.)

But for this any several other purposes it’s actually convenient to start with the variant

Gm//A(E)
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without removing the zero section. Note that when we remove the zero section the action is free, and
indeed A(E)∖ 0X is the total space of a principal Gm-bundle over the scheme P(E). But the action on
0 is trivial and this means Gm//A(E) is really just a stack, not a scheme.

But even more, we will also want to generalize our base S-scheme X to a base S-stack; in fact
this extra generality will be absolutely crucial for us as we’ll see when discussing weighted homotopy
invariance. We’ve only talked about the so-called smooth quotient stacks, namely G//X for smooth
group schemes G acting on smooth S-schemes X, and whenever we say smooth stack we will implicitly
mean stack of that form. Of course there is a more general notion, but none of our constructions will
leave the world of quotient stacks, and the universal case for all problems we consider will always be a
smooth quotient stack anyway, so let’s not get in to that extra generality.

As discussed in Lecture 12, concepts such as vector bundle, projective bundle, de Rham cohomology,
and so forth are defined for stacks in the naive way: such an object over a stack X is the same as a
compatible family of such objects on all schemes mapping to X. All concepts we use will have smooth
descent, and then it’s equivalent to just give the data of such a compatible family over the Cech nerve
of some smooth cover.

The following “weighted homotopy invariance” is an important remark of Totaro’s. It shows that
even in characteristic p, the problem of the affine line having huge de Rham cohomology disappears
provided one takes into account equivariance for scalar multiplication.

Lemma 4. Let X be an S-stack and E a locally free sheaf of finite rank r on X, and for k ∈ Z let Gm

act on A(E) via (λ,x) ↦ λkx and x a section of E . Then if k ≠ 0, the map

Gm//A(E) → BGm ×X

is an isomorphism on de Hodge cohomology, hence on filtered de Rham cohomology.

Proof. By descent, we can reduce to the case where X is a scheme and E ≃ Or. Then A(E) = Ar ×X,
and by Künneth we can reduce to the case X = S. By Totaro’s theorem, we have

⊕p≥0grpdRGm//Ar ≃ f∗Kos(Ω1
Ar → g∗)

with f ∶ Gm//Ar → S. We can factor this as the composition

Gm//Ar → BGm → S,

where the first map is induced by the equivariant projection Ar → S. Pushforward along the first map is
just remembering equivariance on the pushforward along Ar → S, which is just global sections, with no
higher cohomology as Ar is affine. On the other hand, pushforward along the second map just picks out
the weight zero part in terms of the equivalence between quasicoherent sheaves on BGm and graded
quasi-coherent sheaves on S. So we just need to look at the Koszul complex and pick out the weight
zero part, i.e. the part on which the Gm action is trivial. On the Symqg∗ terms the action is trivial, so
those have weight zero. However, for

ω ∈ Ωp
Ar

we have that ω is a linear combination of wedges of terms dti where ti are the coordinates and the
coefficients in this linear combination are polynomials in the ti. By definition the ti have weight k, so
the weight of each dti is also k and the weight of a homogeneous polynomial of degree d in the ti is
d ⋅k, hence the weight of any ω with p > 0 is > 0 if k > 0 and < 0 if k < 0. In particular only the Symqg∗

terms remain after passing to weight zero components, whence the answer is the same as for BGm, as
claimed.
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Using this we can treat the cohomology of projective bundles.

Theorem 5. Let X be a smooth S-stack and E a locally free sheaf of rank r over X. Then as a filtered
dRX -module, dRP(E) is free of rank r on the classes

1, c1(O(1)), . . . c1(O(1))r−1

with c1(O(1))i in homological degree −2i and filtration ≥ i.

Proof. We can make a natural comparison map

⊕r−1i=0 dRX ⊗OS[−2i]{i} → dRP(E)

by pulling back and multiplying with c1(O(1))i. To check it’s an isomorphism, we can work locally and
thus assume X is a scheme and E ≃ Or. Then by Künneth we reduce to X = S. Thus we want to show
that

⊕r−1i=0OS[−2i]{i} → dRPr−1

is an iso.
We will in fact prove the following more refined statement: there is a canonical nullhomotopy of

c1(O(1))r on Pr−1 (recall that c1 was defined on the cocyle level, so the statement makes sense),
whence a lift to a class in relative de Rham cohomology

Thr ∈ dRGm//Ar rel Pr−1

in homological degree degree −2r and filtration ≥ r; and moreover dRGm//Ar rel Pr−1 is a free filtered
dRBGm-module on Thr. By the definitional long exact sequence expressing this relative de Rham
cohomology as the fiber of the restriction

dRGm//Ar → dRPr−1

and the calculation of dRGm//Ar ≃ dRBGm from the previous lemma, this refined statement will indeed
imply the desired claim.

To produce Thr and prove it’s a free generator as claimed, note that the Künneth theorem for
relative de Rham cohomology yields

dRGm//A(E⊕E ′) rel P(E⊕E ′) ≃ dRGm//A(E) rel P(E) ⊗ dRGm//A(E ′) rel P(E ′),

whence
dRGm//Ar rel Pr−1 ≃ ⊗rdRGm//A1 rel P0

reducing all claims to the case r = 1. But then P0 = S and we can just take our first chern class
definitionally viewed as a class in relative de Rham cohomology of BGm, as discussed above.

Now we can produce the theory of Chern classes.

Theorem 6. There exists an association

E ↦ ci(E) ∈H2iF ≥idRX

for all locally free sheaves of finite rank E on smooth S-stacks X and all i ≥ 1, satisfying the following
properties:
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1. If L is locally free of rank one, then c1(L) is the first Chern class as defined earlier using dlog.

2. If 0→ E ′ → E → E ′′ → 0 is a short exact sequence of locally free sheaves of finite rank, then

ci(E) = ∑
j+k=i

cj(E ′) ⋅ ck(E ′′)

for all i ≥ 0, where we set c0 = 1. (Cartan formula)

3. ci(f∗E) = f∗ci(E) for all maps f ∶ Y →X and i ≥ 1.

Moreover, such an association satisfying these axioms is unique, even if we replace 2 by the following
weaker variant: that the conclusion holds if E ≃ E ′ ⊕ E ′′.

Proof. Since the rank of a vector bundle is constant on some disjoint union decomposition, and de
Rham cohomology takes disjoint unions to products, the theory is uniquely determined from the case of
vetor bundles of constant rank. So let’s focus on that.

Suppose given X and E of rank r over X. By the version of the splitting principle which we’ll prove

as a lemma afterwards, there are maps X
g→ Y

f← Y ′ and a vector bundle F on Y such that:

1. g∗F ≃ E ,

2. f∗F ≃ L1 ⊕ . . .⊕Lr with each Li locally free of rank one;

3. f∗ ∶ F ≥pdRY → F ≥pdRY ′ is injective on H∗ for all p.

Using axiom 3 for Chern classes it follows that Chern classes in general are determined by the case of
direct sums of line bundles. Then axioms 1 and 2 show that the theory of direct sums of line bundles
is uniquely determined as well.

Now let’s show existence. We’ll use the Grothendieck construction of Chern classes. Given E of rank r
over X, consider the projective bundle P(E). By the lemma above the class c1(O(1))r ∈H2rF ≥rdRP(E)
can uniquely be written as a polynomial in the previous powers of c1(O(1)) with coefficients in dRX .
We define ci(E) to be (−1)i+1 multiplied by the (r − i)th coefficient.

It is clear that axiom 3 is satisfied, and axiom 1 is trivially verified (P(L) = S, but the tautological
line bundle O(1) identifies with L.) For 2, again by the splitting principle we can reduce to the case
where the short exact sequence is split, and then to the case where all vector bundles occurring are
direct sums of line bundles. Thus we reduce to showing that on P(L1 ⊕ . . .⊕Lr), we have

r

∏
i=1

(c1(O(1)) − c1(Li)) = 0.

This is proved in exactly the same way we proved the relationship c1(O(1))r = 0 on Pr−1 in the
previous proof, namely by using Künneth in relative de Rham cohomology of stacks to reduce to the
case r = 1.

We used the following variant of the splitting principle. In part 1 we don’t need stacks, but for part
2 it’s crucial we pass to stacks even if X is a scheme!

Lemma 7. 1. Suppose given a smooth S-stack X and a vector bundle E of constant rank on X.
Then there is a map of stacks f ∶X ′ →X such that:
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(a) f∗ ∶ F ≥pdRX → F ≥pdRX′ injective on cohomology for all p;

(b) f∗E admits a full flag, i.e. a filtration by sub-bundles where each quotient is a line bundle.

2. Furthermore, suppose given a smooth S-stack X and a filtered vector bundle E on X. Then there

exist maps of stacks X
g→ Y

f← Y ′ and a filtered vector bundle F on Y such that:

(a) g∗F ≃ E as filtered vector bundles,

(b) The pullback filtered vector bundle f∗F admits a splitting;

(c) f∗ ∶ F ≥pdRY → F ≥pdRY ′ is injective on H∗ for all p. (In fact, we’ll even get it to be an iso.)

Proof. For part 1 we can follow the standard argument: first pass to the projective bundle on E . Pullback
to the projective bundle is injective on cohomology as in 2 by the projective bundle formula. On pullback
this gets you a short exact sequence

0→ E ′ → E → O(1) → 0,

and then you continue inductively with the projective bundle of E ′, etc. Essentially, you build the object
on which you tautologically have a full filtration as desired, i.e. the moduli space of full flag, and check
that the injectivity 2 is satisfied.

For part 2, we could try the same thing and build the object on which you tautologically have a
splitting. For a filtration of length two, i.e. a short exact sequence 0 → E ′ → E → E ′′, splittings exist
locally and the difference between any two splittings is a homomorphism E ′′ → E ′. Thus in general
the moduli space of splittings is a principal homogeneous space for the vector bundle Hom(E ′′,E ′). In
trying to verify the requisite injectivity on cohomology, we run into the issue that due to the lack of
homotopy invariance of de Rham cohomology, we can’t easily control the de Rham cohomology of such
a principal homogeneous space.

But weighted homotopy invariance saves the day. We set Y =X ×BGm and extend E to a filtered
vector bundle F on Y by means of the weight one Gm-action by scalar multiplication. Proceeding by
induction on the length of the filtration, we can reduce to the situation of a short exact sequence as
above. We find that the moduli space of splittings is a principal homogeneous space for the vector bundle
over X×BGm which is Hom(E ′′,E ′) as an underlying vector bundle over X, with Gm-equivariance given
by scalar multiplication by λ2, so the weight 2 action. In any case, by weighted homotopy invariance it
follows that the induced pullback map on filtered de Rham cohomology is an isomorphism, whence the
desired construction.

Now, following Totaro, we can see that the de Rham cohomology of BGLr is “correct”.

Theorem 8. Let r ≥ 1. Then dRBGLr is the polynomial algebra over OS on the classes ci for 1 ≤ i ≤ r,
the Chern classes of the tautological rank r vector bundle:

H∗dRBGLr = OS[c1, . . . , cr].

The class ci lives in homological degree −2i and filtration ≥ i; actually the Hodge filtration on dRBGLr

is given by saying that F ≥p consists of the free sums of monomials ∏i cni
i with ∑i i ⋅ ni ≥ p.

Proof. The Chern classes themselves make a filtered multiplicative map from right to left; we claim it
is an iso. Consider the map

f ∶ BGr
m → BGLr
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corresponding to the inclusion of diagonal matrices, or equivalently classifying

(L1, . . . ,Lr) ↦ L1 ⊕ . . .⊕Lr.

We claim:

1. f∗ is injective on H∗F ≥pdR for all p;

2. The image of f∗ lands inside the Sr-invariants on H∗F ≥pdRBGr
m

for all p, where the symmetric
group Sr acts by permuting the factors.

For 1, let’s apply the version of the splitting principle used above to the universal bundle. We find that
there is a stack Y containing BGLr as a retract such that there is a map of stacks Y ′ → Y , injective on
cohomology, such that the retraction Y → BGLr lifts along f when restricted to Y ′. The conclusion
follows.

For 2, it suffices to note that f is Sr-invariant up to homotopy because of homotopy-commutativity
of direct sum.

On the other hand, Künneth for stacks (follows by a simple argument using smooth atlas and
Künneth for schemes) shows that the cohomology of BGr

m is the polynomial ring on r variables, the
r different pullbacks of c1. Thus the above shows that the cohomology of BGLr identifies with some
subring of the ring of symmetric polynomials in these r variables. However, we know a priori this
subring contains the Chern classes. By the Cartan formula for Chern classes of direct sums, the ci
pull back to the elementary symmetric polynomials in these r variables. Now we conclude by the fact
from commutative algebra that every symmetric polynomial is uniquely polynomial in the elementary
symmetric polynomials.

Finally, using this, we can produce a theory of Thom classes.

Theorem 9. There is a unique way to assign, to every vector bundle V → X of rank r over a smooth
S-stack X, a class

ThV ∈H2rF ≥rdRV rel V ∖0X

such that:

1. For the universal locally free of rank one sheaf O(1) on BGm, note that the corresponding total
space V = A(O(1)) is Gm//A1, and the complement of the zero section is Gm//Gm = S. Recall
that c1 is a class in de Rham cohomology of BGm which is trivial on restriction to S. Thus by
pullback to Gm//A1 it gives a candidate Thom class, and we demand that indeed ThGm//A1 = c1.

2. We have ThV ⊕W = ThV ⋅ThW via the Künneth isomorphism dRV ⊕W rel V ⊕∖0X ≃ dRV rel V ∖0X ⊗
dRV rel V ∖0X .

Moreover, promoting V to the vector bundle Gm//V → X ×BGm using scalar multiplication as usual,
multiplication by ThGm//V gives an iso

dRGm//V rel Gm//V ∖0X×BGm
≃ dRX×BGm[−2r]{r},

i.e. we have a weighted Thom isomorphism.
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Proof. Note that in the situation of the splitting principle lemma above, we also get injectivity on the
relative de Rham cohomology where the Thom class is supposed to live by the same reasoning. Thus
the theory is determined by the case where V is a direct sum of line bundles; by axiom 2 we reduce to
line bundles themselves, and these are determined by axioms 1 and 3. Thus we have uniqueness.

For existence, we work in the universal case. For the tautological rank n vector bundle over BGLr,
the complement of the zero section identifies with the map BGLr−1 → BGLr classifying direct summing
with the trivial line bundle. The top Chern class cr vanishes on restriction to BGLr−1 for example by
the Whitney sum formula; thus it promotes to a class in relative de Rham cohomology (uniquely, as the
cohomology is concentrated in even degrees), and we take that as the definition of the Thom class in
the universal case. In general it is defined by pullback. By construction axioms 1 and 3 are satisfied.
For axiom 2, we note that the Cartan formula shows that the top Chern class is multiplicative.

As for the weighted Thom isomorphism, we can work locally, and it follows from weighted homotopy
invariance and the projective bundle formula.

Exercise 10. Recall from the end of the previous lecture that we directly produced candidate Chern
classes in Hodge cohomology from Totaro’s theorem. Show these Chern classes (in essence defined by
Atiyah as an algebraic analog of Chern-Weil theory) satisfy the axioms for Chern classes stated in this
lecture, hence are “the” Chern classes as defined for example using the cohomology projective bundles
as in this lecture.
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