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Let S be our fixed base scheme. Last time we ended with a theory of Thom classes for vector
bundles. Namely, to every vector bundle V' — X of rank r over a smooth S-stack was assigned a class

Thy € H* F*"dRy e v<ox -

It was functorial under pullback and multiplicative under cartesian product (over S), and it was uniquely
determined by these requirements plus the fact that for line bundles it corresponds to the first Chern
class. In this lecture we'll use Thom classes to produce cycle classes associated to closed inclusions of
smooth S-stacks.

Theorem 1. There exists a unique assignment of a cycle class
Cly € H2TFZTdRX rel X\Y

to every codimension v smooth closed substack Y c X of a smooth S-stack X, such that:

1. For the inclusion BG,, c G,,\\A! of the zero section of the universal line bundle, we have
Clpg,, = c1,
the first Chern class of the universal line bundle.

2. IfY c X andY' ¢ X' are two closed inclusions of smooth S-stacks with product closed inclusion
Y xY’'c X x X', then
Clyyxyr =Cly & Cly+

via the Kiinneth isomorphism dRxxx' rel XxX'\YxY’' ~ ARX rel Xy ® AR X7 rej X'~ Y.

3. If f: X" > X is a morphism of smooth S-stacks which is transversal to Y c X, then

Clyy = [*Cly.

Moreover, assigning to' Y c X the induced class in the associated graded relative Hodge cohomology
Cly € H"'|[Q"|x re1 x\v

is also unique subject to the obvious analogs of the three axioms above.



Just as in the previous lecture on Chern classes and Thom classes, passing to the generality of stacks
here is not just “for fun”. The construction of the cycle classes, even just for schemes, passes through
stacks, and | don't see why the uniqueness part of the theorem should hold in characteristic p if we just
restrict to schemes. Actually, for schemes the existence of such cycle classes was given by Berthelot
in his book "Cohomologie cristalline des schémas de characteristique p > 0", but he gives an explicit
construction and doesn’t prove any uniqueness claims.

To make sense of all the notions used here, we should discuss some preliminaries.

Lemma 2. Suppose given a closed inclusion i : Y ¢ X of smooth S-schemes. Then:
1. Locally for the Zariski topology on X, there exists > 0 and a smooth map X — A” withY = f~10.

2. The conormal sheaf Cycx := i*Z, where T is the ideal sheaf defining Y, is locally free of finite
rank, and fits into a short exact sequence

0 Cycx = i*Q% — Q3 - 0.

3. The natural map SymCycx — ®n>0t" L™ of graded quasi-coherent Oy -algebras is an isomorphism.
(Note also that @,50i*Z" can also be interpreted as the associated graded for the Z-adic filtration
on Ox.)

The local rank of Cycx is the same as the number r in part 1, and is also the difference of the relative
dimensions of X and Y.

Proof. Omitted. It's pretty easy to see that part 1 implies the rest; on the other hand the only way |
know how to prove part 1 is by proving part 2 first. O

Next we discuss transversality.

Definition 3. Let i:Y c X be a closed inclusion of smooth S-schemes, and let f: X' - X be a map
of smooth S-schemes. We say that f is transverse to Y if the map of locally free sheaves on Y' = f~1Y

ik - ok ek,

induced by functoriality of Kahler differentials, is a locally split inclusion; or equivalently, if when base-
changed to every residue field of Y' it is an injective map of full rank.

Transversality interacts well with the concept of a smooth morphism.

Lemma 4. Leti:Y c X be a closed inclusion of smooth S-schemes, and let f: X' — X be a map of
smooth S-schemes.

1. If f is smooth then f is transverse to Y.

2. More generally, if f is smooth, then g : X" — X' is transverse to f~'Y ifand only ifgof : X" - X
Is transverse to Y .

3. If for some smooth surjective map g: X" — X' we have that go f is transverse to Y, then [ is
transverse to Y .



Using the graph construction, we can factor any map between smooth schemes as a locally closed
inclusion followed by a smooth map. Using this we see that every transversal map is locally the com-
position of a transverse closed inclusion and a smooth map. Furthermore, transverse closed inclusions
look, étale locally, like transverse intersections in a vector space. Using these facts it's not hard to check
the following.

Proposition 5. Suppose f is transverse to i as above. Then:

1. The scheme-theoretic pullback Y x x X' is a smooth S-scheme, whose sheaf of Kahler differentials
naturally identifies with the cokernel of the map in the definition of transversality.

2. For all n > 1, the natural map f*I™ — I'™ of quasi-coherent sheaves on X' is an isomorphism,
where T is the ideal sheaf on X definingY and T’ is the ideal sheaf on X' defining Y. Moreover
there are no higher Tor's in this pullback, i.e. the statement also holds for derived pullback.

3. The natural map f*Cycx — Cycx is an isomorphism.
In particular, passing to quotients:

Corollary 6. If f is transverse to i then the conormal sheaf construction C; commutes with f-pullback.
Next we extend all these notions to stacks.

Definition 7. A map of smooth S-stacks Y — X is called a closed inclusion if for every map X' - X
from a scheme, the pullback X' xx Y — X' is a closed inclusion of schemes.

Since a smooth stack admits a smooth atlas by smooth schemes, we can test this on smooth maps
from smooth schemes. Because in the smooth scheme setting the conormal sheaf is compatible with
smooth pullback by the above discussion of transversality, we deduce by descent that the conormal sheaf
also makes sense in the stack setting.

Definition 8. A map of smooth S-stacks X' — X is called smooth if it makes X' into a smooth
X-stack, i.e. for every pullback to a scheme we get a smooth stack over that scheme.

Again because smooth stacks admit smooth atlases, we deduce that the conormal sheaf is also
compatible with pullback along smooth maps of stacks. We also extend the definition of a transverse map
by copying the scheme definition. Note that transversality can be checked locally for the fpqc topology,
so everything reduces to the scheme case. In brief, the extension to sooth stacks is straightforward by
checking everything smooth-locally.

With that background out of the way, let's return to the problem of constructing our cycle classes

ClY € HZTFZTCZRX rel X\Y

satisfying the axioms above: Clpg,, = c1 for the zero section of the universal line bundle, multiplicativity,
and base-change compatibility for transversal pullbacks. First note that if these axioms hold, then for
zero sections of vector bundles the cycle class must be the Thom class of the previous lecture. Indeed,
the axioms are basically the same: we just have to note that every vector bundle pullback is transverse
to the zero section.

Proposition 9. Supose V' — X is a vector bundle over a smooth S-stack X, and i : X c V is the
inclusion of the zero section. Then Clx = Thy .



Now, the idea of the proof of existence and uniqueness of Gysin classes is to reduce to this case of
the zero section of a vector bundle by means of a construction known as the deformation to the normal
bundle. Intuitively you can think about this as follows. Let's consider the simplest case, the inclusion
of a point in a smooth manifold. Imagine the smooth manifold embedded in some ambient Euclidean
space, and scale it up by a factor A centered at your point. As A — oo, in any fixed region of space
your embedded manifold looks more and more like the tangent space of your manifold at that point.
Thus it makes sense to add a limiting object, the tangent space, at the point A = co. Algebraically, it's
a bit more conventient to reparametrize with 7' = 1/, and formally speaking the construction takes the
following form.

Theorem 10. To every closed inclusion Y c X of smooth S-stacks can be assigned a closed inclusion
Y x G, \\A' ¢ D
of smooth G,,\\A'-stacks, where:
1. The pullback to G,,\\G,,, = S identifies with the original Y c X, and this pullback is transverse;

2. The pullback to G,,\\0 = BG,,, identifies with the inclusion of the zero section in the vector bundle
Nycx = Specy (Cycx) over Y, viewed as G,,-equivariant by weight —1 scalar multiplication on
C;, and this pullback is transverse.

Moreover, this association sends smooth maps X' — X to smooth maps D' — D, and analogously
for étale maps, smooth surjective maps, and transverse maps. Moreover smooth fiber products go to
smooth fiber products.

Finally, if Y ¢ X is already the inclusion of the zero section of a vector bundle V = X overY, then
the associated inclusion Y x G,,\\A' — D is naturally isomorphic to the inclusion of the zero section
of the vector bundle over Y x G,,\\A! given by pulling back the vector bundle G,,\\V over Y x BG,,
where the G,,-equivariance given by weight —1 on V.

Proof. By descent, we can reduce to the construction to the scheme case, provided we check the claims
about smooth maps and smooth fiber products. So let's work in schemes. We'll construct D over A';
the G,,,-equivariance will come from the grading which will be part of the construction. This D will in
fact be relatively affine over X x Al (however, the structure map to X is not part of the data specified
above!), given by the coordinate quasi-coherent algebra

eI 2eIT 'e0Ox 0 OxTeOxT?a...

with “obvious” graded multiplication law with the T™ term living in degree n. This is known as the
Rees algebra. In particular the multiplication by T" map from degree n to degree n +1 is the identity on
Ox for n >0, and for n < 0 is the inclusion Z™ — Z"1. It follows that when we invert T" we get

B OXxT 20 0xT !0 0xa0xToOx 0 OxT?®.. .,

i.e. Ox[T,T7'] = Ox ® Og,,, whereas when we mod out by 7" we get

eI TPT? eI/’ T ' Ox /I 0T 00T ® ...,

i.e. Spec(SymCycx) but with the grading reversed to be in negative degrees. This gives our total
space D with the required properties; moreover, we have the homomorphism to i.Oy[T] given by the



quotient map Ox — i,.Oy in non-negative degrees and zero in negative degrees which gives the closed
inclusion satisfying the properties 1 and 2.

As for the claimed identification when X is a vector bundle over Y with the inclusion given by the
zero section, let's explain it in coordinates associated to a trivialization of the vector bundle with the
implicit understanding that the identification is linear in the coordinates. We should also remember in
any case that this identification will not respect the structure map to X. If X is a trivial vector bundle
with coordinates x1,...,x, over the affine scheme Y, then one checkss that the coordinate ring for D
is the polynomial ring Oy [z1,...,2,,T] where z; = z; - T, and this gives the claims.

To see compatibility with smooth morphisms and so on, the key is that multilication by 7' is injective
on the coordinate algebra of D, and this lets us check the claims on reduction mod 7" and inverting T,
when they become plain. We omit the details. O

We'll need one more trick with this construction to be able to phrase our key claim. For every n > 1,
there is an endomorphism of the stack G,,,\\A! induced by z ~ 2" on both A! and G,,,. We can in fact
make a tower of stacks over G,,\\A!, indexed by n under divisibility, all identified with G,,,\\A!, where
the transition map from n to m is z = z™™. Let us write (G,,\\A!), for the n" term in this stack,
and write D,, for the pullback to (G,,\\A!),, of the deformation in the above theorem.

The key result is the following.

Theorem 11. Let Y c X be a closed inclusion of smooth S-stacks, Y x G,,\\A! c D the associated

deformation to the normal bundle, and Y x (G,,\\A'),, c D,, the pullback along the n-power map on
G \\A!. Then the map

h_n)ldR’Dn rel Dp\Y x(Gm\\Al), h_n)ldRGm\\—nNYcX rel G \\n Ny cx N(BGm )n s
n n
induced by the inclusion of the pullback along 0 : BG,,, c G,,,\\A!, is an isomorphism. Here G,,\\_»Nycx
means the quotient by the weight —n action on Nycx, and we consider both sides as filtered objects
with respect to the Hodge filtration.

Let's first assume this result and give the proof of existence and uniqueness of cycle classes. First,
we show uniqueness. Suppose we have two theories of cycle classes, Cl and CI’. Let Y ¢ X be a closed
inclusion of smooth S-stacks of codimension 7, and consider the cycle classes

! 2r p>r
Cly G, Clyyg,, € H F= dRp re] DAY %G \\A1

associated to the deformation to the normal bundle. By functoriality under transverse pullback and
Proposition 9 above, both of these classes map to the Thom class of G,,\\-1Nycx under pullback
along 0 : BG,, - G,,\\A!. Thus, by the above theorem, the pullbacks of these two classes to
h_r)nn ARD, rel DunYx(Gm\\Al),, MUSt agree.

On the other hand, the tower (G,,\\A!),, of stacks over G,,\\A! is constant when restricted to
Gm\\Gyy, so the restriction map

dR’D rel D\Y xGy,\\AL dRX rel X\Y

along G,,\\G,,, c G,,,\\A! factors through h_r)nn dRp, rel DuaY x(Gm\\A1),- By functoriality under trans-
verse pullback again, these restrictions give Clly and Clg,, so those classes must agree, as desired.

Note that the same proof also works to show uniqueness of cycle classes in Hodge cohomology; this
will be crucial for us in the next lecture.



For existence we just turn this around to make a definition. By the above theorem, there is a unique
class in lim dRp, rel D, yx(Gn\\A1), Which maps to the image of the Thom class of G,,\\-1Nycx;
then we take the image of this class in dRx (el x~vy as the definition of our cycle class. The properties
are all straightforward to verify, by using the properties of the deformation to the normal bundle to
reduce to the analogous properties for Thom classes.

Now we will prove Theorem 11. First, note that by smooth descent of de Rham cohomology we can
reduce to the case of smooth schemes. Then the next idea is to further reduce to the case where Y ¢ X
is the O-inclusion 0 c A!. For this we follow the proof of Morel-Voevodsky's “purity theorem” in their
“Al-homotopy theory of schemes”, which also used the deformation to the normal bundle in a similar
fashion. The key property behind Morel-Voevodsky's argument is the following “Nisnevich excision”.

Lemma 12. Suppose Y c X is a closed inclusion of smooth S-schemes, and let f : X' — X be an étale
map such that Y' = 'Y - Y is an isomorphism. Then the pullback map of filtered objects

ARX rej x\y = dRx7 rel x'\y"
is an isomorphism.

Proof. In fact, this Nisnevich excision property holds for any étale sheaf, or even any Nisnevich sheaf. It
follows by applying étale descent to the cover of X by X \Y and X’. The only thing one needs to see
is that the “extra” descent data over X’ xx X’ is redundant. For this one considers the open cover of
X'xx X' by the diagonal X’ — X'xx X' (an open immersion as f is étale) and (X' \Y")xx.y (X'~\Y").
These cover by the isomorphism condition.

To finish, we recall that Hodge cohomology is an étale sheaf by quasi-coherence. O

Now, to prove Theorem 11 we can work locally and thus assume that there is an étale map X — A"
such that Y = f7'A™ . If the map Y — A" were an isomorphism so that we have a Nisnevich excision
square, we would deduce the analogous Nisnevich excision property for the associated deformation to
the normal bundle, and this would give our desired reduction. But Y — A™™" is not an isomorphism in
general.

Nonetheless there is the following trick to relate Y c X to 0: Y c Y x A" by a zig-zag of Nisnevich
excision squares. Namely, consider the diagonal embedding Y ¢ X xun (Y x A"). Using the two
projections we get two Nisnevich excision squares of the desired form. Applying the deformation to the
normal bundle construction, this gives the reduction to the case of the zero section of a trivial vector
bundle.

Then, using Kiinneth, we can reduce to the case Y = S and then to the case » = 1. Thus, what we
need to check is the following:

Lemma 13. Consider the action of G,, on A' x A! = Specs(Og[z,T]) by weight —1 on z and weight
1 onT and the map

Gm\\(A! x A1) - G, \\A!

on quotients induced by projection to the second factor. Note that the pullback to (G,,\\A'),, is given
by the quotient of the action of Gy, on

(A' x A1), = Specs(Og[z, T'™])

given by weight —n on x and weight 1 on T/™.



Then the comparison map on de Rham cohomology

ARG, \\(A1xAL)y rel Gm\\(GmxAL)n —> ARG \\(A1)n rel Gon\\(Grm)n
is an isomorphism in the colimit over n.

Proof. First let's see what happens when we rationalize, passing to dR®Q, or equivalently changing our
base to the rationalization of S instead. Then in fact the map is an isomorphism at each level n. Indeed,
we have Al-invariance and the de Rham cohomology of G,, is also “as expected”, so we have a Thom
isomorphism for arbitrary vector bundles. It follows that the comparison map in level n identifies, up to
a shift both in homological index and in filtration, with the comparison map on de Rham cohomology
associated to 0: BG,, - (G,,\\A!),,. But that again is an isomorphism by Al-invariance.

Thus it suffices to show the analogous claim for the fiber of dR — dR ® Q, which is the filtered
colimit over positive integers k under divisibility of shifts of copies of dR/k. Thus it suffices to show the
analogous claim for dR/k. We can even assume k = p is a prime if we like; this is maybe psychologically
useful but it will be irrelevant for the argument.

Now, we can pass to the associated graded for the Hodge filtration to reduce to the analogous claim
for mod p Hodge cohomology. Then we use Totaro’s model for equivariant Hodge cohomology. The
key remark is the following: all the terms in the Koszul complex containing a Sym?g* factor with ¢ >0
will be killed when we take the colimit over n. Indeed, the n*” power map on G,, induces multiplication
by n on g*, and for a cofinal collection of n this is zero mod p.

Thus, Totaro’s theorem shows that the filtered colimit of mod p Hodge cohomology, for all four terms
G \\(A! xAL),,, G, \\(G,, x ALY, G \\(A1),, and G,,\\(G,,,), we're interested in, is calculated by
just looking at the degree 0 part of the de Rham complex and then taking the filtered colimit over n.
But we can even simplify further, because in this de Rham complex, the terms of Hodge degree > 0 in
the T variable will become 0 in the filtered colimit over n for the same reason. Thus we can calculate
the same limiting object by just looking at the de Rham complex of the first factor A! or G,, as the
case may be, tensoring with OS[Tl/"] in the cases where the second factor appears, taking the degree
0 part, then passing to the filtered colimit over n.

For G,,\\(A!),, we just get the degree 0 part of the de Rham complex of A!, which is just the
constants sitting in degree 0. For G,,\\(G,), we get the degree 0 part of the de Rham complex of
G, which is the constants in degree 0 and the constant multiples of dx/x in degree 1. Thus for the
relative Hodge cohomology of the first relative to the second, we're free on one class in homological
degree —2 and Hodge degree 1 coming from the dz/x.

For G, \\(A! x Al),, in degree 0 we're free on the classes 2T for a > 0 and in degree 1 we're
free on the classes 29T%"1dz. For G,,\\(G,, x A1), it's the same except that we're allowed to have a
be negative, provided only that a+1 > 0. In degree zero this doesn't make any difference so we get the
same thing in degree 0. But in degree 1 we get the extra free generator dz/x. Thus the relative theory
is the same as before, proving the claim. O

Exercise 14. Prove that any smooth group scheme “degenerates to an additive group scheme”: more
precisely, if G is a smooth S-group scheme, then there is a smooth group scheme over AIS whose fiber at
every nonzero point is isomorphic to G but whose fiber at 0 is isomorphic to an additive group scheme,
indeed a group scheme underlying a vector bundle. Can you have the opposite phenomenon: can for
example the additive group scheme G, degenerate to G, in the same sense?



