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Recall from the previous lecture that if M is a Stein manifold, then there is a natural isomorphism

RΓ(M ;C) ≃ ∣Ω●(M)∣,

in D(C), i.e. the holomorphic de Rham complex of M calculates the topological cohomology of M
with complex coefficients. Recall also that examples of Stein manifolds are given by the analytifications
M = Xan of smooth affine algebraic varieties X over the complex numbers. Grothendieck’s theorem
says that for such a Stein manifold, one can use the much smaller complex of algebraic differential
forms.

Theorem 1. Let X be a smooth affine algebraic variety over C. Then the natural map

Ω●(X) → Ω●(Xan),

from the algebraic de Rham complex of X to the holomorphic de Rham complex of its analytification,
is a quasi-isomoprhism.

Thus, algebraic de Rham cohomology of a smooth affine variety computes the ordinary topological
cohomology of the underlying topological space of C-valued points. We will of course define and study
algebraic de Rham cohomology from a systematic perspective later, but for now let’s explore this theorem
in a more hands-on way. First, here are some examples.

Example 2. Let X = A1 = Spec(C[t]). Then the algebraic de Rham complex is

[C[t]
d/dt
→ C[t]] .

The only polynomials with 0 derivative are the constants, and every polynomial ∑n≥0 cnx
n has an

antiderivative ∑n≥0 cn
xn+1

n+1 . Thus the cohomology is C in degree 0 and vanishes in all other degrees.
This matches the topological cohomology of A1(C) = C as the latter is contractible.

Example 3. Let X = Gm = A1 ∖ {0} = Spec(C[t, t−1]). Then the algebraic de Rham complex is

[C[t, t−1]
d/dt
→ C[t, t−1]] .

Again the H0 term is C, but now the H1 term is also C because t−1 has no anti-derivative. This
matches the topological cohomology of Gm(C) = C ∖ {0} ∼ S1.
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Remark 4. If, as in the above two cases, our variety X is defined over Q, then a very interesting
phenomenon appears in the topological cohomology of its complex points. Namely, the cohomology
with C-coefficients carries two different rational structures: the one coming from topological cohomology
with Q-coefficients, and the other coming from algebraic de Rham cohomology with Q-coefficients. The
fact that they’re different can be measured by integrating algebraic differential forms defined with Q-
coefficients along cycles in singular homology defined with Q coefficients, and noting that more often
than not, these so-called periods are irrational numbers. The most basic example is the familiar contour
integral ∫ dz

z around the unit circle, which gives 2πi.

Example 5. Fix constants a, b ∈ C such that the polynomial x3 + ax + b has no repeated roots, and
consider the punctured elliptic curve

X = Spec(C[x, y]/(f(x, y)))

where f(x, y) = y2−x3−ax−b. This is a smooth affine curve, and the de Rham complex is the two-term
complex

[O(X) → O(X){dx, dy}/∂1fdx + ∂2fdy] ,

where the first term is O(X) = C[x, y]/(f(x, y)), the second term is the quotient of the free O(X)-
module on two generators dx, dy by the single relation which appears, and the differential is C-linear,
satisfies the Leibniz rule, and sends x and y to the formal generators dx and dy.

The topological space X(C) is a punctured 2-torus, so Grothendieck’s theorem tells us to expect a
one-dimensional H0 and a two-dimensional H1. You will verify this as an exercise by producing a global
one-form ω ∈ Ω1(X) such that the classes of ω and xω give a basis for the first algebraic de Rham
cohomology.

Example 6. For the algebraic de Rham complex, we have a Künneth formula Ω●(X) ⊗C Ω●(Y ) ≃
Ω●(X × Y ) for the algebraic tensor product. Using this one can see that Grothendieck’s theorem holds
for a product of varieties if it holds for each factor. In particular we get higher-dimensional examples
from the above elementary one-dimensional examples.

Grothendieck’s theorem in this naive form only holds for affine varieties. There is a more general
form which holds for all smooth varieties, but that requires hypercohomology. On the other hand, the
proof of the a priori simpler affine case crucially uses compactification and therefore requires a treatment
of general varieties, including hypercohomology! We’ll explain a part of this now and finish up in the
next lecture.

Let’s start by making a discussion of the de Rham complex of smooth varieties, in parallel to our
discussion of the de Rham complex in the analytic settings. Again, we’ll give a more thorough discussion
later where we’ll adopt a different definition and see that it satisfies the properties we’ll use here to
characterize the theory.

To every smooth algebraic variety X over the complex numbers we can assign a complex

Ω●(X) = [Ω0(X) → Ω1(X) → . . .] ,

characterized as a functor of X by the following:

1. Ω●(X) is a commutative differential graded algebra, contravariantly functorial in the variety X;

2. Ω0(X) identifies with the ring O(X) = Hom(X,A1) of (algebraic) functions on X, functorially
in X;
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3. For arbitrary X and k ≥ 0, the presheaf U ↦ Ωk(U) on Zariski open subsets of X is a sheaf;

4. If U admits an etale map U → An with induced coordinate functions x1, . . . , xn ∈ O(U), then:

(a) As a O(U)-module, Ω1(U) is free of rank n with basis dx1, . . . , dxn;

(b) The multiplication map Λk
O(U)Ω

1(U) → Ωk(U) is an isomorphism; in particular the latter is

free of rank (n
k
) with basis the dxi1 . . . dxik for 1 ≤ i1 < . . . < ik ≤ n and vanishes for k > n.

Note the slight differences from the analytic case:

1. First of all, we have to use the very coarse Zariski topology since that’s the only one that makes
algebraic sense.

2. Second of all, we have to use etale maps U → An in our local description, since it’s not true that
any smooth variety is locally isomorphic to an open subset of An. (Here “locally” and “open
subset” are meant in the sense of the Zariski topology.) Indeed, any smooth affine curve has a
unique compactification to a smooth proper curve — just by naively adding the missing points
at infinity, basically — so any nonempty Zariski open subset of, e.g., an elliptic curve “knows”
the elliptic curve it came from and can’t be isomorphic to an open subset of A1 since that would
complete to P1.

On the other hand it is true that any smooth variety has a Zariski open cover by U which admit
an etale map to An. We’ll review this and say a bit more later, but for now the key point is that
if U → An is etale then the induced map Uan → Cn of analytic spaces is a local isomorphism.
This is why the dx1, . . . , dxn can be expected to form a basis even if Uan is not literally an open
subset of Cn.

3. Finally, and this is a nice simplification in the algebraic context, we no longer have to specify
“by hand” that df = ∂1fdx1 + . . . ∂nfdxn when f ∈ O(An), since such an f is by definition a
polynomial in x1, . . . xn and so this follows from the Leibniz rule in the CDGA structure.

Now, the theme here is the comparison with the holomorphic de Rham complex of the associated
complex analytic manifold Xan. There is a unique natural transformation

Ω●(X) → Ω●(Xan)

from the algebraic de Rham complex of a smooth variety to the holomorphic de Rham complex of its
analytification, such that in degree zero it identifies with the inclusion of algebraic maps into holomorphic
maps.

Claim 7. This natural transformation induces a natural map on hypercohomology

RΓ(X; Ω●) → RΓ(Xan; Ω●).

Proof. This is perhaps not entirely obvious, because the underlying topological spaces are different on
each side. Nonetheless, it is completely formal. If p ∶Xan →X denotes the natural continuous map for
which p−1(U) = Uan for a Zariski open U ⊂ X, then for a presheaf of sheaf F on Xan with values in
any ∞-category we have p∗F(U) = F(Uan), so what we can literally deduce from our above natural
transformation is a map of presheaves on X with values in D(C)

∣Ω●(−)∣ → p∗∣Ω●((−)an)∣.
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We can then compose with the sheafification map ∣Ω●((−)an)∣ → ∣Ω●((−)an)∣sh and use that p∗ preserves
sheaves to deduce a comparison map

∣Ω●(−)∣sh → p∗(∣Ω●((−)an)∣sh),

whence the claim by taking global sections.

Now we can state Grothendieck’s theorem in the general case.

Theorem 8. Let X be a smooth variety over C. Then the comparison map

RΓ(X; Ω●) ∼→ RΓ(Xan; Ω●)

from the algebraic de Rham cohomology to the analytic de Rham cohomology is an isomorphism. In
particular, the algebraic de Rham cohomology calculates the topological cohomology RΓ(Xan;C), as
the analytic de Rham cohomology calculates this by the Poincare lemma for complex manifolds, as
explained in the previous lecture.

Note that we are defining the algebraic and complex-analytic de Rham cohomology as the hy-
percohomology of the corresponding de Rham complexes of sheaves, not as the cohomology of the de
Rham complex itself (the global sections of the complex of sheaves). This is the appropriate definition
in general.

Lemma 9. The two forms of Grothendieck’s theorem are equivalent. More specifically:

1. if X is affine, then
RΓ(X; Ω●) = ∣Ω●(X)∣

and
RΓ(Xan; Ω●) = ∣Ω●(Xan)∣,

so the first form of Grothendieck’s theorem is equivalent to the special case of the second from
where X is affine; and

2. the second form of Grothendieck’s theorem reduces to the affine case.

Proof. To prove the first claim, we need to show that ∣Ω●(−)∣ → ∣Ω●(−)∣sh is an isomorphism on X.
Filtering by the brutal truncation, it suffices to show the same for the associated gradeds, so we need
to see that

∣Ωp(−)∣ → ∣Ωp(−)∣sh

is an isomorphism on X. But this holds true because Ωp(−) is a quasicoherent sheaf of O-modules on
X (indeed, it is locally free of finite rank), hence it has no higher cohomology as X is affine. (This can
be proved by a faithfully flat descent argument which we’ll revisit later.)

In down-to-earth terms (provided spectral sequences count as being down-to-earth), we’re saying
that the spectral sequence

Hq(X; Ωp) ⇒Hp+q(X; Ω●)

sits along the q = 0 line hence the q = 0 line calculates the hypercohomology on the right.
Similarly in the analytic context, ∣Ω●(−)∣ → ∣Ω●(−)∣sh is an isomorphism on Xan because there is

no higher cohomology of vector bundles on Stein manifolds.
Finally, the second claim, that Grothendieck’s theorem reduces to the affine case, follows by applying

the following lemma to F = ∣Ω●(−)∣ and G = p∗∣Ω●((−)an)∣sh, in the notation of Claim 7.
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The following local-global lemma was used in the proof:

Lemma 10. Let X be a scheme, and let F → G be a map of sheaves on X with values in any target
∞-category. If F(U) ∼→ G(U) for any affine U ⊂X, then F ∼→ G.

Proof. By Yoneda we can reduce to where the target ∞-category is S. It suffices to show that for any
open subset U of X, the representable sheaf hU lies in the smallest co-complete full subcategory of
Sh(X;S) generated by the hV for V an affine open. First assume U is separated. Then the intersection
of any two affine open subset of U is also an affine open, hence any cover of U by affines will prove the
claim. Now assume U is general. Any intersection of two affine open subsets of U is not necessarily
affine but it is separated, so again choosing any affine cover we can reduce to the separated case which
was already handled.

However, this reduction to the affine case is in some sense not the point, because the easiest case
actually lies at the opposite extreme: the proper case! (Properness is an algebraic condition, generalizing
projectiveness, which implies that the associated analytic space is compact.) That case can be handled
very easily thanks to Serre’s so-called GAGA theorem, which in the context of vector bundles over
smooth varieties1 says the following:

Theorem 11. Let X be a smooth proper algebraic variety, and let E be a vector bundle over X with
analytification Ean over Xan. Then the natural comparison map

Hq(X;E) →Hq(Xan;Ean)

is an isomorphism for all q ≥ 0.

This is some sort of companion to the Cartan-Serre theorem on finiteness of cohomology groups of
vector bundles on compact complex manifolds.

Example 12. 1. For q = 0 and E = O, the claim is that any holomorphic map Xan → C is an algebraic
map X → A1. Well, we saw from Cartan-Serre’s theorem that such a map is constant if Xan

connected, and constants are certainly algebraic. In general we’d still need some small argument
to see that the connected components of X (meaning, in the Zariski topology) correspond to
those of Xan.

2. For q = 0 and the line bundle O(n) on P1, the claim is that giving a meromorphic function on P1

with only one pole, at ∞, of pole order ≤ n, is the same as giving a degree n polynomial.

3. As usual, the meaning on higher cohomology groups is a bit harder to tease out, but they are
absolutely crucial for the proof even if you’re only interested in q = 0!

Using the GAGA theorem, we can show rather easily that Grothendieck’s theorem holds in the proper
case.

Theorem 13. Let X be a smooth proper variety over C. Then the map

RΓ(X; Ω●) → RΓ(Xan; Ω●)

is an isomorphism.
1As with the theorems in the previous lecture, there is a more general version which applies to coherent sheaves over

an arbitrary (proper) variety. But we don’t want to take the time to get into coherent sheaves and non-smooth analytic
spaces.
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Proof. We can filter our de Rham complexes by their brutal truncations, and both on the algebraic and
the analytic side ∣Ω●∣ is recovered as the limit of its truncated versions; indeed ∣F ≥pΩ●∣ lives in degrees
≤ −p and hence only has homology in degrees ≤ −p. The same statement holds after sheafification,
because sheafification preserves upper bounds on homology.

The comparison map being functorial, this reduces us to the analogous assertion on the associated
graded pieces, namely Ωp sitting in a single degree. However, note that the comparison map Ωp(−) →
Ωp((−)an) induces an identification (Ωp)an = Ωp((−)an), i.e., the analytification of the vector bundle
over Xan of algebraic p-forms is the vector bundle over X of analytic p-forms. Indeed, this follows
because locally they are free on the same basis over their respective coordinate rings. Thus the claim
on associated graded reduces to GAGA.

Exercise 14. Go up and reread the example of the algebraic de Rham cohomology of a punctured
elliptic curve X = Spec(C[x, y]/(y2 − x3 − ax − b)). You may not use Grothendieck’s theorem in the
following, but anything else is fair game; in particular you are allowed to take the explicit description I
gave of the de Rham complex for granted.

1. Prove that there is a unique one-form ω ∈ Ω1(X) which identifies with dx/y on the Zariski open
subset where y ≠ 0, and that Ω1(X) is a free O(X)-module of rank one on the class ω.

2. Prove that the classes of ω and xω give a basis for the first de Rham cohomology H1
dR(X) as a

C-vector space.

3. Let E denote the elliptic curve with X = E ∖ {∞}. Prove that H1
dR(E) ∼→ H1

dR(X) (recall that
the first term is defined as the hypercohomology of the de Rham complex of sheaves), and identify
the Hodge filtration on H1

dR(E) in terms of your explicit descrition in 2.
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