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Okay, now let’s pretend this is a proper course and start over with the definition of algebraic de
Rham cohomology. We’ll do it in the “relative” setting, so we’ll have a de Rham complex Ω●

B/A of
A-modules attached to any map of commutative rings A→ B, or equivalently to any pair consisting of
a commutative ring A and a commutative algebra B over A. When A = C and B is a smooth C-algebra
this will recover the de Rham complex of smooth affine varieties discussed in the previous two lectures.

1 Kähler differentials

We’ll start with a discussion of the B-module of Kähler differentials Ω1
B/A, the most basic term in the de

Rham complex, in this general algebraic setting. But first, some geometric motivation. If X = Spec(B)
is an affine variety over the complex numbers A = C, and x ∈X(C) is a point, then x can be equivalently
encoded in the ideal Ix ⊂ B of functions vanishing at x. Thus

B/Ix ≃ C

via evaluation at x; this encodes the 0th-order information about a function f at the point x, namely
just its value f(x). The nth order information is contained in the higher quotient

B/In+1x ;

if X were affine space Ar and x were the origin this would be the ring of formal power series in r
variables “up to order n”, so neglecting terms of total degree higher than n. In particular, the first order
information is contained in

B/I2x.

This is not purely linear, though, because it still contains the zeroth order information. We can thus
simplify by just taking

Ix/I2x,

which is now the universal recipient for linear first order data at the point x. Again if X = Ar and x is
the origin, now we’re just remembering the purely first order terms in the power series expansion of f ,
or equivalently the r partial derivatives of f . Formally, this is encoded in the map

d ∶ B → Ix/I2x

sending f to the class of f − f(x) where f(x) is viewed as a constant function.
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The role of Kähler differentials is to globalize this picture: Ω1
B/C is to be a B-module such that for

any point x ∈X(C), the fiber
Ω1
B/C(x) = Ω1

B/C ⊗B C ≃ Ix/I2x
identifies with Ix/I2x, where C is viewed as a B-algebra via the map B → C of evaluation at x.

Back in the land of pure algebra, this translates to the following. For a map of commutative rings
A→ B, we want a B-module Ω1

B/A such that for any retraction r ∶ B → A of A→ B, the base change

Ω1
B/A ⊗B A ≃ Ir/I2r

via this retraction identifies with Ir/I2r , where Ir = ker(r).
This is not enough to pin down Ω1

B/A, but if we extend it appropriately it will be. Namely, instead

of talking just about sections of Spec(B) → Spec(A), we need to talk about families of sections of
Spec(B) → Spec(A), meaning sections of arbitrary pullbacks of Spec(B) → Spec(A), or equivalently
lifts of an arbitrary Spec(A′) → Spec(A) along Spec(B) → Spec(A). Namely, we would also like to
require that for any such lift, corresponding to r ∶ B → A′, we have

Ω1
B/A ⊗B A

′ ≃ Ir/I2r ,

where now Ir is the kernel of the induced map B′ → A′ where B′ = B ⊗A A′, which is a retraction of
A′ → B′.

The advantage now is that there is a universal family of sections of any map Spec(B) → Spec(A),
given by the diagonal embedding

Spec(B) → Spec(B) ×Spec(A) Spec(B)

in the pullback of Spec(B) → Spec(A) along itself. Namely, this corresponds to the identity map from
Spec(B) to itself over Spec(A), making the universality evident. Now, on the level of coordinate rings
the diagonal amounts to the ring homomorphism

B ⊗A B → B

given by multiplication. Indeed, this is the identity on B ⊗ 1 and on 1⊗B, so it satisfies the requisite
characterizing property. Thus, if our desired property of Ω1

B/A is to be satisfied, we must have the
following definition:

Definition 1. Let A→ B be a map of commutative rings. We define Ω1
B/A to be the B-module I/I2,

where
I = ker(B ⊗A B → B).

One may worry about exactly why or how I/I2 is a B-module. A priori it is a B ⊗A B-module,
which can be made into a B-module in two different ways, via the left or right factors. But actually the
resulting B-module structures agree, as the difference

b⊗ 1 − 1⊗ b

lies in I. One an also give descriptions of I/I2 which make the B-module structure manifest. For
example,

I/I2 = B ⊗B⊗AB I,

or alternatively:
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Lemma 2. Let A→ B be a map of commutative rings. Then

Ω1
B/A = TorB⊗AB

1 (B,B).

Proof. This follows from the short exact sequence 0→ I → B⊗AB → B → 0 by noting that the middle
term is free hence flat and that the quotient map induces an isomorphism mod I.

Now, we defined Ω1
B/A so that our desired property was true in the universal case. But it doesn’t

quite follow formally that its true in general, because it’s not entirely clear that the formation of I/I2
should be compatible with base-change in the appropriate sense: after all, in general if I is an ideal in
a commutative ring R and R → R′ is an arbitrary map, then it’s not always true that IR′ = I ⊗R R′.
In fact, this is satisfied for all I if and only if R → R′ is flat. But we definitely don’t want to restrict to
flat base-changes because the inclusion of a point in a variety is never flat, unless the point is isolated.
Nonetheless, everything works out in the situation at hand.

Proposition 3. Let A→ B be a map of commutative rings, let A→ A′ be an arbitrary A-algebra, and
let B′ = B ⊗A A′ be the co-base change. For any map f ∶ B → A′ under A, we have

Ω1
B/A ⊗B A

′ = If /I2f ,

where If is the kernel of the map rf ∶ B′ → A′, the retraction of the structure map A′ → B′ corresponding
to f .

Proof. Let’s try proceeding by reduction to the universal case. Write down the commutative diagram

B′ B ⊗A Boo Boooo

A′

OO

B

OO

oo A

OO

oo

of co-base changes (relative tensor products), so that our retraction rf is the co-base change of the
universal one, the multiplication map m ∶ B ⊗A B → B used to define Ω1

B/A = I ⊗B⊗AB B with

I = ker(m). It suffices to show that I base-changes to If along the map B ⊗A B → B′. But because
the left-square is a relative tensor product, this base-change can be equivalently calculated along B → A′.
But now, because m is a retraction of B⊗AB, as a B-module we can equivalently view I as the cokernel
of B ⊗A B → B and similarly for rf and If , and this description obviously base-changes appropriately
as tensor products preserve cokernels.

We can split this property up into two parts as follows.

Corollary 4. Let A→ B be a map of commutative rings.

1. For any A→ A′ with B′ ∶= A′ ⊗A B, we have

Ω1
B′/A′ = Ω1

B/A ⊗B B
′ = Ω1

B/A ⊗A A
′,

in other words the module of Kähler differentials commutes with base-change.

2. For any retraction r ∶ B → A with Ir ∶= ker(r), we have

Ω1
B/A ⊗B A = Ir/I2r ,

so our desired property we used to motivate the definition holds.
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Proof. Part 2 is the special case of the proposition where A′ = A. On the other hand, part 1 follows by
writing out the definition of Ω1

B′/A′ and recognizing it as If /I2f for f ∶ B → B′. (Conversely, it’s clear

that parts 1 and 2 imply the previous proposition, so corollary this is a reformulation.)

Next we discuss the differential. Recall in the motivation that for a variety X = Spec(B) with
rational point x ∈X(A) we had a map

d ∶ B → Ix/I2x
defined on f ∈ B by subtracting off the constant function with value f(x) then taking the class modulo
I2x. This should be induced by a single map

d ∶ B → Ω1
B/A

defined in the completely analogous way using the universal family of sections. This unwinds to the
following.

Proposition 5. Let A→ B be a map of commutative rings. Define a map

d ∶ B → Ω1
B/A

by d(f) = [f ⊗ 1 − 1⊗ f]. Then:

1. d(a) = 0 for a ∈ A;

2. d(fg) = fd(g) + gd(f) for f, g ∈ B.

Proof. Part 1 is because in the relative tensor product B ⊗A B we can move elements of A from the
right to the left by construction, so even the representative a ⊗ 1 − 1 ⊗ a is zero. For part 2, let’s
temporarily abusively write d(f) for the representative 1 ⊗ f − f ⊗ 1 and not its class in Ω1

B/A. Then

(thanks Maxime!)

d(fg) − d(f) ⋅ d(g) = fg ⊗ 1 − 1⊗ fg − (f ⊗ 1 − 1⊗ f)(g ⊗ 1 − 1⊗ g)
= f ⊗ g + g ⊗ f
= f(1⊗ g − g ⊗ 1) + g(1⊗ f − f ⊗ 1)
= fdg + gdf.

As d(f) ⋅ d(g) obviously lies in the square of the ideal, this finishes the proof.

Clearly, under property 2, property 1 is equivalent to d being A-linear. In other words, this proposition
shows that d is an A-derivation from B to Ω1

B/A in the sense of the following definition.

Definition 6. Let A → B be a map of commutative rings and M a B-module. A map D ∶ B →M is
called an A-derivation if the following properties hold:

1. D is an A-linear map (between B-modules);

2. D(fg) = fD(g) + gD(f) for f, g ∈ B.

In fact our d ∶ B → Ω1
B/A is the universal A-derivation:
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Proposition 7. Let A → B be a map of commutative rings, M a B-module, and D ∶ B → M an
A-derivation. Then there is a unique linear map h ∶ Ω1

B/A →M with h ○ d =D.

Proof. First let’s show uniqueness. It suffices to see that Ω1
B/A is generated, as a B-module, by the

elements db. Suppose ∑i fi ⊗ gi lies in the kernel of the multiplication map, so ∑i figi = 0. Then

∑
i

fi ⊗ gi = ∑
i

dfi ⋅ gi −∑
i

1⊗ figi = ∑
i

dfi ⋅ gi,

as desired. For existence, we’d like to recognize any B-module M as an example an I/I2, so that our
desired h will come from functoriality. There is a nice way to do this by considering the square zero
extension B ⊕M . This direct sum gets a commutative ring structure by

(b,m)(b′,m′) = (bb′, bm′ + b′m).

This definition is formally determined by the requirement that the inclusion of the first factor i0 ∶ B →
B ⊕M be a ring map and that the second factor M ⊂ B ⊕M should form an ideal of square zero on
which the B-module structure induced via i0 is the original one. Note that the projection B ⊕M → B
is also a ring map, so B ⊕M is an augmented B-algebra.

On the other hand, giving an A-derivation D ∶ B → M is equivalent to giving another A-algebra
section i ∶ B → B ⊕M of this projection map, of course potentially different from the original one i0
which corresponds to the zero derivation. The two maps i and i0 however do agree when restricted to
A, so we get an induced map

B ⊗A B → B ⊕M,

and moreover it makes a commutative triangle with B ⊗A B → B by multiplication and B ⊕M → B
by the projection. Taking the induced maps on I/I2’s for I the kernel of the map to B we get our
candidate map h ∶ Ω1

B/A →M . A simple unwinding shows it satisfies the desired property.

This gives a different possible definition of Ω1
B/A, namely as the free B-module generated by formal

symbols df for f ∈ B, modulo the submodule generated by da for a ∈ A and d(fg) − fdg − gdf for
f, g ∈ B. This B-module tautologically satisfies the previous proposition, hence it identifies with the
module of Kähler differentials as we defined it via I/I2.

As usual with such tautological presentations, it’s very inefficient. As an exercise, you will prove the
following.

Proposition 8. Suppose
B = A[xi ∣ i ∈ I]/(fj ∣ j ∈ I)

is presented as the quotient of a polynomial ring in variables xi by the ideal generated by a set of
polynomials fj in the variables xi. Then

Ω1
B/A = B{dxi ∣ i ∈ I}/B{∑

i

∂ifjdxi ∣ j ∈ J},

the quotient of the free B-module on the elements dxi by the submodule generated by the expressions

∑i ∂ifjdxi for j ∈ J . Here ∂ifj is the partial derivative of fj with respect to the ith coordinate.

In particular, if A → B is finitely presented as an A-algebra, then Ω1
B/A is finitely presented as a

B-module.
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2 Smooth maps

Our next topic is smooth maps and their relation to Kähler differentials. We adopt the following
definition.

Definition 9. An A-algebra A → B is called smooth if there are elements fi ∈ B generating the unit
ideal such that each B[f−1i ] admits an etale A-algebra map from some finitely generated polynomial
ring A[x1, . . . , xn].

In other words, thinking geometrically, a smooth map is one which Zariski locally admits etale
coordinates. If the notion of etale is still obscure for you, don’t worry, we will review it shortly. Anyway,
the following properties follow immediately from the definition, once you know analogous facts for etale
maps:

1. If A→ B and B → C are smooth, then the composition A→ B → C is also smooth.

2. If A→ B is smooth and A→ A′ is arbitrary, then A′ → B′ = B ⊗A A′ is also smooth.

3. Any smooth map is flat and finitely presented.

Consider the special case of 2 where A′ is a residue field of A. Thinking geometrically, this says
that the fibers of a smooth map are smooth. But smoothness is more than that; it’s the analog of a
submersion in differential geometry.

For present purposes we would like to show that for a smooth map A → B, the B-module Ω1
B/A is

locally free of finite rank as a B-module. For this the key is the following.

Proposition 10. Let A → B be a map of commutative rings, and let B → C be an etale map of
commutative rings. Then

Ω1
B/A ⊗B C ≃ Ω1

C/A.

Proof. The intuition is that etale maps of schemes behave as much like local isomorphisms as possible
without actually being local isomorphisms in the algebraic sense with the Zariski topology. Now, as
definition of etale let’s take weakly etale + finitely presented, where weakly etale means that both
B → C and C ⊗B C → C are flat.1 Then we claim that in fact the proposition holds true with weakly
etale instead of etale.

To prove it, first note that since B → C is flat we have

TorB⊗AB∗ (B,B) ⊗B C = TorB⊗AB∗ (B,C) = TorC⊗AC∗ (C ⊗B C,C),

the last equality coming because B ⊗B⊗AB C ⊗A C = C ⊗B C (easiest to think in terms of Spec).
But as C ⊗B C → C is flat, we have

TorC⊗AC∗ (C ⊗B C,C) ⊗C⊗BC C = TorC⊗AC∗ (C,C).
1The condition that B → C be flat just imposes some very mild cohesion among the fibers geometrically, but since

C ⊗B C → C is a surjection, corresponding geometrically to a closed immersion, the condition that it be flat is very very
strong: indeed, it forces that any C-module which is flat as a B-module automatically be flat as a C-module. Taking
for example B = k = k an algebraically closed field, this rules out any higher-dimensional varieties as well as any non-
reducedness, making the only example of an etale k-algebra a finite product of copies of k, corresponding to just a finite
set of points geometrically.
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On the other hand, both C ⊗B C and C are quotients of C ⊗A C, the latter a futher quotient of the
former. Seeing as the C ⊗B C-module structure coming from the left in the Tor and the C-module
structure coming from the right agree as C ⊗A C-modules on general grounds, the C ⊗B C-module
structure must factor through the C-module structure. But for the same reason − ⊗C⊗BC C is the
identity on C-modules as C is a quotient of C ⊗B C. Thus we can cancel the ⊗C⊗BCC in the above
equation, and then specializing to ∗ = 1 proves the claim.

Corollary 11. Let A→ B be a map of commutative rings.

1. If B → B′ is a localization, e.g. if B′ = B[f−1] for some f ∈ B, then Ω1
B/A ⊗B B

′ = Ω1
B′/A, e.g.

Ω1
B/A[f

−1] = Ω1
B[f−1]/A.

2. If A→ B is smooth, then Ω1
B/A is a locally free B-module of finite rank.

Proof. For part 1, note that localizations are examples of weakly etale maps, as they are flat and
idempotent (B′ ⊗B B′ = B′). For part 2, using part 1 and the previous proposition we are reduced to
seeing that Ω1

A[x1,...,xn]/A is free of rank n, but it’s free on the dxi by Proposition 8.

Part 1 can be interpreted as follows. To any B-module M is associated a unique quasi-coherent
sheaf of O-modules on Spec(B), and part 1 implies that when M = Ω1

B/A, the sections of this quasi-

coherent sheaf on any affine open Spec(B′) ⊂ Spec(B) identify with Ω1
B′/A.2 That’s a nice consistency

property.
As for part 2, an important addendum is that the local rank of Ω1

B/A as a B-module is the same

as the relative dimension of B/A. (Meaning, at a point x ∈ Spec(B) lying over y ∈ Spec(A), take the
dimension of the fiber Spec(B)y at the point x.) This is clear from the fact that etale maps preserve
relative dimension.

Now, if you’ve never seen smooth algebras before you may wonder why there’s a sufficient supply
of them, or in other words why there are enough etale maps to affine n-space even though there are
not enough Zariski open subsets of affine n-space. The main result producing examples of smooth (and
etale) maps is the following Jacobian criterion:

Theorem 12. Let B = A[x1, . . . , xn]/(f1, . . . , fm) be a finite presentation of an A-algebra as indicated.
Suppose that the Jacobian matrix

(∂ifj)

has full rank, i.e.,rank = m, when base-changed to the residue field at any point of Spec(B). Then
A→ B is smooth of relative dimension n −m.

Note that this Jacobian matrix of partial derivatives, viewed as a map from a free B-module of rank
m to a free B-module of rank n, was exactly what we took the cokernel of in Proposition 8 to get
Ω1
B/A. The Jacobian criterion then says that if the presentation makes A → B look smooth from the

perspective of Ω1
B/A, then A → B really is smooth; in particular, and this is the least obvious aspect,

A→ B is flat and really has the naively calculated relative dimension n −m. Recall also that the same
Jacobian criterion is what ensures that a finite set of C∞-functions cuts out a smooth submanifold of
Euclidean space in classical manifold theory, so that matches as well.

2It’s not true that in such a situation B′ is necessarily a localization of B, but that’s just a technical nuisance: after a
further localization we’ll be a localization of both B and B′ and that can be used to conclude. In any case there is a basis
of the topology of Spec(B) given by Spec(B′) with B′ a localization of B.
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It’s also true that any smooth map A → B is, locally on Spec(B), of the form described in the
Jacobian criterion, but I don’t know how important that is.

3 The de Rham complex

Now we can define the terms of the de Rham complex.

Definition 13. For a map of commutative rings A → B and p ≥ 0, define Ωp
B/A = ΛpΩ1

B/A, the pth

exterior power of the B-module Ω1
B/A.

It’s worthwhile giving a reminder on exterior powers. For a commutative ring R and an R-module
M , the pth exterior power R-module ΛpM is defined as the quotient of the pth tensor power ⊗pM by
the R-submodule generated by the pure tensors

m1 ⊗ . . .⊗mp

such that mi = mi+1 for some 1 ≤ i ≤ p − 1. In other words, ΛpM represents the functor of alternating
R-multilinear maps f ∶ M × . . . ×M → N out of a p-fold product of copies of M , where alternating
means that if any two adjacent entries are equal then f sends that tuple to zero.

The image of m1 ⊗ . . .⊗mp in ΛpM is denoted

m1 ∧ . . . ∧mp.

It follows that for any permutation σ ∈ Sp, we have

mσ(1) ∧ . . . ∧mσ(p) = sign(σ)m1 ∧ . . . ∧mp.

Indeed, it suffices to show this for σ a transposition, and then taking p = 2 for simplicity it follows from
expanding out the relation

(m + n) ∧ (m + n) = 0

using m ∧m = 0 and n ∧ n = 0.
However, that more naive alternating relation involving signs of permutations does not recover the

more basic relation m∧m = 0 which defines the exterior power. Indeed, all we would be able to deduce
would be that m ∧m = −m ∧m, or 2m ∧m = 0. When 2 is not a unit in R, this does not imply
m ∧m = 0. In the extreme case where R is an F2 algebra then the naive exterior algebra defined using
signs is the same as the symmetric algebra, so for example if M is free of rank one then ΛpM would
also be free of rank one for all p ≥ 0. Thus the behavior of Λp(−) would be highly dependent on the
characteristic, and we don’t like that.

On the contrary, the true exterior power behaves nicely over arbitrary commutative rings. This is
articulated in the following.

Proposition 14. Let R be a commutative ring and M a free R-module of rank n. Then for p ≥ 0, the
R-module ΛpM is free of rank (n

p
). More precisely, if m1, . . . ,mn is a basis of M , then the

mi1 ∧ . . . ∧mip

form a basis of ΛpM , where 1 ≤ i1 < . . . < ip ≤ n.
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In particular, the top exterior power ΛnM is free of rank one. This gives rise to the theory of the
determinant, and it’s important that that works in arbitrary characteristic.

It can be a bit of a pain to prove this proposition directly. But if we consider the structure of the
ΛpM all together it becomes easier. Namely, ΛpM is the pth graded piece of the exterior algebra Λ●M ,
the quotient of the tensor algebra ⊗●M by the two-sided ideal generated by the m⊗m in degree two.
Because the basic alternating property implies the naive alternating property, Λ●M is automatically a
graded commutative algebra. But even more, it is a strict graded commutative algebra, which means
that for all odd elements x we have x2 = 0. Again, from the axioms of a graded commutative algebra
it only follows that 2x2 = 0.

Note that in a general graded commutative R-algebra, the set of odd elements x for which x2 = 0
is closed under addition and mutiplication by even graded elements. It follows that if A● and B● are
strict graded commutative R-algebras, then so is their graded tensor product A●⊗RB●. Since a graded
commutative ring is just a commutative monoid object in the tensor category of graded R-modules,
on general grounds this tensor product is also the coproduct. Thus we see that the coproduct in strict
graded commutative R-algebras is calculated by the usual graded tensor product. With these remarks
in hand we can actually prove Proposition 14.

Proof. By definition, Λ●M is the free strict graded associative algebra generated by M in degree one.
Being automatically graded-commutative, it is also the free strict graded commutative algebra generated
by M in degree one. It follows that Λ●(−) sends coproducts to coproducts, in particular

Λ●(M ⊕N) = Λ●(M) ⊗Λ●(N).

Now, clearly when M is free of rank one we get that Λ●(M) is R in degree zero and M in degree one.
Taking the p-fold graded tensor product we deduce the claim.

In particular:

Corollary 15. If A → B is a smooth map of relative dimension n, then Ωp
B/A is a free B-module of

rank (n
p
).

Now we discuss the de Rham differential.

Proposition 16. Let A → B be a map of commutative rings. There are unique A-linear maps d ∶
Ωp
B/A → Ωp+1

B/A promoting Ω●
B/A into a commutative differential A-algebra such that d is the universal

derivation discussed above when p = 0.

Proof. I think this has to be done “by hand”. We have a presentation of Ω1
B/A as a B-module, the

tautological one coming from the fact that it is the recipient of the unversal derivation. This gives rise
to a presentation of Ωp

B/A as a B-module: it is generated by symbols

db1 ∧ . . . ∧ dbp

for bi ∈ B subject to the rules that this symbol vanishes if two adjacent bi are equal or any bi lies in A,
the expression is multilinear in the bi, and the evident Leibniz rule holds if we write any bi as a product
bi = fg.

Since the differential is to be A-linear, not B-linear, this presentation as a B-module doesn’t im-
mediately help us. But any presentation as a B-module induces a presentation as an A-module we just
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add extra formal symbols parametrized by the elements of B. We deduce that as an A-module, Ωp
B/A

is generated by symbols of the form
b0db1 ∧ . . . ∧ dbp

for bi ∈ B subject to the rules that this symbol vanishes if two adjacent bi for i > 0 are equal or any bi
for i > 0 lies in A, that multiplying ab0 using the A-module structure is the same as treating ab0 as a
formal symbol, that expression is multilinear in the bi, and the Leibniz rule holds if we write any bi for
i > 0 as a product, where this Leibniz rule now also incorporates the b0 part.

Now we can just brutally check that defining

d(b0db1 ∧ . . . ∧ dbp) = db0 ∧ db1 ∧ . . . ∧ dbp

respects these relations and defines a differential d ∶ Ωp
B/A → Ωp+1

B/A satisfying the desired properties.

From this base existence and our previous work we can formally deduce (thanks Maxime!) the
following universal property of the de Rham complex.

Proposition 17. Let A→ B be a map of commutative rings. Then the de Rham complex Ω●
B/A is the

initial strict commutative differential graded A-algebra with a map from B to the degree zero part.

Proof. Let C● be an arbitrary strict commutative differential graded A-algebra with and A-algebra map
B → C0. Then the composition B → C0 → C1 is an A-derivation, thus it factors uniquely through
B → Ω1

B/A. Now, forgetting the differential the universal property of the exterior algebra gives unique

maps Ωp
B/A → Cp respecting multiplication. It suffices to show that they also respect the differential.

But Ωp is generated under multiplication by the b and db’s on which the differential is determined by
the Leibniz rule and our first observation, so this is automatic.

Exercise 18. Prove Proposition 8.

Exercise 19. SupposeA→ B is smooth. For p ≥ 0, produce a natural isomorphism Ωp
B/A ≃ TorB⊗AB

p (B,B).

For p = 2 give a counterexample if A→ B is not smooth.
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