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To motivate the contents of this lecture, let's pick up our discussion from last time. To a map
A - B of commutative rings we associated a complex QIB/A of A-modules, each term of which is a
B-module, namely

1
Q%/A = A Qp)a

We also proved some general properties of this construction. Let me focus on the two which are most

relevant to this lecture. First was that the de Rham complex commutes with base-change; actually, we
didn't quite state and prove this in the last lecture, so let's do it here.

Lemma 1. The de Rham complex commutes with base change: if A - B is a map of commutative
rings and A" — B’ is a (co-) base-change of A - B, so B'= B®4 A’ for some map A - A’, then

Q.B/A ®A A/ = Q.B’/A"
Proof. We proved in the last lecture that
Dy ®5 B = Qi are

Since exterior powers also commute with base-change, being built out of tensor products and cokernels,
we deduce
Q ®B B =QF

Y4
BJA BIJA""

But due to the definition of B’ this is the same as saying

Op/4 @4 A= Q5 ars

whence the claim. O

This is very nice. Actually, Grothendieck taught us that every geometric construction or property
is supposed to commute with base-change, so this says that the de Rham complex is geometric in the
sense of Grothendieck.

The other bit of good news from the last lecture was a different kind of base-change property. We
showed that if B — B’ is an etale map (or even a weakly etale map) of A-algebras, then

QlB/A ®B B, = QlB//A.

This looks superficially similar, but it's actually a quite different sort of statement. Here the base ring
A is fixed and we vary B, whereas before we varied the base A.



An important special case of an etale map is a map B — B’ corresponding to an open inclusion
Spec(B'") c Spec(B). Then this property says that the presheaf Q}/A on Spec(B) defined by

Qllj/A = Q%’)(U)/A

for affine open U c Spec(B) defines a quasi-coherent sheaf, in fact the quasi-coherent sheaf associated
to the B-module Q}B/A.

This all sounds very good, but there's a fly in the ointment. We want to globalize and define
and study the de Rham complex of an A-scheme X. This would be defined as global sections, i.e.
pushforward to Spec(A), of some de Rham complex of sheaves. Thus, just as in the analytic case,
we would be led to study the pushforward of the quasi-coherent sheaves 2. But then we run into
the annoying fact that pushforward of quasi-coherent sheaves doesn't commute with base-change, i.e.
pullback, in general. So our lovely Grothendieckian property of the de Rham complex in the affine case
does not extend beyond that setting.

The reason for failure of pushforward to commute with pullback in general is quite simple to explain.
It's true on the affine level, because then the pushforward is just the forgetful functor, and for a B-module
M we do have

Mg B =M ®A A’

as required. But if now we have an A-scheme X covered by affines with affine finite intersections, then
the pushforward on X will be the limit of the pushforwards of the restrictions to these affine pieces. In
other words, it's a kernel, and the unfortunate fact is that kernels don't commute with general pullbacks,
only flat pullbacks.

But Grothendieck tells us we should, at all cost, commute with all pullbacks, not just flat pullbacks.
Actually, the most important case of pullback, namely restriction to a fiber, is almost never flat.

Fortunately, the fix is simple. We take derived pushforward and derived pullback instead of ordinary
pushforward and ordinary pullback. In the setting of stable oo-categories, any left adjoint functor
commutes with all colimits, hence all finite colimits, hence all finite limits; and dually any right adjoint
functor commutes with all limits, hence all finite limits, hence all all finite colimits. So if you're trying
to commute a functor with a limit or colimit over a finite diagram, you never run into trouble as long
as everything is derived and your functor is part of some adjoint pair. The simple consequence that
derived pushforward commutes with derived pullback when your schemes are built in a finitary manner
from affines, is classically known as the “cohomology and base-change theorem” and it can look quite
confusing and mysterious in traditional presentations. But it's really just a formality when seen from
the correct perspective.

In fact, we already knew for independent reasons that we would need to look at derived pushfor-
ward, because in the complex analytic case, outside the Stein situation (which corresponds to the affine
situation), we needed to take hypercohomology of the de Rham complex to get the “correct” cohomol-
ogy matching the cohomology of the constant sheaf. And the need to use hypercohomology persisted
through Grothendieck’s comparison into the algebraic world. So this was inevitable.

But now a new problem arises, because the statement that the de Rham complex commutes with
base-change
L] ! L]
QB/A ®AA = QB’/A’



is in general really only true when we take the underived base change. So if we use derived base-change
as we know we must, then now even in the affine case the de Rham complex doesn't commute with
base-change. Again, we don't want to require A — A’ to be flat because Grothendieck would not be
pleased, so to fix this we had better ensure that the terms of the de Rham complex themselves are
A-flat.* The following simple lemma will suffice.

P

B/A is flat over A.

Lemma 2. Suppose A — B is a smooth map. Then for p > 0, the B-module )

Proof. We saw that Q% 4 1s locally free of finite rank as a B-module, hence it is flat as a B-module.
As B is flat over A, this implies it's also flat over A. O

The upshot is that the de Rham cohomology of smooth maps of schemes will be well-behaved un-
der base-change. But to set this up rigorously and formally we should perhaps discuss the theory of
quasicoherent sheaves from the derived perspective, and that is the purpose of this lecture.

Recall the derived oo-category D(R) of a ring R. We presented this axiomatically for general R,
but in this lecture it will be more convenient to take D(Z) as our base category and rebuild D(R) using
it. For that, note that D(Z) has a symmetric monoidal tensor structure — ® — characterized by the fact
that it preserves colimits in each variable and is the usual tensor product on finite free Z-modules in
degree zero; on the level of complexes this corresponds to the derived tensor product. In particular any
commutative ring R gives a commutative algebra object in D(Z), and we redefine

D(R) := Modr(D(Z)),
R-modules in D(Z).

Lemma 3. With this definition of D(R), we have that D(R) is generated as a cocomplete stable
oo-category by the compact object R which has endomorphisms concentrated in degree zero and given
by R. Thus the new definition matches the old one.

Proof. To show that D(R) is generated by R, note that if M € D(R), then there is the standard
simplicial resolution of M by copies of R®™ ® M where the tensor products are in D(Z). Thus we
reduce to the analogous fact for D(Z). To calculate the endomorphisms and prove that R is compact
note that Hompgy(R, M) = Hompz(Z, M). O

Now we also see that R+~ D(R) is functorial with respect to base-change functors — ® g R’, which
admit right adjoints given by forgetful functors. Again, calculating with free resolutions we see that, in
terms of representing complexes, these base-change functors correspond to the derived tensor product
in classical homological algebra. Then we can state the key claim, which shows that D(-) localizes
over Spec(R).

Theorem 4. There exists a unique sheaf of co-categories D(—) on Spec(R) such that for an affine
open U c Spec(R), we have
D(U) = D(O(U))

functorially in U.

The other solution, which works in general, is to use, what else?, the derived de Rham “complex”. But it's not obvious
how to define this if all you know is traditional homological algebra of abelian categories. We'll get there, though.



Proof. The proof will be slightly long. First, recall that the affine open subsets U c Spec(R) form a
basis for the topology closed under finite intersections. Thus giving a sheaf on Spec(R) is equivalent to
giving a sheaf on the affine open subsets. Hence, the claim is simply that the assignment U — D(O(U))
is a sheaf on affine open subsets.

However, the affine open subsets are somewhat inconvenient as a basis because they are not closed
under finite union. This means that although we can reduce to finite covers using quasi-compactness,
we can't directly use induction to reduce to a Mayer-Vietoris situation:> if you have an affine open cover
with three elements, then the union of two of those elements will in general not be affine. Following
Bhatt's Theorem 1.10 in his paper “Tannaka duality revisited”, we therefore generalize as follows.

Let us recall that R — O(U) is flat, and in the ordinary category of R-modules O(U) is idempotent
under tensor product, so O(U) ® g O(U) = O(U). It follows that the same idempotence holds in
D(R). Now let us consider the full subcategory P of commutative algebra objects in D(R) which are
idempotent under the tensor product. By the lemmas which follow, P is equivalent to a poset which has
all joins (unions) and finite meets (intersections). The join of two elements A, B is calculated by their
tensor product A®p B. Their meet is calculated by the pullback A x 455 B. Moreover, the assignment
U+~ O(U) is an anti-equivalence of the poset of affine open subsets of Spec(R) with a full subposet
of P, which sends finite meets to finite joins and finite joins to finite meets.

Since D(O(U)) = Modpry(D(R)), it suffices therefore suffices to show the following more general
claim about objects in P: the assignment

A€ P Mod(D(R))

is a co-sheaf on P with respect to the notion of covering defined by finite meets.

Now this claim reduces by induction on the number of elements of the cover to proving the following
Mayer-Vietoris claim: if A, B € P and we set R' = A x4¢,5 B, then the comparison functor induced by
base-change

MOdR/ e MOdA XMOdA®RB MOdB

is an equivalence. Here we are always taking modules internally to D(R).
Now we use a formal categorical lemma, that since each base-change functor Modgr: - Moda, Modag B, Modp
has a right adjoint (given by the forgetful functor), our comparison functor also has a right adjoint,
calculated as follows: if M € Moda, N € Modg, Y € Modag,p and isos M ®4 (A®r B) =Y =
Ne&p (A®p B) are given, forming an element of Mod4 X Modag 5 Modp, the value of the right adjoint
is the pullback of underlying R’-modules
M Xy N,

taken along the natural comparison maps M - M ®4 (A®r B)~Y ~N®p (A®r B) < N.
Thus, we are reduced to showing that the unit and counit of the adjunction are isos, which amounts
to the following two claims:

1. R 5 A X Ag,B B; tensoring with a general R'-module gives the unit claim;

2. If M,N,Y, and isos as above, then (M xy N)®p A > M and symmetrically for the other factor;
this gives the counit claim.

2contrary to how | presented things in the actual lecture...



The first claim was exactly the description of R’. For the second claim, since R’ is idempotent over R
the relative tensor product can be calculated over R. Then as M is an A-module and A is idempotent,
we have M ® g A = M. Thus it suffices to show that N — Y induces an iso on —®gr A. But by part of
the data we have Y ~ N ®p A so this holds again by idempotency of A. O

We used the following lemma:

Lemma 5. Let R be a commutative ring, and let P be the full subcategory of commutative algebra
objects in D(R) consisting of the idempotent commutative algebra objects. Then:

1. P is equivalent to a poset with all joins and finite meets;

2. The finite joins are calculated by tensor product, the meet of A and B is calculated as the pullback
Axp9pp B;

3. The assignment U — O(U) is an anti-equivalence from affine open subsets of Spec(R) to a full
subposet of P;

4. This anti-equivalence sends finite meets to finite joints and finite joins to finite meets.

Proof. By the idempotency and the fact that tensor products are coproducts in cateogries of commuta-
tive algebra objects, we see that every mapping space out of an A € P satisfies the idempotency property
that the diagonal map X — X x X is an equivalence. This exactly characterizes those spaces equivalent
to either @ or *. So all mapping spaces in P are either or *, making P equivalent to a poset.

It is elementary to see that a finite tensor product of elements in P still lies in P and so does a
filtered colimit of elements of P. As these calculate all colimits in the category of commutative algebra
objects, it follows they give the joins in P.

It is also formal, though slightly tedious, to calculate that if A, B € P then A x4g,5 B € P, and as
pullbacks calculate pullbacks in commutative algebra objects this must then be the meet of A and B
in P.

For 3, we know the affine open is recovered from its ring of functions, so the only non-formal thing
is to show the claim above finite joins and meets. But we also know from standard scheme theory that
OWU)®r O(V) =O(U nV) which proves the claim about finite meets going to finite joints. About
the finite joins going to finite meets, we need to show that if an affine U is covered by finitely many
affine opens U;, then O(U) is the meet of the O(U;) in P. By refining, we can assume each U; is basic
affine open, say U; = Spec(O(U)[f;1]) for fi e O(U). If we let R’ denote the meet, then the map

o) - R

induces an isomorphism on intersecting with O(U;) in our poset, i.e. on applying —~®@r O(U;) = -®o (1)
O(U;) = (-)[f;']. Thus, finally, it suffices to show that if A=O(U) is a commutative ring and f; € A
is a set of elements generating the unit ideal (equivalently, the corresponding basic affine opens cover
U), then an A-module M is zero if M[f;1] =0 for all 4.

For this, it evidently suffices to show that given any M e D(U;), the set of f € A for which
M([f™']=0s an ideal. We can check this on homology groups to reduce to the same claim in ordinary
homological algebra, which is standard. O

This theorem says that the whole co-category D(R) localizes over Spec(R). It follows, in particular,
that every object M € D(R) localizes over Spec(R), namely:



Corollary 6. Let M € D(R). Defining M(U) =M ®r O(U) for affine opens U c Spec(R) describes a
sheaf (with values in D(Z), say) on Spec(R).

Proof. If il is an affine covering sieve of the affine U, then

D(U) = lim D(V).
Veslop

Since mapping spaces in limits of co-categories are calculated object-wise, this gives

Mappowyy(N,M) = lim Mappowy) (N ®@ow) O(V), M ®or) O(V)),
Veilop

whence the claim by taking N to be shifts of O(U). O

This recovers the following basic fact on sheaf cohomology in algebraic geometry:

Corollary 7. If X is an affine scheme and F is a quasi-coherent sheaf of O-modules on X in the usual
sense, then
HY(X;F)=0

for ¢ > 0.

Proof. In the previous corollary, take R = O(X) and take M € D(R) to be equal to F(X) concentrated
in degree 0. Each M (U) = F(X)®rO(U) is also concentrated in degree zero because O(U) is flat over
R, hence this is equal to F(U) concentrated in degree zero as F is quasi-coherent. Thus the presheaf
F even when viewed with values in D(Z) concentrated in degree zero is still a sheaf on affines, which
translates to the claim as sheaf cohomology is calculated by global sections of derived sheafification, so
if the thing is already a derived sheaf it's just global sections. O

Of course, it also implies usual descent:

Corollary 8. There is a sheaf of abelian categories on Spec(R) which assigns Modyyry to every affine
open U c Spec(R).

Proof. The base-change functors — ®¢ (/) O(V') for affine inclusions preserve objects concentrated in
degree 0, as O(V) is flat over O(U). Thus it suffices to show that if M € D(U) is locally concentrated
in degree 0, it is globally so. But again by flatness H;(M) localizes to the H, of the local M's which
are zero for d # 0. Hence Hy(M) is zero for d # 0, as required. O

Using this we can move glue beyond affines and still get a reasonable theory. Namely, if we define:

Definition 9. Let X be a scheme. View the structure sheaf Ox as a presheaf of commutative algebra
objects with values in D(Z). Define

D(X) ¢ Modo, (Sh(X; D(Z)))

as the full subcategory of those M such that for all inclusions V c U of affine open subschemes of X,
we have

Call D(X) the oo-category of derived quasi-coherent sheaves on X . (It corresponds to the ‘“classical”
thing, the full subcategory of the derived category of sheaves of O-modules consisting of those with
quasi-coherent cohomology sheaves.)



It is formal that the assignment U — Modp,, (Sh(U;D(Z))) defines a sheaf of oco-categories on X.
Then from the derived descent for D(R)'s proved earlier, we deduce that the quasi-coherence condition
is local, whence the following.

Proposition 10. For an arbitrary scheme X, the assignment U — D(U) defines a sheaf of co-categories
on the topological space underlying X. When X is affine, we have D(X) > D(O(X)) via the functor
of global sections.

There is also the natural pullback functoriality:

Proposition 11. Let f : X — Y be a map of schemes. Then the pullback functor f* : Modo, (Sh(Y; D(Z))) -
Modo, (Sh(X;D(Z))), adjoint to the pushforward functor f. : Modo, (Sh(X;D(Z))) - Modp, (Sh(Y;D(Z)))
defined as usual in the naive way with (f.M)(V) = M(U), preserves quasi-coherence. When X =

Spec(R) andY = Spec(R') are affine, it corresponds to the usual base-change functor D(R') — D(R)

given by relative tensor product.

Proof. This follows formally: if f is an open inclusion then the pullback functor is just restriction. Using
this, we reduce to the affine case where the claim is clear using the equivalence with D(O(-)) provided
by the global sections functor. O

In complete generality, the pushforward functor does not preserve quasi-coherence. But a small
and easily satisfied condition guarantees that, plus several other favorable properties of pushforward,
including the cohomology and base-change theorem.

Proposition 12. Let f : X - Y be a gqcqgs map of schemes. Then the pushforward functor f, :
Modo, (Sh(X;D(Z))) - Modo, (Sh(Y; D(Z))) defined as usual in the naive way with ( fxM)(V') =
MU):

1. preserves quasi-coherence, i.e. sends D(X) to D(Y);

2. commutes with all colimits and limits as a functor D(X) - D(Y),?

3. commtues with all base-changes by maps of schemes Y' - Y;

4. commutes with tensor product by elements of D(Y'), i.e. the projection formula holds.

Proof. When X, Y, and Y are affine, this is all clear, as we more-or-less discussed at the beginning
of this lecture. In general, everything commutes with restriction to open subsets and can be checked
locally, so we reduce to where Y and Y’ are affine. Then the condition that f be qcgs is the condition
that X be qcgs, which means it is glued from affine opens in a finitary manner. Thus f, is a finite limit
of analogous pushforwards ( f;). from affines to affines. As everything commutes with finite limits, this
proves the claims. ]

While f. preserves all colimits and thus has a right adjoint on general grounds, only in certain
specific situations is the right adjoint itself geometrically reasonable. The best case is described by
Grothendieck-Serre duality.

Theorem 13. Suppose f: X — Y is a smooth and proper map of schemes. Then the right adjoint f'
to f.: D(X) - D(Y') satisfies:

3caution that while colimits in D(X) are calculated in the larger category Modo, (Sh(X; D(Z))), the same is not
true of limits; actually it's best to forget about all but the finite limits.



1. The natural map f'(-) < f'(Oy) ® f*(-) is an equivalence;
2. If f has relative dimension d, then there is a natural identification f'(Oy) ~ Q% /Y[d].

By the material in the previous lecture, le(/y is a locally free Ox-module of rank one, hence is

invertible under tensor product; therefore so is its shift ng/y[d]. Thus Grothendieck-Serre duality says
that the left and right adjoints of pushforward differ by an explicit “twist”, i.e. by tensoring with an
explicit invertible element. This does indeed recover usual Serre duality when Y is spec of a field, as
we'll have occasion to review later. For now we want to note and explain the following corollary:

Corollary 14. Let f : X - Y be a smooth and proper map of schemes. Then f, : D(X) - D(Y)
preserves perfect complexes.

Proof. As we will review, an element of D(X) is called a perfect complex if, when restricted to any
affine open U, it corresponds to a compact object in D(O(U)). If X is qcgs, it follows that every
perfect complex is a compact object in D(X).

However, by commutation of f, with base-change we can reduce the claim to where Y is affine.
Then as a smooth map is qcgs, it follows that X is qcgs. Now we just use the general fact that
if a functor f. has a right adjoint f' which commutes with all colimits, then f. preserves compact
objects. O

(The smoothness condition is by no means required here. It's enough for f to be finitely presented
and have finite Tor-dimension, for example.)
Let us review perfect complexes, first in the affine setting.

Theorem 15. Let R be a commutative ring and let M € D(R). TFAE:
1. M is a compact object, i.e. Hom(M,-): D(R) -~ S commutes with filtered colimits.

2. M lies in the thick subcategory generated by R, i.e. the smallest stable subcategory containing
R and closed under passing to summands;

3. M is dualizable with respect to the tensor product in D(R);
4. M can be represented by a bounded chain complex of finitely generated projective R-modules.

Proof. Let's show 1 = 2 = 3 = 1. For the first implication, note that R as well as any shift of R is
compact, and compact objects are closed under finite colimits, so anything in the stable subcategory
generated by R is compact. But everything in D(R) is a filtered colimit of objects in the stable
subcategory generated by R, as we've discussed. But if M is compact and M ~ li_n)1i M; is expressed as
a filtered colimit, then necessarily M is a retract of some M;. Whence 1 = 2.

For 2 = 3, it suffices to note that R is dualizable, being the unit for the tensor product, and that
the dualizable objects form a thick subcategory (the dual of a cofiber is the fiber of the duals, etc).

For 3 = 1, if M is dualizable then Map(M,-) = Map(R, M"Y ®g —), so M compact follows from
R compact, which is true basically by construction.

Okay. Now it's clear that 4 implies 2, since 4 says that M has a finite filtration where each associated
graded is a particular shift of a finitely generated projective R-module. Inducting up the filtration, M
is therefore in the thick subcategory generated by R. Now let's prove 2 and 1 together imply 4 to finish
the job.



We use the following definition: a module M € D(R) has Tor-amplitude [a,b] if for all N € Modp,
corresponding to an object of D(R) concentrated in degree 0, we have M ®g N € D(R)[,], meaning
the homology groups of this tensor product vanish outside the indicated range. Basically, we want
to capture the idea that M has a flat resolution with terms in [a,b] but in an intrinsic way without
mentioning complexes. Then we first note that R has Tor amplitude [0,0], so a simple induction shows
that anything in the thick subcategory generated by R has finite Tor amplitude.

Next note that if M has Tor amplitude in [a,b], then taking N = R we see (thanks Maxime..!)
that M « D(R)[mb]. In particular, every perfect complex is concentrated in finite many degrees, and
by shifting we can move its bottom nonzero homology group to degree zero. Now we claim that this
bottom nonzero homology group Hy is always a finitely presented R-module. This follows because if
N =lim N; is a filtered colimit in R-modules, this gives a filtered colimit of objects of D(R) in degree
zero, and mapping out from M and using compactness of M in D(R) we deduce Hy(M) is compact
in Modpg hence is finitely presented.

In particular, finitely generated. Thus we can make a map R"™ — M which is surjective on Hy. We
pass to the fiber; if M has tor amplitude > 0, the fiber has smaller tor-amplitude, and we can repeat the
process until we get to a fiber which has tor-amplitude 0. This will then correspond to an ordinary R-
module which is both flat and finitely presented, hence finitely generated projective, by Lazard's lemma
that every flat module is a filtered colimit of finitley generated free modules. O

The full subcategory of objects of D(R) satisfying these properties is denoted Perf(R).

Corollary 16. Let R be a commutative ring. The assignment U ~ Perf(O(U)) on affine opens
U c Spec(R) is a subsheaf of U » D(O(U)).

Proof. At the very least, this is immediate from condition 3: as the base-change functors are symmetric
monoidal, they preserve dualizability; but on the other hand since duals are unique and functorially
determined, local duals automatically glue up to global duals. O

This means we can define, for a general scheme X, the full subcategory Perf(X) c D(X) by the
condition that on restrictions to affine opens it corresponds to a perfect complex in the above sense,
and this Perf(-) will also be a sheaf (so the condition of being perfect is a local condition) which on
affines agrees with the algebraic Per f(R). Equivalently, Perf(X) also agrees with the full subcategory
of D(X) consisting of the dualizable objects, by the same reasoning as above.

Exercise 17. Let S be an arbitrary scheme. Prove Grothendieck-Serre duality, as stated in this lecture,
for IP% - S.



