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Recall that to a smooth map of commutative rings A — B, we associated a complex of flat A-
modules Q;B/A, where each term is a finitely generated projective B-module. This complex is functorial

in B. Moreover, if B — B’ is a map of commutative rings corresponding to a Zariski-open inclusion
Spec(B'") c Spec(B), then for all p >0

P roOP .
QB/A ®p B = QB’/A7
furthermore if A — A’ is an arbitrary map, then
Vpja®a A= Q)
It follows that we can globalize as follows.
Definition 1. Let f: X - S be a smooth map of schemes and p > 0.

1. Define QI;(/S to be the quasicoherent sheaf on X determined as follows: if Spec(B) c X is an

affine open whose image under f factors through the affine open Spec(A) c S, then
Qg(/S(Spec(B)) = Q’;/A

compatibly with restriction. (This is independent of A by the second property recalled above, and
it is quasi-coherent by the first property.)

2. Define the de Rham differential d : Q?(/S - Qi;/g, a map of sheaves of f~'Og-modules, by taking

its value on sections over Spec(B) as above to be the de Rham differential Q07 A~ ng/ix'
Thus we have a de Rham complex of sheaves of f~*Og-modules on X
X/s°

By the correspondence between complexes and filtered objects in the derived category (with nth
associated graded concentrated in degree n), we can equivalently encode QB(/S as a filtered object

% /sl
in the co-category Mods-10(Sh(X;D(Z))), where the p'" associated graded

F2PQ0% sl /PP Q% sl = 197][-p)
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is the —p shift of the derived quasicoherent sheaf corresponding to the ordinary quasicoherent sheaf (2P
on X. Here and from now on we follow the convention that we automatically sheafify everything unless
otherwise indicated.

This lets us go further and define de Rham cohomology. In the setting of complex manifolds, we
took the hypercohomology of the de Rham complex of sheaves, which is the same thing as the global
sections, = pushforward to the point, of the associated sheaf in the derived sense. This motivates the
following.

Definition 2. Let f: X — S be a smooth map of schemes. Define the de Rham cohomology of X /S
to be
dRx/s = f+|Q% /sl € Modog (Sh(S; D(Z))).

Via the brutal filtration on 2% ¢, we can view this as a filtered object in Modp,(Sh(S;D(Z))); the
resulting filtration F>~ dR x /s Is called the Hodge filtration.

The following lemma reduces the study of dRy,g to the affine case.
Lemma 3. Let f: X - S be a smooth map of schemes.

1. As U c X varies over open subschemes, the functor U — dRyyg is a sheaf on X with values in
Modo,(Sh(S;D(Z))).

2. ForV c S open, dRx s |v =dRp1y )y

3. If X = Spec(B) and S = Spec(A) are both affine, then dRx g identifies with the derived quasi-
coherent sheaf associated to the object |Q;B/A| e D(A).

Moreover, these claims are also valid on the level of filtered objects.

Proof. Let U c X be open. Note that on the level of complexes of presheaves, Q;]/S and Q;(/SlU
have the same sections on affine open subsets, by construction. Thus, by sheafification it follows that
|Q;]/s| = |QS(/5||U-

If we write hy; in terms of colimits of hyy,'s in the co-category Sh(X;S), then we get a correspond-
ing description of (fU)*|QB(/S||U in terms of limits of values of (fUi)*|QB(/S||Ui' Claim 1 follows by
combining with the previous.

Claim 2 follows because again on the level of complexes of presheaves, Q;HV/V and QB{/S|V have
the same restrictions to a basis of affine open subsets by construction, hence their sheafifications |Q‘U/S|
and |Q}(/SHU agree, whence 2 by pushing forward.

For claim 3, inducting up the Hodge filtration it suffices to show that f.|QP|[-p] is the derived
quasi-coherent sheaf associated to the object QP[-p] € D(A). This follows because f. preserves quasi-
coherence and corresponds to the forgetful functor D(B) — D(A) in terms of the global sections
functor. O

Why do 1 and 2 reduce us to the affine case, described in 3?7 Because dRx/g is a sheaf on S by
definition, it suffices to understand its restriction to affine opens. Then by 2 we are reduced to where
S = Spec(A) is affine. Then by the first property, we can understand dRx /g by working locally on X,
in particular we can reduce to where X = Spec(B) is affine.

Corollary 4. Let f: X — S be a smooth map of schemes.



1. If f is qcgs, then dRx /g € D(S), i.e. the de Rham cohomology is derived quasi-coherent.

2. If f is gcgs, then for any g : S — S there is a natural identification g* dRy /s ~ dR x5 where
X’ =X Xgq SI.

3. If f is proper, then dRx g € Perf(S), i.e. the de Rham cohomology is a dualizable object of
D(S) under tensor product.

Moreover, all these claims are also valid on the level of filtered objects.

Proof. If V c S is affine open, then by parts 2 of the previous we have dR x/g v = dRf-1y/y,. Thus we
can reduce to the case where S = Spec(A) is affine, and in claim 2 we can reduce to where S’ is affine.

In that case, if f is qcgs, then X is qcgs, so hx can be written in terms of hy for affine U using finite
colimits. Thus by part 1 we can reduce to where X is also affine, since the collection of quasi-coherent
objects is closed under finite limits. Then parts 1 and 2 follow from part 3 of the previous and the
base-change property of the de Rham complex.

As for part 3, by induction up the Hodge filtration we reduce to proving that f.€2P is perfect, but we
recalled in the previous lecture, as a consequence of Grothendieck-Serre duality, that when f is smooth
and proper we have that f, preserves perfect complexes. Since QF is locally free of finite rank, it is
perfect, whence the claim. O

So we have a de Rham cohomology perfect complex when f is proper and smooth, which base-
changes in the geometrically appropriate way by 2. We would like to state a theorem of Deligne showing
that when S is a (Q-scheme, this perfect complex has homology that is as nice as possible. But first
let's explain a bit about homology of objects of D(.S) for a general scheme S. In general, for a sheaf
F of Og-modules in the derived sense on S (precisely, F € Modp(S; D(Z))), we would define H,, F
to be the sheaf of Og-modules in the underived sense on S (precisely, H,F € Modp,(S; Ab)) given
by sheafifying the homology presheaves of F. But we have the following simple lemma showing this
sheafification is very innocuous in the quasi-coherent setting.

Lemma 5. Suppose F € D(S) is a derived quasicoherent sheaf and n € 7. Then the sheaf H,F of
Og-modules is an ordinary quasi-coherent sheaf. The assignment F — H,JF commutes with restriction
to open subsets, and on an affine open Spec(R) it corresponds on global sections to the operation
M ~ H, (M) from D(R) to Modpg.

In particular, no sheafification is necessary when considering sections on affine opens.

Proof. By definition, if V c U is an inclusion of affine opens, then
F(U) @0 O(V) > F(V).
As O(U) - O(V) is flat, we deduce
Hoy(F(U)) ®0@) O(V) = Hao(F(V)).

Thus, the presheaf H,F on, restricted to any affine open U, agrees, on affine opens, with the quasi-
coherent sheaf associated to the O(U)-module H,,(F(U)). Sheafifying, we get the claim. O

More generally and for the same reasons, there are canonical truncation functors 7<,, : D(S) = D(S),
defined as the sheafification of the section-wise truncation functors on presheaves, and on affine opens
they correspond to the usual truncation functors on global sections.



Now, the homology groups of a general perfect complex have no general reason to be locally free
of finite rank, as simple examples such as cofib(Z 5 Z) show. In fact they need not themselves
even be perfect when viewed as complexes concentrated in a single degree, i.e. the full subcategory
Perf(R) c D(R) is not closed under canonical truncation. Even more, the homology groups of a
general perfect complex over a general ring R need not even be finitely generated as R-modules! In
general, this requires R to be a coherent ring, for example a noetherian ring.

But yet, when S is an arbitrary Q-scheme and f : X — S is proper and smooth, the perfect complex
dRx g € Perf(S) does have locally finite free homology as a consequence of the following theorem of
Deligne, proved in his paper “Criteres de degenerances...” which is our reference for this lecture and
the next.

Theorem 6. Let f: X — S be a smooth and proper map of Q-schemes. Then:

1. For all p>0 and q > 0, the quasicoherent sheaf RIf,(QP) = H_,f.|QP| on S is locally free of
finite rank.

2. The local ranks of R1f.(QP) and RP f.(29) are the same.

3. The spectral sequence of quasi-coherent sheaves on S
E?q = quf*Qp = H_p_q dR’X/S?

associated to the Hodge filtration of dRx s, degenerates at Ey. Thus each H,dRxs has a
functorial filtration with associated graded the RYf.(QP) for p+q = —n and in particular is also
locally free of finite rank.

In the rest of this lecture we'll give some algebraic preliminaries on the proof, then in the next lecture
we'll finish the proof and derive some consequences.

Definition 7. Let R be a commutative ring, and M € D(R). The following conditions are equivalent:

1. The homology R-module H, (M) vanishes for all n outside some finite range, and for all n is
finitely generated projective.

2. M is isomorphic to a finite direct sum of shifts of finitely generated projective R-modules.
3. M is represented by a complex of finitely generated projective R-modules with zero differential.
When these conditions hold we'll say that M is split-perfect.

Proof. It is clear that 2 = 3 = 1. For 1 = 2, by induction up the Postnikov tower it suffices to show
that if M € D(R)so has HyM projective, then M ~ 751 M & HoM[0]. But for N projective we have
moMap(N,M) = Hom(N,HoM) (true for N = R by definition, hence true for anything which is a
summand of a direct sum of copies of R) which gives the splitting. O

We will now present some Grothendieck-style reductions permitting to reduce the question of split-
perfectness to the case where R is an artinian local ring.

Lemma 8. Let R be a commutative ring and M € D(R).



1. If M is split perfect, then for any map R — R', the object M ®r R' € D(R') is also split-perfect,
and
Ho(M)®r R = Hy(M ®p R').

2. If R - R; is a finite set of flat maps such that Spec(R;) — Spec(R) is jointly surjective, then if
each M ®g R; is split-perfect, so is M.

Proof. Part 1 is clear using condition 2 of the definition. For part 2, note that for all n € Z we have
Hn(M) ®r R; = Hn(M ®Rr Rl)

as R — R; is flat. Thus we reduce to showing the claim that the condition of an ordinary R-module of
being finitely generated projective is flat-local, which is a consequence of faithfully flat descent. O

A particular case of 2 is an open cover of Spec(R) by affine opens. This lets us globalize, saying that
an object M € D(S) is split-perfect if it is so on any affine open subset. We deduce that the property
of being split-perfect is local on S and preserved by base-change. We caution that a split-perfect object
of D(S) need not be globally split, meaning isomorphic to the direct sum of its homology with the
appropriate shifts; you will give an example in the exercises.

Lemma 9. Let R be a commutative ring and R; a filtered colimit diagram of R-algebras. If M €
Perf(R) and M ®g h_r)mZ R; is split-perfect, then M ® g R; is split-perfect for some i.

Proof. Write each Hn(M®Rli_n)1i R;) explicitly as the image of an idempotent square matrix with entries

in h_l’I)lZ R;. All this data is finitary in nature: we need to given N? elements of h_n)lZ R; satisfying the
explicit polynomial equations which result from the condition that the matrix be idempotent. Because
the colimit is filtered, it follows that we can realize this data over some R;, and replacing R by this R;
we can therefore assume these modules are base-changed from finitely generated projective R-modules.
The data of the isomorphism

@0 H,(M ®plim R;)[n] =~ M ® lim R;
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of perfect complexes over h_II)ll R; is similarly finitary in nature as we see by choosing a representing
complex for M and noting that isomorphisms in Per f(—) correspond to chain-homotopy equivalences
among representing complexes of projective modules. Thus this isomorphism can also be realized over
some R;, whence the conclusion. O

Remark 10. We can also say this from a more high-brow perspective, without discussing individual
elements of R and without representing our objects by chain complexes. The functor Perf(-) from
commutative rings to oo-categories commutes with filtered colimits; this follows formally from the fact
that D(-) sends filtered colimits to inverse limits via the forgetful functors, using that Perf(-) is
the full subcategory of compact objects in D(-). Similarly for finitely generated projective modules
replacing perfect complexes. Filtered colimits of oco-categories are calculated object-wise and map-wise,
so we can also proof the above lemma using this other perspective but following the same basic outline.

Lemma 11. Let R be a commutative ring and I c R an ideal with R > lim R/I". If M € Perf(R),

n
each M®prR/I" is split-perfect, and each homology module of M ® g R/I is free, then M is split-perfect
and moreover each homology module of M is free.



Proof. First we claim that M > l(innM ®r R/I", where now this all takes place in D(R). Since M

is perfect, this reduces to the analogous claim with M = R, but that follows because R 5 l(gln R/I"

in the underived sense by hypothesis, and the transition maps R/I"*! — R/I™ are surjective so there is
no lim! term, hence it's also true in the derived sense.

It follows that there is a Milnor short exact sequence expressing H, M in terms of the limit and lim!
of the H.(M ®r R/I™). But these are finitely generated projective modules which base-change to each
other by the first lemma above, so the transition maps are surjective and hence there is no lim!. We
deduce that

H. M = lﬂlHk(M QR R/In),
n
for all k € Z, and moreover the transition maps are surjective.

The first term Hi(M ®g R/I) is free of finite rank by assumption. By the above limit claim we can
lift a basis all the way to HiM and encode this as a map f: RY — H;, M. By the limit claim again, to
show this is an iso it suffices to show that the induced map (R/I™)¢ - H(M ®r R/I") is an iso for
all n. But this is true for n =1 and that implies it's true for all n by the following lemma, whence the
claim. O

We used the following lemma in the proof:

Lemma 12. Let R be a ring and I c R a nilpotent ideal. If f: M — N is a map in D(R) such that
f®gr R/I is an iso, then f is an iso.

Proof. Filtering by powers of I, we can inductively reduce to the case I? = 0. Passing to the fiber of f,
it suffices to show that if M ®p R/I =0, then M = 0. By the fiber-cofiber sequence I ®p M - M —
R/I ®r M, it suffices to argue that TR ®p M = 0. But I is an R/I-module as I = 0. Thus it lies in
the full subcategory of D(R) generated under colimits by R/I, whence the claim. O

Now we can prove the reduction theorem.

Theorem 13. Suppose R is a noetherian ring and M € Perf(R). If for all artinian local R-algebras
R’ the R'-module M ®g R’ is split-perfect, then M s split-perfect.

Proof. Let € Spec(R). Write R, the local ring at 2 and Rz for its completion at the maximal ideal.
We apply the previous lemma to Rz and I the maximal ideal. The first quotient is the residue field,
so the freeness hypothesis in that lemma is automatic, and each higher quotient is artinian local so by
our hypothesis here we can apply the previous lemma. We deduce that M ®p Rz is split-perfect. As
R is noetherian, the map R, — Rz is faithfully flat, thus from another lemma we deduce M ®r R,
is split-perfect. As R, is the filtered colimit of R[f™']'s where the D(f)'s are a neighborhood basis
for z, from another lemma we deduce that M is split-perfect in some neighborhood of . Thus M is
split-perfect over some open cover, hence it is split-perfect again by faithfully flat descent. O

Finally, in the artinian local case, there is a numerical criterion for split-perfectness. This is based
on the notion of length of a finitely generated R-module, which we recall here.

Definition 14. Let R be an artinian local ring. Recall that in particular R is noetherian, so the collec-
tion of finitely generated R-modules forms an abelian subcategory of Modpr, closed under extensions,
submodules, and quotients.

There is a unique way to assign a non-negative integer [r(M) to every finitely generated R-module
M, such that:



1. length is additive in short exact sequences;
2. the length of the residue field k is 1.

The idea is that every finitely generated R-module has a canonical finite filtration, by powers of the
maximal ideal, and each associated graded is a finitely generated k-module hence isomorphic to a finite
direct sum of copies of k. This determines what the length has to be assuming 1 and 2 are satisfied,
then one checks that 1 is indeed satisfied with that definition (or, invoke Quillen’s devissage theorem in
algebraic K-theory!). It follows also from this description that (M) =0 if and only if M = 0.

If there is an algebra splitting of the quotient R — k, making R into a k-algebra, then this theory
of length is simple: the length is simply the dimension over k. Cohen's structure theorem implies that
such a splitting exists when k has characteristic zero. That hypothesis will be satisfied for us when we
use this theory. So you can make that simplifying assumption if you like.

Remark 15. As Maxime remarks, this result of Cohen is easy to prove if k = Q. Namely, since every
nonzero integer acts invertibly on the residue field, inducting up the filtration we see that every nonzero
integer acts invertibly on R. Thus R is a Q-vector space, hence a Q-algebra as Q ®7 Q = Q.

On the other hand, the claim fails when k has characteristic p, for example we have R = Z./p*Z which
has residue field IF,, but is not an F),-algebra. Make sure you understand where the above argument fails
with ), replacing Q if you replace the condition of n acting invertibly by the condition that p acts by
zero.

The numerical criterion is as follows.

Proposition 16. Let R be an artinian local ring with residue field k, and let M € Perf(R). Then for
all n € Z we have
lr(Hn(M)) <Ig(R) - dimyHn(M ®R k).

Moreover, equality holds for all n if and only if M is split-perfect.

Proof. If M is split-perfect, it is clear that equality holds because we reduce to M = R where the result
is trivial. Thus let us prove the inequality and show that equality implies M is split-perfect.

By the lemma which follows, M can be represented by a complex (M, d) of finitely generated free
R-modules such that d®p k£ =0 in all degrees. It follows that M ®p k is represented by the complex
with terms M, ® k and trivial differential. Thus H, (M ®pr k) = M,, ®g k, and since M,, is finitely
generated free it follows that

lR(R) : dzman(M ®R k) = ZR(Mn)
But H, (M) = kerd,,/imd,1 is a subquotient of M, so we deduce
lR(Hn(M)) < lR(Mn)

whence the desired inequality. If equality holds, then by additivity of length and the fact that the length
is zero if and only if the module is zero, the subquotient H,, (M) must be all of M,, so H,(M) is
finitely generated free, whence M is split perfect if equality holds for all n, as desired. O

We used the following lemma:



Lemma 17. Let M be a perfect complex over a local ring R with residue field k. Then M can be
represented by a bounded complex of finitely generated free R-modules (M,,,d) with d®g k =0 in all
degrees.

Proof. We describe how to build such a resolution of M inductively. By shifting we can assume the
bottom homology group of M is in degree zero. Choose a basis of the finite dimensional k-vector space
Ho(M) ®g k, and lift to a map

fo: My — M

with My a finitely generated free R-module, so that Hyfy induces an iso on base change to k. In
particular, by Nakayama's lemma, Hjfj is surjective. Then we can continue in the usual manner to
obtain a resoultion: pass to the fiber of fy and iterate this construction. O

Exercise 18. 1. Suppose R is a noetherian ring such that every module has finite tor-amplitude (this
is equivalent to saying that R is a regular noetherian ring by Serre’'s homological characterization
of regularity). Show that every finitely generated R-module M, viewed as an object of D(R)
living in degree zero, is a perfect complex.

2. Let k be a field and R = k[e]/e?. Consider the R-module M = R/e. Show that M viewed as an
object of D(R) living in degree zero is not a perfect complex.

Exercise 19. 1. Let S be a scheme and let n € Z-g. Show that the set of isomorphism classes
of objects M € D(S) equipped with fixed isomorphisms Hy(M) ~ Og and H,(M) ~ Og and
satisfying furthermore that Hy,(M) =0 for k + 0,n is in bijection with H"*1(S;Og).

2. Let E and E' be any two elliptic curves over a field k. Show that H*(E x;, E';0) = k.

3. Deduce that there is a split-perfect complex on E x;, E' which is not isomorphic to the direct sum
of its shifted homology groups.



