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Today we’re going to put it all together. Let me remind you of the pieces:

1. Let p be a prime. Then

ζQ(ζp)(s) = ζQ(s) ·
∏
χ 6=1

L(s, χ),

where ζF (s) is the Dedekind zeta function of a number field F , and L(s, χ) for a nontrivial
character χ : (Z/pZ)× → C× is the Dirichlet L-series for χ.

More generally, if F ⊂ Q(ζp) is a subfield with Galois-corresponding subgroup H ⊂ (Z/pZ)×,
then

ζF (s) = ζQ(s) ·
∏

χ 6=1,χ(H)=1

L(s, χ).

2. Let χ : (Z/pZ)× → C× be odd, i.e. χ(−1) = −1. Then

L(1, χ) =
1

p
· π · i · g(χ) ·B1,χ,

where g(χ) =
∑p−1

k=1 χ(k) · ζ
k
p and B1,χ =

∑p−1
r=1 χ(r) · rp . (There was also a formula when χ is

even and nontrivial, but it was more complicated, with log’s of algebraic integers in it.)

3. Let F be a number field. Then

lims→1+(s− 1)ζF (s) =
M · h
A

,

where:

(a) h is the class number of F , i.e. the order of the class group of F .

(b) A is the volume of a fundamental domain for the ring of integers OF inside Minkowski space
FR.

(c) M is the volume of X≤1, where X is a fundamental cone for the action of the units O×F on
Minkowski space FR, and X≤1 ⊂ X is the subset of elements x with |N(x)| ≤ 1.

To combine these facts, multiply the first fact by s − 1 and let s → 1+. Using the third fact, we
get that for a number field F ⊂ Q(ζp) with Galois-corresponding subgroup H ⊂ (Z/pZ)×, we have
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M · h
A

=
∏

χ 6=1,χ(H)=1

L(1, χ).

Now, we want to isolate the odd characters in this product. For this, suppose (from now on) that
p > 2, and let F be one of the following two fields:

1. K := Q(ζp), the full cyclotomic field. This corresponds to H = 1.

2. K+ := Q(ζp) ∩R, the subfield of real cycltomic numbers. This corresponds to H = ±1: that is,
K+ is the fixed field of complex conjugation acting on K.

If we look at the above formula when F = K and F = K+, then take the quotient, we find

(M/M+) · (h/h+)
(A/A+)

=
∏

χ(−1)=−1

L(1, χ) =
∏

χ(−1)=−1

1

p
πig(χ)B1,χ.

Now, we’re going to try to extract from this a reasonable formula for h/h+ in terms of the B1,χ.
To do so requires identifying some of the mysterious numbers on both sides. Let us say the result now,
and explain the more relevant pieces of it later.

Proposition 0.1. We have the following calculations:

1. M/M+ = 1
2p(2π)

p−1
2 .

2. A/A+ =
√
p

p−1
2 .

3. h/h+ is an integer.

4.
∏
χ(−1)=−1 g(χ) = (i

√
p)

p−1
2 .

Plugging this in and observing some cancellations, we get

h/h+ = 2p ·
∏

χ(−1)=−1

−1

2
B1,χ.

This is the formula we were aiming for.

Before explaining the above calculations, let me say a word about the historical context of this
formula (as I understand it — I admittedly haven’t looked too deeply into the history). Why were
people interested in the class number of Q(ζp)? It has to do with Fermat’s Last Theorem, which
predicted that there are no nontrivial integer solutions to

xn + yn = zn

when n ≥ 3. Of course, we can assume n = p is prime. Then the remark is that we can rewrite this
equation in Z[ζp] as

xp = (z − ζpy)(z − ζ2py) . . . (z − ζp−1p y).
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Now, the point is that the left hand side is a pth power, but the factors on the right hand side are
(nearly) relatively prime. If we had unique prime factorization in Z[ζp], then we could conclude that
each of the factors on the right is, up to a unit, (nearly) a pth power. And from there it’s not too much
work to derive a contradiction.

Unfortunately, it seems that for large primes p the ring Z[ζp] rarely has unique prime factorization,
so this argument hits a serious roadblock. But Kummer realized that you don’t actually need the full
strength of unique prime factorization to make the argument go through. It’s enough to assume that p
doesn’t divide the class number of Q(ζp). That assumption implies that if the pth power of an ideal is
principal, then the ideal itself is principal. (This is a general fact about abelian groups: if p - #A, then
multiplication by p is an isomorphism from A to itself.) And that’s all one really needs for the above
purposes.

This raises the question: given a prime p, how can we tell whether or not p divides the class number
h of Q(ζp)? Kummer showed that p divides h if and only if it divides h/h+. (This is a subtle claim,
because it’s unknown whether p can divide h+.) Thus the above formula for h/h+ makes it just a
simple calculation to see whether or not p - h, so whether or not the above argument proves Fermat’s
last theorem for the exponent p.

That’s where it all came from. Now let me also say a word or two about what happened afterwards.
A lot of later work on this subject centered around the idea of embodying the above numerical formula
in the class group of Q(ζp). Meaning, one wants some sort of interpretation of the individual factors
on the right in terms of class groups. This is a subtle business, because the above formula really came
from complex (or at least real) analysis, which deals with numbers, but not group structures. The first
major step in this direction was taken by Herbrand, and we’ll turn to his work at the end of this class.
But it seems that, from a philosophical perspective, the decisive observations came from Iwasawa in the
mid-20th century.

Iwasawa found a seemingly natural, though mysterious, bridge between the complex analysis and
class groups, which gives more information than the classical story we’ve been telling, based on work of
Dirichlet. He found that the natural intermediary is p-adic analysis. He showed how to go from complex
analysis to p-adic analysis in the case of Dirichlet L-series, and he made a conjecture explaining how to
go from p-adic analysis to class groups. This conjecture was later proven by Mazur and Wiles, and now
there’s more than one proof known, and actually Iwasawa theory is a big field. But anyway, at the end
of this, one does see that the factorization on the right-hand side of the equation for h/h+ indeed has
a nice reflection in the structure of the class group of Q(ζp).

Getting back to business, we should now explain the first three parts of the above proposition, the
ones about A/A+, M/M+, and h/h+. (We’ll leave the last one alone, the one about the Gauss sums,
since it’s a bit off-topic). They all concern the relationship between arithmetic in K and K+. Here are
the main claims which imply them.

Proposition 0.2. Recall, K = Q(ζp) and K+ = Q(ζp) ∩ R for an odd prime p. Let UK = O×K and
UK+ = O×

K+ be the respective unit groups of these number fields, and let CK and CK+ be their
respective class groups. Then:

1. The ring of integers OK+ is Z[ζp + ζ−1p ], and the volume of K+
R /OK+ is

A+ =
√
p

p−3
2 .
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2. The cokernel of the natural inclusion UK+ → UK is finite, and in fact it identifies with the group
{zp = 1} of pth roots of unity.

3. The natural map CK+ → CK is injective.

To prove these claims, we’ll need to understand K+ about as well as we understand K. The first
step is to investigate the ring of integers OK+ . Recall that a crucial ingredient of our understanding of
K was the factorization

p = (1− ζp)(1− ζ2p ) . . . (1− ζp−1p )

in Z[ζp]. The important thing was that each 1− ζip is a unit multiple of π = 1− ζp, so this means p is
a unit times πp−1 in Z[ζp]. Thus (p) = (π)p−1 is the unique maximal ideal factorization of (p), and so
(π) is the unique maximal ideal of OK lying above p.

Now let’s find the analogous factorization in Z[ζp + ζ−1p ] ⊂ K+. Here is a lemma:

Lemma 0.3. If α ∈ Z[ζp], then αα ∈ Z[ζp + ζ−1p ].

Proof. If you write α = a0 + a1ζp + . . .+ ap−2ζ
p−2
p , you’ll see that αα lies in the span of the ζip + ζ−ip

for i = 0, 1, . . . , p− 2. So it suffices to see that all of these are polynomials in ζp + ζ−1p . That follows
by expanding (ζp + ζ−1p )i and using induction.

Now we just take our expression for p and multiply it by its complex conjugate. This gives

p2 = u · (ππ)p−1

with u a unit, and everything is in Z[ζp + ζ−1p ] by the lemma.
Starting from this factorization, we can run a similar game inOK+ as to what we did inOK . Consider

the quotient OK+/p2. By the above factorization, it is built up out of p− 1 copies of OK+/(ππ). On
the other hand, since K+ has degree p−1

2 over Q (it corresponds to the order-2 subgroup ±1 of the

Galois group of K), we know that OK+ is free of rank p−1
2 , and hence OK+/p2 has cardinality pp−1. It

follows that OK+/(ππ) has cardinality p, and so must be Fp. In particular, (ππ) is a maximal ideal of
OK+ , and so by uniqueness of maximal ideal factorizations, the above factorization of p2 implies that
there must exist a factorization of ideals of OK+

(p) = (ππ)
p−1
2 .

We can also use this to check that OK+ = Z[ζp + ζ−1p ] just as we showed that OK = Z[ζp]. One

calculates the volume V ol(K+
R /Z[ζp + ζ−1p ]) as a Vandermonde determinant, and finds that it equals

√
p

p−3
2 .

Thus V ol2 is a power of p, and so we deduce that Z[ζp + ζ−1p ] ⊂ OK+ has index a power of p. But on
the other hand, by comparing the long factorization p2 = u · (ππ)p−1 in both these rings we see that
the index must be prime to p. Therefore the index is one, and we deduce both that OK+ = Z[ζp+ ζ−1p ]

and that A+ =
√
p

p−1
2 .

That handles the first claim of the above proposition. We can also extract the following:
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Corollary 0.4. Let I be any nonzero ideal of OK+ . Consider the extended ideal IOK of OK : i.e., IOK
is the smallest ideal of OK containing I, or in other words it’s the set of all finite sums of elements of
the form i · α with i ∈ I and α ∈ OK . When we take the unique maximal ideal factorization of IOK ,
then the maximal ideal (π) occurs to an even power.

Before giving the proof, let’s say some words about this operation I 7→ IOK of extending ideals
from OK+ to OK . This will be useful later, since it’s what gives the natural map CK+ → CK on class
groups. The first thing to say is that this operation of extension is multiplicative: it sends products of
ideals in OK+ to products of ideals in OK . That’s obvious. The second thing is that if P is a maximal
ideal of OK+ lying above a prime p, then POK also lies above p. That’s obvious too, since lying above
p just means that p ∈ P . Finally, the last thing is that we can recover I from the extended ideal IOK .
Namely, I = (IOK) ∩ OK+ . That’s not obvious, but I’ll leave it as an exercise.

OK, now let’s prove the corollary.

Proof. If we consider the unique maximal ideal factorization of I, then only the maximal ideals lying
above p will contribute to powers of (π) once we extend to OK . But we just saw that there’s a unique
maximal ideal lying above p, namely (ππ). Thus it suffices to see that (ππ), when extended to OK , is
an even power of (π). But of course, π and π are unit multiples of each other in OK .

Now let’s turn to the map on units UK+ → UK . This is certainly injective: it just comes from the
inclusion of rings OK+ ⊂ OK . Furthermore, its image is easy to characterize: it is the set of u ∈ UK
such that u = u. This is just the Galois fact that K+ is the fixed field of complex conjugation acting
on K, together with the fact that an algebraic integer is a unit in one number field if and only if it’s a
unit in any bigger number field, which is obvious from the definitions.

Another way of saying that u = u is to say that u/u = 1. Now, here is the main claim:

Proposition 0.5. Suppose α is a nonzero element of K for which α/α is a unit in OK . Then in fact
α/α is a root of unity. Moreover, in the case where α itself is a unit, then α/α is a pth root of unity.
Finally, the resulting sequence

UK+ → UK
u7→u/u−→ {zp = 1}

is a short exact sequence of abelian groups. (This means that all the maps are homomorphisms, the
first map is injective, the last map is surjective, and the kernel of the last map equals the image of the
first map. Thus, the quotient UK/UK+ identifies with {zp = 1}.)

We need this general lemma:

Lemma 0.6. Let F be a number field, and suppose x ∈ OF satisfies |σ(x)| = 1 for all field embeddings
σ : F → C. Then x is a root of unity.

The lemma is false if we don’t assume x ∈ OF : consider 3+4i
5 ∈ Q(i).

Proof. The locus of x for which |σ(x)| = 1 for all σ defines a closed and bounded, hence compact,
region in Minkowski space FR. But we know that OF is discrete in Minkowski space. Discrete plus
compact implies finite, so there are only finitely many x satisfying our conditions. But on the other
hand, if x satisfies these conditions, then so does every power of x. So we must have xn = xm for some
distinct n and m. Thus x is a root of unity.

Now we prove the proposition.

5



Proof. To see that α/α is a root of unity, we apply the lemma. Note that every field embedding
σ : K → C commutes with complex conjugation, because Gal(K/Q) = (Z/pZ)× is commutative.
Thus we have

σ (αα) = (σα)/(σα).

This is of the form zz, so it has norm 1. So the lemma implies that α/α is a root of unity. Furthermore,
α 7→ α/α is certainly multiplicative.

Now assume that α = u lies in UK . We need to see that this root of unity is actually a pth root
of unity. Since every root of unity in K is a (2p)th root of unity (there can’t be others: this follows
from our knowledge of the degrees of cyclotomic fields), it suffices to see that u/u can’t be a primitive
(2p)th root of unity, i.e. that we can’t have

u/u = −ζ−1p .

But note that −ζ−1p = π/π. So if we were to have the above, then uπ would be fixed by complex
conjugation, and hence would lie in OK+ . But this contradicts Corollary 0.4 above, since (uπ) = (π) is
an odd power of (π).

The last thing to see is that the sequence is short exact. The only thing that’s not obvious is that
the last map is surjective, i.e. that every pth root of unity is of the form u/u for some unit u ∈ UK .
But actually, if we take u = ζp, then we get u/u = ζ−2. That’s just another primitive pth root of unity,
so all pth roots of unity must be hit.

All that’s left is seeing that the map CK+ → CK is injective. In other words, we need to know
that if a nonzero ideal I of OK+ is such that IOK is principal, then I itself is principal. So suppose
IOK = (α) with α ∈ OK . Because I came from OK+ , complex conjugation leaves the ideal IOK
invariant. Thus (α) = (α), so α/α is a unit, and in particular an algebraic integer. Thus, by the above
lemma, it must in fact be a root of unity.

The key claim is that it too must be a pth root of unity. We can argue for this exactly as in the
second paragraph of the above proof. Assuming otherwise, we have α/α = π/π, so απ lies in OK+ .
But we know that the ideal generated by α comes from OK+ too, so this would mean that (π) comes
from OK+ . But that can’t be, because it’s an odd power of (π).

Thus α/α is a pth root of unity; in particular it equals u/u for some u ∈ UK (by the surjectivity of
the last map in the above exact sequence). Then we see that αu lies in OK+ . Then the ideal (αu) has
the same extension to OK as I does since u is a unit; thus we must have I = (αu), so I is principal,
as desired.

I should say, I found these clever arguments in Lang’s book on cyclotomic fields. He credits them
to Iwasawa.
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