
Gauss periods

January 16, 2014

Today we’re going to more or less start over from the beginning, and get back into the historical
root of cyclotomy: Gauss’s study of the constructibility of regular n-gons by ruler and compass. This
also involves finding explicit generators for subfields of cyclotomic fields. These generators will be the
Gauss periods.

Let me start by recalling what is a ruler and compass construction. You start with the plane R2,
and you give yourself the points (0, 0) and (0, 1). Starting from these points, you’re allowed to generate
more points by iterating the following rules:

1. If you have two distinct points P and Q, you’re allowed to draw the line connecting P and Q,
and you’re allowed to draw the circle centered at P passing through Q.

2. Whenever you have an intersection of two figures, where a “figure” is either a line or circle, then
you get the intersection points.

Then the question is, which points P ∈ R2 can you get? Or, in the usual terminology, which points
P are “constructable”?

This question has a beautiful algebraic answer:

Proposition 0.1. Think of R2 as C, the complex numbers. Then for a point z ∈ C, the following are
equivalent:

1. z is constructible;

2. z can be expressed from 0 and 1 using only field operations and square roots;

3. z lies in a Galois extension F/Q of degree some power of 2.

The appearance of the number “2” in the third criterion is an algebraic reflection of the fact that
the intersection of a line and a circle, or the intersection of two circles, carries a two-fold ambiguity.

Let me briefly recall the proof of the above proposition. First one sees that 1 and 2 are equivalent.
For 1⇒ 2, one just sees that, algebraically, the intersection of two figures is described by either a linear
equation or a quadratic equation. Thus, only field operations and square roots. For 2⇒ 1, one needs to
figure out how to geometrically realize the field operations and square roots by intersections of figures.

Then one sees that 2 and 3 are equivalent. For 2 ⇒ 3, assuming 2 one has that z lies in an iterated
quadratic extension of Q. But then the same holds for all the conjugates of z; and hence also for the
Galois closure of Q(z). By the “tower law”, then, this Galois closure has degree a power of two, giving
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3. For the last implication, 3 ⇒ 2, one uses that for every inclusion of groups H ⊂ G where G has
order a power of two, one can “fill in” this inclusion by subgroups each of which is index two in the
next. Applying this to G = Gal(F/Q) and H = Gal(F/Q(z)), by using the Galois corresopndence
we deduce that Q(z) is an iterated quadratic extension of Q, which gives us 2 via the quadratic equation.

Now let’s use this to answer the question of when a regular n-gon can be constructed by ruler and
compass. An equivalent question is whether a primitive nth root of unity ζn ∈ C is constructible. By
the above proposition, this happens if and only if the cyclotomic field Q(ζn) has degree a power of 2.
But we know the degree of this field: it’s ϕ(n), the number of integers k relatively prime to n with
0 ≤ k < n. That’s the irreducibility of the nth cyclotomic polynomial.

As usual, for simplicity we’ll focus on the case when n is a prime number p. Then ϕ(p) = p− 1, so
the criterion is that a regular p-gon can be constructed by ruler and compass if and only if p − 1 is a
power of 2.

That’s a nice abstract result. But given such a prime p, how would one actually figure out how to
construct the p-gon? Or, from the algebraic perspective, how can we explicitly write ζp in terms of field
operations and square roots?

The idea for how comes from the proof of the above proposition. We know that the Galois group is
Gal(Q(ζp)/Q) = (Z/pZ)×. This is cyclic of order p− 1, so for every divisor d|(p− 1) there is a unique
subgroup H of order d. Assuming p − 1 is a power of 2, say p − 1 = 2n, this means we can filter the
Galois group as follows:

{1} = H0 ⊂ H1 ⊂ H2 ⊂ . . . ⊂ Hn = (Z/pZ)×,

where Hk is the unique subgroup of order 2k. Under the Galois correspondence, this corresponds to
filtering Q(ζp) by iterated quadratic extensions:

Q = F0 ⊂ F1 ⊂ . . . ⊂ Fn = Q(ζp),

where Fk is the fixed field of Hn−k. Then what we’ll try to do is start with Q and work our way up this
tower, successively finding explicit generators for the fields Fk in terms of square roots, until we get to
the top and find a new expression for ζp.

To illustrate how this goes, let’s look at a simple special case: p = 5. Here the Galois group has
order 4, so there is just one intermediate field, call it F . So Q ⊂ F ⊂ Q(ζ5), and both of these
extensions have degree 2. So, how do we find a generator for F? So far all we know is ζ5. That doesn’t
lie in F , because it’s not fixed by the corresponding subgroup {1, 4} ⊂ (Z/5Z)× of order 2. But there’s
an easy trick for producing an element which is fixed: just take the sum of all the conjugates of ζ5.
That is, consider

α = ζ5 + ζ45 .

This is fixed by {1, 4}, because the summands are just swapped. So α lies in F . It also doesn’t lie in
Q, because α is not fixed by the other Galois elements: the action by 2 or 3 in (Z/5Z)× on α gives

α′ = ζ25 + ζ35 ,
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and we can’t have α = α′, because that would imply the identity 1 − ζ5 − ζ25 + ζ35 = 0 of degree 3,
whereas we know that the minimal polynomial of ζ5 has degree 4. So α must be a generator for the
quadratic field F .

Now let’s write α in terms of square roots. Or in other words, let’s find a quadratic equation satisfied
by α, with rational coefficients. We know this has to exist, because α lives in the quadratic field F .
And actually, it’s easy to write down such a quadratic equation: we know the other root should be the
unique Galois conjugate of α, which is just the above α′. So the equation should be

(X − α)(X − α′).

When we expand this out, it has to have Q-coefficients, because it’s fixed by Galois. Let’s do it explicitly.
We get

X2 − (ζ5 + ζ25 + ζ35 + ζ45 )X + (ζ5 + ζ45 )(ζ
2
5 + ζ35 ).

Now, the only algebraic relation we should need to use to see that this lies in Q is the equation
1 + ζ5 + ζ25 + ζ35 + ζ45 = 0, coming from the minimal polynomial of ζ5. And indeed, inputting this
equation we find our polynomial is

X2 +X − 1.

Thus,

α, α′ =
−1±

√
−5

2
.

(We could ask which is which if we take ζ5 = exp(2πi/5). Then α would correspond to the +
√
−5,

and α′ to the −
√
−5, because we can see geometrically that ζ5 + ζ45 is positive. But let’s stay in the

algebraic realm, so ζ5 is just some abstract primitive fifth root of unity, and the ± sign is indetermined.)
Thus we’ve solved F in terms of square roots. Now, using this, let’s do the same for the full field

Q(ζ5). We can play the same trick, just one level higher. We know F ⊂ Q(ζ5) is a quadratic extension.
So ζ5 must satisfy a quadratic polynomial with coefficients in F . To find it, we just make the polynomial
whose roots are ζ and the conjugate of ζ by the Galois group {1, 4}. That is, we take

(X − ζ5)(X − ζ45 ).

When we expand this out, it must have coefficients in F , and therefore be expressible in terms of α.
Indeed, expanding gives

X − αX + 1.

Thus, we find

ζ5 =
α±
√
α2 − 4

2
.

If we plug in the above expression for α, we find an expression for ζ5 in terms of square roots and field
operations, which is exactly what we wanted. Note that in total there is a four-fold ambiguity coming
from the two choices of ±; this matches with the fact that the Galois group of Q(ζ5) is of order 4.

So if you didn’t know how to construct a regular 5-gon by ruler and compass, now you do (modulo
finding the algorithms for realizing field operations and square roots, which is a fun exercise). It should
be clear that this method we just used works in general. Here’s the abstract proposition:
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Proposition 0.2. Let p be a prime number, and let H be a subgroup of G = (Z/pZ)×, considered as
the Galois group of Q(ζp). For every coset C of H ⊂ G, define the Gauss period

PC =
∑
x∈C

ζxp .

Then for g ∈ G we have gPC = PgC ; thus all the PC are Galois-conjugate. Moreover, each PC generates
the fixed field of H.

Proof. It’s actually a trivial calculation to see that g ·PC = PgC . Thus all the PC are Galois-conjugate.
Moreover we see from the same formula that each PC is fixed by H, and hence lies in the fixed field of
H. By Galois theory, to see that PC generates this fixed field, it’s enough to see that PC is not fixed
by any g ∈ G not in H. So, let g ∈ G \H, and suppose

PgC = PC .

If we subtract PC and divide by ζp, we find a polynomial of degree < p − 1 satisfied by ζp, which is
impossible, since we know that the minimal polynomial of ζp has degree p− 1.

A consequence of this proposition is that given a containment of two subgroups H ⊂ H ′ of G, the
minimal polynomial of PH over the fixed field of H ′ is given by∏

C∈H′/H

(X − PC).

(This is the monic polynomial whose roots are the H ′/H-orbits of PH .) When one expands this out it
must be possible to write the coefficients in terms of the PH′ , because PH′ generates the fixed field of
H ′. In particular, when H is of index 2 in H ′ we get a quadratic equation satisfied PH with coefficients
in Q(PH′). Thus if p − 1 is a power of 2, then by working your way down index-2-subgroups starting
from G and ending at {1}, you end up with an expression for P{1} = ζp in terms of iterated square
roots. That’s Gauss’s algebraic construction of the regular p-gon.

If you ever put this into practice, then you really run into some interesting stuff. To illustrate this,
let’s focus on what would be just the very first step of using this idea to find an expression for ζp: finding
the unique quadratic subextension of Q(ζp). Here we don’t really need to assume p − 1 is a power of
2: we only need p to be odd. All the better.

The subgroup we need to think about is the subgroup H ⊂ (Z/pZ)× of index 2. There are two
“dual” ways of describing this H: one is that H is the image of the squaring map on (Z/pZ)×, i.e. it
is the subgroup of nonzero squares (mod p); the other is that H is the kernel of the “raising to the
p−1
2 -power” map on (Z/pZ)×. The fact that these two descriptions agree and give the unique index

two subgroup is an easily-verified fact about any cyclic group of even order.
By the above proposition, we know then that the unique quadratic subfield of Q(ζp) is generated by

PH =
∑
x∈H

ζxp ,

and that the minimal polynomial of PH is

(X − PH)(X − PG−H).
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Let’s calculate this minimal polynomial explicitly. Expanding, we get

X2 − (PH + PG−H)X + PH · PG−H .

The coefficient of X is just the sum of ζxp over all x ∈ G. We know that’s −1, because 1 + ζp + . . .+

ζp−1p = 0. So our polynomial is
X2 +X + PH · PG−H .

As for PH · PG−H , by distributing it is equal to∑
x∈Z/pZ

Nx · ζxp ,

where Nx denotes the number of ways of writing x = y + z with y ∈ H and z ∈ G−H. So we should
figure out what this Nx is.

There are two cases to consider: x = 0, and x 6= 0.

Proposition 0.3. Let p be an odd prime, and Nx for x ∈ Z/pZ as defined above. Then:

1. N0 = 0 if −1 is a square (mod p), and N0 =
p−1
2 if −1 is not a square (mod p).

2. For x 6= 0, we have Nx = p−1
4 if −1 is a square (mod p), and Nx = p−3

4 if −1 is not a square
(mod p).

Proof. The equation 0 = y + z is equivalent to z = (−1) · y. Letting y run over H, we see that N0 is
the same as the number of elements y ∈ H for which (−1) · y lies in G −H. If −1 is a square, then
there are none of these, because −1 ∈ H and y ∈ H implies (−1)y ∈ H. Thus N0 = 0 in that case.
But if −1 is not a square, then (−1) · y ∈ G − H for every y ∈ H, because −1 lies in the nontrivial
coset. So N0 =

p−1
2 in that case.

Now let’s think about x 6= 0. The first remark to make is that the answer must be independent
of x, i.e. Nx = N1 for all x. That’s because whether or not x is a square, multiplication by x gives a
bijection between solutions to 1 = y + z and solutions to x = y + z. Indeed, multiplication by x either
preserves H and G−H (when x is a square) or swaps them (when x is not a square). In either case we
get the desired conclusion. (We could also see why all the Nx must be equal by remembering where this
problem came from: if the Nx were not all equal, then our constant coefficient

∑
x∈Z/pZNx · ζxp ∈ Q

would give a polynomial equation satisfied by ζp which is not a multiple of the minimal polynomial of
ζp, and that’s impossible.)

Now, since the answer is independent of x, we may as well count the sum
∑

x∈Z/pZ−0Nx and then

divide by p− 1. Well, if we threw N0 into this sum, then we would get p−1
2 ·

p−1
2 : there are p−1

2 choices

for y ∈ H and p−1
2 choices for z ∈ G −H, and who cares what the sum is, we’re counting them all.

Thus we find

Nx =
1

p− 1

(
p− 1

2
· p− 1

2
−N0

)
,

which simplifies to the displayed result.

Here we can make an interesting observation. If you didn’t already know the criterion for when −1
is a square (mod p), you know it now. Indeed, Nx is obviously an integer. So the above implies that
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when −1 is a square, p must be 1 (mod 4), and when −1 is not a square, p must be 3 (mod 4). Hence
−1 is a square if and only if p is 1 (mod 4)! That just fell out of the sky from our analysis of this
minimal polynomial.

Speaking of which, we can now evaluate that minimal polynomial: it’s

X2 +X − p− 1

4

when p is 1 (mod 4), and

X2 +X +
p+ 1

4

when p is 3 (mod 4).

So we find that the Gaussian period
∑

x∈H ζxp is
−1±√p

2 in the first case, and −1±
√
−p

2 in the sec-
ond. Here’s something else fantastic: these Gaussian periods “found” the most interesting quadratic
fields, the ones where there are more integers than just the obvious Z[

√
d]. See the “2’s in the denomi-

nator”! Recall that the Gaussian period was a sum of roots of unity, so it is definitely an algebraic integer.

So the Gauss periods have already led us, without us even wanting it, to some interesting observations
in number theory. In the next lecture we’ll kick this up a notch, and use them to prove the quadratic
reciprocity law.
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