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January 17, 2014

Today we’re going to use the ideas from the last lecture to prove the quadratic reciprocity law. First
let me remind you about that law.

It’s one of the strangest facts you encounter in elementary number theory. First, let p be an odd
prime. A question we pretend to be interested in is the following: what are the squares (mod p)? Of
course, 0 is always a square (mod p). Usually we implicitly discard that one, so we really mean to ask
about the nonzero squares (mod p).

It’s easy to give an abstract answer to this question. The nonzero squares (mod p) are exactly the
elements of the unique index 2 subgroup H ⊂ (Z/pZ)× we discussed in the last lecture. But really
that’s not such a satisfying answer. To highlight this, let’s change the question, and instead ask: Given
a natural number a ∈ N not divisible by p, how can we tell whether or not a is a square (mod p)? Or
rather, maybe, what’s the fastest way of telling? It would be nice if you didn’t have to first make a list
of all the squares (mod p), then check whether a is among them.

One can get started on this question by the following remark: it suffices to consider the case when
a = ` is also a prime. That’s because the product of two squares is a square, the product of two
non-squares is a square, and the product of a square and a non-square is a non-square. (This follows
from the fact that H is an index two subgroup of (Z/pZ)×, so the quotient group is isomorphic to ±1.)
So given an arbitrary a, you can write it as a product of primes. Then if you know how to tell whether
each of those primes is a square (mod p) or not, you can just see whether the total number of “yes”
answers is even or odd and you have your answer for a.

So our question is, given a prime ` 6= p, when is ` a square (mod p)? The case ` = 2 is somewhat
exceptional, so let’s throw it away, so that we’re assuming both ` and p are odd. Then there’s an
amazing symmetry, given by the quadratic reciprocity law:

Theorem 0.1. Let ` and p be distinct odd primes. Then ` is a square (mod p) if and only if (−1)
p−1
2 p

is a square (mod `).

This theorem does give a fast way of checking whether an integer is a square modulo a prime. To
illustrate this, let’s see if we can decide whether 123 is a square (mod 53). Well, a good first step is to
reduce 123 mod 53. This gives 17. So 123 is a square (mod 53) if and only if 17 is a square mod 53.
Note that both of these are prime, so by the theorem this is the same as asking if -53 is a square (mod
17). But -53 is congruent to 15 (mod 17). Now 15 = 5*3, so now we branch off and see whether 3 and
5 are squares mod 17. First let’s think about 3. By the theorem, it’s equivalent to asking whether 17
is a square mod 3. But 17 is congruent to 2 mod 3, so it’s not a square. As for 5, by the theorem it’s
equivalent to asking whether 17 is a square mod 5. But 17 is 2 mod 5, also not a square. We deduce
that 15 is a square (mod 17), so in the end 123 is a square (mod 53).
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In practice this is actually a really good algorithm. But that’s not the best thing about the quadratic
reciprocity law. The best thing about it is that after all these years, and despite numerous proofs and
beautiful structural generalizations, it’s still a mystery as to why it should be true. There’s just no
reason for why ` being a square (mod p) should have anything to do with p being a square (mod `), let
alone such a simple law as the above theorem posits.

OK, enough waxing on. Let’s prove it. Recall from last time that if P and P ′ denote the sums∑
a∈H ζap and

∑
b 6∈H ζbp, then P and P ′ are the roots of the quadratic equation

X2 +X + C,

where C = −p−1
4 if p is 1 (mod 4), and C = p−3

4 if p is 3 (mod 4). Thus, if we let G = P − P ′, then

G2 = (−1)
p−1
2 p,

i.e.

G = ±
√

(−1)
p−1
2 p.

Now, as we were making those calculations, you were probably imagining everything taking place
inside C. But it was actually all algebraic, just having to do with pth roots of unity. So in fact it all
makes sense in any algebraically closed field of characteristic different from p. Actually, in the very last
step there, we might want to also assume that the characteristic is different from 2, so that there really
are exactly two square roots for any nonzero element of the field.

In particular, all of the above works in F`, an algebraic closure of F`. We find that if ζp is a primitive
pth root of unity in F`, then the element

G =
∑
a∈H

ζap −
∑
b 6∈G

ζbp ∈ F`

is, up to sign, the unique square root of (−1)
p−1
2 p. Thus, (−1)

p−1
2 p is a square (mod `) if and only if

G ∈ F`. Now, we can test this by considering the action of Frobenius on G. Recall that Frobenius is the
map x 7→ x` from F` to itself. It’s a field homomorphism because we’re in characteristic `. Furthermore,
the fixed points of Frobenius are exactly the elements of F`. Indeed, to be fixed by Frobenius is to be
a root of the polynomial X` − X. Each element of F` satisfies this polynomial, and there can be no
more roots since the degree is `.

So, (−1)
p−1
2 p is a square (mod `) if and only if Frob(G) = G.

But on the other hand, Frob(ζap ) = ζ`ap . If ` is a square (mod p), so ` lies in H, then a 7→ `a
preserves H and G−H, so that Frob(G) = G. But if ` is not a square (mod p), then a 7→ `a switches
H and G−H, so Frob(G) = −G. Since 2 6= 0 in F`, we deduce that Frob(G) = G if and only if ` is
a square (mod p).

Combining our knowledge, we deduce the theorem: (−1)
p−1
2 p is a square (mod `) if and only if

Frob(G) = G if and only if ` is a square (mod p).

It’s worth saying some words about this proof. The essential fact was that Q(ζp) contains Q(

√
(−1)

p−1
2 p)

as a subfield. (You also saw this on your first homework.) Then the fact that Frobenius is easy to un-

derstand on Q(ζp) implies that Frobenius is easy to understand on Q(

√
(−1)

p−1
2 p). This means that
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it’s easy to understand when (−1)
p−1
2 p is a square (mod `). When you unwind it, you get the quadratic

reciprocity law.
Actually, this is part of a beautiful and general story. Recall that, in fact, Frobenius is easy to

understand on any cyclotomic field Q(ζm). (This can be measured by the fact that the effect of the
`-Frobenius only depends on the value of ` (mod m) — a very regular pattern.) Thus, Frobenius is
easy to understand on any subfield of any cyclotomic field. Thus the question arises as to how one can
recognize which number fields F/Q are subfields of some cyclotomic field. The answer is provided by
the Kronecker-Weber theorem: a number field F is a subfield of a cyclotomic field if and only if F/Q
is Galois with abelian Galois group. So the upshot is that it’s easy to understand Frobenius on abelain
Galois extension of Q; so if you have a polynomial over Q with abelian Galois group, the pattern of its
factorizations modulo primes ` is very regular. For quadratic extensions, this regularity is equivalent to
the quadratic reciprocity law.

A subject called “class field theory” establishes an analog of this, where you replace the “base field”
Q by an arbitrary number field F . (Imagine that you are intrinsically interested in arithmetic in OF ,
as opposed to arithmetic in Z). The result is that there exist certain extension Fm/F , the “ray class
fields”, on which Frobenius is very regular (only depends on certain congruence conditions). And again
you have the result that every abelian extension F ′/F is a subfield of a ray class field.

There is one perplexing aspect of the general theory, though, which is that although one knows
has this analog Fm of the fields Q(ζm), one has, outside special cases, no analog of the elements ζm
themselves. We don’t know nice generators for the extension Fm/F on which Frobenius is easy to
understand; we just know Fm/F has to exist by some very involved counting argument.

But let’s leave that aside and turn to more concrete matters. There’s an interesting question raised
by the above proof. Namely, let’s work inside C again, and take ζp = exp(2πi/p) in our definition of
G. We know that

G = ±
√

(−1)
p−1
2 p.

But G was a completely specified complex number. So we can well ask whether the value is + or −
here. (We adopt the convention that

√
−x = i

√
x when x > 0.)

The answer is that it’s always +, irrespective of p. This was noticed by Gauss, and proved by him
a while later. It’s a really funky fact. Let’s give a proof, because it will lead into what we’re going to
do next.

The idea is the following. In your first problem set, you found another square root of (−1)
p−1
2 p. It

was (or can be taken to be)

G′ =

p−1
2∏

k=1

(ζ−k/2p − ζk/2p ).

Remember, this came from cleverly splitting the identity p = (1− ζp) . . . (1− ζp−1p ) in half. Now, also

on your first problem set you saw that actually G′ = +

√
(−1)

p−1
2 p: here the sign is a plus. The reason

G′ is easier to analyze than G is that G′ is given by a product, and the argument of complex numbers
is additive in products. Each of the factors is basically the sin of some easy to draw angle, so it’s not
hard to figure out the argument of the product and see it lies in the appropriate half-plane.

So we’re just faced with showing that G = G′: our two square roots are the same. Now this is a
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purely algebraic fact: we’re claiming that

∑
a∈H

ζap −
∑
b 6∈H

ζbp =

p−1
2∏

k=1

(ζ−k/2p − ζk/2p ).

It doesn’t matter here what primitive pth root of unity ζp is: since this is algebraic, we can act by Galois
to change any one into another.

I don’t know any direct proof of the above algebraic identity. Instead we’ll argue somewhat indirectly
that the two sides are equal.

Here is the idea. We know that G2 is p, up to a sign. Thus, the maximal ideal factorization of G

in Z[ζp] must be (G) = (π)
p−1
2 , where π = 1− ζp. This means that G is a unit times π

p−1
2 . Now, we

won’t explicitly identify that unit, but we’ll determine its value (mod π). And we’ll see that this value
(mod π) is the same for G and for G′. Since G and G′ differ by a sign, and 1 and −1 are distinct in
Z[ζp]/π = Fp, it will follow that necessarily G = G′.

To make this analysis, it’s helpful to think in terms of π-adic expansions of elements of Z[ζp]. These
are defined as follows. Let x ∈ Z[ζp]. Since Z[ζp]/π = Fp, there is a unique c0 ∈ {0, 1, . . . , p− 1} such
that

x = c0 + π · x′,
where x′ ∈ Z[ζp]. Applying the same procedure to x′ and iterating, we obtain a formal expansion

x = c0 + c1π + c2π
2 + c3π

3 + . . .

uniquely characterized by the fact that each coefficient ci lies in {0, 1, . . . , p − 1}, and the difference
between x and the nth partial sum is divisible by πn+1.

As Martin explained to me, this formal expansion need not terminate, unlike an ordinary base-p
expansion for a natural number. Indeed, the base-π-expansion of ζ−1p is

ζ−1p = 1 + π + π2 + . . .

since ζ−1p = 1 + π · ζ−1p .
Note that the coefficents c0, c1, . . . , cn up to some fixed n only depend on the value of x in the

quotient Z[ζp]/π
n+1. In particular, if we’re only interested in the first few coefficients c0, . . . , cp−2,

then these only depend on x (mod p). This is convenient, because then we can actually think of the
coefficients themselves as being well-defined elements of Fp. Another way of saying all this is that the
p − 1-dimensional Fp-vector space Z[ζp]/p has a basis given by the first p − 1 powers of π. That was
implicit in the first proof of the irreducibility of Φp(X).

So, let us find the first p−1 coefficients in the π-adic expansion of G; or in other words, let’s write G

(mod p) in terms of the basis 1, π, π2, . . . , πp−2 for Z[ζp]/p. Actually, we know since (G) = (π)
p−1
2 that

the first p−1
2 of these coefficients have to vanish, and in fact we’re only interested in the first nonzero

coefficient, the coefficient of π
p−1
2 .

Before digging in, it will be convenient to rewrite G as

G =
∑
a∈Fp

χ(a)ζap ,
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where χ(a) denotes the unique nontrivial homomorphism (Z/pZ)× → ±1, i.e. the map taking the value
1 on H and −1 on the complement of H. OK, now let’s dig in. We want to expand this in powers of
π, so let’s rewrite ζp as 1− π. This gives

G =
∑
a∈Fp

χ(a)(1− π)a

=

p∑
a=0

χ(a)

p∑
k=0

(
a

k

)
(−π)k

=

p∑
k=0

(−π)k ·
p∑

a=0

χ(a)

(
a

k

)
.

Now we use the fact that we’re working (mod p) to write χ(a) = a
p−1
2 . (This is because a 7→ a

p−1
2

(mod p) also defines a nontrivial homomorphism (Z/pZ)× → ±1.) Thus the coefficient of (−π)k above
is

ck =

p∑
a=0

a
p−1
2
a(a− 1) . . . (a− k + 1)

k(k − 1) . . . 1
.

Now, what’s special about this expression is that it’s the sum of the values of a polynomial in Fp[X].
Here’s a lemma about that:

Lemma 0.2. Let p(X) = b0 + b1X + . . .+ bdX
d ∈ Fp[X]. Then

p∑
a=0

p(a) = −(bp−1 + b2(p−1) + b3(p−1) + . . .)

Proof. Both sides are additive in p(X), so it suffices to verify the identity when p(X) = Xd. Thus we
need to see that

p∑
a=0

ad

is 0 unless (p− 1)|d and d > 0, in which case it is −1. First suppose (p− 1)|d and d > 0. Then ad = 1
for all a 6= 0, and 0d = 0. Thus the sum gives p − 1 = −1. If d = 0, the sum clearly gives p = 0. So
now suppose that (p − 1) doesn’t divide d. We need to see that the sum is 0. Let x be a (for now)
arbitrary nonzero element of Fp. Then since multiplication by x is a bijection on Fp,

xd
p∑

a=0

ad =

p∑
a=0

(ax)d =

p∑
a=0

ad.

Thus (xd − 1)
∑p

a=0 a
d = 0, so to see that our sum is zero it’s enough to see that there exists an x for

which xd 6= 1. But for that we can just take x to be a primitive (p− 1)st root of unity, i.e. a generator
for (Z/pZ)×.

Now, we’re trying to evaluate c p−1
2

. We saw above that this is the sum of the values of the polynomial

X
p−1
2
X(X − 1) . . . (X − p+1

2 )(
p−1
2

)
!

.
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This polynomial has degree p − 1, so according to the above lemma the sum of its values is just the

negative of the leading coefficient, which is obviously − 1

( p−1
2 )!

. We deduce, in the end, that the p−1
2

th

coefficient of the π-adic expansion of G is

−(−1)
p−1
2(

p−1
2

)
!
.

Actually, this expression can be simplified. Note that, modulo p, the product (p+1
2 ) . . . (p − 1)

identifies with (−1)
p−1
2 ·

(
p−1
2

)
!, because we can pair up a number with its negative (mod p). Thus

(p− 1)! = (−1)
p−1
2 ·

[(
p− 1

2

)
!

]2
.

But on the other hand (p− 1)! = −1 (mod p), for the following reason. Imagine pairing each element
of {1, 2, . . . , p − 1} up with its multiplicative inverse (mod p). In general everyone has a partner. But
there are two exceptions, the two solutions to x = x−1, or x2 = 1: that’s 1 and p − 1. These are
their own inverses. We deduce that the product of all these elements is 1 · (p − 1) = −1, as claimed.
(Combining with the above formula, we get another proof that −1 is a square when p is 1 mod 4: in
fact we found an explicit square root...!)

Thus, actually, the coefficient of π
p−1
2 in the π-adic expansion of G is

(
p−1
2

)
!.

Now let’s do the analog of this calculation for G′. Thankfully, this is much easier, because G′ is a
product. It suffices to figure out just the first step of the π-adic expansion of each of the p−1

2 factors
of G′, then to multiply these answers together. Each factor has the form

ζ−k/2p − ζk/2p = (1− π)−k/2 − (1− π)k/2.

Expanding out, we see that (mod π2) this evaluates to 1 + k
2π − (1 − k

2π) = kπ. Taking the product

from k = 1 to p−1
2 , we get the desired conclusion: the coefficient of π

p−1
2 in the π-adic expansion of

G′ is also
(
p−1
2

)
!.

Thus, since we already know that G = ±G′, we deduce that G = G′, so the sign of G is the same
as that of G′, which is +.

I’ve always found it amazing that we have these two different square roots of (−1)
p−1
2 p, and that

in the end they’re actually the same square root. And the way you see it is (sort of) by p-adic analysis.
But I should mention that there are other proofs that the sign of G is +. Actually, one proof sees
it falling out of a more refined analysis of the Dirichlet L-series L(s, χ). Recall that the same Gauss
sum G naturally came up when we calculated L(1, χ). If we were to have taken the time to prove the
“functional equation” for L(s, χ), then we could’ve gotten an easy proof of the sign of G.

Anyway, next time we’ll investigate more general analogs of this Gauss sum G.
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