The maximal ideal factorization of Gauss sums

January 22, 2014

Let’s recall the set-up from last time. (By the way, my source for these two lectures has largely been
this article: http://www.bprim.org/cyclotomicfieldbook/jacn.pdf)
We start with the following initial data:

e A prime power ¢ = p?. (Let us also assume p > 2.)

e A maximal ideal P of Og,_,) lying above p.
This gives us all of the following:
e A finite field Fp of size ¢, namely the quotient Fp = Oq¢,_,)/P-

e A generating character w : F5, — {2971 = 1}, defined by w(a) = ¢ if ¢ is congruent to a (mod
P).

e Forevery k € Z/(q — 1)Z, a Gauss sum
Gw™) = Z w(a)™*- g‘r(a)
acF}

d—1

in Og(¢,_1.¢,)- HereTr(a) =a+aP +...+a? €,

e The maximal ideal P = (P, ) of Oq(¢,-1,¢,)- This lies above P in Oq¢, ) and (m) = (1 — ()

in Ogyc,)- The relationship between P and P is exactly like the relationship between (7) and p.

The main claim is the following:

Theorem 0.1. Fix the initial data q, P as above, and let k € 7./(q — 1)Z. Define s(k) to be the sum of
the digits of the base-p expansion of the ‘least positive residue” of k. Then s(k) equals vz(G(w™")),

the exponent of P in the unique maximal ideal factorization of (G(w™*)).

“Least positive residue” just means, represent k by an integer in the range 0 < x < g — 1.

It's possible to just dig right in to this theorem, following the same method we used in determining
the sign of the quadratic Gauss sum. Namely, we can also consider m-adic expansions in Og(¢, _;¢,)- To
make them well-defined, we just need to choose a set of representatives for the quotient (’)Q(cq_hcp)/ﬂ =
OQ(gq,l)/p; then these will be our possible coefficients for the m-adic expansion. And if we're only



interested in the first p — 1 digits of the m-adic expansion, then since (7)P~! = p, there is actually no
choice of representatives required, and we can actually think of the coefficients as lying in (’)@(qul)/p.
Furthermore, if in the end all we're interested in is Up of the element we're m-adically expanding, we
can even take the coefficients as lying in OQ(qul)/P = Fp and not lose the relevant information.

The upshot is that the method of m-adic expansion of an element x € Og(¢,_, ¢,) Will, in principle,
let us determine when 1)13(1‘) is > v, for any 0 < v < p—1: namely, this occurs if and only if the 7-adic
expansion of x with coefficients in Fp has all zeros as coefficients up through degree v — 1. This won't
get us all the way to the above theorem, but it'll be a start, and then we can use the multiplicative
properties of Gauss sums proved in the previous lecture to go all the way.

Actually, it'll be enough for us just to analyze the first two coefficients of the m-adic expansion. So

consider

d—1
G(w—k) _ Z w(a)_k(l _ ﬂ_)a-‘rap-‘r----‘rap ]
aeF;
The zeroth coefficient is the sum ZaeF; w(a)™*. For k # 0, this is the sum of the values of a

nontrivial character, so it is zero. Now, from now on we'll abbreviate v(k) = vz(G(w™F)), so we're
trying to show v(k) = s(k). Then we deduce:

e When k # 0, we have v(k) > 1. (When k& = 0, we have G(w™%) = 0; I'll tend to ignore that
case.)

Now let's set K = 1. Then the first coefficient of the m-adic expansion is

d—1

- Zw(a)*l'(a—i—ap—k...—i—ap ).
acF}

But by definition, w(a)™! = a~! = a?2 (mod P), so we can rewrite this is

d—1
— Z (aq—1+ap+q—2+“‘+ap +q—2>'
a€lF}

Recall our lemma from the analysis of the sign of the Gauss sum, about the sum of the values of a
polynomial over a finite field. It says that only the cofficients of index divisble by (¢ — 1) contribute,
and those contribute with a — sign. Since p®~! + ¢ — 2 < 2(q — 1), the only monomial in the above
sum with index divisible by (¢ — 1) is the first one, a?~!. Thus the above sum evaluates to 1, so that's
the coefficient of 7 in the m-adic expansion of G(w™!). Thus, since 1 # 0, we get:

e We have v(1) = 1.

Actually, just these two facts (v(k) > 1 for k # 0, v(1) = 1) are enough of a seed to get us all the
way. We just need the following three lemmas.

Lemma 0.2. Let k, k' € Z/(q — 1)Z with k + k' # 0. Then v(k) + v(k') < v(k + k'), and the same
with “<" replaced by “congruent modulop —1".



Proof. Recall that in this case,
Gw™) - Glw™) = Gw )y . J,

where the only pertinent fact about J is that it lies in Og,_,) (no (p's). If we apply vp to this
expression, since v is multiplicative it suffices to see that v(J) is > 0 and divisible by p — 1. Of
course, it's > 0 by definition, since J is an algebraic integer. As for divisibility by p — 1, since P lies
above P and PP~! = P (just like (7)P~1 = (p)), we have vp(J) = (p — 1)vp(J), which proves the
claim. O

Lemma 0.3. Let k, k' € Z/(q — 1)Z, and assume on the other hand that k + k' = 0. Then
v(k) +v(k)=d-(p-1).

Proof. Recall that G(w™*)-G(w™*) = +¢ in this case. Thus it suffices to see that vs(q) =d-(p—1).

This follows from (¢) = (p?) = (7)1 and the fact that 7 is the product of all the P's as P varies
over all choices of maximal ideal above p; hence for any particular choice v5(7) = 1. O

Lemma 0.4. For k € Z/(q — 1)Z, we have v(pk) = v(k).
Proof. G(w™*) = G(w™*). O

Now we can prove the theorem. First we claim that v(k) = k for 0 < k < p. Indeed, by the first
lemma we have v(k) < k-v(1), and the difference is divisible by p — 1. But we calculated v(1) = 1. So
v(k) is < k and congruent to k£ (mod p — 1). Given how small k is and the fact we know v(k) > 0 for
k > 0, the only possibility is v(k) = k, as claimed.

Now take a general 0 < k < ¢ — 1. Write the base p expansion of k as co+cip+ ...+ cqgp®! with
0 < ¢; < p. Then by the first and third lemmas,

v(k) < v(co) +v(cip) + ... +v(cap™ ) = v(co) + v(cr) + ... + v(ca).

But then by what we just said this is ¢g + ¢1 +...¢cq = s(k). So we have v(k) < s(k), whereas what
we want is v(k) = s(k). But, letting &’ = ¢—1—Fk (sok+k =0in Z/(q — 1)Z), we also have
v(k') < s(k'). Thus

v(k) +v(k") < s(k) + s(K).

But both of these numbers are equal to d(p — 1), the first by the second lemma and the second by an
elementary observation about base p expansions. Thus we deduce that all the <'s must have actually
been ='s, as we wanted. (This last argument is akin to us having known a priori that v, of the quadratic
Gauss sum is p%l, because the square of the quadratic Gauss sum is £p.)

So we've calculated v5G(w™): it's this funny number s(k). Then next question to ask is, what
about the full maximal ideal factorization of G(w™)? So, what are the exponents of the other maximal
ideals? We know that all the maximal ideals above p are of the form P’ for some choice of maximal
ideal P’ of Oq(¢,-1) lying above p, with P’ # P potentially. Now the idea is the following: for any such
P’ we can find a Galois element 0 € Gal(Q({;—1)/Q) which sends P to P’. Then because it's easy
to act by Galois on Gauss sums, we'll be able to understand U5 of a Gauss sum in terms of Vg of a
different Gauss sum. Thus we can get the full maximal ideal factorization just from the above theorem,
by considering the Galois action.



To put this into action, let’s first prove the claim that for every P/, there is a o with P = P’. Let's
further add that o is not unique, but any two choices of o differ by a power of p € (Z/(¢ — 1)Z)* =
Gal(Q(Cy-1)/Q).

The first step is to see that o P does lie above p for every o. That's just because to lie above p is
to contain p, and that latter condition is obviously invariant under Galois.

Now we need to see that every P’ is equal to some o P. Suppose not; then P’ is a maximal ideal
distinct from all of the finitely many maximal ideals o P. It follows (though we haven't justified this)
that there is some 2z € P’ which lies in none of the o P’s. But then, consider the norm N(x) € Z. This
is the product of all the ox as o ranges over the Galois group; in particular it is a multiple of z, so it
lies in P'. Thus it lies in P’ NZ = pZ. So it is a multiple of p, and hence it lies in P, since p does.
Thus the product of all the Galois conjugates of x lies in P. Since P is maximal, it follows that one of
these Galois conjugates must lie in P, say oz € P. But then € 0! P, a contradiction.

That justifies the first claim, that P’ = o P for some o. For the second claim, it's equivalent to say
that the stabilizer of Galois acting on P is the set of powers of p € (Z/(q—1)Z)* = Gal(Q({4-1)/Q).
But note, the collection of such powers of p has size d; but by the orbit-stabilizer theorem, since there
are exactly p(q—1)/d possible P'’s, this is also the size of our stabilizer of Galois acting on P. Thus it
suffices to just see that every stabilizing o, i.e. ¢P = P, is a power of p; the reverse will be automatic.

But, when o P = P we see that ¢ induces an automorphism of the quotient OQ(Cq_l)/P =Fp. But
every automorphism of a finite field is a power of the Frobenius, which sends ;1 — Cé’fl. So we see
that o can only send (,—1 to a p'® power of (,_1 (recall from last lecture that all the (¢ — 1)*' roots of
unity are distinct modulo P). This proves the claim.

To recap, we can uniquely describe all the maximal ideals of Og,_,) lying above p as o P, where
o runs over a set of coset representatives for p” in (Z/(q — 1)Z)* = Gal(Q((4-1)/Q), and P is our
fixed choice.

Now, given any o € Gal(Q((4—1)/Q), we can lift it to a 0 € Gal(Q({4—1,¢p)/Q) by letting it act
by the identity on (,. (Recall that Q({;-1,(p) = Q({(g—1)p), S0 we understand this Galois group and
can easily the claim that there exists such a o; it follows from the fact that ¢ — 1 and p are relatively
prime.) Then by acting by o on maximal ideal factorizations, we see that

v (G ™) = vp(EGW ™).
o~ P

But clearly if o corresponds to a € (Z/(q — 1)Z)*, then G (w™*) = G(w™*%). The upshot is the

following:

Theorem 0.5. Let our initial data q, P be as above. Then for k € Z/(q — 1)Z, the unique maximal
ideal factorization of G(w™*) in O(¢y1.6p) S

(Gw™) = I1 (o0 ' Py,
a€(2/(a-1)2)" /p?

where we write a <> o, for the isomorphism (Z/(q — 1)Z)* = Gal(Q(¢;-1)/Q).

Now that's all well and good, but we were really interested in prime cyclotomic fields. So let £ be a
prime different from p. We can choose d to be the order of p in (Z/¢Z)*; then with the choice ¢ = p?
we have

Q(¢r) € Q(Cg—1)-



If we choose the character x = w_%, then x takes values in the roots of unity, so that G(x) €
Q(¢e, ¢p)- Thus for k = % the above factorization is actually taking place in Og,.¢,), and the result
is the following:

gth

Theorem 0.6. Let ¢ # p be distinct odd primes, and let P be a maximal ideal lying above p in Og¢,)-

Then for x = wfq%l, we have the following factorization of ideals in Og¢, ¢,

P

G = [[ (eatpytTo,

a€(Z/ez)* /p*
where again P denotes the unique maximal ideal of Oq¢, ¢, lying above P.

Now, it's convenient to adopt the following notation: since the Galois action on ideals respects the
multiplication of ideals, we can promote the action by Gal to an action by the monoid ring N[Gal]. For
this we use exponential notation, so so for € N[Gal] and I an ideal we have another ideal I*. Then
we can rewrite the conclusion of the above theorem as

(G(x)) = Placziinyx st ST a)oa
By some elementary manipulations, the sum in the exponent can be simplified, giving the following:

(G(y)) = P~ VX foa’,
But actually, this last expression is deceptive: the exponent doesn’t have N-coefficients, even with
the multiplication by (p — 1). But when you project from (Z/¢Z)* to (Z/0Z)* /p”, i.e. collect together
the coefficients of o, ! with O-[;i for all 7, then it does magically have N-coefficients. So it's good enough

for acting on P, since 0,,; fixes P, as we saw above.

There's even more subtlety in the above expression. Recall that PP=1 = P lies in Oq(¢,)- So the
above expression is suggesting that the Gauss sum G(x) “wants to” live actually in Q({y), not just
Q(¢r, ¢p), and that its maximal ideal factorization “wants to be" the simple

“G(y) = P goa

The amazing thing to notice here is that the exponent doesn't depend on p! So if the above were
true, the exponent would give a universal expression which converts any maximal ideal (and hence any
ideal) into a principal ideal. (It doesn't apply to the maximal ideal above ¢, but that one's already
principal.) But the above can't actually be true, because on the one hand we know that G(x) has a
bunch of (,'s in it (and they don't cancel, they really don't), and on the other hand the sum Zfl;ll ¢oyt
doesn't have N-coefficients, so the expression on the right makes no sense. But Stickelberger figured
out that both of these obstructions match up. He expressed this in the following theorem, which we'll

show next time:

Theorem 0.7. Suppose x € N[(Z/{Z)*] has the property that x - 22;11 %o, 1 also lies in N[(Z/0Z)*].
Then G(x)*® lies in Og¢,), and
(GOo7) = PrE o’
The simplest z to take is just the number £. There we can already see that G(x)* lies in Q(¢y) as a
consequence of the multiplicativity properties we established for Gauss sums. But the most interesting
x to take is maybe o_; + k, with k£ ranging from 2 to ¢ — 1.



