Second proof of the irreducibility of the cyclotomic polynomials
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Let me start by recalling some highlights of what we did last time. Fix an algebraic closure Q of Q.

e The group of n*” roots of unity in Q is cyclic of order n.

th

e A generator for this group is called a primitive n*"* root of unity, and is denoted (,,. There are

exactly ¢(n) primitive n!”* roots of unity.

e Theorem:

1. The degree [Q(¢,) : Q] equals ¢(n).
2. The natural injective homomorphism Gal(Q({,)/Q) — (Z/nZ)* is an isomorphism.

3. The n'* cyclotomic polynomial ®,,(X) is irreducible.

Recall that the statements (1,2,3) in the last bullet point are, furthermore, essentially equivalent.
We gave a proof of 1 (and hence all of them) in the special case n = p prime last time. Today we're
going to give a proof of 2 (and hence all of them) for arbitrary n.

Even though these statements (1,2,3) are equivalent, there's a sense in which 2 is better than 1.
| mean, 1 just says that the cardinalities of the groups Gal(Q((,)/Q) and (Z/nZ)* are the same,
whereas 2 provides a canonical isomorphism between these groups. So we should learn something by
directly proving 2, as we're about to.

To begin with, let’s recall the definition of the homomorphism Gal(Q((,)/Q) — (Z/nZ)*. Es-
sentially, it records the effect of a Galois automorphism o on the n'® roots of unity. More precisely,
o € Gal(Q((,)/Q) gets sent to k € (Z/nZ)* if and only if o(¢) = ¢* for all n** roots of unity ¢. It's
also equivalent to say that this happens just for { = (,.

So, what we need to prove is that given any k € (Z/nZ)*, we can find a Galois automorphism of
Q(¢n)/Q which raises ¢, to the k' power.

Let me start with a remark, which will not actually be a part of the formal proof, but will serve as

motivation. The remark is that we can do this pretty easily when &k = —1. (We can also do it when
k =1 by taking o = id, but that's not interesting).
How is this? Well, from an algebraic perspective it's no easier to handle £ = —1 than any other

k # 1. But look: there's this analytic field C which contains (, and also carries a certain nontrivial
automorphism called “complex conjugation”. Complex conjugation sends ¢ to ¢(~! whenever ( lies on
the unit circle, so in particular whenever ( is a root of unity. It follows that complex conjugation restricts
to an automorphism of Q((,) which hits & = —1 under the above homomorphism. So that handles
k=-—1.



That's actually a strange argument. Somehow this complex conjugation falls out of the sky and
does what we want. To move towards a better understanding, let's extract the following principle:

Lemma 0.1. Let F be any field of characteristic zero which contains a primitive n*" root of unity. If

there is an automorphism of F' which sends (, to C¥, then k is in the image of our homomorphism

Gal(Q(¢n)/Q) = (Z/nZ)*.

In other words, we don't have to actually think about producing an automorphism of our field
Q(¢n). We can just produce, by whatever means, an automorphism of some bigger field which happens
to contains a primitive n* root of unity.

In some sense | think this Lemma is “obvious” from a field theory perspective. But I'm not sure
about that, so here's a proof. | recommend skipping it unless you're curious.

Proof. Certainly this is true if we redefine Q((,) to be the subfield of F' generated by (,. For, any
homomorphism ¢ : F' — F must send (,, to another n'”* root of unity, which is therefore a power of (,;
so o sends Q((,,) inside itself. Applying the same argument to the inverse, we see that an automorphism
of F restricts to an automorphism of Q((,,), which proves the claim.

But we already had a fixed Q((,,); how do we know it's isomorphic to this new one, which I'll now
denote Q((,)r C F? This sort of thing was implicit in the last lecture, but now I'll give an argument.
First, we can enlarge F to its algebraic closure F'; then we can cut it down to the algebraic closure
of Q in F. This doesn't change the subfield Q({,)r, because ¢, is algebraic over Q. Thus we can
assume F' is an algebraic closure of Q. But then any isomorphism F' ~ Q restricts to an isomorphism
Q(¢n)F ~ Q(¢p), by the same argument as in the first paragraph. O

So here's the picture. There are some special huge fields F' O Q which are potentially analytic in
nature. One of them is F' = C. They all shine their special light on the cyclotomic fields. If we just
turn on one light we won't see much; but if we turn them all on that we get a full picture. The field
F = C shone a light on the subgroup {+1} of (Z/nZ)*. What we'll do to prove the theorem is find,
for every prime p not dividing n, a field F' = Q™" which shines a light on the subgroup of (Z/nZ)*
generated by p. This will be enough by our second lemma:

Lemma 0.2. Suppose we know that for every prime p not dividing n, the homomorphism Gal(Q((,)/Q) —
(Z/nZ)* hits p. Then Gal(Q((,)/Q) — (Z/nZ)* in fact hits every k, so that we're done.

There's a good proof of this lemma, and a bad proof. The bad proof invokes Dirichlet’s theorem
on primes in arithmetic progressions to say that for any k relatively prime to n there exists a prime p
congruent to k modulo n. This clearly implies the lemma, but Dirichlet’s result involves some difficult
(and amazing) mathematics which is strange to use in this context. The good proof is to say that every
k can at least be written as a product of primes p;...py,; then if o1 € Gal(Q(¢,)/Q) hits p1, etc.,
it follows that oy ...0, hits k = p1...p,. In other words, the image of any group homomorphism is
closed under products.

By combining the two lemmas we see that it suffices to prove that for every prime p not dividing
n, there exists a field of characteristic zero which contains a (,, and admits an automorphism sending
Cn > Ch. So that's what we'll do.

I'll let you meditate on that for a second.



OK. Here's a first observation: if we drop the requirement of ‘“characteristic 0", then it's easy to
produce such a field.
More precisely, it's easy as long as you know about the Frobenius:

Proposition 0.3. Let F' be a field of characteristic p. Define a map Frob: F — F by Frob(x) = xP.
Then F'rob is a field homomorphism.

Proof. Certainly, Frob(zy) = Frob(x)Frob(y). The surprising fact is that Frob(z + y) = Frob(z) +
Frob(y), i.e.
@ty =P+

for xz,y € F, a field of characteristic p. This follows from the fact that the two-variable integer
polynomial (X +Y)P — XP — YP € Z[X,Y] has all its coefficients divisible by p. Indeed, if you
look at these coefficients, they're binomial coefficients where p divides the numerator but not the
denominator. O

Oftentimes the Frobenius F'rob: F' — F'is actually an automorphism, i.e. it is surjective, and hence
invertible (any field homomorphism is automatically injective). When this happens, we say F' is perfect.
For example, a finite field is perfect, since an injective map from a finite set to itself is always bijective.
An algebraically closed field is also perfect, because finding a F'rob-preimage of a amounts to solving
the equation X? — a = 0. The rational function field [F,,(T") is not perfect: you can't hit 7".

What we find, then, is that the field IETp seems to satisfy all of our needs. Indeed, E contains a
primitive ' root of unity: remember, the abstract proof of the existence of (, we gave in the first
lecture also worked for algebraically closed fields of characteristic not dividing n. It also admits an
automorphism which sends ¢, to ¢}, because, in fact, it admits an automorphism (the Frobenius) which
sends everything to its pt" power! There's just one catch, though, which is that [, has characteristic
p, not 0. It doesn't have Q((,,) as a subfield.

So the game will be this. We will somehow try to “perturb” the algebraic structure of F,, so that:

e We move from characteristic p to characteristic 0;

t

e The primitive n'” root of unity moves along with us;

e So does the Frobenius automorphism.

It turns out, by some sort of algebraic miracle, that such perturbations are possible in great generality.

Actually, it's not such a miracle. In fact you were taught something very similar in grade school.
Remember, Q is a field of characteristic zero, but you were taught how to calculate + and x inside it
in terms of similar operations in Z/10Z, by using decimal expansions. And of course we might as well
substitute our prime p for 10.

Now, unfortunately for us, there is something slightly non-algebraic about those algorithms you were
taught in school. In fact, it turns out that there's no way to algebraically describe Q just in terms
of Z/pZ. In particular you can't transfer the Frobenius from Z/pZ to Q. The problem is that pesky
“carry” rule. It says that, when summing, the n** digits contribute to the (n + 1) digit whenever



their sum in Z exceeds p. It's that “in Z" part that's the problem: calculating in Z, for our purposes,
amounts to assuming what we're trying to prove.

But a mathematician named Witt saw a way around this. He figured out how to modify the rules of
arithmetic for base-p-expansions in such a way that, now, everything is described purely in terms of the
structure of I}, as a field. But by doing this you no longer end up with the rational numbers () — instead
you end up with a field Q,, of “p-adic numbers” (with a ring Z,, of “p-adic integers” as an intermediary).
You can look up Witt's construction, if you like: it goes by the name of “Witt vectors”. It involves some
interesting integral polynomials which are generalizations of the F(X,Y) = =[(X + V)P — XP — Y7|
which came up in the proof of the existence of Frobenius.

The great thing for us is that Witt's construction works exactly the same way with any perfect field
of characteristic p replacing F,,. So we can apply it to our field F,. The output of the Witt vector
construction, in that case, is a ring Z,"" satisfying the following properties:

1
p

e There is a natural identification Zg’”’/p = E, and Z — Z;m’ is injective. Furthermore, Zg’” is
an integral domain (more on that later).

e Every automorphism of IFT) lifts to an automorphism of Z;"".

e If f(X) is a monic polynomial in Z4""[X], and if f(X) (mod p) is separable in F,[X], then the
map {roots of f(X) in Z4""} — {roots of f(X) in F,} given by reducing (mod p) is a bijection.

The first point expresses that Z,"" is a perturbation of IF,, to characteristic zero. If you set p = 0 in
Z,"", then you get back [F),; but p itself is not zero in Z;"". This is akin to the relationship between Z
and I, but its important to bear in mind that the connection between Z;"" and F), is tighter, though
we haven't listed the precise property that expresses that (Zg”” is a strict p-ring). The second and third
points tell us that many structures carried by F,, “lift" to Z;"". The meaning of “lift" is as follows:
in the first case, we mean that for every automorphism o : IF, — I, there exists an automorphism
0 Zy"" — Z,"" such that ¢(z) = o(x) (mod p). In the second case, we mean that for every root
a € ) of f(X) (mod p), there is a unique root a of f(X) in Z;"" with a = a (mod p).

Witt's construction describes the elements of Z4"" as formal infinite sums [co]+[c1]-p+[co] - p*+. . .,
with the “digits” ¢, all lying in IF,,. Then one has to say what 4 and x are. They are given by complicated
formulas which, however, are described purely in terms of the + and x in F,,.

We remark that many other constructions the ring Z;"" are possible. A particularly nice (and ele-
mentary!) one was given by Cuntz and Deninger just earlier this month! See

http://arxiv.org/abs/1311.2774

Now, let's return to this integral domain business. That's a fancy name, but it just means that
whenever ab = 0, it must be that either a = 0 or b = 0. This is exactly the property one needs to
be able to embed Z,"" into a field. A minimal such field can be built by formally considering fractions
a/b with b # 0, and using the obvious rules of 4+ and X, just like how one calculates in Q in terms of
calculations in Z. The resulting field, called the fraction field of Zg”’", is denoted Qg”r.

Now we are done: this Q;"" is a field of characteristic 0 which contains a primitive nt" root of unity
¢, and admits an automorphism which sends ¢, to (5. It's characteristic 0 because Z,"" was an integral



domain in which no prime number is zero. It contains a (,, and has such an automorphism by the “lift-
ing" properties described above, since IF;, contains such structure. (Take f(z) = X" —1, and 0 = Frob.)

To summarize: we're trying to construct Galois automorphisms. The way we do it is by starting
with the Frobenius in characteristic p, then showing that this Frobenius somehow lifts to characteristic
0. It no longer raises everything to the p*" power, but it still deserves to be called the Frobenius! If we
take all primes together, then we actually generate the whole Galois group this way. So in a sense the
Frobenius controls everything.

As a general remark, note that to go from characteristic p to characteristic 0, we necessarily had to
pass through a ring Z,"" which was not a field. We ran into this in the last proof as well, where the
intermediary ring was the less exotic ring Z, and we were going from F,, to Q.

Maybe it's worth augmenting this proof with some philosophical reflection. (Probably not, but I'm
going to do it anyway.)

This field Q,"" may seem very complicated and unfamiliar. And it is. But in a sense, from the
perspective of mathematics, it's not much more complicated than, say, the real numbers R. Imagine
if we, as human beings, didn’t have such a direct experience with the concept of continuum in our
day-to-day lives. Imagine everything we knew was discrete. Then we would really be number theorists.
Our favorite ring would have to be Z, and a ring like R, or even worse C, wouldn't occur to us for a long
time. And when it did, we'd think it was kind of strange and miraculous, but a bit hard to construct.

This is exactly the situation for fields like Q"". Perhaps if we were different sorts of beings with
different immediate sensory experience, they would be completely intuitive for us. But as it stands, we
just have to remember that, philosophically, they're on equal footing with C, so we should do our best
to get comfortable with them, continuum-afflicted beings that we are.

At the end of class we had a vote on what to do next. | said the options were either for us to
take a step back and develop some general theory to help explain the concepts we've come across so
far (algebraic number theory), or for us to visit the historical roots of this subject in Gauss's study of
regular n-gons. | was gunning for the second option, but the first option won at the polls.

| think that was wisely voted. We have run across a lot of concepts here so far already, and it should
be good to consolidate them in a more general study. We can get back to n-gons letter when we're
hankering for something more concrete.

So, to finish this lecture I'll give a brief introduction to some ideas in algebraic number theory.

We can take as motivation the factorization

p=01-¢G) A=) (1=

we ran across in the first proof of the irreducibility of cyclotomic polynomials. Remember, this is an
equality in this ring Z[(,] we found sitting inside our field Q((p).

Algebraic number theory studies arbitrary number fields, which are just fields F' which are finite
extensions of Q. The first important observation in algebraic number theory is that for any such F
there is a canonical “ring of integers” Op C F', generalizing Z[(p] C Q((p) or, at a more basic level,
Z C Q. In general it's not as simple as saying, “take Z-linear combinations of powers of your generator



instead of (Q-linear combinations”. That ring depends on the generator, and it's generally not even
guaranteed to form a finitely generated Z-module! We just sort of got lucky with Q((,). But there are
several different ways of describing this O in general.

Once we have this Op, there are two basic types of questions one can ask:

e This ring is supposed to be like Z. How far does the analogy go? Which results about Z transfer
to Op?

e We can ask about more direct relationships between Z and Op. There’'s a homomorphism Z —
Op. For example, how do primes in Z break up when you put them inside Op?

One of the most beautiful stories in algebraic number theory relates to the first point. A fundamental
result about Z is, well, the so-called “fundamental theorem of arithmetic”, which says that any integer
has a factorization into primes, and that such a factorization is unique up to units and reordering.

You may not appreciate this fact because it's so hard-wired into your intuitions about Z. For
example, I'll bet you never stop to think, when you're reducing a huge fraction to lowest terms, that
the end result might depend on the choices you make along the way about which factors to cancel first.

Actually, the first person who realized that this fundamental theorem of arithmetic needed to be
proved, and the first person to give a proof, was Gauss in his Disquisitiones Arithmeticae. That book
also contains (some of) Gauss's study of cyclotomy. It's not totally unlikely that Gauss came to realize
how fundamental this theorem of arithmetic was, because he saw that it failed in these more general
contexts!

That is, Op does generally not satisfy unique prime factorization.

However, it turns out that the failure is in some sense bounded. A remarkable fact is that one can
attach to F' an abelian group CI(F), called the class group of F', which sort of measures how far away
Or is from having unique prime factorization. Then the theorem is that CI(F') is finite. (Also, you
prove this by drawing some pictures — the real numbers have their revenge on the p-adics...)

Now, the Big Theorem that we're (sort of) aiming for says something about these class groups in
the case of F' = Q((,). Namely, a natural question turns out to be whether p divides #CI1(Q((p)) or
not. An answer is given by “Kummer's criterion”:

Theorem 0.4. Define rational numbers B; for j > 0 as j! times the coefficient of X7 in the power
series expansion of

1 1
=1—=-X+—X%2+....
eX — 1 s X Tt T

Also, let p be a prime.
Then p divides the order of C1((p) if and only if p divides the numerator of some B for0 < j < p—3.

In more modern times tighter connections have been found between these C1(Q((,)) and the
Bernoulli numbers B;. But we'll focus on the above result.



