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Recall that if F/Q is a finite extension (F is a “number field”), then we defined a subring OF ⊂ F
consisting of the integral elements, i.e. those α ∈ F which satisfy the following equivalent properties:

1. Z[α] is finitely generated as an abelian group;

2. Z[α] is a finite free Z-module with basis 1, α, . . . , αd−1, where d = deg(α) = [Q(α) : Q];

3. there exists some monic polynomial with Z-coefficients of which α is a root;

4. the minimal polynomial of α has Z-coefficients.

But, we said it was not clear a priori that OF itself satisfies the analog of the first two points, i.e., that
OF is a free Z-module of rank [F : Q] (= free abelian group isomorphic to Z[F :Q]). Our goal today is
to prove that fact, and to set up a nice picture for OF which will be useful in the future.

The idea is that a good way to picture a finite free Z-module is to imagine it sitting discretely inside
a finite dimensional R-vector space which it spans, as in the usual picture of Z ⊂ R, or, to be slightly
more exotic, Z[i] ⊂ C (but not like Z[

√
2] ⊂ R, which is everywhere dense). Here is the main definition.

Definition 0.1. Let V be a finite-dimensional R-vector space, and L ⊂ V an additive subgroup. We
say that L is a lattice if L is discrete as a subset of V . We say that L is a full lattice if it is a lattice,
and the R-span of L is equal to V .

Some remarks are in order. First, by an “additive subgroup”, we mean a subgroup of the underlying
abelian group of V . So L is just a subset of V which is closed under vector addition and subtraction.
When we say that L is discrete in V , we mean relative to the canonical topology on V . There are two
(equivalent) ways to describe this topology. First, by choosing a basis we can identify V ' Rd; then we
can just transport the usual topology on Rd along this isomorphism. The resulting topology on V does
not depend on the isomorphism, because a change-of-basis on Rd induces a homeomorphism of Rd.
Second, we can arbitrarily choose a nondegenerate inner product on V (think of the usual dot product
on Rd). This induces a norm, hence a topology, in the usual way. Again, the topology does not depend
on the inner product chosen. In practice we’ll take this second option, and in fact we’ll sometimes refer
to distances in V , balls in V , and so in. These are supposed to be taken with respect to some arbitrarily
fixed inner product on V . Really, you can just picture Rd with its standard inner product if you like.

Also, recall that L ⊂ V being discrete means, by definition, that every point x ∈ L has an open
neighborhood U in V such that the only point of L∩U is x (“x is an isolated point”). But in our case
this is equivalent to requiring the same thing only for x = 0. Indeed, if U is such a neighborhood for 0,
then x+ U is such a neighborhood for an arbitrary x ∈ L. So to check something is a lattice, we only
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need to see that 0 is an isolated point. This is like how to check a homomorphism is injective, you only
need to see the kernel is trivial.

Finally, we remark that one can often easily reduce consideration of arbitrary lattices to consideration
of full lattices, by replacing V by the R-span of L. Just cut down the ambient space until the lattice is
full.

OK, now here is the main result.

Theorem 0.2. Let L ⊂ V be a full lattice in a real vector space of dimension d. Then L is isomorphic
to Zd as an abelian group, and a Z-basis for L is necessarily also an R-basis for V .

Another way of phrasing this is to say that the pair L ⊂ V is isomorphic to the standard pair
Zd ⊂ Rd. Every full lattice looks like you’d think.

Here is the crucial lemma for the proof:

Lemma 0.3. Let L ⊂ V be a nonzero lattice in a finite dimensional real vector space V . Choose
arbitrarily an inner product on V . Then there exists a nonzero point of L which is of minimal distance
to 0.

Proof. Since L is nonzero, there exists a nonzero x ∈ L. Let D denote the distance from x to 0,
and consider the closed ball B(0, D) of radius D centered at 0 in V . Note that L ∩ B(0, D) is both
discrete and compact, so it must be a finite set. Thus the set of nonzero points of L∩B(0, D) is finite
and non-empty. So there must be a point of minimal distance to the origin among all the points in
L ∩ B(0, D). But everything outside B(0, D) has distance > D from the origin, so such a point will
actually be minimal out of all points in L.

Now we give the proof of the theorem. It’s a nice proof, in that it actually gives a procedure for
constructing a Z-basis of L.

Proof. We work by induction on d. When d = 0 there is nothing to prove. So suppose d > 0. Since
L ⊂ V is full, it must be that L is nonzero. By the lemma, then, there exists a point x0 ∈ L of minimal
distance to the origin. The idea is that x0 should extend to a Z-basis of L. With an eye towards using
the inductive hypothesis, consider the homomorphism on quotients

L/(Z · x0)→ V/(R · x0)

induced by the inclusion L → V . I claim that this homomorphism is injective, and its image is a full
lattice.

The “full” claim is pretty clear: if everything in V is in the R-span of L, then certainly the same
holds after passing to quotients. So we just need to check that the homomorphism is injective and the
image is a lattice. We can actually do both at once if we show that there is an open neighborhood U
of 0 in V/(R · x0) such that the only point of L/(Z · x0) whose image lies in U is the zero element of
L/(Z · x0). Unwinding the quotients, what this means is that we need to find an ε > 0 such that the
tube of radius ε around the subspace R · x0 contains no points of L other than the integer multiples of
x0.

But let’s think about regions where we know there can be no points of L other than the Z · x0.
Let d0 be the distance from x0 to 0. Then one such region is the open ball of radius d0 around the
origin, because x0 was of minimal distance to the origin. But then by the usual translation argument,
we automatically get more such regions, namely the open balls of radius d0 centered at any point of L,
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in particular at any point of Z ·x0. It’s easy to see that the union of the open balls of radius d0 centered

at the Z · x0 contains a tube of radius ε =
√
3
2 d around R · x0 (I drew the picture in class), so that does

the job for us.
Thus we’ve shown that L/(Z ·x0) is a full lattice in V/(R ·x0). But now the dimensions are one less.

So by the inductive hypothesis there exists a Z-basis x1, . . . xd−1 of L/(Z · x0) which is simultaneously
an R-basis of V/(R · x0). But then a simple algebraic lemma shows that, if x1, . . . , xd−1 is any lift of
the x1, . . . xd−1 to L, then x0, x1, . . . , xd−1 is a Z-basis of L which is simultaneously an R-basis of V ,
as desired. (One way of phrasing this algebraic lemma, which avoids explicitly thinking about elements
and linear combinations, is this: on the one hand, every “short exact sequence” with free quotient splits;
but on the other hand, every splitting induces a direct sum decomposition.)

The proof turned out to be long, but I hope you’ll agree that the idea was simple: to produce a
Z-basis of L, start by finding the closest vector to the origin, then take the closest vector to the origin
not in the span of the first vector, then take the closest vector to the origin not in the span of the
previous two, etcetera, and then you’ll be done after d steps.

Okay, now let’s apply this to number theory! Let F be a number field with ring of integers OF . We
want to find a nice ambient Euclidean space in which to embed OF . This will be the Minkowski space.
First let me give two illustrative examples.

Example 1. Let F be an imaginary quadratic field, F = Q(
√
−d) with d a positive squarefree in-

teger. Then the Minkowski space is just C, viewed as a two-dimensional vector space over R. Certainly
F sits inside C, thus so does OF . It’s not hard to see that OF ⊂ C is a lattice. For example, when
d = −1, this is a square lattice (generated by 1 and ζ4), and when d = −3 it is a hexagonal lattice
(generated by 1 and ζ3). For other d you get a similar lattice, but it’s not as symmetric. (This is related
to the fact that for any other d the only units in OQ(

√
d) are ±1).

Example 2. Let F be a real quadratic field, so now F = Q(
√
d) with d a positive squarefree integer.

We don’t want to take the usual embedding Q(
√
d) ⊂ C anymore. Even though the dimensions are

right, the image of OF is not a lattice: it’s actually a dense subset of the line R ⊂ C. Somehow we
need to see OF “pop out” into its natural two dimensions. The canonical way to do this is to instead
take the Minkowski space to be R⊕R, and map F → R⊕R by having the first coordinate be the usual
embedding Q(

√
d) ⊂ R, but the second should be the conjugate of this embedding, i.e. first compose

with the nontrivial automorphism of Q(
√
d) (meaning a + b

√
d 7→ a − b

√
d) and then embed into R.

For example, when d is not 1 (mod 4) so that OF = Z[
√
d], then the image is the lattice generated by

(1, 1) and (
√
d,−
√
d), these being the images of the Z-basis vectors 1 and

√
d in Z[

√
d].

The Minkowski space for a general F will be a mix of these two examples: it will be a direct sum
of the form Rr ⊕ Cs, with r + 2s = n, the degree of F/Q.

Now, there’s a completely formal way to produce this Minkowski space from F : just take the tensor
product F ⊗R. Generally, for a Q-vector space V , the tensor product V ⊗R is a canonically determined
R-vector space which “has the same basis” as V . Morally, you just formally allow yourself to scalar
multiply not just by elements of Q, but also by elements of R. It’s a purely algebraic construction. In
class I spent some time talking about this, but now I’ve decided it’s best to skip that whole story, and
just use the ad hoc, more explicit description of Minkowski space, which is the following.
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Definition 0.4. Let F be a number field. Then the Minkowski space FR is defined to be the real vector
space

Rr ⊕ Cs,

where there is a factor of R for every field embedding F → R, and a factor of C for every complex-
conjugate pair of field embeddings F → C which do not land inside R.

Note that this definition does recover the quadratic examples we discussed. This is me stopping
while you note that.

The background to this definition is the following. We know from field theory that for any separable
extension of fields E/L and any algebraically closed field L′ containing L, there are exactly n =
deg(E/L) homomorphisms E → L′ which restrict to the identity on L. (Idea: a generator for the
extension E/L can go to any of the n roots of its minimal polynomial in L′.) Recall also that a field
homomorphism is automatically injective, meaning it’s an embedding. Specializing to our case, we find
that there are exactly n = deg(F/Q) field embeddings F → C.

But note that complex conjugation gives a Z/2-action on this set of embeddings. The fixed points
are exactly the real embeddings of F , i.e. the field homomorphisms F → R. The number of these is the
r above. The non-fixed points then necessarily come in complex-conjugate pairs; the number of such
pairs is the s above. In total we see that r + 2s = n, so that our above-defined Minkowski space has
the “right dimension” as a real vector space.

The next thing to specify is how OF embeds into FR = Rs ⊕ Cs. In fact, all of F embeds there,
via a map F → Rs ⊕ Cs defined as follows. The real factors are labelled by the embeddings F → R,
so on the real factors we can just use the corresponding embedding F → R to map to that real factor.
To handle the complex factors, we have to arbitrarily chose one out of each pair of complex conjugate
non-real complex embeddings F → C, and then we can use those chosen embeddings to map to the
corresponding C-factors.

This business of having to arbitrarily choose one out of each pair of conjugate embeddings should
seem a little funny. I mean, at the beginning I said that Minkowski space could be canonically defined
in terms of F as F ⊗R, and there the embedding F → F ⊗R is tautological. The explanation is that
when you unwind the tensor product F ⊗R, you find that it doesn’t quite identify with the Minkowski
space FR defined above. Instead it identifies with a variant where you replace each factor of C by a
two-dimensional real vector space whose elements are pairs of complex conjugate complex numbers.
That’s the more canonical version of Minkowski space; for example it receives a canonical map from F ,
without choices. The choices only come if you identify this more enlightened Minkowski space with the
naive concrete definition given above. But we’ll generally stick with the concrete version, so we have
to choose one out of every pair of conjugate complex embeddings. (Note that we did this implicitly in
the imaginary quadratic example!)

In any case, we have this canonical map F → FR from F to the Minkowski space, a real vector
space of dimension n = [F : Q]. Basically, to define it you just take all n of the complex embeddings
F → C, then cut the real ones down to size and throw out half the complex ones as being redundant.
As a bit of shorthand terminology, we’ll call the individual factors of the image of F under this map
F → FR = Rr ⊕ Cs the Minkowski coordinates of F . Now that that’s out of the way, we can prove
what we wanted.
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Theorem 0.5. The above map OF → FR embeds the ring of integers OF as a full lattice in Minkowski
space FR.

Proof. First we will just show that OF embeds as a lattice. So we need to find an open neighborhood
U of 0 in FR, such that 0 the only element of OF whose image lies in U .

To tease this out, let α ∈ OF . Consider the polynomial p(X) =
∏
σ(X − σα), where σ ranges

over all complex embeddings F → C. This polynomial has integer coefficients. Indeed, it certainly has
rational coefficients, since the Galois group of the normal closure of F just permutes the factors; hence
fixes the polynomial; hence fixes the coefficients. But also all of these σα are algebraic integers, and the
coefficients are polynomials in them. Thus, since the ring of algebraic integers is a ring, it follows that
the coefficients are algebraic integers. But an algebraic integer which is also a rational number has to
be an integer (we checked OQ = Z). Thus p(X) has integer coefficients, as claimed. (Alternate proof:
the collection of all the σα’s is just the set of conjugates of α, taken with some uniform multiplicity.
Thus p(X) is just a power of the minimal polynomial of α, and hence has integer coefficients.)

But note, on the other hand, that the σα are all determined by the Minkowski coordinates: they are
either Minkowski coordinates themselves, or else complex conjugates of Minkowski coordinates. In par-
ticular, they are continuous functions of the Minkowski coordinates. Since polynomials are continuous,
it follows that the coefficients of p(X) are also continuous functions of the Minkowski coordinates. Or
we could say, the polynomial p(X) itself is a continuous function of the Minkowski coordinates. But at
the point 0 this polynomial is Xn. Thus, in a neighborhood of 0 the polynomial is close to Xn, say each
of its coefficients is at most distance 1/2 from the corresponding coefficients of Xn. But two integers
can’t be so close unless they’re equal, so in a neighborhood of 0 the only possibility for p(X) is Xn,
whose only root is 0. That proves that 0 is an isolated point of OF in FR, so that OF is a lattice in FR.

To finish, we have to see that the R-span of OF is all of FR. Well in any case OF is a full lattice in
its R-span, so OF is free of rank ≤ n. We just want to see that the rank can’t be strictly less than n.
But we know this already, since we can certainly find lots of rank-n submodules of OF , namely all the
Z[α]’s where α is any algebraic integer which generates F . (To get such an α, start with any generator
of F , then multiply by a suitable integer to clear denominators in its minimal polynomial. It will still
generate, but now it’s also an algebraic integer.)

In the linear-algebraic “tensor product” description of Minkowski space, contrasted with the “Minkowski
coordinates” approach we’ve adopted, this proof looks as follows. To every α in the ring F ⊗ R we
can assign the characteristic polynomial pα(X) of α acting on F ⊗ R, viewed as a finite-dimensional
real vector space. This assignment α 7→ pα(X) is then a continuous functions. But on the other hand,
when α lies in OF , then the polynomial pα(X) has integer coefficients. Indeed, by choosing arbitrarily
a basis of F/Q(α) we see that pα(X) is a power of the characteristic polynomial of α acting on Q(α),
which is the minimal polynomial of α. Then we finish the proof as above: by continuity, when α is near
0 the polynomial pα(X) must be near p0(X) = Xn. But integers can’t be near each other without
being equal, so any α ∈ OK which is near 0 must itself be 0.

In any case, we get the following corollary.

Corollary 0.6. OF is a free abelian group of rank n = [F : Q].

At the end of class, I outlined how the rest of this course will go. We’re aiming for the theorem
of Kummer quoted two lectures ago — you know, the weird one relating the class number of Q(ζp) to
numerators of Bernoulli numbers. The key to this theorem is the following formula (I hope I did my
simplifications right...):
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h−p = −(2 · p−1)
p−3
2 ·

∏
χ

(
p−1∑
k=1

χ(k) · k

)
.

Here the number on the left is a variant of the class number hp of Q(ζp), and on the right we have χ
ranging over all characters (Z/pZ)× → C× which are odd, i.e. χ(−1) = −1. (This oddness is related to
the “−” in h−p . But there’s no analogous statement if you remove the − and remove the word “odd”.)

Now, the basic idea behind this formula is simple, but the details are amazing. The idea is that
the above formula is somehow obtained by “analytic continuation” of problem 2 on our first problem
set! In more fancy terms, problem 2 of our problem set describes how primes decompose in the ring
of integers Z[ζp]. We can package all of this information into a generating function known as the zeta
function of Q(ζp), and what emerges from problem 2 is a description of this zeta function in terms of
similar functions (“L-functions”) which live on Q rather than on Q(ζp). This is where those characters
χ come in. Then the magic happens. You stop thinking of these zeta functions as formal generating
functions, and actually treat them as complex analytic functions. In particular, you analytically continue
them to the point s = 0, where the original series didn’t converge. Then, after messing around a bit
(and inputting some nice geometry of numbers!), you get the h−p out of the zeta functions, and you get
the right-hand side of the above formula out of the L-functions. And that’s the proof.

So we’ll try to do that. Then, at the end, we’ll look into some refinement of the above formula.
The left hand side of the equation is the size of a naturally defined abelian group, and one asks what
the significance of the right hand side is in terms of abelian groups. This is part of a deep and difficult
story (related to the “main conjecture of Iwasawa theory”, proved by Mazur and Wiles), but we can at
least investigate a part of it, due to Herbrand in the 19th century. The approach will be to try to get
a handle on the class group of Q(ζp) by seeing how certain explicit elements of Q(ζp) decompose into
prime factors. These explicit elements are the Gauss sums which came up in Gauss’s orginal study of
cyclotomy. So we’ll finally get to go back to that.
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