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Let F be a number field, of degree n = [F : Q]. Recall from last time the Minkowki space

FR = Rr ⊕ Cs.

Here r is the number of real embeddings F → R, and s is half of the number of complex embeddings
F → C which are not real. Note that the total number of embeddings F → C is then r+ 2s. It follows
that r + 2s = n. Thus we see that dimRFR = n, a crucial property.

Recall also that there is a canonical embedding

F → RR

which assigns to an α ∈ F its Minkowski coordinates. These are defined as follows. The R-components
can be labelled by the real embeddings σ : F → R. For such a σ, the σth Minkowski coordinate of α
is just σ(α) ∈ R. As for the C-components, we can label these by complex embeddings σ : F → C,
as soon as we choose one out of each pair of complex conjugate complex embeddings. Then again the
σth Minkowski coordinate is σ(α) ∈ C.

One way to get rid of this strange need to make a choice of half the complex embeddings is as
follows. The complex analog of Minowski space is just Cn, where now the components are labelled by
all the embeddings σ : F → C. Here the canonical map F → Cn just sends an α to σ(α) in the σth

component, for all σ : F → C. But we can note that the image of F lies inside the fixed points of a
natural Z/2-action on Cn: namely, let the generator of Z/2 act by complex conjugation simultaneously
on the indexing set {σ} and on the copies of C that make up the space. Then the canonical version of
the Minkowski space and its embedding is just the induced map

F → (Cn)Z/2,

from F the fixed points of the complex-conjugation action on complex Minkowski space.
To see what these fixed points are doing, note that for those σ : F → C which land in R, the action

by complex conjugation on σ is trivial. So on those factors the Z/2-action preserves each factor, and is
there just given by the usual complex conjugation on C. Thus the fixed points give a copy of R for every
real embedding, just as we had with our old (non-canonical) Minkowski space. But for the non-real σ,
now the conjugation pairs up these σ’s, and we instead find a copy of the Z/2-fixed points of C ⊕ C,
for the Z/2-action which simultaneously swaps the coordinates and takes complex conjugates. These
fixed points are just the set of (z, w) which are each others’ conjugates. If we choose one of the factors
we can identify this with C and thus recover the old Minkowski space, but there is no such canonical
choice available.
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So it seems that the canonical Minkowski space (Cn)Z/2 is nicer from an abstract perspective, but
the non-canonical Minkowski space Rr ⊕ Cs is easier to picture a priori.

Now, let’s not lose sight here: the above discussion was just a technical side-track. But it can be
helpful to try to see things in the most canonical way possible, so that intrinsic structures can come to
the fore. This point will come up when we turn to the topic of this lecture, which is the geometry of
Minkowski space.

So far, we’ve already used the Minkowski space to prove that OF is free of rank n, by showing that
it was a full lattice in Minkowski space. There, the only structure that was relevant was the topology
on Minkowski space. In the proof that a full lattice is necessarily free of rank n we did use an arbitrary
choice of inner product, so that we could talk about distances and balls and so on, but that was just
supplementary structure, a technical artifact of the proof. It didn’t enter into either the hypotheses or
the conclusions.

But now we can see that Minkowski space FR actually carries a canonical inner product — and
hence, by the usual game from real geometry, a notion of distance, of angle, of volume, etc. — this all
being completely determined by the original number field F .

In terms of the old Minkowski space Rr ⊕Cs, we can just imagine the usual Euclidean geometry on
each factor. This is represented by the inner product

〈(xσ), (yσ)〉 =
∑
σ

(Re(xσ)Re(yσ) + Im(xσ)Im(yσ)) ,

where σ labels the Minkowski coordinates, so for the complex embeddings we have to choose half. Note
that on the Rr part, this just recovers the usual dot product of vectors in Rr, and on the complex part,
it’s the same with respect to the decomposition C = R⊕ R into real and purely imaginary axes.

Even though the above description depended on our choice of half of the non-real complex embed-
dings, we can see that this inner product is canonical, i.e. it doesn’t depend on the choice. This is
because changing σ to σ will just add a sign to each of the Im-terms, and these signs cancel out. Or, in
other words, complex conjugation preserves angles, distances, etc. on C. So it might seem that, as far
as inner products are concerned, there’s nothing to gain from thinking about the canonical Minkowski
space (Cn)Z/2. But actually, by adopting that perspective we will get a different inner product, one
which is arguably “better”.

Namely, the canonical geometry on the complex Minkowski space Cn is the “Hermitian” one, given
by

〈(xσ), (yσ)〉 =
∑
σ

xσ · yσ,

where now σ runs over all F → C. When we restrict this pairing to the canonical Minkowski space
(Cn)Z/2, we get a new inner product, which can be described in terms of the Minkowski coordinates as

〈(xσ), (yσ)〉 =
∑
σ∈real

xσ · yσ +
∑

σ∈ 1
2
complex

(xσ · yσ + xσ · yσ) .

Now again we’ve chosen half the complex embeddings because we’re talking about Minkowski coordi-
nates, but here we can see that the inner product doesn’t depend on this choice for an easier reason:
addition is commutative.

2



This inner product on FR is different from the one we had before, though not substantially. Certainly,
they agree on the R-factors. On the C-factors, you can calculate that the two inner products are related
by a scalar factor of 2. (The canonical one is the “bigger” one.) Since the norm associated to a scalar
product is

√
〈z, z〉, this means that distances are scaled by

√
2 on each complex factor, or areas are

scaled by 2 on each complex factor.
I’m going into all this because the question we’re going to address is, “what is the volume of a

number field?”. And this question depends on which inner product we’ve chosen. It turns out you get
a slightly nicer answer if you use the second inner product, the “canonical one”.

To make the question more precise, recall that OF sits as a full lattice in FR. Another way of saying
this is that the pair OF ⊂ FR is isomorphic to the standard pair Zn ⊂ Rn. In particular, the quotient

FR/OF

is a torus: it’s homeomorphic to Rn/Zn. But the canonical volume on FR coming from our inner
product is translation-invariant, so it descends to a notion of volume on this torus FR/OF . Since this
space is compact, it in particular makes sense to ask, what is the volume of this torus? I.e., what is

V ol(FR/OF )?

This is what I mean by “volume of a number field”. Our number field F has canonically determined for
us a certain real number, the volume of this torus. It’s reasonable to ask what this number is, or how
to compute it. The answer does have arithmetic significance.

Let us give a more concrete interpretation of this question, which will also help us answer it. Think
back to the usual torus Rn/Zn. The cube [0, 1]n provides a nice compact set of representatives for this
torus: everything in Rn is a translation of [0, 1]n by something in Zn. There is only the slight redundancy
that opposite edges of this cube will give the same point in the torus. But that doesn’t matter for the
purposes of calculating volume. Thus we see that the standard torus Rn/Zn has the same volume as
the cube [0, 1]n, which is 1. Here we use the usual Euclidean inner product (dot product) on Rn.

To move closer to our case of OF ⊂ FR, suppose given a full lattice Λ in Rn which is potentially
not the standard one, but instead is given by some other basis b1, . . . , bn. Then the analog of the above
cube is the “fundamental parallelopiped”

{λ1b1 + . . .+ λnbn | 0 ≤ λi ≤ 1}.

We can understand the volume of this parallelopiped, and hence the volume of the quotient torus Rn/Λ,
by imagining the linear transformation T which takes the standard basis to the basis b1, . . . , bn. In other
words, T is represented by the matrix whose column vectors are the bi. Since a linear transformation
scales volumes by the factor of the absolute value of its determinant, and our parallelopiped is the image
under T of the standard cube [0, 1]n, it follows that the volume of Rn/Λ is just

V ol(Rn/Λ) = |det(T )|,

where again T is any matrix whose column vectors are a Z-basis of Λ.

Now, this literally applies to our case OF ⊂ FR, as long as every complex embedding of F is
actually real. (Fields F satisfying this condition are called “totally real”), so that the inner product on
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the Minkowski space is just the standard one on Rn. The conclusion is that if F is totally real, and if
b1, . . . , bn denotes a Z-basis of OF , then

V ol(FR/OF ) = |det(σbi)|,

where (σbi) stands for an n×n-matrix whose columns are indexed by the basis vectors and whose rows
are indexed by the embeddings σ : F → C (which, in this case, all land in R).

Now, I’m here to tell you that, in fact, the exact same conclusion holds for an arbitrary number
field F , as long as you use the inner product on the canonical Minkowski space FR = (Cn)Z/2, the
one induced from the Hermitian inner product on Cn. I won’t justify this; it’s just a little calculation.
Because of the comparison between the naive Minkowski metric and this canonical one, we see that the
analogous volume in the naive Minkowski metric will differ from this answer by a factor of 2−s. But let
us decide to stick with the canonical Minowski metric, so that, again, we have the formula

V ol(FR/OF ) = |det(σbi)|

in complete generality.
Modulo the problem of finding a Z-basis for OF (which we’ll come back to at the end!), this

formula is actually very practical for calculating V ol(FR/OF ). It also gives us theoretic consequences,
for example the following:

Proposition 0.1. Let F be a number field, with ring of integers OF embedded as a full lattice in
Minkowski space FR = (Cn)Z/2 with its canonical inner product. Then the real number V ol(FR/OF )
is the square root of an integer.

So somehow, the integrality of OF gets reflected in this volume as well. By the way, the claimed
integer V ol(FR/OF )2 is, up to a sign, a quantity called the discriminant of the number field F . This
discriminant can also be defined by various algebraic means, independently of Minkowski space.

Proof. Consider the quantity V ol(FR/OF )2. So we want to show V ol(FR/OF )2 ∈ Z. Since the only
algebraic integers in Q are the actual integers, it suffices to see that this quantity is both an algebraic
integer and lies in Q. That it is an algebraic integer follows from the above formula

V ol(FR/OF ) = |det(σbi)|.

Indeed, since each bi is an algebraic integer, so is each σbi (since σbi must satisfy the same polynomial
equations as bi), and therefore so is the determinant, seeing as algebraic integers form a ring. Finally,
the absolute value just gives a ±1; it doesn’t affect integrality.

So we’ve checked that V ol(FR/OF )2 is an algebraic integer, meaning to finish we only need to see
that it’s rational, or, equivalently, that it’s fixed by every Galois automorphism. In other words, we need
to check that V ol(FR/OF ) = |det(σbi)| is fixed by Galois, up to a sign. But this follows because Galois
just permutes the various σ, i.e. it permutes the rows of the matrix we’re taking the determinant of.
So a sign is introduced corresponding to the sign of this permutation. Then the absolute value again
at most introduces another sign. So in total we have verified the claim.

This property of the volume is actually useful in practice. To explain one reason why, let’s turn to
the unaddressed question of how to find a Z-basis of OF .
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We can always start by just randomly choosing an integral α ∈ F which generates F . Then we
know that Z[α] is a free abelian group of rank n (in fact generated by the first n powers of α). Thus
the inclusion

Z[α] ⊂ OF
is an inclusion of free abelian groups of the same rank. The quotient must therefore be finite — in other
words, Z[α] is of finite index in OF . So in a sense, we’re almost there, starting from just any random
choice of α.

To get all the way and understand the whole OF , remark that if N denotes the index [OF : Z[α]],
then NOF ⊂ Z[α] (because N kills the quotient). Thus

Z[α] ⊂ OF ⊂
1

N
Z[α].

So we have OF sandwiched in between two understood abelian groups. Furthermore, the quotient
( 1
NZ[α])/Z[α] is finite, of size Nn. So we only have to go through the Nn coset representatives of

this quotient, and figure out which are actually algebraic integers (e.g. by computing their minimal
polynomials). You can even save some work by remembering that OF is a ring. This gives a nice
algorithm for constructing OF , except for the fact that we might have no idea a priori what the index
N = [OF : Z[α]] is. We don’t know, given an initial guess of α, how far away Z[α] is from the true ring
of integers.

That is, we don’t unless we remember the above facts about volumes. Note that the same volume
discussion goes through with Z[α] instead of OF : all we used about OF was that it’s a full lattice and
consists of algebraic integers. Thus, the volume V ol(FR/Z[α])2 must also be an integer. Furthermore,
it’s something we can compute just knowing α, by using the Z-basis 1, α, . . . , αn−1 of Z[α].

But now, I claim that there is an equality

V ol(FR/Z[α]) = [OF : Z[α]] · V ol(FR/OF ).

This should make sense: it’s another reflection of the idea that the difference in “size” of Z[α] and OF
is measured by the index [OF : Z[α]]. This is really just a specialization of a more general fact which
is also touched on in your first homework problem this week, so I’ll be brief in explaining things here.
One can think in one of two ways. First, if one chooses coset representatives for Z[α] in OF , then one
can use these to realize a fundamental paralellopiped of Z[α] as made out of [OF : Z[α]] copies of a
fundamental parallelopiped for OF . This proves the claim. Second, and more canonically, one can think
of the induced map of tori

FR/Z[α]→ FR/OF .

One sees that this is an [OF : Z[α]]-sheeted covering map, and this implies the desired claim as well.

The conclusion is that, whatever the index [OF : Z[α]] may be, its square must be a divisor of the in-
teger V ol(FR/Z[α])2, which we can calculate. This generally gives a pretty good bound on [OF : Z[α]].
For example, it can even happen that you go to compute V ol(FR/Z[α])2, and it turns out to be a
square-free integer. Then you know that necessarily OF = Z[α]. So you made a lucky choice of α. In
general, you can think like this: if the volume of FR/Z[α] is small, then there’s not much room for there
to be a ring of algebraic integers strictly larger than Z[α].

In the next lecture, we’ll see another example of this. We’ll use the above idea to prove that the
ring of integers of Q(ζp) is indeed Z[ζp], as one might have assumed all along. Here the V ol2 won’t
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turn out to be squarefree, but we’ll be able to appeal to our old friend p = (1 − ζp) . . . (1 − ζp−1p ) to
get the desired conclusion anyway.
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