
The ring of integers of Q(ζp), and ideal theory

December 11, 2013

There are two things on the docket today. First we’ll use the ideas from last time to show that
the ring of integers of Q(ζp) is Z[ζp]. Then we’ll review, without proofs, some aspects of the theory of
ideals in rings of integers.

Let O denote the ring of integers of Q(ζp), and let V denote its Minkowski space. Certainly,
Z[ζp] ⊂ O. The proof that this containment is an equality will be in three steps:

1. First, we’ll compute that V ol(V/Z[ζp])2 = pp−2.

2. Second, we’ll show that the inclusion induces an isomorphism Z[ζp]/p
∼→ O/p.

3. Third, we’ll put these together to deduce that Z[ζp] = O.

The funny thing is that, while steps 1 and 2 give complementary information, the crucial input to
both of them is the same fact: our old friend

p = (1− ζp)(1− ζ2p ) . . . (1− ζp−1p ).

Let’s start with step 1. Recall from last time that such volumes can be computed as a determinant.
Namely, if you have a number field F of degree n, and a Z-basis b1, . . . , bn for some abelian subgroup
L ⊂ F of rank n, then the volume V ol(V/L) is equal to

|det(σbi)|,

where (σbi) stands for the n×n matrix whose rows are indexed by the bi and whose columns are indexed
by the complex embeddings σ : F → C.

Now let’s specialize to the case where L = Z[α] for some algebraic integer α which generates L.
Then our matrix is

(σαi)

where i ranges from 0 to n − 1. This is a particular kind of Vandermonde matrix : an n × n matrix
whose nth row is of the form 1, xj , x

2
j , . . . x

n−1
j , as j ranges from 0 to n− 1 (the j corresponds to our

σ), and xj is just some variable. Let me recall that there’s a nice formula for the determinant of a
Vandermonde matrix: up to a sign, it is equal to∏

j<j′

(xj′ − xj).
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I won’t prove this, but let me sketch the idea. Both the Vandermonde determinant and this product are
polynomials in the xj of the same degree. On the other hand, since a determinant vanishes whenever
two rows are equal, the Vandermonde determinant vanishes whenever xj = xj′ for some j, j′, i.e. when-
ever (xj′ − xj) vanishes. From this one can argue that, up to a unit, the product of those linear forms
divides the Vandermonde determinant. Then, since they have the same degree, these polynomials must
be equal (up to a unit, which if we work in Z, is just a sign.)

Now, we’re actually interested in the volume squared. We can square this formula in a nice way,
again up to sign: we find that the square of the Vandermonde determinant is, up to sign,∏

j 6=j′
(xj′ − xj).

Now let’s specialize back to our case, where j corresponds to σ, and xj = σα. We find

V ol(V/Z[α])2 =
∏
σ 6=σ′

(σ′α− σα).

Now let’s add the further assumption that F/Q is Galois. This means that all the complex embed-
dings σ : F → C actually land back in F , and are just another way of describing the Galois group.
Then, since multiplication by a fixed group element just permutes the group, we deduce

V ol(V/Z[α])2 =
∏
σ

σ

∏
σ′ 6=1

(σ′α− α)

 .

In other words, V ol(V/Z[α])2 is just the product of all the conjugates of the number
∏
σ′ 6=1(σ

′α− α).

OK, let’s move back to our case of interest, with F = Q(ζp) and α = ζp. Then this product is

(ζ2p − ζp)(ζ3p − ζp) . . . (ζp−1p − ζp).

Pulling out a ζp from each factor, again up to signs this is

ζp−2p (1− ζp)(1− ζ2p ) . . . (1− ζp−2p ).

That’s almost our expression for p; it’s just missing a factor of 1− ζp−1p . So we can rewrite it as

ζp−2p · p

(1− ζp−1p )
.

Now, to get the volume squared, we’re supposed to just take the product over all the conjugates of this
number. We can do this on each of the three factors separately, then put them together.

The first factor would be easy to compute directly, but we can also do it abstractly as follows:
certainly the product of the conjugates of ζp−2p is some power of ζp, because Galois always sends ζp to
a power of ζp. Then again this product of conjugates is invariant under Galois. But the only power of
ζp which is invariant under Galois is ζ0p = 1. So the first factor gives 1.

The second factor p is fixed by Galois, so it gives pp−1, since there are p− 1 Galois conjugates.
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As for the third factor (1 − ζp−1p ), its conjugates are the (1 − ζip) for 1 ≤ i ≤ p − 1, so when we
take the product we just get p again, by the same old identity!

The conclusion is that
V ol(V/Z[ζp])2 = pp−1/p = pp−2,

as claimed. The whole time we worked up to a sign, but of course the volume squared is positive, so
this sign, in the end, must be correct.

So that was the first step. Now let’s do the second step, meaning let’s show that the inclusion
Z[ζp]→ O induces an isomorphism Z[ζp]/p ' O/p.

Let’s start by making some orienting remarks, which may or may not be helpful for the proof. First
of all, both Z[ζp]/p and O/p are finite abelian groups of the same size. In fact, both are isomorphic to
(Z/pZ)p−1. This is simply because both Z[ζp] and O are isomorphic to Zp−1. In particular, to see that
Z[ζp]/p→ O/p is an isomorphism, it suffices to see either that its injective or that it’s surjective.

Now, the idea behind the proof is that we somehow already know that Z[ζp] is “big enough” from

the perspective of p. This is reflected in the fact that the factorization p = (1 − ζp) . . . (1 − ζp−1p ),
which is as long as it could be (length p− 1 = deg(Q(ζp))), already lives in the ring Z[ζp]; no need to
use other algebraic integers. To give an example in the other direction, the fact that Z[2i] is not the
ring of integers of Q(i) is related to the fact that it’s “missing” the factorization 2 = (1 + i)(1− i).

OK, now let’s actually prove that Z[ζp]/p → O/p is an isomorphism. Recall from the first proof
of the irreducibility of the cyclotomic polynomials that the relation p = uπp−1 with u a unit in Z[ζp]
implies that the quotient Z[ζp]/p can approached by taking p − 1 more drastic quotients, namely the
Z[ζp]/πk for k = 0, . . . , p−2. Furthermore, by the “third isomorphism theorem” the difference between
each of these quotients is measured just by the single abelian group Z[ζp]/π. Thus Z[ζp]/p is built up
out of p− 1 copies of Z[ζp]/π.

Now, since the factorization p = uπp−1 also holds in O (obviously, since it holds in Z[ζp]), we get
the same story with O. And the inclusion Z[ζp]→ O respects these stories, i.e. it also induces a similar
map on each quotient Z[ζp]/πk → O/πk.

The upshot is that to see that Z[ζp]/p→ O/p is an isomorphism, it suffices to see that

Z[ζp]/π → O/π

is an isomorphism. But again, since p − 1 copies of each of these groups makes (Z/pZ)p−1, both of
these groups have size p. Thus to see that this map is an isomorphism, it’s enough to see that it’s
nonzero. But, this map obviously sends 1 to 1, and 1 is nonzero in both groups for the same reason:
if it weren’t, that would mean that π is a unit, so the groups would be trivial, whereas we know they
have size p.

So we have proved that Z[ζp]/p ' O/p, and hence we’ve accomplished step 2.

Now, step 3 is a formal argument. We can phrase it as follows:

Proposition 0.1. Let F be a number field of degree d with ring of integers O and Minkowski space
V , and let R ⊂ O be a subring which is isomorphic to Zd as an abelian group. Suppose that for every
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prime p which divides V ol2(V/R), the map

R/p→ O/p

induced by the inclusion is an isomorphism. Then R = O.

The statement makes sense: recall from last time that V ol2(V/R) is necessarily an integer, since R
is composed of algebraic integers.

Proof. Let’s first see what R/p → O/p being an isomorphism entails. Actually, let’s just look at
injectivity. It says that if x ∈ R is a multiple of p in O, then x is a multiple of p in R. In other words,
letting y = x/p, it says that if y ∈ O with py ∈ R, then y ∈ R. Inductively, we deduce the following:
if n is divisible only by primes p for which we know that R/p→ O/p is an isomorphism, then we have
the implication

y ∈ O, ny ∈ R⇒ y ∈ R.

(We could have also directly argued that R/n → O/n is an isomorphism, just as above we went from
π to p.)

Now let’s put that in our pocket, and see what knowing V ol2(V/R) gets us. Recall from last time
that there is the relation

V ol2(V/R) = [O : R]2 · V ol2(V/O),

and that all these quantities are integers. Now, every y ∈ O satisfies [O : R]y ∈ R. This is because
the quotient group O/R has size [O : R], and hence each of its elements is killed by multiplication by
[O : R]. Since the above relation shows that [O : R] divides V ol2(V/R), it follows that every y ∈ O
satisfies V ol2(V/R) · y ∈ R. Now if we check in our pocket, we find that the proof is complete.

So we’ve proven that OQ(ζp) = Z[ζp]. We can summarize the proof as follows. Our volume com-
putation shows that Z[ζp] is pretty big (meaning, the volume of V/Z[ζp] is small). Actually, it’s as big
as it could be from the perspective of every prime except possibly p. But then the long factorization
p = (1− ζp) . . . (1− ζp−1p ) shows that Z[ζp] is as big as it can be from the perspective of p as well.

Now let’s move on to the second half of this lecture, about ideal theory.

The starting point is the “fundamental theorem of arithmetic”: every integer can be written as a
product of prime numbers, and such a product is unique up to reordering and multiplying by units. This
really is a fundamental fact about arithmetic, but it’s kind of annoying to state precisely. It’s definitely
not ideal.

Now, it turns out that the straightforward analog of this statement is false for the ring of integers
O of a general number field F .

That’s actually a subtle claim, because O was really trying its hardest to have this property. What
I mean is that if we hadn’t taken the full ring of integers, if we’d taken a subring R ⊂ O with R 6= O,
then unique prime factorization wouldn’t stand a chance. One reason is the following. It’s an easy
consequence of unique prime factorization (in an integral domain) that, given a monic polynomial with
coefficients in the domain, any root in the fraction field actually has to lie in the domain. (This gives
one proof that OQ = Z.) So if R satisfies unique prime factorization, it must contain all the algebraic
integers in Frac(R) = F , so it must be O!
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But nonetheless, even O itself need not satisfy unique prime factorization. For example, let O =
Z[
√
−5]. Consider

6 = 2 · 3 = (1 +
√
−5)(1−

√
−5).

I claim this is a counterexample to unique prime factorization in Z[
√
−5]. To see this one needs to

verify a bunch of things: first, that each of these factors is prime (meaning, up to units it has exactly
two divisors: 1 and itself); and second, that neither of 2, 3 is a unit multiple of 1 +

√
−5 or 1−

√
−5.

This can be done by hand; after all, elements of this ring are just expressions a+b
√
−5 with a, b ∈ Z.

But it’s easier to use a nice tool, the norm. Here’s a proposition that we have all the tools to prove,
thanks to your last problem set.

Proposition 0.2. Let F be a number field with ring of integers O and Minkowski space V . For α ∈ O,
the following numbers are all integers, and are all equal:

1. The determinant of multiplication by α acting on O ' Zd;

2. The product
∏
σ:F→C σα;

3. Up to a sign, the factor by which multiplication by α scales volumes in V ;

4. Up to a sign, the number of elements of O/α.

The first two options define the norm of α, denoted N(α). Thus the last two are |N(α)|. The
important property of the norm, for present purposes, is that it’s multiplicative:

N(αβ) = N(α)N(β).

That lets us use multiplication in Z to check facts about multiplication in rings of integers.

For example, α ∈ O is a unit if and only if N(α) = ±1. The forward direction follows from the fact
that if α is a unit, then so is N(α), by multiplicativity. But the only units in Z are ±1. The backward
direction follows from the fact that N(α) is the product of α with all its nontrivial conjugates; so if
N(α) = ±1, then up to a sign the product of the nontrivial conjugates of α gives an inverse to α which
also lies in O. (Alternate proof: N(α) = ±1 is equivalent to O/α being trivial, which is equivalent to
α being a unit.)

Using this, we can easily check that, e.g., 2 is prime in Z[
√
−5]. Namely, we can calculate

N(a+ b
√
−5) = a2 + 5b2.

If 2 = αβ, then applying N we get
4 = N(α)N(β).

Thus either N(α) or N(β) is 1, which wouldn’t contradict 2 being prime, or N(α) = N(β) = 2. But
you can just see that 2 can’t be written in the form a2 + 5b2. For unless b = 0, and a = −1, 0, or 1,
this quantity is too big. And none of those possibilities give 2.

Likewise one can do all the work required to see that 6 = 2 ·3 = (1−
√
−5)(1+

√
5) is a non-unique

prime factorization.
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So, unique prime factorization fails for general O! But there’s a salvage: instead of asking for unique
prime factorization for elemments, ask for unique prime factorization of ideals.

Recall that an ideal in a ring R is just an abelian subgroup I ⊂ R which is closed under multiplication
by elements in R. That is, if x ∈ I and r ∈ R, then rx ∈ I. Note, this is a very different concept from
a subring. The first example to have in mind is the ideal generated by an element α ∈ R. This is just
the set of multiples of α:

(α) = αR = {α · r | r ∈ R}.

Another name for this is the principal ideal generated by α. So we’re making a change of perspective
here: instead of thinking about elements, we’re thinking about ideals. Which means, instead of thinking
about an element α, we think about the collection of all elements which α divides. This loses some
information about α, but it turns out that it was information we wanted to forget anyway. Namely:

Proposition 0.3. Let α and β be two elements of an integral domain R (e.g. R = O, a ring of integers
in a number field.) Then (α) = (β) if and only if α is a unit multiple of β.

This is just the old claim that α is a unit multiple of β if and only if α|β and β|α, which we already
encountered in the first lecture.

Besides this fact that the ideal generated by α doesn’t care if we change α by a unit, the other thing
to know is that, in general, not every ideal in O can be generated by a single element, i.e. not every
ideal is principal. This is what leads to the fix to the failure of unique prime factorization. For example,
in O = Z[

√
−5], we have a completely unique prime ideal factorization

6 = (2, 1 +
√
−5) · (2, 1−

√
−5) · (3, 1 +

√
−5) · (3, 1−

√
−5).

Here the notation (α, β) means the ideal generated by both α and β, i.e. the set of O-linear combinations
of α and β. As for the meaning of product of ideals, it is as in the following definition:

Definition 0.4. Let I and J be two ideals in a ring R. We define the product I · J to be the ideal
generated by the elements xy as x ranges over I and y ranges over J .

For example, it’s easy to see that (α) · (β) = (αβ), so on the principal ideals this product recovers
the usual one.

Now let us state the salvage to the failure of unique prime factorization in O. We just need one
more definition, which is the analog of “prime number” for ideals. Recall that a prime number can be
defined as a number which has exactly two divisors, up to units: namely, itself and 1. In ideal language,
the analogous definition is the following:

Definition 0.5. An ideal I in a ring R is called maximal if there are exactly two ideals J with I ⊂ J :
namely, J = I, and J = R.

So, here is the main statement, the unique prime factorization of ideals:

Theorem 0.6. Let O be the ring of integers in a number field. Then every nonzero ideal I of O can be
written as a product of maximal ideals of O, and such a product description is unique up to reordering.
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We remark that nonzero ideals look completely different from the zero ideal. For example, a nonzero
ideal ideal is always free of rank d = deg(F/Q) as an abelian group. This is because if α ∈ I is nonzero,
then I also contains the integer N = N(α) =

∏
σ σ(α), which implies that NO ⊂ I ⊂ O, so I is of

finite index in O.

There is also a companion proposition to the above theorem, which is about “on the same level”
(meaning as difficult to prove, and extends to the same level of generality, namely Dedekind domains):

Proposition 0.7. Let I and J be nonzero ideals of O, and suppose I ⊂ J . Then J divides I, meaning
there exists an ideal K such that J ·K = I.

To make this make sense in your head, think of the case of principal ideals.

Anyway, this unique prime ideal factorization leads to a change of perspective on the issue of unique-
ness of prime element factorizations, which is still of arithmetic significance. Namely, by this theorem,
we see that unique prime factorization of elements in O is equivalent to the property that every ideal in
O is in fact principal.

So we can change our fundamental question. Instead of asking if O has prime element factorization,
which is sort of a complicated question, we can just ask if every ideal of O is principal.

Of course, the answer is “no” in general, as we saw with Z[
√
−5]. But this change in the question

lets us also investigate a natural measure of “how bad” the “no” answer is, so how far every ideal is
from being principal.

Namely, we can define an abelian group ClF , the class group of our number field, which measures
the failure of the principal ideal property in O. One precise claim is that ClF is the trivial group if and
only if every ideal of O is principal. To define ClF , we start with the following remark, which defines
the notion of “isomorphism of ideals” in O:

Proposition 0.8. Let I and J be nonzero ideals of O. Then the following are equivalent:

1. There exists an isomorphism of abelian groups ϕ : I
∼→ J which respects the O-multiplication,

i.e. ϕ(rx) = rϕ(x) for all r ∈ O and x ∈ I;

2. There exists a nonzero α ∈ F such that α · I = J .

The claim is basically just that any abstract isomorphism as in 1 actually has to be given by
multiplication by some nonzero α ∈ F . Note that α really has to be in F here, not in O. For example,
the inverse to multiplication by α will always be multiplication by α−1.

Another example is that any two principal ideals are isomorphic. This is clear: take α to be the
quotient of the generators. More generally, I and J are isomorphic if and only if there exist principlal
ideals (α) and (β) (where here α, β ∈ O) such that (α)I = (β)J . So the notion of isomorphism of
ideals can also be thought of as a way of just neglecting the principal ideals: pretending they’re not
there for the purposes of multiplication.

Now we can define ClF .

Definition 0.9. Let F be a number field, with ring of integers O. Define the abelian group ClF to be
the set of isomorphism classes of nonzero ideals of O, under the group operation induced by the product
of ideals.
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To see that this is a reasonable definition, we need to know that if I and I ′ are isomorphic and J is
an ideal, then IJ is isomorphic to I ′J . This is easy to verify. We also need to see that every nonzero
ideal has an inverse in this group structure. That follows because if α ∈ I is nonzero, then (α) ⊂ I, so
by the proposition above I divides (α). But (α) is a principal ideal, so it’s isomorphic to the “trivial”
ideal O = (1), which is the unit under multiplication. So I does have an inverse in ClF .

Now here is the second big theorem, which, in some sense, “bounds” the failure of every ideal in O
being principal, or of unique prime factorization in O:

Theorem 0.10. The class group ClF of a number field is finite.

We can explain why this result is true, without however going into the details of the proof.

The immediate difficulty in coming to grips with the above theorem is that it may not be entirely clear
how to picture what it’s saying. I mean, what does the collection of all nonzero ideals look like? Surely
it’s some infinite set. Then how is it that when we factor out by isomorphisms, it collapses to a finite set?

The first important remark is that while the set of all nonzero ideals is infinite, it is in some sense
“tamed” by the norm function. Namely, define the norm of a nonzero ideal I to be N(I) = #(O/I).
Note that this makes sense, since, as we saw above, I is of finite index in O. The name is motivated
by the fact that if I is principal, generated by α, then N(I) = |N(α)|. This was one of our above
definitions of N(α). Then:

Proposition 0.11. Let N ≥ 0. Then the set of nonzero ideals in O of norm ≤ N is finite.

So while there are infinitely many ideals, if we bound the norm then we just get a finite set. The proof
is not difficult, but we’ll skip it. So, to prove that ClF is finite, we just need to see that every nonzero
ideal is isomorphic to one of bounded norm. But again, recall that if α is a nonzero element of an ideal
I, then (α) ⊂ I, so there exists an ideal K with IK = (α). In other words, K is inverse to I in the ideal
class group. But look: K will have small norm provided that α can be chosen to have a norm which is
not too far from that of I. Since inversion is a bijection on any group, it follows that if we can just show
that every nonzero ideal I contains a nonzero element α such that N(I)/N(α) is bounded, then every
ideal class will be represented by an ideal of bounded norm, so ClF will be finite by the above proposition.

So this is really the crucial thing: to show that every nonzero ideal I, though not necessarily princi-
pal, is at most a bounded distance away from being principal.

And that kind of statement can be proven using the geometry of numbers, as in your second problem
of PSet 2. Imagine I as sitting in Minkowski space. Consider the set of α in Minkowski space such
that |N(α)| ≤ C ·N(I), where C is (for now) some arbitrary constant. This describes some region in
Minkowski space centered around the origin. What we need to see is that for some choice of C (inde-
pendent of I), this region intersects I nontrivially. Minkowski’s way of doing this is to find a convex
centrally symmetric figure contained in this region which has large enough volume that, by choosing C
appropriately, one can guarantee that some nonzero lattice point has to be contained in it. That, in the
end, gives the proof.

Another way of interpreting this finiteness of the ideal class group is the following. You can think of
some finite set of “bad ideals”, or even of “bad maximal ideals”, which, if only they were principal, we
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would have unique prime factorization. In general, this is actually how you go about things in practice
if you want to verify unique prime factorization for some general ring of integers. Minkowski gives a
pretty good choice of C, so you only need to find generators for finitely many ideals if you want to know
that all of them are principal.

Next we’ll turn to some analysis and zeta functions. These are amazing objects. They are simple
to write down, but if you want to study them, you’re forced to do all sorts of interesting things, and
some amazing facts pop out. For instance, one can, in some cases, obtain completely explicit finitary
formulas for class numbers, i.e. the orders of these finite groups ClF , which look crazy when you first
see them. (Actually, I still think they look crazy.)
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