Dirichlet L-series at s = 1
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Recall from last time the formula

Gy = Cals) - ] Ls:0)-
x#1

This was established “formally”, by treating each of the terms as a formal Dirichlet series Y7 | ay, -
, a book-keeping device for the coefficients a,,.

Now we will forget this formal approach. We'll “do analysis” on each of these terms separately, and
compare the results. Today we focus on the Dirichlet L-series L(s, x) for x # 1; then afterwards we'll
analyze the general Dedekind zeta function (p(s) for a number field F'. Of course, this covers the other
two factors (g(c,) and (o(s)-

n—S

More specifically, we will prove the following two results. The first is “qualitative”, and the second
is “quantitative”:

Theorem 0.1. Let x : (Z/pZ)* — C* be an arbitrary character. Then the Dirichlet L-series

o0

L(s,x) =Y _x(n)n™*
n=1

converges absolutely for Re(s) > 1. If x # 1, then it furthermore converges conditionally for Re(s) > 0.
Moreover, in both cases the limit is an analytic function.

Recall that to converge “conditionally” just means to converge. But the point is that with conditional
convergence (as opposed to absolute convergence), it matters what order you take the sum in.

By the way, maybe now is the time to introduce the convenient notation o = Re(s). The reason
this is the quantity that tends to come up is that |[n~™%| = n™7, seeing as any positive real raised to a
purely imaginary power lives on the unit circle.

Theorem 0.2. Let x : (Z/pZ)* — C* be a nontrivial character. Then there is an explicit finitary
formula for L(1,x) (we'll write it down later). This formula takes a different form according as to
whether x(—1) = —1 or x(—1) = 1. If x(=1) = —1, then the formula shows that L(1,x) can be
expressed in terms of (,, (p—1, i@, and w. If x(—1) = 1, then the formula shows that L(1,x) can be
expressed in terms of (p, (,—1, and some values log(x) for x a positive real unit in Z[(p).

When x(—1) = —1, we say that x is odd. When x(—1) = 1, we say that x is even. These are the
only two possibilities, because the fact that —1 has order 2 in (Z/pZ)* implies that x(—1) must be a
second root of unity. This odd/even dichotomy will be important to us moving forward. Basically, for



now you should just think that we like odd characters, but we don't like even characters. In terms of
the calculation of L(1, ), this is reflected in the fact that 7 is simpler to deal with than logarithms of
cyclotomic units.

OK, so let's get going on the first theorem, the qualitative one. We'll start with a more general
question. Given a Dirichlet series

F(s) = ian -ns
n=1

with arbitrary complex coefficients a,, € C, what can we say about absolute convergence? What about
conditional convergence? Certainly, the region of convergence will depend on how fast the coefficients
an grow. Here is a nice general result in that direction:

Proposition 0.3. Let F'(s) = > .>7  a, -n~° be as above. Recall 0 = Re(s).

n=1

1. Suppose we have an estimate of the form |a,| < C -n", where C and r are positive constants.
Then the sum defining F(s) converges absolutely to an analytic function for o > r + 1.

2. Let Ay = Zivzl an. Suppose we have an estimate of the form |Ay| < C-N", where C and r are
positive constants. Then the sum defining F'(s) converges conditionally to an analytic function

foro >r.

Note that the two sequences {Ax} and {a,} completely determine one another. The first is the
“discrete integral” of the second (that was the definition), and the second is the “discrete derivative”
of the first (discrete derivative means, take the difference between consecutive terms).

Proof. Suppose we know |a,| < C' - n", where C' and r are positive constants. Then

o0 o0
IF(s)] <) lanln™7 <C-> n'.
n=1 n=1

But by comparison with the integral floo 2"~ %dx, this latter sum converges for ¢ > r+ 1. That justifies
that F'(s) (or rather, to be precise, the series defining F(s)) converges for ¢ > r + 1. The fact that
the limit is an analytic function can be justified by quoting the theorem from complex analysis which
says that the limit of a sequence of analytic functions is analytic, provided the convergence is uniform
on compact subsets of the region in question.

Now suppose we know |Ayx| < C - N", where C' and r are positive constants. We will use the
“summation by parts” identity (discrete analog of integration by parts):

N N
Zanwf‘s :AN-(N—FI)*S—ZAH- (n+1)7°=n"7).
n=1 n=1

Now let's look at the absolute values of each of the terms on the right, assuming o > r > 0. The
first term has absolute value

|[AN|-(N4+1)7<C-N'(N+1)"7.



This tends to zero when N — o0, so there’s no problem there. As for the second term, using (n +
1)~ —n=s = [ (—s)- 2751 dz, we obtain

N N
> A ((n+ 1) =n7*) [ <Y ConT s n 7
n=1 n=1

We can pull C' and |s| out of the sum, and we see that we have the same sort of expression as before,
but with —o replaced by —o — 1. So we conclude, again by comparison with the integral, that we have
convergence to an analytic function for o > r, as desired. O

Now, to prove our first theorem, we just need to see that the criteria of this proposition apply to
our case. In other words, it suffices to see that:

1. If x: (Z/pZ)* — C* is an arbitrary character, then |x(n)| < C for some C' > 0.

2. If furthermore x # 1, then |Z£LV:1 x(n)| < C' for some C’ > 0.

The first claim is trivial, since |x(n)| = 1 for all n (it's a root of unity). As for the second claim, the
point is that the sum of x(n) over p adjacent values of n is always zero. This is because such a sum
is the same thing as summing x(x) over all z € (Z/pZ)*. But since x is a homomorphism, its image
is a subgroup of the (p — 1) roots of unity, and hence im(x) consists of the f!* roots of unity for
some f|(p — 1). Furthermore, again since x is a homomorphism, it hits each value (i.e. each f** root
of unity) equally often. Note that f > 1, since x is non-trivial. Thus we need only apply the following
general fact, which | leave as an exercise:

Lemma 0.4. Let f € N. Then the sum of all the f'* roots of unity in C is equal to 0 if f > 1, and is
equal tol if f=1.

So we have seen that the sum of x(n) over p adjacent values of n is always 0. Then to see that
the values Zf:lzl x(n) are bounded in absolute value, we can maximally break the region [1, N] into
consecutive subregions of length p. The sum over each of these regions will give 0. Then there's at
most p — 1 terms left over. Each term has absolute value 1, so actually the whole sum is bounded by
p — 1 (independently of N).

In total, we've just proved the qualitative theorem. In particular, we see that L(s,x) converges at
s =1. So now we can turn to the quantitative result, which calculates L(1,x). But first, there is also
a qualitative result about L(1, x) which is interesting to mention. It is the following:

L(1,x) #0

for x # 1. This fact is interesting for two reasons (at least). First, it is the crucial ingredient in Dirichlet’s
proof that there are infinitely many primes congruent to a mod n, where a and n are arbitrary relatively
prime natural numbers. This theorem, as far as we know, can’t be proved without using the analysis of
L-functions. But second, as far as | know, the explicit finitary formula which we'll give for L(1,x) is of
no help in proving that L(1,x) # 0. When Y is odd, the formula reduces the claim L(1,x) # 0 to a
purely algebraic fact. But again, as far as | know, there is no known algebraic proof of this algebraic fact.



We can prove this fact L(1, x) # 0 if we're willing to borrow from the future. Namely, in the future
we'll show that (r(s) has a meromorphic continuation to a neighborhood of s = 1, with only a simple
pole at s = 1 (we'll actually show something much more precise). Now, if we recall that

Coe) (8) = Cals) - H L(s, x),
x#1

we see that none of the L(1, x) can be zero, because otherwise we'd be canceling the pole of (g(s) at
s =1, leaving no pole left for (g¢,)(s)-

OK, now let's get going on calculating L(1, x). We won't get anywhere by setting s = 1 right away
though. Instead we'll mess with the defining formula a lot until it starts to look like a good idea to
set s = 1 (or rather, to let s — 17, since by messing with the formula we'll destroy the conditional
convergence!).

We start with a more general discussion, of Dirichlet series with periodic coefficients: let F'(s) =
Yol a(n)-n~%, and assume that
a(n +p) = a(n)

for all n € N. This is a pretty drastic assumption. In fact there's only a finite-dimensional space of
possibilities for such sequences {a(n)}. This is a precise claim: the set of such sequences is the same
as the set of functions

Z/pZ — C.

This is a complex vector space of dimension p. An obvious basis is given by the characteristic functions
of the k € Z/pZ: namely, let c;(n) be 1 if n is congruent to k£ (mod p), and 0 otherwise. Our arbitrary
sequence a(n) can be uniquely expressed in terms of this basis by the formula

3
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a(n) =Y a(k)-cg(n).
0

i

What this means is that if we want to find a finitary formula for the Dirichlet series defined by the a(n),
it would suffice to find a finitary formula for the Dirichlet series defined by the cx(n), for every k € Z/pZ.

But actually, this won't get us too far either! Instead, it pays to use a more tricky basis. The first
basis just used that Z/pZ is a set. There is also a “Fourier-dual” basis, which uses that Z/pZ is an
abelian group. Here the basis elements will be the characters of the additive group Z/pZ, or equivalently
the p* roots of unity ¢ in C. We define

be(n) = ¢".
Now, there are fancy ways of seeing a priori that these b: also form a basis of the set of functions
Z/pZ — C. For example, it is a general fact from representation theory that the set of class functions
on a finite group G has a basis given by the characters of the irreducible representations of G. When
G = 7Z/pZ this gives exactly what we want. But we'll adopt a more explicit approach, and just write
each of the previous basis vectors ¢ in terms of these b.. Namely:

() =~ 37 ¢F b (n).

P&
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If you unwind the definitions, this claim just reduces to our lemma above about summing over roots of
unity.

OK. Now if you combine the two formulas above, you obtain the following expression for a general
periodic function a : N — C with period p in terms of its first p values and the p‘* roots of unity:

ZZ )¢

Pri=0i=1

This is actually kind of nice: we've written an explicit finitary algebraic expression for a general periodic
function. Now let's pecialize to our a(n) = x(n), and simultaneously choose to write our roots of unity
as 1" powers of (!, for ¢, = exp(2mi/p). We find

plpl
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Now, here is a nearly trivial remark. We can exclude the £ = 0 and r» = 0 cases from the above double
sum. For k = 0, this is because x (k) = 0 by definition. For r = 0, this is because, again by our lemma
and the fact that x # 1, the sum of the values of x is zero. Thus we actually have (after throwing in
some rearranging)

1p—1 p—1
- k
=, 2% 2 Xk
przl k=1
Now, although that was a nearly trivial step, in some sense it was a crucial one. We just went from
the additive group Z/pZ to the multiplicative group (Z/pZ)*, which is more friendly to our character

X- Using this we can remove the dependence on r in the last sum Zz;} x(k) - C;k. Namely, since the
values rk as k ranges over (Z/pZ)* are the same as the values k, we can rewrite

p—1 p—1 p—1
S oxk)-GF = xRy -G = X)) x(k)S
k=1 k=1 k=1

Now the only dependence on 7 is the outside factor x(r). Let us give a special notation to the remaining

sum:
p—1

=> x(k)
k=1

This just depends on x: no indices anymore. It is called a "Gauss sum”. We would've run into it if we
had decided to analyze Gauss's construction of regular n-gons by ruler and compass. But instead the
Dirichlet L-series is just showing it to us. In any case, we conclude:

) 900§

r=1

This is just a formula for x(n)! But now it looks good to consider the whole L-series L(s, x).
Namely, we get

g(Xpl - TTL' —S
1o = 20 S S
r=1 n=1



This will give a finitary formula for L(1,x) as long as we can evaluate the limit as s — 17 of the sum

00
Z C;rn .nS.
n=1

Now, if you naively set s = 1, this looks a lot like the power series expansion trying to converge to
—log(1 — ¢, ™). With a little bit of work one can see that this is the case: the limit as s — 1T of the
above expression is indeed —log(1 —(, ™). This is a somewhat delicate statement, since 1 — ;" lies on
the boundary of the disc of convergence of the power series expansion for log. So the convergence is
only conditional, not absolute. But it still works.

We deduce:

L(1,x ZX log(1 — ¢, 7).

That's an explicit finitary formula for L(l, X)- It works for all nontrivial characters ; the even/odd
distinction never came up. But it will come up now, when we try to understand the term log(1 — Cp_r)
more explicitly.

Recall that for z = re’ with —7 < 6§ < 7 and r > 0, we have
log(z) = log(r) + 6.

(This is the “principal” branch of the logarithm, the unique analytic function in the above region
which agrees with the usual log on the positive real axis.) Thus to understand log(1 — ;") is to
understand the absolute value and the argument of 1 — (;". This is a matter of trigonometry. |
recommend doing it in steps, with pictures: first understand that Arg(¢,") = —27r/p. Then deduce
that Arg(—(,") = m — 27r/p. Then deduce that Arg(1 — (,") = /2 — 7r/p. Finally, show that
|1 —¢,"| =2-sin(mr/p). The conclusion is that

log(1—¢,") = log(2 - sin(mr/p)) + %(1 —2r/p).

Now we can plug this back into our formula. Then we can try pairing up r with —r. What we find
is that for x odd, the log(sin) terms will cancel, and for x even, the 7i terms will cancel. Let's work it
like this. In our first formula for L(1, x), replace r by —r. This gives

p—1

£ = -2 S Togl1 =67

r=1
Now average these two formulas together, getting

p—1

L(1,x) = g(pX) 2 X() % (log(l =G ) x(=1) - log(1 — CE’”)) :

r=1

Thus when x is odd we're picking up i times the imaginary part of log(1 — (, "), and when x is even
we're picking up the real part of log(1 — (,"). The conclusion is that for x odd, we have

L1,y = -2 g Zx -(1—=2r/p).



But since again the sum of all the values of x is 0, this simplifies further to

. p—1
L =7 SEL SN

That's our final formula for L(1, x) when x(—1) = —1. It's purely algebraic (just p'* and (p —1)*! and
4" roots of unity), except for the factor of 7.

On the other hand, when y is even we get

L0 = =2 S0 - tog(2- sin(ar/p).

NICOR et s
L(1,x) = » (r) - log(sin(mr/p)).

Now, actually, let's do something a little weird and put in an extra factor of sin(w/p)~!. We can do
this for the same reason. This gives:

p—1 .
L1, = = SG by (T,

- sin(m/p)
This will be our final formula for L(1, x) when x(—1) = 1. It's not as nice as when  is odd, because

the log(sin) factors are a little mysterious. But there is something nice about them, which is also why
sin(mr/p)
sin(m/p)

sin(rr/p) _1-G

sin(n/p)  1-¢,’
and we saw in the course of the first proof of the irreducibility of ®, that these numbers are units.
For now, let’s just keep this in mind: though the log(sin) factors are strange, we can think of them
as coming from units in Z[(p]. In this guise they will also match up with our corresponding analysis of
Ca(¢,)(s) and give us interesting information.

we divided by sin(m/p). Namely, is actually a unit in Z[(p]. This is because, up to roots of

unity, (at least for p > 2)




